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Imperfections of a Deterministic or Random Nature

Meelan Choudhari
High Technology Corporation
Hampton, VA 23666.

Abstract

Acoustic receptivily of a Blasius boundary layer in the presence of distributed surface irregular-
ities is investigated analytically. It is shown thal, out of the entire spatial spectrum of the surface
irregularities, only a small band of Fourier componenis can lead to an eflicient conversion of the
acoustic input at any given frequency to an unstable eigenmode of the boundary layer flow. The
location, and width, of this most receptive band of wavenumbers corresponds to a relalive detuning
of O(l?;:le) with respect to the lower-neutral instability wavenumber at the frequency under con-
sideration, 1, being the Reynolds number based on a typical boundary-layer thickness at the lower
branch of the neutral stability curve. Surface imperfections in the form of discrete mode waviness
in this range of wavenuinbers lead to initial instability amplitudes which are O(R%é) larger than
those caused by a single, isolated roughness element. In contrast, irregularities with a continuous
spatial spectrum produce much smaller instability amplitudes, even compared to the isolaled case,
since the increase due to the resonant nature of the response is more than compensated for by the
asymptotically small band-width of the receptivity process. Analytical expressions for the maximum
possible instability amplitudes, as well as their expectation for an ensemble of statistically irregular
surfaces with random phase distributions, are also presented.
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1 Introduction

The purpose behind this paper is to present some theoretical results concerning the acoustic receptivity
of a boundary layer flow due to distributed surface imperfections, which can be cither deterministic
or random in terms of their origin. Such imperfections may arise due to a variety of causes, ranging

from manufacturing delects or structural Jomts to  oper atlonal factors, such as paint erosion, insect

debris and ice accretion, etc. [1]. Of t e many ways thcy Imve bu,u known to aflect the transition to
turbulence, inducement of receptivity is a major one when the maximum height of these irregularities
is small.

The generation of Tollmien-Schlichting (henceforth T-5) instabilities in low-speed boundary layers
via the interaction of free-stream sound with a local surface distortion was first explained by Goldstein
[2] and Ruban [3] in 1985. They showed that receptivity in this case can be attributed to the fact
that the unsteady scattered field produced by this interaction inherits its temporal scale from the
frec-stream disturbance but its spatial scales from the shorter surface irregularity, thereby acquiring a
Fourier spectrum that overlaps with the T-S wave. Following this fundamental breakthrough, a variety
of other localized receptivity problems were studied by other investigators, and examples of these can
be found in the proceedings [4] and [5].

Receptivity due to distributed waviness of the surface was studied by Crouch [6] [7]; however, the
conclusions of these two references concerning the magnitude of receptivity are contradictory to each
other. Furthermore, the prediction technique used therein appears to be more suitable for distributions
of surface nonuniformities which are homogeneous in the flow direction and only involve a finite number
of (discrete) Fourier modes. On the other haud, Choudhari and Streett [8] had shown how generation
of instabilities via distributed regions of surface inhomogeneities could, in general, be predicted by a
relatively simple extension of the localized receptivity results. This extension is based on treating the
receplivity in a region of large streamwise extent as a sum of the contributions {rom its constituent sub-
domains of infinitesimal size, in each of which localized receptivity analysis becomes applicable. The
same jdea was used originally by Tam [9] in an attempt to predict the direct excitation of instability
waves in the absence of any non-uniformities on the surface. The advantages of this technique include
its applicability to arbitrary distributions of surface inhomogeneities, and its simplicity in leading to a
first order ordinary differential equation for the amplitude of the instability wave at any given frequency.

The latter, as demonstrated in this paper, facilitates a further analytical treatment of the distributed




receptivity problem, thereby yielding closed form expressions for the generated instability motion and
also providing a clearer interpretation of the physics involved.

The receptivity to a single frequency acoustic disturbance in the presence of surface imperfections
of known shape and distribution is considered first in Section 2.2 below, following a briel discussion of
the general procedure for solving receptivity problems involving weak surface inhomogeneities; a more
detailed discussion of the background analysis can be found in Refs. [8] and [10]. Although the classical
Orr-Sommerfeld framework has been utilized as the basis throughout, a similar treatment could also
have been applicd to the problem using a purely asymptotic theory. The results obtained in Section
2.2 for the deterministic problem are used as the building block in Section 2.3 for analyzing receptivity
due to a random roughness distribution with a specified power spectral density. Numerical verification

of the theoretical results is also considered.

