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I. INTRODUCTION

A successful engineering design is usually a compromise between the capacity of
the elements in the design and the actual operating conditions. These elements as
well as the operating conditions are usually subject to such random effects that they
become random variables. Hence, the properties of the elements involved and the
external conditions are not known with complete certainty. Two extreme results of a
classical engineering design are those related to under- or over-design which led to
failure of the design or to a large waste of resources. It is essential to guarantee that
no catastrophic limiting states occur during the operation or lifetime of a design.
Thus, the extreme values are the ones affecting the failure of any given system.
Consequently, the problem of the distribution of extreme value is of great interest.

The pioneering work of E. J. Gumbel which was published in his book “Statistics
of Extremes” in 1958 had a large impact on the engineering community. Since that
time many new advances and developments have taken place in the area of extreme
value theory. These new developments are in engineering applications as well as in
areas of probability, reliability, stochastic processes, multivariate structures, and
statistical decision theory. The engineering applications involve a broad range of
topics such as breaking strength of material [3], extreme river stages [3,4], wind shear
[1], wind energy (8], aircraft gust loads [12], etc. However, with few exceptions, most
of these applications have been restricted to the univariate cases.

An engineering application, which is of particular interest to us, is the “ascent

structural wind loads” for the National Space Transportation System (NSTS). The



response of the space vehicle to loads induced by the winds, in particular, the
fluctuation in the structural loads due to wind profile variability, has been and
continues to be the subject for intensive investigations. An aerospace vehicle must
withstand the design ascent structural load or be within any flight constraints to
safely reach orbit. For the NSTS an assessment for flight readiness is made for each
mission. This assessment for ascent loads and performance parameters is stated in
terms of launch probability, which is derived from analyses of certain probability
models.

The univariate extreme forms are the Gumbel type, which is unbounded, the
Weibull (of largest extremes) and the Fréchet, which have lower bounds. Smith et al.
[13,14] used the bivariate Gumbel “m - case” distribution in the analyses of extreme
loads for the Space Transportation System (STS). However, some of the load
variables had a physical lower bound of zero, and hence application of the bivariate
Gumbel was not strictly appropriate. Therefore, the need for practical models for the
bivariate Weibull and Fréchet was clearly identified for this specific application. This
is the motivation for this report. It is envisioned that in many other engineering
fields, in which the univariate models of extremes are used, applications of the
bivariate models will evolve after dissemination of the tools provided in this report.

Extreme value distributions were obtained as limiting distributions of greatest

(or smallest) values in random samples of increasing size. Since
r<ni£1 X, = 1—<mgx(-Xi), minima results can be obtained from the corresponding
1<i<n <i1<n

maxima, and vice versa.
Let (X;, Y;),i=1,2, -, n, be asequence of i.i.d. random pairs each having the

same continuous joint cumulative distribution

F(x,y) = P{X;<x, Y; <y},



We consider the joint distribution of X, := max(X;, X, -+ X_), and
Ynax := max(Yy, Yy, oo, Y.

To obtain a nondegenerate limiting distribution, it is necessary to reduce the
actual greatest value by applying a linear transformation whose coefficients depend on
the sample size. That is, we find linear transformations

X = 2 Xax + bn v 2,>0, and Y ()= ¢ Yiat dy s >0

such that each of X, and Y, has a limiting distribution which is one of three types
of extreme value distributions (see section II below). The limiting joint distribution
of XY, 1s a bivariate extreme value distribution. The joint cumulative
distribution function of X, and Y, .. is [F(x,y)]*. Denoting the bivariate extreme
value cumulative distribution function by F(oo)(x,y), we then have

F(oo)(%y) = lim [F(ayx + by, ¢y + d,)]", (1)
For notational convenience we shall write F(x,y) for the bivariate extreme
distribution, if no ambiguity is likely to arise.

Equation (1) is sometimes referred to as the “stability relation” or “stability
postulate.” It is a natural extension of a similar equation obtained by Fréchet, and

also used by Fisher and Tippett, in the univariate case.



II. UNIVARIATE EXTREME VALUE DISTRIBUTIONS

The univariate extreme value distributions are among the three following
families;
(1) Gumbel: P{X <x} =exp [-€7¥],

0 , x<0

(2) Fréchet: P{X <x) ={ expl_x7], k>0

bull: _ ¢ exp[-(-%), x<0
(3) Weibull: P(X<x} =1 | , x>0,

where X = x‘,_” is a reduced variate, x (bold x) is the original variate, u is the

location parameter, ¢ is the dispersion parameter, and 6 >0 is a parameter. The
corresponding distributions of ( —X) are also called extreme value distributions.

