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TECHNICAL PAPER

EFFECT OF TYPE OF LOAD ON STRESS ANALYSIS

OF THIN-WALLED DUCTS

I. INTRODUCTION

The standard procedure for qualifying the design of duct (pipe) systems in the space shuttle

main engine (SSME) has been fairly well defined. However, since pipe elbows are quite common and

important in the SSME duct systems, a clear understanding of the detailed stress profile of these

components is necessary for accurate structural and life assessments. The analytical work on the

analysis of pipe bends was originated by Von Karman 1 and continued by several researchers 2 3 for

decades. In recent years, notable contributions on this topic have been made by Spence and

Thompson, 4 Thomson and Spence, 5 Whatham and Thompson, 6 Whatham, 7 Karbin, Rodabaugh, and
Whatham, s and Natarajan, 9 using the shell theory and finite element method (FEM). However, all
these analyses provide limited information about the stress distributions at the interface of the

elbow with the straight pipes (tangent point). In general, the weld location at the tangent point is the

most critical location governing the design of duct systems. This is especially true in the design of

SSME duct systems because of the harsh environment (high pressure/temperature), large dynamic

loads, and weld discontinuity (mismatch/weld bead). A space vehicle design also requires

optimization of weight for maximum lift-off capability, thus resulting in thin-walled duct systems.

Additionally, hot fire data from the strain gauges mounted in the vicinity of these welds are used to
anchor these data to the dynamic models for predicting the loads at other locations. Based on the

previous studies mentioned above, it is well known that the circumferential and longitudinal stresses

at the cross section of the elbow midsection do not peak at the same location. Furthermore, the

location (position angles of cross section, fig. 1) of peak stress of these stresses is not at the

expected position angle. Therefore, this study was initiated to predict the stress profile at/near the

tangent point along the cross section of the duct under various types of loads. Also, similar to the

studies done in references 11 and 13 for the midsection of elbow, this study was further extended to

understand the stiffening effect on stresses due to pressure at the tangent point. The main objective

of this study was to identify the importance of selecting proper locations for mounting strain gauges
and utilizing the obtained results to anchor dynamic models for accurate structural and life

assessments of the SSME ducts under dynamic environment. The finite element method was utilized
in this study as used in references 9, 11, and 12.

II. FINITE ELEMENT MODEL

The finite element models of a 90 o elbow with ends terminated by tangent pipes were con-
structed using the ANSYS isoparametric quadrilateral shell elements, lo The geometric dimensions,

boundary conditions, and loadings were taken from a model analyzed in the literature 11-13 to assure

the validity of a finite element model used in this study. The basic assumptions of homogeneous,

isotropic thin shells within the range of linear elastic behavior were also used in this study. The

models have a ratio of R/r, r/t, and pipe factor (Rt/r 2) of 3.0, 29.13, and 0.103, respectively, where R,

r, and t represent the bend radius of curved pipe, mean cross-section radius of curved pipe, and



pipe-wall thickness,respectively. In the model, an elementaspectratio was approximately 2:1 for
tangent pipes and 1:1 for elbow. Figure 1 illustrates the geometry, loading axes, and sign
conventionsfor the analysismodels.A three-dimensionalfinite elementmodel contains 1,408shell
elementsand 4,208 nodeswith six degreesof freedomat eachnodeshown in figures 2 and 3. One
end of the tangent was fixed, and nodal forcesfor eachloading casewere applied at the other end.
The moment (1.737×106 in-lb) used in references11 to 13 was taken. In addition, internal hoop
stresspressure(p = 26.66 lb/in2)11equivalent to the net pressure(800 lb/in2)13obtained from the
relationship 15.0×p/0.5 = 800 lb/in 2) was also applied to all elementsto simulate the pressure
stiffening effect. For simplicity, nominal bending momentswere applied by meansof a statically
equivalent, linearly varying, axial nodal loading patternas usedin references14 and 15. Similarly,
torsional moment was applied by means of a statically equivalent tangential nodal loading
pattern.1415In the area of the tangentpipe, away from the applied loads, nominal bending and
torsional stressescalculatedby the fundamentalformula, Mr/l for bending and Mr/J for torsion, were

observed, where I and J are a second moment of inertia and a polar moment 9 f inertia, of pipe cross
section, respectively. Also, it was observed that the stress profiles due to in-plane bending moment

(figs. 4 and 5) at elbow midsection were similar to those given in references 11 and 13. These
observations verified the validity of the finite element model and loading application technique used

in this study.
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IH. EFFECT OF TYPES OF LOADS

The nodal stresses in the longitudinal and circumferential directions on the outside and inside

shell surfaces were computed for each loading condition. From these computed stresses, the non-

dimensional stress intensification factors along the cross sections of the duct were calculated. A
stress intensification factor is defined as the ratio of calculated stress intensity at a point to the

nominal stress in a piping component. Nominal stress is defined as Mr/I and Mr/J for bending and

torsion, respectively. From the analyses, the computed circumferential (hoop) and longitudinal

(axial) stresses, in terms of the stress intensification factors, at section BB (fig. 1) are presented in

figures 4 through 10. The results/observations for each loading condition are discussed in the

following subsections.

