
/

Discrete Sequence Prediction
and its Applications

PHIL LAIRD

AI RESEARCH BRANCH, MAIL STOP 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94025

i';i"_:l2 -2 :S7 9 L

......./ 0 3 0 0 _'._t i_2 !:_

NI_SA Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-92-01

January_ 1992

https://ntrs.nasa.gov/search.jsp?R=19920017548 2020-03-17T11:03:50+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42812217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Discrete Sequence Prediction and its Applications

Philip Laird*
AI Research Branch

NASA Ames Research Center

Moffett Field, California 94035 (U.S.A.)

laird@pluto.arc.nasa.gov

j

Abstract

Learning from experience to predict sequences
of discrete symbols is a fundamental problem in
machine learning with many applications. We
present a simple and practical algorithm (TDAG)
for discrete sequence prediction, verify its perfor-
mance on data compression tasks, and apply it
to problem of dynamically optimizing Prolog pro-
grams for good average-case behavior.

Discrete Sequence Prediction: A
Fundamental Problem

A few fundamental learning problems occur so often
in practice that basic algorithms for solving them are
becoming important elements of the machine-learning
toolbox. Among these problems are pattern classifi-

cation (learning by example to partition input vectors
into two or more classes), clustering (grouping a set
of input objects into an appropriate number of sets of
objects), and delayed-reinforcement learning (learning
to associate actions with states so as to maximize the

expected long-term reward).
Discrete seqaence prediction (DSP) is another ba-

sic learning problem whose importance, in my view,
has been overlooked by researchers outside the data-

compression community. In the most basic version the
input is an infinite stream of discrete symbols about
which we assume very little. The task is to find regu-
larities in the input so that our ability to predict the
next symbol progresses beyond random guessing. Hu-
mans exhibit remarkable skills in such problems, un-

consciously learning, for example, that after Mary's
telephone has rung three times, her machine will prob-
ably answer it on the fourth ring, or that the word _in-
controvertible _ will probably be followed by the word
"evidence. _ The fact that predictions from different in-
dividuals are usually quite similar is further evidence
that DSP is a fundamental skill in the human learning

repertory.

*Supported in part by the National Science Foundation
(INT-9008726).

Consider some applications where DSP plays an im-
portant role:

• Information-theoretic applications rely on a proba-
bility distribution to quantify the amount of _sur-
prise" (information) in sequential processes. For ex-
ample, an adaptive file compression procedure reads

through a file generating codes to represent the text
using as few bits as possible. Each character is
passed to a learning element that forms a probability
distribution for the next character(s). As this pre-
diction improves, the file is compressed by assigning
fewer bits to encode more probable strings. Closely
related to file compression are game-playing situa-
tions where the ability to anticipate the opponent's
moves can increase a player's expected score.

• Dynamic program optimization is the task of refor-
matting a program into an equivalent one tuned for
the distribution of problems that it actually encoun-
ters. As the program solves a representative sample
of problems, the learning element examines its de-
cisions and search choices in sequence. From the
resulting information about program execution se-
quences one constructs an optimized version of the
program with better average-case performance.

• Dynamic buffering algorithms go beyond simple
heuristics like least-recently-used for swapping items
between a small cache and a mass-storage device. By
learning patterns in the way items are requested, the
algorithm can retain an item in the cache or initi-
ate an anticipatory fetch for one that is likely to be
requested soon.

• Adaptive haman.machine interfaces reverse the com-
mon experience whereby a human quickly learns to
predict how a program (or ATM, automobile, etc.)
will respond. Years ago, operating systems acquired
type-ahead buffering as an efficiency mechanism for
humans; if the system can likewise learn to antici-
pate the human's responses, it can work-ahead, offer
new options that combine several steps into one step,
and so on.

• Anomaly detection systems are important for iden-
tifying illicit or unanticipated use of a system. Such

To appear in: Proceedings, Tenth National Conference

on Artificial Intelligence, July, 1992

tasks are difficult because what is most interesting
is precisely what is hardest to recognize and predict.