2 Receptivity Analysis for Distributed Surface Inhomogeneities

2.1 Background and Problem Formulation

Consider the two-dimensional flow over a slightly rough surface that is nominally flat and aligned with
an incompressible free-stream with mean speed UZ,, plus time-harmonic fluctuations having frequency
w*, and amplitude uj, such that ¢, = u} . /U% << I (Fig. 1). The maximum perturbation in the
surface height h} (z*) with respect to the mean position y* = 0 is also assumed to be sufficiently small

compared to the mean boundary-layer thickness (¢, = (h},/6*) << 1) so that the flow everywhere

maz.
can be expanded as a regular perturbation series in terms of the amplitude parameters €, and €s5. As
described below, each term in this perturbation series turns out to involve a different combination of
spatial and temporal scales, and the objective from the standpoint of receptivity is then to determine
the first term which contains the desired combination of scales, i.e., one that overlaps with the local
instability wave. Of course, in order to determine this term with a given order of accuracy in terms of
Reynolds number eflects, one needs to know all the previous terms also to the same order of accuracy.

It should be obvious that the zeroth order term corresponds to the Blasius streamfunction for
the mean boundary-layer flow over a flat surface, while the O(eys) perturbation, corresponding to
the unsteady signature of the acoustic free-stream fluctuation within this boundary layer, is given by

the generalized Stokes-wave solution obtained in [11]. The O(¢y,) perturbation, corresponding to the

steady but short-scale disturbance due to variations in the surface geometry, satisfies the parallel flow
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equations up to O(R~**log R) on a local basis, although the large-scale modulation due to the weak
growth of the Blasius boundary layer also comes into play, depending on the streamwise extent of the
region of imperfections. Note that R denotes the Reynolds number based on the boundary-layer scale
and is defined as R = /Re_+, Re,+ being the Reynolds number based on the distance from the leading
edge.

The first term in the amplitude expansion which possesses both unsteadiness and short spatial scales,
and lience is the object of the receptivily calculation, corresponds to the O(€ewtys) term arising from
a quadratic coupling between the unsteady free-stream and steady surface disturbances. Physically,
it represents the unsteady field produced by the interaction of the O(ey,) Stokes shear wave with the
O(¢€,,) mean flow perturbation, and by its direct scattering due to the O(¢,) perturbation in the surface
leight. Within the “geometrical optics” approximation, this scattered field is governed by the unsteady
linear disturbance equations for a locally parallel mean flow, along with inhomogencous terms in the
differential equations themselves and in the boundary conditions as well, in view of the two different
mechannisms for scattering as mentioned above. Again, non-parallel effects will need to be considered
il propagation distances become comparable to the body-length scale. lowever, subsequent analysis
will show that most of the receptivity is actually concentrated in a region of much smaller streamwise
dimension and hence, a prediction based on the parallel flow equations is sufficient, at least to the
leading order of approximation in terms of the Reynolds number.

Both the mean flow perturbation and the unsteady scattered field, thus, satisfy the quasi-parallel
disturbance equations, and therefore can be solved on a local basis by reducing these partial differential
equations to ordinary ones through the use of a Fouricer transform in the streamwise direction. The
equations in the transform space can be solved either in closed form, via a systematic but multi-
layer expansion in terms of the Reynolds number [2-5], or numerically by using the Orr-Sommerfeld
equation as a non-asymptotic but composite approximation [4-8]. In either case, the locally generated
instability wave can be isolated as the residue contribution corresponding to a pole singularity of the
inverse Fourier integral for the unsteady scattered field. This residue contribution is linear in terms of
the local perturbation to the mean surface-height, with a coeflicient function, Ay, that characterizes
the efficiency of the local receptivity process. The T-S fluctuations produced locally, i.c., in each
infinitesimal subregion, propagate independently of the instability motion generated clsewhere, with

their amplitude and phase variation being determined by the T-S wavenumber as a {unction of 2. The
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total instability amplitude at any location is then given by the integral over the contributions from all

sources upsircam of this location/®1%}

R
’;{5 = \/gEu(Y; R) ¢'®rs()-wl] /A,‘(R,) hio(Rs) e™01s() J1(R — ) dR,, (2.1a)

where u}g denotes the streamwise velocity fluctuation associated with the T-S motion, I, is the T-S
eigenfunction for this quantity, normalized to have a maximum magnitude of unity across the boundary

layer, and Oyg is the spatial phase of the T-S wave
R
Ors(h) =2 [ ars(R) di . - (2.10)