3.1 In-Plane Bending Moment (M z) z

The longitudinal and circumferential nodal stresses on the inside and outside surfaces at sec-

tions AA and BB were computed. As shown in figures 4 and 5 for section AA, the maximum circum-

ferential and longitudinal stresses occurred on the inside surface at 0 ° and outside surface at 11.25 °,

respectively. The circumferential stress factor was larger than the longitudinal stress factor. Also, in

this case the finite element analysis results were compared with those derived in references 11, 13, :
and 16, and good agreements were obtained. Whereas, at section BB shown in figures 6 and 7, the
maximum circumferential and longitudinal stresses occurred on the inside surfaces at 0 ° and 22.5 °,

respectively. It was also observed that at this section the maximum longitudinal stress was larger

than the maximum circumferential stress. 3 As shown in table 1, the position angles of maximum cir- _-

cumferential stresses were the same between sections AA and BB. However, the position angles of _
the maximum longitudinal stresses were different between sections AA and BB. These observations -

highlight the importance of selecting the proper locations for the mounting of the strain gauges at the

tangent point.

E

2



3.2 Out-of-Plane Bending Moment (My)

At section BB, as shown in figures 8 and 9, it was found that the maximum circumferential

and longitudinal stresses occurred on the outside surface at -45 ° and on the inside surface at

-11.25 °, respectively. Similarly to in-plane bending moment, the maximum longitudinal stress factor

was larger than the maximum circumferential stress factor. However, comparison of figures 6 and 7

with figures 8 and 9 identified that the maximum circumferential stress factor for out-of-plane

bending moment was larger than that of in-plane bending moment. However, the maximum
longitudinal stress factor of out-of-plane bending moment was smaller than that of in-plane bending

moment. This comparison shows that the results obtained at section BB are contrary to those

obtained in section AA as given in reference 16.

3.3 Torque (Mx)

Similarly to the out-of-plane bending moment, since a pure torsional moment exits only on

one tangent pipe at the end of the elbow, any additional steps are not needed to calculate the stress
factors at section BB. In this load case, the maximum shear stress intensification factor was

observed on the outside surface at 0 ° as shown in figure 10. In general, the stress factor obtained

from a finite element model agreed well with the currently used value given in the ASME section III
code. 17

3.4 Effect of Internal Pressure (Mz+ p)

The stiffening effect of internal pressure on the flexibility and stress factors of elbow mid-

section has been studied and reported in references 4, 6, 11, 12, and 13. However, as mentioned

earlier, these studies did not address the effect of bend stiffening at the tangent point. In this study,

the resulting stresses were compared to those of cases subjected to moment loads alone to see the

effect of internal pressure. However, only the in-plane bending moment case is described since the
conclusive results were not observed from the out-of-plane bending and torsional moment cases. At

section AA, the finite element analysis results showed an extremely good agreement with the test

results given in references 11 and 13. Although this combined load produced lower stress factors

compared to those of in-plane bending moment alone, the basic stress profiles were similar at
sections AA and BB for both the cases as shown in figures 4 through 7. From this observation, it

was concluded that internal pressure stiffening effect at section BB also results in reduced bending

stress at section AA. 13 The position angle of maximum stress components is also shown in table 1.

As shown in this table, contrary to section AA, the maximum longitudinal stress at section BB
occurred on the outside surface.

IV. CONCLUSIONS

In general, a design of duct systems does not require a detailed knowledge of stress profile

along the cross section at the tangent point. However, for the duct system in space vehicles a clear

understanding of stress profiles at the weld location (tangent point) is required since it operates

under the harsh environment and large dynamic loads. Additionally, it does not have the liberty to be

over-designed because of the weight penalty. Therefore, this study was conducted using the finite

element models and, consequently, the detailed stress profiles along the cross section at the tangent

point of a 90 ° elbow subjected to various types of loads were obtained.



The results show that a lack of the knowledge of detailed stress profile and peak stress
location (position angle) for the different types of loads might result in erroneous structural and life

predictions. In general, since the dynamic models used to predict the loads are anchored with the

strain gauges data obtained from the "hot-fired" systems, the observations of the position angles of

maximum stress components are believed to be the most useful finding from this study. In other
words, it means that the strain gauges mounted, in general, at 0, 90, 180, and 270 ° locations will

underpredict the strains which may overpredict the fatigue life. Also, it is worth mentioning here that

although the 30-in diameter duct was modeled in this study, the results obtained here are basically
applicable for other 90 ° elbows terminated by tangent pipes with similar ratio(s) of R/r, r/t, and
Rt/r 2.

4

m

m

m

m



REFERENCES

.

o

*

.

.

.

.

.

*

12.

13.

14.

Von Karman, T.: "Uer die Formanderung dunnwandiger Rohre insbeson ders federnder

Ansgleichrohe," vol. 55, Zeitschrift VDI, 1911.