Some AI researchers have approached DSP as
a knowledge-based task, taking advantage of avail-
able knowledge to predict future outcomes. While
a few studies have attacked sequence extrapola-
tion/prediction directly, e.g., (Dietterich and Michai-
ski, 1988), more often the problem has been an embed-

ded part of a larger research task, e.g., (Lindsay etai.,
1980). One can sometimes apply to the DSP problem
algorithms not originally intended for this task. For ex-
ample, feedforward nets (a concept-learning technique)
can be trained to use the past few symbols to predict
the next, e.g., (Sejnowski and Rosenberg, 1987).

Data compression is probably the simplest appli-
cation of sequence prediction, since the text usually
fits the mode] of an input stream of discrete symbols

quite closely. Adaptive data compression (Lelewer and
Hirschberg, 1987) learns in a single pass over the text:
as the program sees more text and its ability to pre-

dict the remaining text improves, it achieves greater
compression. The most widely used methods for lin-
ear data compression have been dictionary methods,

wherein a dictionary of symbol sequences is constantly
updated, and the index of the longest entry in the dic-
tionary that matches the current text forms part of the
code.

Less familiar are recent methods that use directed
acyclic graphs to construct Markovian models of the

source, e.g. (Bell et al., 1990; Blumer, 1990; Williams,
1988). Such models have the clearest vision of the
learning aspects of the problem and as such are most
readily extended to problems other than data compres-
sion. The TDAG algorithm, presented below, is based
on the Markov tree approach, of which many variants
can be found in the literature. TDAG can, of course, be
used for text compression, but our design is intended
more for online tasks in which sequence prediction is
only part of the problem. One such task, program op-
timization, is the original motivation for this research.

The TDAG Algorithm

TDAG (Transition Directed Acyclic Graph) is a
sequence-learning tool. It assumes that the input con-
sists of a sequence of discrete, uninterpreted symbols
and that the input process can be adequately approxi-
mated in a reasonably short time using a small amount
of storage. That neither the set of input symbols nor
its cardinality need be known in advance is an impor-
tant feature of the design. Another is that the time
required to receive the next input symbol, learn from
it, and return a prediction for the next symbol is tightly
controlled, and in most applications, bounded.

We develop the TDAG algorithm by successive re-
finement, beginning with a very simple but impracti-
cal learning/prediction algorithm and subsequently re-
pairing its faults. First, however, let us provide some
intuition for the algorithm.

Assume that we have been inputting symbols for
some time and that we want to predict the next one.
Suppose the past four symbols were "mth _ (the blank
is significant). Our statistics show that this four-
symbol sequence has not occurred very often, but that
the three-symbol sequence _ th" has been quite com-
mon and followed by • 60% of the time, i 15% of the
time, r and a each 10%, and a few others with smaller

likelihoods. This can form the basis for a probabilistic
prediction of the next symbol and its likelihood. Al-
ternately we could base such a prediction on just the

previous two characters %h', on the preceding char-
acter _h', or on none of the preceding characters by
just counting symbol frequencies. Or we could form a
weighted combination of all these predictions. If both
speed and accuracy matter, however, we will probably

do best to base it on the strongest conditioning event
th', since by assumption it has occurred enough

times for the prediction to be confident.

Maintaining a table of suffixes is wasteful of storage
since one symbol becomes part of many suffixes. We
shall instead use a successor tree, linking each symbol
to those that have followed it in context.

The Basic Algorithm. TDAG learns by construct-
ing a tree that initially consists of only the root node,
A. Stored with each node is the following information:

• symbol is the input symbol associated with the node.
For the root node, this symbol is undefined.

• childrsn is a list of the nodes that are successors

(children) of this node.

• in-count and out-count are counters, explained
below.