The quantity h,(z*) is the local perturbation in the surface height, nondimensionalized by the slowly
varying length scale z*Re;.l/Z, and A, is the efliciency fuuction obtained from localized receptivity
analysis. One should note that the streamwise variations of the eigenfunction F,, wavenumber arg,
and elficiency factor A, are much slower than those of the instability phase @75 and the surface-height
function h,; thus we have IAI—“%%H << Ief?d—?ﬁil, etc. In Fig. 2, we have shown the Reynolds number
dependence of the magnitude of A, for selected values of the nondimensional [requency parameter
Jo=10%x w*v* /U2,

By differentiating with respect to 2 and invoking the quasi-parallel approximation, E¢q. (2.1a) can

also he converted to a wave amplitude equation similar to that obtained by Tam [9],

durg . dOrs 2
_ v 2 AL by 9.9
ar " tTap sty el (2:2)

where, for simplicity, we have omitted the Y-dependence of the disturbance motion, and from now
on, upg will denote simply the maximum of the streamwise velocity perturbation at cach streamwise
location. The homogeneous solution to this amplitude equation corresponds to the T-5 wave, which is
excited every time the local spectrum of the geometry function h,, overlaps with the T-S wavenumber.
As seen from Eq. (2.2), when the receptivity occurs continuously over a large number of instability
wavelengths, the change in the wave amplitude at any slation is a combined outcome of the local
amplification of the instability waves generated upstrecam of the present location and the external input
due to local receptivity. As discussed in Refs. [9] and [10], the external input dominates the initial
development of the instability amplitude; however, after u}.¢ becomes sufliciently large in magnitude,
the amplitude evolution curve asymptlotes to that of a pure T-§ wave eigensolution. Note also that,

as a result of the distributed receptivity process, the location of stationary (i.e., maximum) amplitude
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does not correspond to the theoretical upper-branch location R, . Ilowever, the shift is asymptotically
small, and one may, therefore, measure the generated instability motion in terms of its amplitude at the
upper-branch location itself. The intrinsic receptivity can be gauged by dividing the nondimensional
amplitude wfo(R = Ryp.)/ule by the amplification ratio between the two neutral locations, which
leads to an “effective coupling coeflicient”, C, indicaling the cffective instability amplitude at the
beginning of the linear amplification stage. A coupling coeflicient® basically relates the output of the
receplivity process, i.c., the amplitude of the generated instability wave, to its input, i.e., the free-
stream disturbance amplitude, and the measure C is the local coupling coeflicient for an equivalent,
but ficticious, localized mechanism that has all its receptivity lumped together at the lower-branch

station R = R;,.. Approximate analytical expressions [or the effective coupling coeflicient for different

types of gecometries are derived in Sections 2.2 and 2.3 below.
2.2 Receptivity due to a single-mode surface waviness

Since any spatially homogeneous distribution of roughness clements can be examined in terms of its
individual Fourier components, we first consider geometries of the form

R

. R
hy(R) = %”le’e"’(m, where 0, = /R 20, (R)dR + ¢y, au(R) = 2"}?\;: , (2.3)
Lb. AL

corresponding to a surface with single-mode waviness of constant nondimensional amplitude Rj,. Note
that Ry, is the Reynolds number based on the free-stream speed Ug, and the dimensional amplitude
of the surface-height perturbation A§. Similarly, Rys is the Reynolds number based on the constant

dimensional wavelength A* (= 2x/a*) of the surface undulations, while a,, denotes the dimensionless
w w

wavenumber based on the slowly-varying, local length scale, :L'*Re;.l/z. The integral solution (2.1a)
now hecones
. n
bs o \J2 y, eorstmiseniec [ il couny-ors(l g, (24)
ac m *§

Since the efficiency function A, varies slowly with the integration variable R,, the integrand in (2.1)
is nearly oscillatory if the wavenumber of the surface undulations e, differs from the local instability
wavenumber ags by an O(1) magnitude. Then contributions from the neighbouring surface locations
corresponding to the out-of-phase elements during each cycle of oscillation nearly cancel each other, and
the integral becomes end-point dominated. This implies that the disturbance amplitudes will retain

the the same order of magnitude throughout the region of waviness.
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2.2.1 Waviness synchronized with the neutral instability motion