Dodge, W.G., and Moore, S.E.: "Stress Indices and Flexibility Factors for Moment Loadings
on Elbows and Curved Pipe." Welding Research Council Bulletin, 179, December 1972.

Imamasa, J., and Uragami, K.: "Experimental Study of Flexibility Factors and Stresses of

Welding Elbows With End Effects." Second International Conference on Pressure Vessel

Technology, San Antonio, Texas, October 1973.

Spence, J., and Thomson, G.: "Flanged Pipe Bends Under Combined Pressure and In-Plane

Bending." Intr. Conf. on Pressure Vessel Technology, vol. 1, San Francisco, September 9-14,
1984.

Thomson, G., and Spence, J.: "Maximum Stress and Flexibility Factors of Smooth Pipe Bends

With Tangent Pipe Terminations Under In-Plane Bending." J. of Pressure Vessel Technology,

vol. 105, November 1983, pp. 329-336.

Whatham, J.F., and Thompson, J.J.: "The Bending and Pressurizing of Pipe Bends With

Flanged Tangents." Nuclear Engineering and Design 54, 1979, pp. 17-28.

Whatham, J.F.: "Pipe Bend Analysis by Thin Shell Theory." J. of Applied Mechanics of Trans.

of the ASME, vol. 53, March 1986, pp. 173-180.

Karabin, M.E., Rodabaugh, E.C., and Whatham, J.F.: "Stress Component Indices for Elbow-

Straight Pipe Junctions Subjected to In-Plane Bending." J. of Pressure Vessel Technology, vol.
108, February 1986, pp. 86-91.

Natarajan, R.: Letter to the Editor, J. Pressure Vessel Technology, vol. 107, February 1985, pp.
5-6.

ANSYS Rev. 4.4, User's Manuals, vol. I and II, 1989.

Natarajan, R., and Mirza, S.: "Effect of Internal Pressure on Flexibility Factors in Pipe Elbows

With End Constraints." J. of Pressure Vessel Technology, vol. 107, February 1985, pp. 60-63.

Natarajan, R., and Mirza, S.: "Effect of Thickness Variation on Stress Analysis of Piping

Elbows Under Internal Pressure." Computers & Structures, vol. 18, No. 5, 1984, pp. 767-778.

Rodabaugh, E.C., and George, H.H.: "Effect of Internal Pressure on Flexibility and Stress-

Intensification Factors of Curved Pipe or Welding Elbows." Trans. of the ASME, May 1957,
pp. 939-948.

Tso, F.K.W., and Weed, R.A.: "Stress Analysis of Cylindrical Pressure Vessels With Closely

Spaced Nozzles by the Finite Element Method." NUREG/CR-0507, May 1979.



15. Lewis, G.D., and Chao, Y.J.: "Flexibility of Trunnion Piping Elbows." J. of Pressure Vessel

Technology, vol. 112, May 1990, pp. 184-187.

16. Pardue, T.E., and Vigness, I.: "Properties of Thin-Walled Curved Tubes of Short-Bend

Radius." Trans. of the ASME, January 1951, pp. 77-87.

17. ASME Boiler and Pressure Vessel Code, Section III, "Nuclear Power Plant Components,"

ASME, New York, 1989 Edition.

6

m

m

E-.



Table 1. Position angles of maximum stress components at sections AA and BB.

Position Angles of Max. Stress

• Section AA

Hoop Axial

+Mz 0.00 (inside surface )

+Mz + p 0.00 (inside surface )

- My

11.25 (outside surface)

I 1.25 (outside surface)

4,5

4,5

Position Angles of Max. Stress
Section BB

Hoop Axial

0.00 (inside surface ) 22.50 (inside surface)

0.00 (inside surface) 22.50 (outside surface)

-45.00 (outside surface ) -11.25 (inside surface)

Position Angles of Max. Shear Stress at Section BB

Fig.

No.

6, 7

6, 7

8,9

-Mx

,r

0.00 (outside surface) I0

c (t): +90 deg

Thick - 0.5L5" _ ouutkl¢ mrfac¢

// \\

_J PositionAngle

59" _ f

...... .¢ _'_,_. f Section AA

d _ ".A

,, _ ./,_, _------ Elbow

Section BB- _'_ \. \

IZ

. 45"

60"

Pipe
(Tangent)

!

...._I
v I

!

! ,._
! v

!

I
!

I

30"

T
59"

Figure 1. Geometric dimensions of pipe elbow and loading axes

(a, b, c, d, e, and f indicate the positions for cross section).
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Figure 2. Front view of finite element model.
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Figure 3. Isometric view of finite element model.
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Figure 4. Circumferential stress factors of in-plane bending moment
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Figure 6. Circumferential stress factors of in-plane bending moment

with (w)/with (wt) internal pressure at section BB.
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Figure 9. Longitudinal stress factors of out-of-plane bending moment

without (wt) internal pressure at section BB.
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