Of these three families of distributions, Gumbel is by far the most commonly
referred to in discussions of extreme value distributions, see [3].

The Weibull distribution above (sometimes called “reversed” Weibull) is an
asymptotic distribution of smallest extremes. It is used in the modeling of failure (or
survival), and those applications connected with reliability analysis.

The mirror image of the Weibull distribution, the distribution of (-X), is called
Fisher-Tippet type III distribution of largest extremes,

(3) P{-X>-x}=1-P{-X< -x}=1-exp(-x)!, x>0.
The distribution in (3)" has been used to model maximum temperatures, maximum
wind speeds [7], and maximum earthquake magnitudes.

The Fréchet distribution is an asymptotic distribution of largest extremes
derived by Fréchet under the condition that the initial variates be nonnegative. It

has been widely used as a model for floods and maximum rainfall [2,7].



II.1. REMARK: We note that the Fréchet and Weibull distributions, with parameter
9, can be transformed into Gumbel distribution (with az%, and p=0) by the
transformations Z=InX, and Z=-In(-X), respectively. Therefore, we can obtain
the Fréchet or the Weibull distributions, with parameter 9:% > 0, from Gumbel type

with 4=0 and a:%, by using the transformations z=e* or z=-e™ , respectively.



III. STRUCTURE OF BIVARIATE EXTREME VALUE DISTRIBUTIONS

Gumbel and Mustafi [5] have described two general forms for the bivariate
extreme value distributions in terms of the marginal distributions;

(1.) The a-case:

F(X’Y) - FI(X) F2(Y) exp[“a(lnpll(x) + 1npl2(y))-]]» (1)
where 0<a<1, X and Y are reduced variates. The parameter a indicates the
association between the two extremes, and a=0 corresponds to the case where X

and Y are independent.

(2.) The m - case:

F(x,y) = exp[- {ln Fy(x))™ + (-In F,(y))"}m], (2)
where 1 <m < oo, X and Y are reduced variates. The parameter m indicates the
association between the two extremes, and m=1 gives the independence case.

We shall consider bivariate extreme value distributions when the margins F,(x)

and Fy(y) belong to the same family of univariate extreme value distributions.

A. Gumbel Margins
J. Tiago de Oliveira [15,16] proved that a bivariate extreme value distribution
with Gumbel margins can be defined by a cumulative distribution function of the
form
F(x,y) = exp[- (™ + €7) g(y -x)], (3)
where X and Y are reduced variates.
In this case a density function exists if the “dependence” function g satisfies the

following conditions:

() lim g(t) = lim g(t) = 1,

t—=co

(i) £[1+eYgt)] <0,



(iii) £ [(1 + €) g(t)] > 0, and
(iv) (1+e*) g"(t) + (1-e") g'(t) 2 0.

A.l. Remarks: (i) To obtain the a-case equation (1) from equation (3) above, we

take
g(t) = gi(t) = 1- §sech®($), 0<a<l,

(ii) To obtain the m - case equation (2) from equation (3), we take

1
emt +1 m
g(t) = go(t) = 2 1 <m <o

We will now verify these remarks.

(1) The a-case:

— (X -y o a
() = el (e +¢7) (1 - —%)
=exp[-(e*+e¥) (1 - % 2 2)]
p 4\ yx (y-x)
e?2 +e 2
-x _ eX 4 &Y
=exp[-(e*+eY)+a y_)(( (y_l) ]
RS,
_(y+x)
~ el 4 ) et

=exp[-(e* +¢e7Y) + a1

Therefore,

F(x,y;a) = exp[-(€* + e¥) +a(e* + )], 0<a<l.

(ii) The m - case:

F(x,y) = exp[-(e™ + ¢7)

= exp|- (¢ + ) (™ / (T,

(4)

(6)



Therefore,
1
F(x,y;m) = exp[-(e™ 4 ™)™, 1 <m < co. (7)

A.2. Rotation of the Axes by 45
We may want to take advantage of the symmetry around the diagonal y=x by

rotating the coordinates 45°.

x = x' cos 45° - y sin 45° = g (x’_ y').

y = x' sin 45° 4+ y/ cos 45° = g(x-f-y) }(8)
(i) The a-case:
F(x'y') = exp[- ( ﬁ(xl ! f(xl+y )) La (eg(x,—y’) x +yl))1]

+
X N2 Nz .
= expl (7 (7 74 e )(1-?W)]
i

AT IA
(=——)
N2 5 N
=exp[- 2e 2" ch(5y') (1 - 2sech? (-3°y")], 0<a<1
Thus,
_ Exl \z
F(x'y') = exp[- 2 77 ch(Fy) gi(¥2y')]; (9)

where g,(t) =1 - §sech®}), 0 <a <1, is the dependence function in A.1.