A sustained generation ofrinstabi]ities will occur only il o, & aps, corresponding to a ncarly syn-
chronous variation of the forcing phase @, and the eigenmode phase ©ys, which leads to a mutual
reinforcement of the contributions to the integral in (2.4) from adjacent surface locations. Of course,
since the instability wavenumber varies slowly with distance along the surface, such a resonance is
necessarily localized in space, and the extent of this localization determines how large the distributed
receptivity is, when compared to the receptivity induced by a single, isolated roughness element. Since

the instability wavenumber is complex, in gencral, the condition of perfect local resonance requires that
al, = aps(Ryp.) or af, = aps(ys.), (2.5a,b)

where the asterisk denotes dimensional quantities, and subscripts [.b. and u.b. represent lower and upper
branches of the neutral stability curve, respectively. When (2.5a) or (2.5b) is satisficd, the exponent
in the integrand of (2.4) has a saddle poiut at the respective neutral location, with the real I axis
corresponding to a path of descent in case of (2.5a), and a path of ascent when (2.5b) is true. The
latter case is, of course, of little practical interest, and will not be discussed here.

The presence of a saddle point at R = Ry, implies that the importance of the local contribution to
the effective coupling coeflicient diminishes rapidly with distance away from the lower branch location.

Applying the steepest descent method yields the following approximation for the effective coupling

Ilh 2 : .
Cps. = Rz.:. ,/i A Au(Rip) e | Dy = oy —aTs , (2.6)

where the suflix p.s. indicates that the condition (2.5a) for perfect synchronization is satisfied, and

coellicient

the primes denote derivatives with respect to R, evaluated at the neutral location ® = Rs. The
dispersion factor D,, which is simply Rexom”df—;ﬁih.:,;b. in dimensional terms, controls the rate at
which the phase of the natural response becomes uncorrelated with the surface geometry as one moves
away from the resonance location. Asymptotically, the magnitude of this factor is of ()(RZ;“), and
therefore the length of the resonance region corresponds to AR = O(R,s_{f), or in physical terms,
Az* = O(:c;‘.b.R;f'/s), which is of the same order as the geometric mean of the distance from the
leading edge and the instability wavelength at the lower branch location. This shows that that the
synchronized surface waviness will lead to instability amplitudes which are larger than those produced

by an isolated surface protuberance by a factor of 0(11’%?). This simple analytical result confirms,
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as well as explains, the more recent computations of Crouch (Ref. 7) where he found the distributed
receptivity to be “two orders of magnitude” larger than that due to an isolated roughness element, as
against his carlier findings (Ref. 6) that the receptivity is comparable in both cases. Finally, since
in practice, the imaginary part of D, is larger than its real part at all frequencies of interest, the
dispersion eflfect which leads to the detuning of the forcing ©,(R) with respect to Ops(R) is caused
more by the variation in the instability growth-rate, than by a variation in the instability phase-speed
near IR = Iy

It is equally instructive to consider the single mode waviness problem using Tam’s wave amplitude
equation (2.2), which is physically analogous to the second order equation obtained for a [orced oscillator
with slowly-varying parameters, except that the oscillator motion usually involves a zero or positive
damping. Both linear and nonlinear problems of this type have received, and continue to receive,
ample attention from applied mathematicians over the years as evidenced from the various citations in
a recent review by Kevorkian [12], which appear to have begun with Ref. [13] in 1971. Ilence, only a
brief sketch of the solution to (2.2) is given here. A reader interested only in receptivity may also find
some supplemental discussion, especially related to the appropriate initial condition for (2.2), as well
as the numerical results for the case of wall-suction induced receptivity, in Rel. [10].

Basically, the total disturbance amplitude consists of a superposition of the particular solution,

S (o Au(tp.) 0u(R)
U = u oW\ 2.7a
P i2r R, o(Ris) — ars(fs.) (2.70)

and a constant multiple of the homogencous solution,
uj = ut e®rst (2.70)

Il oy /ars — 1 = O(1) everywhere, then the two solutions (2.7a) and (2.7b) remain decoupled, i.e.,
linearly independent, everywhere, and imposing an initial condition corresponding to zero initial in-
stability amplitude forces the coeflicient of the homogeneous solution to be zero identically. On the
other hand, when the resonance condition (2.5a) is satisfied, the particular solution becomes singular
at R = Ry, reflecting the fact that the particular and homogeneous solutions are linearly dependent
in the vicinity of this location, and, thercfore, the decomposition of the total solution into (2.7a) and
(2.7h) is invalid.