If _ is a node, the notation symbol(u) means the
value of the symbol field stored in the node _, and
similarly for the other fields. There is one global vari-
able, state, which is a FIFO queue of nodes; initially
state contains only the node A. For each input sym-
bol z the learning algorithm (Fig. 1) is called. We ob-
tain a prediction by calling project-from and passing
as an argument the last node v on the state queue
for which out-count(_) is "sufficiently" high, in the
following sense.

Note that the in-count field of a node _ counts the

number of times that v has been placed on the state

queue. This occurs if symbol(v) is input while its par-
ent node is on the stats queue, and we say that v has
been visited from its parent. The out-count field of a
node _ counts the number of times that v has been re-

placed by one of its children on the stats queue. If/z
is a child of v, the ratio J.u-count(/J)/out-count(z/) is
the proportion of/z visits among all visits from _ to its
children. It is an empirical estimate of the probability
of a transition from the node v to/J. The confidence

in this probability increases rapidly as out-count(i/)
increases, so we can use a mininmm value for the

out-count value to select the node to project from.

_: /e z =th• next :input •ynbol e/

1. Initialize new-•tate :-----{A}.

2. For each node v in •tare,

. Let IJ := make.child(v, z). /* (See below) */
e Enqueue p onto now-•tat_

3. •tare :=new-•tats.

make.child(v, z): /e create or update the c._ild of v
labeled z */

I. In the list children(v), find or create the node p with a
symbol of z. If creating it, initialize both its count fields
to zero.

2. Increment in-count(/_) and ou_-coun_(v) each by one.

project-_rom(v): /* Return a prob. dietrib.*/

1. Initialize projection:= {}.

2. For each child # in children(v), add to projectienthe
pair
[symbol(_,),('_,,-co,-,t(_,)/out-co_(_,))].

3. Return projectie-

Figure 1: Basic algorithm.

As a simple example (Fig. 2), suppose the string "a
b" is input to an empty TDAG. The result is a TDAG
with four nodes:

• A, the root, with two children. The out-count is
two.

. a, the child of A labeled a, created upon arrival of
the symbol a. This node has been visited only once,
so its _-count is 1. Its only child has been visited

once (with the arrival of the b),so its out-count is
also 1.

• b, the child of A labeled b, created upon arrival
of the symbol b. Its _-count is 1, but since no
character has followed b, it has no children and its
out-count is O.

• ab, the child of the node a. It was created upon
arrived of the symbol b, so its symbol is b. The
_u-count is 1, and the out-count is 0.

The state queue now contains three nodes: A, b,
and ab (in that order). These nodes represent the
three possible conditional events upon which we can
base a prediction for the next symbol: A, the null
conditional event; b; the previous symbol b; and ab,
the two previous symbols. If we project from A, the
resulting distribution is [(a, 1/2), (b, 1/2)]. We can-
not yet project from either of the other two nodes,
since both nodes are still leaves. Our confidence in

the projection from A is low because it is based on
only out-count(A) = 2 events; this field, however, in-
creases linearly with the arrival of input symbols, and
our confidence in the predictions based on it grows very
rapidly.

b

(1,1) (1,0)

Figure 2: TDAG tree after "a b" input. The num-
bers in parentheses are, respectively, the in-count and
out-count for the nodes.

The basic algorithm is impractical, in part because
the number of nodes on the state queue grows linearly
as the input algorithm continues to process symbols,
and the number of nodes in the TDAG graph may grow
quadratically. The trick, then, is to restrict the use
of storage without corrupting or discarding the useful
information.

The time for the procedure input to process each
new symbol z (known as the turnaround time) is pro-

portional to both the size of state and the time to
search for the appropriate child of each state node

(make-child, step 1). The improvements below will rec-
tify the state-size problem; the search-time problem
exists because there is no bound on the length of the
children list. Therefore, to reduce the search for the
appropriate child to virtually constant time, one should
implement it using a hash table indexed by the node
address v and the symbol z, returnlng the address p
of the successor of v labeled by z.