(i1) The m - case:

Pied o — m\l_(lr
(x'y') = exp[-(e2

N2, g oL
T2 (X+Y))m]

N2 m\2 m\2 ; 1

= exp[-e? (e 2V e 2 )m]
1
‘J_ V2 \™
= exp[-e (—W?) )
e 2

P
= expl-e? " (e®'41) — 2



2,0

N2 1
= exp[-e? (eTY

- Pl
(eﬁy’-&l)

1
LN ) (V2 gy

=exp[-2e 2 ch(sy (e\ﬁylﬂ) ], 1<m <oo.

Thus, 3z,

F(x'y) = exp[-2 ¢ 2" ch(By) g,(\2 y')), (10)

(emt+l)% . .
where g,(t) = e 1 <m < oo, is the dependence function in A.1.
€

A.3. The Joint Density functions
(i) The a-case:

f(x,y;a) = F(x,y;a) € Ot [1-a(e™+ e¥)(e*+ €)% 4 2 a 0P (ex4 &)3

+ a? ) (exy oY) Y] (11)
where F(x,y;a) is the distribution function given by (6), and 0 <a <1.
(i1) The m - case:
-m(x+y) /- - -2+-1— - - L
f(x,y;m) = F(x,y;m) €™ (e™4 &™) 7™ [m -1 + (e )], (12)

where F(x,y;m) is the distribution function given by (7), and 1 <m < oco.

A.4. The Bivariate Mode
(i) The a- case:

The value (¥, ¥ ) which maximizes the density f(x,y;a), given by (11), is called
the modal location. This value lies on the line y = x (or y'= 0), and hence to obtain
it we write the density in terms of x’ and y’, the 45" -rotated axes. From (8), we
have,

Bt /
Nz x’(e N2y’ N2y
2

x+y=V2x", e e¥=2e ):Qeﬁ"lch(\ﬁy'),and
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N2 s
e+ e’ =2e? ch(g y').

Therefore (11) becomes

f(x',y';a) = F(x',y';a) e V1 - 22 N a7 v Y ¥

!

a2 o2V2x
NEW,
2e2" ¢

+

( n(3Z )4

f(xl .a) = F(x'.v'" -\ﬁx’lah@/ h2E’ gg
,Yaa)_ (XaY1a‘)e [—§C( y)sec (ZY)+4e

+ il‘; sech"(\g—i y')].

Thus,
2 N2
f(x',0;a) = F(x',0;a) e P [1-3 + 85 + 277,

Nz
where F(x',0;a) =exp [-2(1 - 2)e 27].
Therefore,

EW p Nz,

f(x',052) = exp [-2(1 - §)e 27 ] (1-9)% "V 4+ 5e777),

and

el

2f(x',032) = exp [~2(1 - 3)e?
N2, 2 4

+exp[-2(1 ~ %)e-TX] (—ﬁ(l—%)%‘ﬁx, - a-sze_Tx) )

Setting %f(x’,();a) = 0, we obtain

N2, N2,

! -N2x/ a 7% a -2’ a 73X
(1_%)e-ﬁx ((1_%)26\5 +2e? )—(1—3)2eﬁ -2e7F =0
(1 _é) ( _2)2 e"ﬁx, + 2 e'%_zx’) _ (1 a)2 e'g"l 2 —

1 i 4 1 8
R
(1-2)%V _(1-2)(1-3)e 2" -2 =0.

Therefore,

o a-Pa-PENa-PHI-$? —aa-P-F
e =

)
8
21 -3)3

!
“sech®(L ')

vz
2

-2x! a "X
1=z VB ((1-9% "V 1 g e

/

)
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a

2
(=D -HE0 -0 -2+ 2% +3 )

- 2(1—2)3

2
(1-2) £ 1- 242 2

-=a . I . .
= . Since e 2" has to be positive, we see that,

2(1-3)?
2
a a a
-f—ﬂ' _a —7)+\J1 - 3t%
e = =3 .
2(1 —z)

Therefore, modal location is }7’ =0, and

X =2 [ln ((1—%)+s 1- %4—‘;—2 ) ~In (2(1—%)2)].