A separate, inner expansion becomes necessary for (R— 1Ry )/ s, = O(R;ﬁls), wherein both a,,(R)

and ars(R) can be approximated by their respective lincar Taylor-series approximations centered on
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the resonance location, R = Ry . Expressing the coupling coefficient uf.g/uj, in the inner region as the
product of a rapidly-varying component eZiers(R=Rus) wliicl incorporates the phase synchronization
with the local instability motion, with an amplitude function A(R) that varies on the inner length-scale,

we obtain the amplitude evolution equation

dA 2 R, o,
R = 2iag(R — Rip)A + z\/;% o, Ay(Ryps) ef¢o+zaw(R—Rc.u)’, (2.8)

where, for brevity, we have avoided introducing a specific coordinate just for the inner region. The

solution to (2.8),

. ) n .
AQR) = ApeeistBminf 2 Rio o) pisiomia® [0 gitvsinathein P, | (29)
™ Ry, Ry

matches the partlicular solution (2.7a) sufficiently far upstream, provided

Ry, Au(Iuy)
Ayr = —no Zulo i/ i 2.10
N 77 (2.10)

As R — Ry — oo on the inner scale, Eq. (2.10) yields

. - _ 2
whe/ut, — 2Ap4. e2iars(Rip J(R-Tip ) Hiagg(R-Tiy)

Ry, Au(f1s.) gito+2iors(Rus)(R=Rip J+iel (R=-Tup ) (2.11)
Ris. iv/2mr Do (R — Rip)

implying that the disturbance motion downstream of the inner region is dominated by the homogeneous

(i.e., the instability wave) solution, which is larger in amplitude than the particular solution (2.72) by

a factor of at least (R — Ryp.) v Do = O(R?_{f); see I'ig. 3. The eflective coupling coefficient in the

perfectly synclironous case is then given by

Ity 2
Cps(R) = 241 = =22 |

ido 2.12
Rl.b. iDa Au(Rl.b.) €, ( )

which is identical to the steepest-descent result (2.6). The rcader may note that, since the coupling
coefficient was determined entirely by the solution in the shorter inner region, nonparallel effects asso-
ciated with the streamwise derivatives of the base flow, and the vertical velocity associated with the

same, can be neglected to the leading order, at least.

2.2.2 Near resonant geometries: the effect of detuning

Other types of near-resonant geometries, corresponding to arbitrary modulation of the waviness am-

plitude on the length scale of the relsqnalncc region, can also be handled in a manner similar to that

musrr o



OO0 I 0 e

TR TE R}

W

DI AL LRGN E LU WL EL | CLRIIIGED LR LT U

in Section 2.2.1 above. Thus, for geometries of the form hy, = A, (R)e?ers(Rrs)(R=Tue) with A, (R)

varying on the inner scale, one obtains

Fon p .~ T R iy |
[l(ll) = A“J'(j“-"l’s(n"Rl.b.)2 +\/% 1’;’10 Au(”l.b.) Czn,l.s(l?—-nl‘,,_)?/ Aw( ”a) e:n,l.s(n,~lh,,, )2(11‘)3. (213)
1.b. Ris.

For the case of spatially periodic geometries with a wavenumber detuning of ay, with respect to

ars(Rip.), ie.,

Aw(R) = e¥iow (R=Fus)tido (2.14a)
this leads to
a2,
Clarwy) = € Cps. (2.14b)

indicating that the effective coupling coefficient due to an individual Fourier component drops off in
a gaussian manner away from the resonant wavenumber ayp.. By observing that only the real part of
iD,, contributes to the magnitude of the exponential factor, it is clear that this drop-ofl is purely due
to the streamwise variation in the instability growth rate ncar R = Rys.. Basically, il one views the
phase-synchronization process in terms of the real parts of the respective wavenumbers (o, and ars),
then, for the detuned cases, the center of the resonance region is somewhat upstream or downstreamn
of the Jower branch location, which implies a reduced amplification ratio between the resonance region

and the upper branch, and in turn, a reduced magnitude of the effective coupling cocllicient. Only

a detuning of up to ay, = O(v/D,), corresponding to ay, /ars(Ris.) = O(Rl__,fls), can produce any
significant receptivity, due to the scaling of AR/ Ryp. = O(R,—.,,S_/S) for the resonance region.