The Improved Algorithm. To make the basic al-
gorithm practical, we shall make three modifications.
Each change is governed by a parameter and requires
that some additional information be stored at each

node. It is also convenient to maintain a new global
value m that increases by one for every input symbol.
The changes are:

• Bound the node probability. We eliminate nodes in

the graph that are rarely visited, since such nodes
represent symbol strings that occur infrequently. For
this purpose we establish a mininmm threshold prob-
ability e and refuse to extend any node whose prob-
ability of occurring is below this threshold.

• Bound the height of the TDAG graph. The previ-
ous change in itself tends to limit the height of the
TDAG graph, since nodes farther from the root oc-
cur less often on average. But there remain input
streams that cause unbounded growth of the graph
(for example, "a a a ...'). For safety, therefore,
we introduce the parameter H and refuse to ex-

tend any node v whose height height(v) equals this
threshold.

• Bound fhe prediction size. The time for project-from
to compute a projection is proportional to K, the
number of distinct symbols in the input. This is
unacceptable for some real-time applications since
K is unknown and in general may be quite large.
Thus we limit the size of the projection to at most
P symbols, P _> 1. Doing so means that any symbol

whose empirical likelihood is at least 1/P will be
included in the projection.

The first change above is the most difficult to imple-
ment since it requires an estimate of Pr(v), the prob-
ability that u will be visited on a randomly chosen
round. Moreover, we can adopt either an eager strat-
egy by extending a node until statistics indicate that

Pr(u) < O and then deleting its descendents, or a lazy
strategy by refusing to extend a node until sufficient

evidence exists that Pr(u) _> ®. Both strategies re-
sult ultimately in the same model. The eager strategy
temporarily requires more storage but produces better

predictions during the early stages of learning. In this
paper we present the lazy strategy.

Note that in the basic algorithm the state always
contains exactly one node of each height h _< m, where
m is the number of input symbols so far. Let v be
a node of height h; with some reflection it is appar-
ent that, if m is _> h, then the fraction of times

that v has been the node of height h on state is
Pr(v Jm) _= in-couat(v)/(m - h + 1). Moreover, as
m --, _, Pr(u J m) approaches Pr(u) if this limit ex-
ists. Since the decision about u's extendibility must be
made in finite time, however, we establish a parameter
N and make the algorithm wait for N symbols (tran-
sitions from the root) before deciding the extendibility
of nodes of height 1. Thereafter, another 2N input
symbols are required before nodes of height 2 are de-
cided, and so on, with hN symbols needed to decide
nodes of height h after deciding those of height h - 1.

More symbols are needed for deciding nodes of greater
height because the number of TDAG nodes with height
h may be exponential in h; a sample size linear in h
helps maintain a mininmm confidence in our decision

about each node, regardless of its height. Note that,
with this policy, all nodes of height h become decidable

after the arrival of N(1 + 2 +... + h) = Nh(h + 1)/2
symbols.

For the applications described in this paper a node,
when marked extendible or unextendible, remains so
thereafter, even if later the statistics seem to change.
This policy is a deliberate compromise for efficiency.
A switch extendible-p is stored with each node. It
remains unvaiued until a decision is reached as to
whether v is extendible, and then is set to true if and

only if v is extendible. (See the revised input algorithm
in Figure 3.)

In the prediction algorithm, we store in each node a

list nost-l_.kely-chJ.ldren of the P most likely chil-

_: /* procoss ons input sylbol */

1. m := m + 1. Initialize n•v-state:= {A}.

2. For each node v in state,

s Let/_ :----make.child(i�, z).
• If eztendible?(l_), then enqueue /_ onto new-statL

3. state:f now-state.

make.child(_, z): /* :find or create a child node */

1. In the list childxen(u) find or create the node u with
syabol(/J) = z. If creating it, initialize: Xa-cotmt(/_)
and out-count(#) :-- 0, height(/_) := height(v) + 1, and
children,/J) and Iost-likoly-chiJ.dx•_#):= empty.