The corresponding modal value is obtained by substituting (14) into (13):

2 2.2
0= - i+, {(1 a)2<<1—%)+\J1 S A 3 ) +
1

2(1 ——%‘)2

= exp[ -

2
(1 =1 - %+%] {((1 — 5+

-3 21-3)

..‘
|
T
+
o|®,
~—
+
INT
-
|
I\)b!?
+
—
|
IR
+
®[®

Thus

2
2(2 —a)+\16 —8a +2
(2 = a)+y16 — 8 ) (14 42

f(x’,0;a) = 1 exp[ - =y T (4 —a)?4a? ) )

The m — case:

As in the a - case, by using (8), we see that

mN2 ; m\2 .
- - - —5—{(x — — x'+
e mx_i_e my e 2 ( y) e 2 (x"+y")
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=2e 2 “ch(Z2y.

Therefore, (12) becomes

o TN
£ y'sm)=F (xysm)e ™ (26 72 * ch(%Z 1) J 2 (m -1
Az x! 7 1
+ 267 ¥ (ch(mE )k (16)
Thus,
_m\2 Nz
f(x’,0;m) = F(x’,O;m)e""‘ﬁ"’(Qe 2 )H% (m-142e 27),
1 —ﬁxl
where F(x',0;m) =exp[-2™ ¢ 2~ ], or

1 _Ex’ ! —mﬁ x’ —EX,
f(x',0;m) = exp[—2m e 2 ¥ ] e™\2x (26 2 )'24% m-1+2e 27],
1 N2 S C
f(x',0;m) = exp[-2W e 2 * ] 27%tm ((m -l)e 2 4 2m " zx ) (17)

Now, differentiating w.r.t. x’ and setting the derivative to zero, we obtain

1 N2 1 _NZ N2

_Y2 x BN CIS

af’ f(x’,0;m) = exp[-2™ e 2 ](_2m (g)e 2 )((m —1)e 274 2m e~ 2"')
1 _ﬁx' _Ex' 1

+ exp[-2™ e 2 ](-g(m—l)e 27 4 2m (77) _ﬁx’)—O,

which gives,

1 _ﬂxl _ﬂ,‘l 1 _ﬂxl 1

2me 2 ((m -1ne % 42m e_ﬁxl)—((m —1)e 2 4 2m e” 2"’) =0
1 2 33, Nz

2M (m —3)e_‘ﬁ"’+256 2V? —m-1e 27 =0

2 1 _Ex'

2m e"ﬁ"’+ 2Mm —3)e 2 —m —1) = 0. Thus,
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1 2 2
x — 2fM(m — 3) :i:\lz'fﬁ (m—3)2 4+ 4(2)M (m—1)
e = 3
2(2)M

S
<

—(m—3) £y (m—3)2 + 4(m—1)

— n m > 1.
2(2)™
It follows that,
Nz —(m—3) +y (m—3)2 + 4(m—1)
e *? = i
@m *!
—(m—3) +{ (m—1)2 + 4
= 3 ,and
() +1

—?x’ =1In[—(m—3)+{ (m-1? +4] —(F+1) In2.

Thus the modal location is }7’ =0, and

%' =2 {(L +1) In2 - In[— (m -3) +\l (m-1)2+4]}.

Substituting (18) into (17) we obtain the modal value

—(m—3) + (m—l)2+4](—(m—3) HNm-12+4 )

f(;’ ,0;m) = expl > 8

S e

2

(m —3) +\] (m—1)2+4] (—(m—s) +J (m—1)2+4)((m+1)+\| (m—1)2+4) (19)
5 .

= exp| — 5 S



14

B. Fréchet Margins

Using the transformation z = €* or In z = x, (we use Gumbel type with p=0
and az%, see Remark II.1.) in equations (3), (6), (7), (9), (10), (11), and (12), we

obtain the following (after changing the variables back to x and y):

B.1. Bivariate Extreme Distributions (with Fréchet margins)

The equation that corresponds to equation (3) is

F(x,y) = expl-(x*+ y*) g(6(ln y-In x))
= exp[- (x4 y7%) g(f In ¥)], 0:% >0,x>0,y>0, (20)

and F(x,y) =0, forx<0,y<0,
where X and Y are the original variates (with y = 0).

The function g is the dependence function given in Remarks A.1. The choice of
g, as g or gy, will yield (respectively):
(i) The a-case:

0 ifx<0,y<0
F(xya) =4 >0, 21
) =l ) 4 et ), HS0aSe, O

where Gz% >0 1s a parameter and 0 <a<1.

(ii) The m - case:

0, 1 ifx<0,y<0, (22)
exp[ - (x ™+ y™)m] if x>0,y >0,

F(x,y;m) = {

where 9:(1, >0 is a parameter and 1 <m < oo.
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B.2. Rotation of the Axes by 45
(i) The a-case:

F(x'y"a) = { 0

P '
- if x' <0,y <0,(23)
exp[—2(x’)_7—6ch(¥9 Iny')(1-2 sechz(ga Inyh)),ifx' >0,y >0,

where #>0,and 0<a<1.