Figure 4 shows the magnitude of the normalized effective coupling coeflicient, C(aw, )/ Ry, plotted
as a function of the wavenumber detuning parameter a,, /ars(Ris.) expressed as a percentage, for two
different values of the frequency parameter f = w*v*/UZ. The frequency of f = 25x 1079 has a loga-
rithmic amplification factor of about 9, and, hence, lies in the most critical range of frequencies for the
transition process. On the other hand, the frequency of f = 55 x 1076, although not very important for
transition, may be relevant to laboratory experiments. The figure shows that the analytical predictions
at both frequencies are in very good agreement with the results obtained from a numerical solution of
the wave amplitude equation (2.2). The ouly significant difference between the two results appears to

be that, at large positive values of the detuning parameter (> 8%), the numerical coupling coefficient

decreases more slowly than the gaussian drop-off predicted in the analytical solution (2.11b).
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2.3 Geometries with a continuous spectrum of a deterministic or random nature

Now, consider the class of surface imperfections which have a continuous spatial spectrum, and, there-
fore, cannot be classified as discrete-mode waviness. Assuming the spectrum to be homogencous in the
streamwise direction, one can integrate over all contributions of the form (2.14b) in order to arrive at
the total coupling coefficient for any particular geometry. In addition to its dependence on the power
spéctral density R,gzo (@, ) of the surface-irregularity distribution, the coupling coeflicient also depends
upon the relative phase distribution, ¢g(cry, ), between the different wavenumber components of the
surface undulations. However, an obvious conclusion that holds for all geometries with a continuous
spatial spectrum is that the integrated coupling coeflicient is O(R,__;/s) times smaller than the discrete
mode solutions (2.12) and (2.14a), since the bandwidth in the o, space which can contribute signifi-
cantly to this integral is only of O(RZ;/S). This makes the overall receptivity even smaller than that
induced by an isolated roughness element with a comparable perturbation in height. Note that the
receplivity is stronger for the discrete mode waviness of the form (2.3), because the latler represents
a peak in the spatial spectrum of the surface irregularity near the resonant wavenumber, and, thus,
possescs more energy in the relevant band of wavenumbers.

Lacking a precise knowledge about the surface irregularities, it is not an easy matter to characterize
the phase distribution of the spectral representation of any stationary process. Only a few limited results
exist for finite-dimensional distributions [14]; these prove that the phase ¢o at any wavenumber is always
uniformly distributed on [—m, 7] and that the joint distributions of the phase variables are independent
of the spectral amplitudes. Assuming that this result also holds in the limiting case of a continuous
spectrum, and that the corresponding power spectral density Rio does not vary significantly over the
narrow bandwidth of the spectrum, one finds that the expected value < C? >'? for an ensemble of

rough surfaces which are statistically similar is given by

< C? >l/2 = \/27rR

Ry, .

’: |sin (arg(Da)) Au(Ris)l, (2.15)
wlhere arg denotes the argument of a complex valued quantity. In any given realization, the cffective
coupling coefficient will vary from a minimum value of zero to a maximum of 23/1 times the average
value in (2.15). This upper limit is associated with that particular realization for which contributions

from all wavenumbers are in phase, and, therefore, the respective magnitudes can be added to each

other in a lincar fashion.
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3 Concluding Remarks

The theory presented in this paper elucidates the nature of the distributed receptivity process, and
provides a closed form approximation for the instability-wave amplitude as a function of the amplitude
and frequency of the free-stream disturbance. Although analyzed in the specific context of receptivity
due to distributed surface irregularities, the results obtained can be easily generalized to receptivity
due to other forms of surface disturbances, such as wall suction, wall admittance/compliance, and wall
temperature, etc. An especially important application would be to predict the generation of stationary
cross-flow vortices due to distributed surface roughness/suction by generalizing the localized receptivity
results obtained earlier [15].

The theory also demonstrates the increased effectiveness of near-resonant forcing, which leads to
continual receptivity over long distances. At low speeds, such resonant forcing can only be produced
via the interaction of the free-stream disturbances with surface inhomogeneities of different types, such
as surface roughness, short-scale variations in suctions, etc. However, in supersonic flows, phase speeds
of the free-stream and boundary-layer disturbances are of the same order, and a near-resonant forcing
could possibly arise directly, without any need for “tuning” via scattering at the boundary surfaces. If
such an unsteady forcing does indeed occur, the ideas presented above might turn out to be applicable

in predicting the boundary-layer response in these problems as well. Our current effort is focussed

along this direction.
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Fig. 1  Sketch of the problem.
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Magnitude of the efficiency factor A, from Eq. (2.1a)
as a function of the wall inhomogeneity location R

with fy = 10° x w'v'/U:Z as a parameter.
The lower- and upper-branch neutral locations at each frequency
are indicated by open and filled circles, respectively.
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the purpose of intultive understanding only.
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