2. Increment £u-cotmt(/_) and cut-count(u) each by one.

3. Revise the (ordered) list lOSt-likely-children(v) to
reflect the increased likelihood of #.

Extendiblef(l_): /*' tLuy' ' Vorsion */

1. If •xtendible-p(/J) is True or Fals•, return its value.

2. Else let h = helght(/_); ifm < Nh(h+l)/2, then return
False. (# is still undecided).

3. If hoight(/J) = H (i.e., /, is at the maximum allowed
height) or
(in-count(/_) -- 1) < O. hN (i.e., Pr(/_) is below thresh-
old), then

• •x_•nd£bl•-p(/_) := Fa].s•.
• Return Fals•.

4. Else

• oxtond:i.blo-p(#) := T_uo.
• Return Truo.

Figure 3: Revised input algorithm.

dren. Whenever an input symbol causes a node v to
be replaced by one of its children _, in the el;el:e, we
adjust the list of v's most likely children to account for
the higher relative likelihood of #. This can be done

in time O(P). The algorithm is in Figure 4.

Analysis

Space permits only the briefest sketch of the analy-
sis of the correctness and complexity of the algorithm.
The efficiency and space requirements are governed en-
tirely by the four user parameters H, O, N, and P.
The turnaround time to process each input symbol is
O(Hlogm). In many practical cases, where the in-

put source does not suddenly and radically change its
statistical characteristics, the O(log m) factor can be
eliminated by _freezing" the graph once the leaf nodes
have all been marked unextendible; this occurs after

at most 1 + (NH(H + 1)/2) input symbols. The total
number of TDAG nodes can be shown to be at most

K(1 + H/O), where K is the size of the input alpha-
bet. Finally, the turnaround time of the prediction
algorithm is O(P log m); again the •(log m) factor is
often removable in practice.

proS t-S,
3.. Ini_lize p_ojec_*o_:ffi ().

2. For each child O_in nom*-likoly-ch*ldron(z,), add to
projoction the pmr
[.y.bol(_), _--_o_(_)/o_-_o,,-_C_)].

3. Return Frojoc_ion_

Figure 4: Revised prediction algorithm

Correctness and usefulness are distinct issues. Too
many algorithms have been proven correct with respect
to an arbitrary set of assumptions and yet turn out to
be of little or no practical use. Conversely there are
algorithms that appear to perform well without any
formal correctness criteria, but the reliability and gen-
erality of such algorithms is problematic. Our TDAG
design begins with specific performance requirements;
hence usefulness has been the primary motivation. But
a notion of "correctness" is also needed to ensure that

the predictions have a well-defined meaning and to per-
mit comparison with other algorithms.

Correctness is an extensional property that can-
not be discussed without defining the family of input
sources. Like many data compression algorithms the
TDAG views the input as though it were generated by
a stochastic deterministic finite automaton (SDFA) or
Markov process. "Learning _ an SDFA from examples
is an intractable problem (Abe and Warmuth, 1990;
Laird, 1988), andI am aware of no practical algorithm
for learning general SDFA models in an online situa-
tion. The TDAG approach is to represent the SDFA as
a Markov tree, in which the root node represents the
SDFA in its steady state, depth-one nodes represent
the possible one-step transitions from steady state, etc.
It is not hard to prove that, for any finite, discrete-time
SDFA source S, the input algorithm of Figure 1 con-
verges with probability one to the Markov probability
tree .for S. The predictions made by the project-from
algorithm of Figure 1, with an input node v of height

h, converge to the h th-step transition probabilities.from
steady state of S.