(i1) The m - case:
P '
F(x,y'im) = {0’ if x'<0,y <0, (24)

_E fymoN2 %
exp|-2(x') ? s ch(—\lz?- g 1n y') O)mPE 17

: ! !
Gy i 20.Y 20,

where 8 >0, and 1 <m <oo.

Note that the two cases above (equations (23) and (24)) can be written as

0, if xX'<0,y <0,
F(x'y') = { @ nx Y (25)
exp[-2(x) 7’ ch(Z 6 ln y) gln(y)?) ) if x' >0,y >0,

where 6 > 0, and g is as given in Remarks A.1.

B.3. The Joint Density Functions
(1) The a-case:
f(x,y;a) = F(x,y5a) (xy) [l — a(x*® + y?)(x + y°) 7% + 2a(xy)*(x"+y°) 7°
+a? (xy)*(x* +y°) 7, (26)
where F(x,y;a) is the distribution function given by (21), >0, 0<a<1, x20,

y >0, and f(x,y,;a) = 0, otherwise.

(ii) The m - case:
1 1
f(x,y;m) = F(x,y;m)(xy) ™(x "™ +y ™) T [m-1 4 (x ™ + y "™ ] (27)

where 6>0,1<m <oo, x>0,y >0, and f(x,y;m) = 0, otherwise.
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B.4. The Bivariate Mode
(i) The a-case:

To write the density function (26) in terms of x’ and y’, the 45-rotated axes,
using relations (8), we have xy = LY(x? -y?) , x¥ 4+ y? = \[2_)20 [(x —y")?
+Hx'+y)* ], and x° 4+ y7 = (P [(x - y')? +(x'+y)° ].

Now, the Fréchet density function (26) takes the form

12

f(x',y'32) = F(x'y'2) (720 [L-a(( -y +x4)% (' - ¥')° +(x'+7)")

/2 1?2

+ 202" (3% (¢ -3) +x+y'))?

12 2

+ a2 () (B (- y) ),

= F(x',y%a)27 (2 =y2) " [L - a((x' - y)? +(x'+7)2 J(x' - ¥')® +(x"+y")%)?

é
+2 T 2a(x? )" (- y') +H(x'+y')’)

+ a2 (xl2_yl2)20 ((x'—y’)g +(x/+y/)9)-4]’ (28)
where F(x’,y";a) is as given (23),0>0,0<a<1,x' >0,y >0,

and f(x',y’;a) = 0, otherwise.

The modal location for the Fréchet can be obtained from the corresponding value

~

for the Gumbel, equation(14), as follows y’; =e¥ =2¢e’=1, and

xp = 2 exp{ & [In (201-9%) - I ((1-9+1- 3+ D))

=2 [(2(1- 3)2)9 (-9 +1-3+ a§)9], (29)

where 6= 3 .

[

The modal value is, then, obtained by substituting y’é and x;, given above,

into equation (28).
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(ii) The m-case:
As in the a-case, the density (27), can be written as
f(x',y:m) = F(x,ym) (x2 - y2) ™ (2)(x¢ — )™ + (x'+y’) ™0y
(14 (2F (2o y)™ + (cy) ™ ), (30)
where F(x',y’;m) is given by (24), 6 >0,1<m < o0, x' >0,y >0, and
f(x',y’;m) = 0, otherwise.
The modal location is obtained as in the a-case; y7F =1, and

Xp = \2 exp| & {(& +1) In2 - 1n(—(m—3) + (m-1)% + 4)}]

= {2 (2" (—(m-3) +{ (m-17 + 4) (31)
1

where 6= 5 .

C. Weibull Margins

For notational convenience we present here bivariate extreme distributions of
smallest values, the bivariate distributions of largest extremes can be easily obtained
from 1it, see equation (3)' of section II and the discussion therein. Using the

transformation z =-e™ or In(-2z)=-x, we obtain:

C.1. Bivariate Extreme Distributions (with Weibull margins)

0 ¢ n ¥, x
F(x,y) = { Oe’Xp[—((_x) + (-y)°) gl@1 y)]’ XS>0’0’ny>O’()’ (32)

where 0:% > 0, and X,Y are the original variates (with p= 0).
The dependence function g is as given in Remarks A.1.
(i) The a-case:

Plxyia) — { exp(-((-x)7 + (-)°) + al(-x)” + (=) )], x<0,y <0, 0

0, x>0,y>0,

where 02% >0 1s a parameter and 0<a<1.
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(i) The m - case:

1
. —_ exp[_((_x)m9 + (_y)ma)ﬁ]v XSO, }’SO,
F(Xa}’1m) —{O, x>0,y >0,

where 6?:%- >0 is a parameter and 1< m < co.