The modifications to the basic TDAG version shown

in Figures 3 and 4 determine how much of the Markov
tree we retain and which nodes of the tree are suitable

for prediction. Instead of shearing off all branches uni-
formly at a fixed height, the algorithm retains more
nodes along branches that are most frequently tra-
versed while cutting back the less probable paths. The
parameters relate directly to the available computa-
tional resources (space and time), rather than to un-
observable quantities like the number of states in the
source process.

Of course, we can never be certain that the input

process is really generated by an SDFA or that the
parameter choices will guarantee convergence to a close
approximation to the input process even when it is

an SDFA. Usefulness is a property that can only be
demonstrated, not proved.

Applications

Text compression is an easy, useful check of the qual-
ity of a DSP algorithm. The Huffman-code method of
file compression (Lelewer and Hirschberg, 1987) uses
the predicted probabilities for the next symbol to en-
code the symbols; the Huffman code assigns the fewest
bits to the most probable characters, reserving longer
codes for more improbable characters.

The TDAG serves nicely as the learning element in
an adaptive compression program: each character is
passed to the TDAG input routine and a prediction
is returned for the next character. This prediction is
used to build or modify a Huffman code, which is kept
with each extendible node in the TDAG.

To decompress the file one uses the the inverse pro-
cedure: a Hutfanan code based on the prediction for
the next character is used to decode the next charac-

ter; that character then goes into the TDAG in return
for a new Huffman code.

For compressing ASCII text, the TDAG parameters
were set as follows: H -- 15 (though the actual graph
never reached this height); P - 120 (since no more
than 120 characters actually occur in most ASCII text

files); ® = 0.002; and N = 10. The resulting program,
while inefficient, gave compression ratios considerably
better than those for the compact program (FGK algo-
rithm) and, except for small files, better than those of
the Unix co,,prsss utility (LZW algorithm). Sample
results for files in three languages are shown in Figure
5.

Language
C

En$1ish
Lisp

Size

(bytes)
4301

Compression
TDAG compress

46.1 45.9
compact

60.6
13334 51.7 53.2 60.3

70101 33.4 38.0 41.5

Figure 5: Sample File Compression Results. Compres-
sion is the compressed length divided by the original
length (smaller values are better).

Unfortunately, most DSP applications are not so
straightforward. Dynamic optimization is the task of

tuning a program for average-case efficiency by study-
ing its behavior on a distribution of problems typical
of its use in production. Sequences of computational
steps that occur regularly can be partially evaluated
and unfolded into the program, while constructs that
entail search can be ordered to minimize the search

time. Any program transformations, however, must re-
sult in a program that is semantically equivalent to the
original. Explanation-based learning is a well-known
example of a dynamic optimization method.

Adapting a DSP algorithm to perform dynamic op-

timization is non-trivial because prediction is only part

oftheproblem.If severalchoicesare possible, we must
balance the likelihood of success against its cost. In
repairing a car, for example, replacing a spark plug
may be less likely to fix the problem than replacing
the engine, but still worthwhile if the ratio of cost to
probability of success is smaller.

I designed and wrote a new kind of dynamic opti-
mizer for Prolog programs using a TDAG as the learn-
ing element. Details of the implementation are given
elsewhere(Laird, 1992), along with a comparison to
other methods. Here we summarize only the essen-
tiai ideas. A Prolog compiler was modified in such a
way that the compiled program passes its proof tree to
a TDAG learning element along with measurements of
the computational cost of refuting each subgoal. After
running this program on a sample of several hundred
typical problems, I used the resulting TDAG infor-
marion to optimize the program. The predictions en-
able us to analyze whether any given clause-reordering
or unfolding transformation will improve the average
performance of the program. Both transformations
leave the program semantics unchanged. Next, the
newly optimized version of the program was recompiled
with the modified compiler, and the TDAG learning
process repeated, until no further optimizations could
be found. The final program was then benchmarked
against the original (unmodified) program.

As expected, the results depended on both the pro-
gram and the distribution of problems. On the one
hand a program for parsing a context-free language
ran more than 40% faster as a result of dynamic opti-
mization; this was mainly the result of unfolding recur-
sive productions that occurred with certainty or near

certainty in the sentences of the language. On the
other hand a graph-coloring program coding a brute-
force backtracking search algorithm was not expected
to improve much, and, indeed, no improvement was ob-
tained. Significantly, however, no performance degra-
dation was observed either. Typical were speedups in
the 10% to 20% range--which would be entirely sati_
factory in a production application. See Figure 6 for
sample results.

In general, the TDAG-based method enjoys a num-
ber of advantages over other approaches, e.g., the abil-
ity to apply multiple program transformations, absence
of "generalization-to-N _ anomalies, and a robustness
due to the fact that the order of the examples has little
influence on the final optimized program.

Conclusions

Discrete Sequence Prediction is a fundamental learning
problem. The TDAG algorithm for the DSP problem
is embarrassingly easy to implement and reason about,
requires little knowledge about the input stream, has
very fast turnaround time, uses little storage, is math-
ematically sound, and has worked well in practice.

Besides exploring new applications, I anticipate that
future research directions will go beyond the current

Program
CF Parser

List Membership
Logic Circuit Layout
Graph 3-Coloring

Average Improvement (%)
CPU Time I Unifications

41.1 34.5
18.5 17.2
4.8 9.5
0.20 -1.40

Figure 6: Sample Dynamic program optimization re-
suits.

rote learning of high-likelihood sequences by general-
izing from strings to patterns. This may help guide
induction algorithms to new concepts and to ways to
reformulate problems.

Acknowledgments

Much of this work was done during my stay at the Ma-
chine Inference Section of the Electrotechnical Laboratory
in Tsukuba, Japan. Thanks to the members of the]abora-
tory, especially to Dr. Taisuke Sato. Thanks also to Wray
Buntine, Peter Cheeseman, Oren Etzioni, Smadar Kedar,
Steve Minton, Andy Philips, Ran Saul, Monte Zweben, and
two reviewers for helpful suggestions. Peter Norvig gener-
ously supplied me with his elegant Pro]og for use in the
dynamic optimization research.

References

Abe, N. and Warmuth, M. 1990. On the computational
complexity of approximating distributions by probabilis-
tic automata. In Proc. 3rd Workshop on Computational
Learning Theory.

Bell, T. C.; Cleary, J. G.; and Witten, I. H. 1990. Tart
Compression. Prentice Hall, Englewood Cli_, N.J.

Blumer, A. 1990. Application of DAWGs to data com-
pression. In Capocelli, A., editor 1990, Sequences: Com.
binatorics, Compression, Security, and Transmission.
Springer Verlsg, New York. 303 - 311.

Distterich, T. and Michalski, E. 1986. Learning to predict
sequences. In al., R. S. Michalskiet, editor 1986, Machine
Learning: An AI Approach, Yol. II. Morgan Kaufmann.

Laird, P. 1988. Efficient unsupervised learning. In Hans-
sler, D. and Pitt, L., editors 1988, Proceedings, 1st Cam-
put. Lmrning Theory Workshop. Morgan Kaufmann.

Laird, P. 1992. Dynamic optimization. In Prec., 9th In-
ternational Machine Learning Conference. Morgan Kanf-
ma_n.

Lelewer, D. and Hirschberg, D. S. 1987. Data compression.
ACM Computing Surveys 19:262 - 296.

Lindsay, R.; Buchanan, B.; and eta/., 1980. DENDRAL.
McGraw-Hill, New York.

Norvig, P. 1991. Paradigms of A.I. Programming: Case
Studiea in Common LISP. Morgan Kaufmmm.

Sejnowski, T. and Rosenberg, C. 1987. Parallel networks
that learn to pronounce English text. Complex Systems
1:145-168.

Wi]]inms, R. 1988. Dynamic history predictive compres-
sion. Information System8 13(1):129-140.