C.2. Rotation of the Axes by 45
(i) The a-case:

N2
exp| - 2(-x) 2 °ch(o In( - y))(1 -2 sech?(26 In(-y"))),
F(x”yl;a) = {0,

where >0, and 0 <a<1.

(ii) The m - case:

N2 _yymONT | gy
exp[-2(-x) T 'ch(o In(~y")) LT w0, v <0,
F(x',y';m) = G v (36)
0, x>0,y >0,
where >0, and 1 <m < co.
Again, we notice that both the cases above can be written as
N2
F(xl I) — exp[ _2( _X,)- : GCh(%—z—o ln( - y,)) g(ln( —y’)ﬁo)]a X’ < Oa }" < Oa (37)
Y=, x'>0,y >0,

where 6>0, and g is as given in Remarks A.1.

C.3. The Joint Density Functions
(i) The a-case:
f(xyia) = Flxyia) () [1-a((-)® + (-3)%) (%) + (-y))*
+ 2a () (=" (=3) )%+ a2y (-0 (-3, (39)
where F(x,y;a) is the distribution function given by (33), 6>0,0<a<1, x<0, y<0,

and f(x,y;a) = 0, otherwise.
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(i) The m - case:
f(x,ym) = F(x,yim) (xy)"((~x)™+ (-y)m0)* =
x m-14 ((-x)™+ (_y)mo)%], 59)
where F(x,y;m) is the distribution function given by (34), >0, 1 <m < o0, x<0,

y <0, and f(x,y;m) = 0, otherwise.

C.4. The Bivariate Mode
The bivariate mode for the Weibull is similarly obtained as that of the Fréchet.
(i) The a-case:
The Weibull density function (38) takes the form
f(x',y'5a) = F(x',y52)2’ (x2=y) " [1a((x' - y)+ (+y'))((x' - y')°+ (x'+y")?) 2
F21TE (1) alt oy (0 -y) + ()
F a2 (o g (-9 +x ), (40)
where F(x',y’;a) is as given in (35), § >0, 0<a<1, x'<0, y' <0, and {(x';y";a) = 0,

otherwise.

The modal location for the Weibull can be obtained from the corresponding

value for the Gumbel, equation(14), as follows sz =—¢e¥ =_eV= _1, and

Ky =2 exp{ # [In (2(1-2)%) - In((1-3) + \1- §+ %)]}
= -2 [201 _3)2)'0 (1-9 + \]1 —aye )9], (41)

where 6 = L.

The modal value is, then, obtained by substitutin 7y and x , given above,
g Yw wy &

into equation (40).
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(i1) The m-case:
As in the a-case, the density (39), can be written as
f(,y'im) = By sm) (2 -y ™ () (DU gy ™ + (<)o) 0
(L) -y ™ + (xR | (42)

where F(x',y’;m) is given by (36), §>0, 1 <m <o, X' <0, y’' <0, and f(x',y’;m) = 0,

x(m-1+ (2)
otherwise.

The modal location is obtained as in the a-case; y’);v = -1, and

Xy = -2 exp[ 3 {(& +1) In2 - ln(—(m—3) +4(m-1)? + 4)}]

= 2 (2" (—(m=3) + {(m-17 +4), (43)
where 6 = &.

The modal value is, then, obtained by substitutin y7 and x7, iven above, into
g Yw wy &

equation (42).
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IV. PROPERTIES OF BIVARIATE EXTREME DISTRIBUTIONS

Bivariate extreme value distributions have several properties (for example, see
Gumbel (3], and Tiago de Oliveira {19]); we only discuss a few here.
(1.) For any bivariate extreme value distribution the following holds
Floo)(%5) 2 Fio)(x) Fao)(¥)
where F,)(x), and F,(y) are the (marginal) univariate extreme distribution

functions.

(2.) If F(oo)(x,y) and G(oo)(x,y) are two bivariate extreme distributions, then so is

their weighted geometric mean

( Flooyx ) (Gpo)(x¥)) 7, 02 < L.

(3.) Fréchet bounds. Let F(x,y) be any bivariate distribution function with

marginals F(x) and F,(y). Then
max (0, Fy(x)+F,(y) -1) <F(x,y) <min (Fy(x) , Fy(y)).

(4.) Each of F(-,-;a) and {(-,-;a), the bivariate extreme distribution and density
functions, given by equations (6) and (7) respectively, is an increasing function of the

parameter a , see Gumbel and Mustafi [5].

(5.) The Gumbel type distribution, Fl(w)(X) = exp(-e™), has expected value

72

v (=0.5772. . .), the Euler’s constant, and variance Z-.

1
(6.) Since lim (e™* + ™)™ = max(e™, e7), it follows that

Jim F(x,y;m) = min[exp( -e™), exp(-e™)].
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(7.) The conditional distributions: We shall use the formula

:y =
x|yl Ary()

to drive the conditional distributions.
A. Gumbel margins
(i) The a-case: We have
F(x,y;a) = exp[-(e™* + e7) + a (e + &), 0<a<],

thus
oF(x,y;a)

5y = exp[-(e* + e7) + a(e* + &) (e¥- ae'(e*+ e¥)?).

Also,
iy Fy(¥) = & lexp(-€?)] = exp(-e€) (e7).
Using equation (1) above, we obtain
Py (olY=y) = expl-e™ 4 a(e® + &) (1-a (e + 7))

= (1 - a( ad )2) exp[-e 0 + a(e® + e¥)]

X
e 0+ey

where 0 <a<1, X andY are reduced variates.

(i1) The m-case: We have
F(x,y;m) = exp[- (e ™+ e_my)%], 1 <m < o,

0F(x,y;m)

L . cmy\ak - -
G = expl - (™ €™ (- (e ™ )R (-m) )

— exp [ (™ ] (emrg okt oy
Also,
a5 Fy(v) = exp[-¢7] (7).

Equation (1) yields:

~mx cmynas - -mx sy -
Fy |y (%ol Y=y) = (e ™70+ ™)™ 7 exp[~ (e "0+ e™)™ _(m-1)y + €7,

where 1 <m <oo and X,Y are reduced variates.
Ifwelet z=e " 04 e™ equation (3) takes the form

1 1 _
Fy (%ol Y=y) = 2% " exp[-x™ - (m-1)y + &7

(3)
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Equation (3) can also be written as

1
(o ) !

-mXx -m —1— -
FX ' (XO|YZY) = (m-l)y exP[‘ (e %+ e y)m +e y]
(&4
o 0 -myh -1 ~mx N -
= ()" expl- (O ™)+ e (5)

where 1<m<oo, X and Y are reduced variates.
Now, using the transformations given in section II, we can obtain the

corresponding formulas for the Fréchet and Weibull margin cases.

B. Fréchet margins
(1) The a-case:

Fy [y (%ol Y=y) = (1- a(xgyfyg)"’) exp[-x5"+ a(x§ + y°) 7], (6)

where 0<a<1,8=2>0,and x,>0,y>0 are values of the variates X and Y.

(i) The m - case:
x6m0+y_m9 1 4

Fy [ y(XolY=y) = (—;W)m

where 1<m<oo, § = +>0,and x5>0,y >0 are values of the variates X and Y.

1 -
exp| — (xgm0+ y ™) + y9, (7)

C. Weibull margins
(i) The a-case:

Fy y(%olY=Y) = (1-a((_xO)‘_;f("’_y)-o)2) exp| - (-%0)"+ a((~%0)*+ (-¥))7], (8)

where 0<a<1,0=2%>0,and x,<0,y<0 are values of the variates X and Y.

(i1) The m - case:

(x™+(-y) e
Fx | Y(XOIYZY) = ( . ( )

T " expl = ((=x0)™+ (-9)")™ + (-¥),  (9)

where 1<m <oo, 6 =+>0,and x,<0,y<0 are values of the variates X and Y.
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V. PARAMETER ESTIMATION

There are five parameters for each type (Gumbel, Fréchet, and Weibull). These
are the location and dispersion (shape or scale) parameters u and ¢ for each of the

two variates and the association parameter a or m as the case may be.

A. The location and dispersion parameters

The marginal reduced variates are

Zy = & (X= ) and Z, = & (Y- u).

The estimates j;, i=1,2, are the modal values, and the values of the shape
parameters 4&;, i=1,2, can be calculated from the separate marginal distributions
using any of the following methods:

1. The method of maximum likelihood.

2. The method of moments.

3. Best linear unbiased estimates (Lieblein’s method).
4. Best linear invariant estimators.

The method of maximum likelihood yields a system of equations whose exact
solutions are difficult to obtain. However, Kimball developed a simpler procedure to

get approximate solutions. This is described by Kimball in some sections of

Gumbel’s book, pp. 229-235 of [3].

The method of moments, as proposed by Gumbel [3], for the variate X gives
(and similar corresponding results for Y)
612y = X-p,, where X, is a reduced variate.

Thus,

617=X-jy or p=X-véd,

where y(=0.5772) is Euler’s constant.



25

Also,

i=1
If the sample size N is small y and % are replaced by the corresponding
population parameters %y and oy , which are tabulated as a function of the sample
size N. This is referred to as “Gumbel modified moment method.” In this case, we
have
ju=X-6, iy and &, =§—;.
Lieblein proposed to estimate a parameter 6 by 8, a linear combination of order
statistics in which weights are determined to yield minimum variance unbiased
estimators. In the 4th method of best linear invariant estimators, the condition of

unbiasedness was relaxed from Lieblein’s method.

Gumbel’s moment method is the most simple of all four methods.

B. The a and m parameters

There are three possible methods that can be used to estimate the parameters a
and m. The first method is based on the contents of the quadrants (the quadrant
method). The second method is based on relating the parameters to a correlation
coefficient. The third method (the strip method) is based on the distribution of
x -yl

We shall discuss these methods briefly, but first we need the following relations.

F(x,x;a) = exp[-2 e+ 3™

= exp[-(2-3) 7]

— exp[ _ e-(x-ln(‘2-§) )]

= F(x-In(2-2))

= P2, (1)
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where F(x) is the first asymptotic (univariate) distribution (F(x)= exp(-€™*)) and
O<ax<l.

F(x,x;m) = exp( - o e™)

= [F()I*™, (2)

where F(x) is the first asymptotic distribution and 1 <m < oo.

To obtain the median X we set
F(x) = exp(-¢e¥) =1

w
=X

= e =-ln(%) or i:—ln(-—ln%)

Thus x =¥ = 0.3665129.

B.1. The Quadrant method (see Gumbel and Mustafi [5])

(i) The a-parameter (reduced variate)
The population medians of the marginal

Q

2

distribution divide the domain of variation of

x and y into 4 quadrants as shown. The

contained in quadrants 1 and 3 are obtained.

The “critical content” is defined by

— + .
Q3= Q‘—,‘,N%, where N is the total number

Q3

|
!
|
)
'
\
t
number of sample points, Q; and Q C - ““““‘:““"‘ -
1
{
{
|
|

of sample points.
Note that with increasing a, i.e. increasing association, the distribution tends to
concentrate along the diagonal. Therefore, the maximum likelihood estimate of a is

the value & such that, (from equation (1)).

F(x,x;a) = (e'°-’)2-% = (_21, 3 when x=% .
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it follows that

4 QI,I}: 2

[ H

or
In4 4+ In 61’3: E;—‘ln 2

2ln4+2lnQ, 4
»

In 2 - @

2nQy 5
4+ 5 =2 (3)
Because of the fact that 0 <a <1, we see that

Therefore, if 61,3 lies outside the interval [0.25, 0.35355], the quadrant method cannot

be used to estimate the parameter a.

(ii) The m - parameter

From equation (2), we have (a+x=X)

1
F(x,%;m) = (%)2 .

Since 1 <m < oo, we see that

Therefore, if Q, 5 is outside the interval [},}] the quadrant method cannot be used

to estimate m. Otherwise, as in the a - case,
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1
Ql,:i = (%)zm

L
In (_)1,3 = _2m]p 2

In(-ln Q, 5) = <Iln2+Inin?2
(4)

1 In(-In Q1,3) - In(ln 2)
“u In 2 :

Note that if 61,3 is such that 0.25 < Q1,3 <0.35355, both a and m can be estimated

g

by the quadrant method.

B.2. (i) Estimating the parameter a using the grade correlation coefficient
. Let t be the

The grade correlation coefficient was introduced by Hoeffding [6]
difference sign correlation coefficient, k’ be the (Spearman) rank correlation coefficient,
ey L,y 1> 2, 1s a random sample

and k be the grade correlation coefficient. If Z,, Z,,
from a bivariate population F (see Konijn[9]), where X;=(Xj,Y;), then

LU K = 3 sgn(X;-X;) sgn(Y;-Ya)
n n 1,1,
= 4 % (R -250)(S) -240) 5)
(6)

neog

¥ sgn(X;-X;) sgn(Y;-Y;);
(n-1) iFi

t —
and
=) i%Sgn(Xi”Xi) sgn(Y;-Y)), for n>2
iFk
k= i )
0, for n=2,
-1 ifu<0
where R(i) is the rank of X, S(i) is the rank of Y;, and sgn(u) = { 0 if u=0 .
+1 ifu>0
We also have
n-2)k 43
k' = ( n)+l+ t (8)
(9)

The grade correlation coefficient k can be expressed as, see Konijn [9],

1%23 — !:,o I(: F(x,y) dF,(x) dF,(y),
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where F(x,y) is the bivariate probability distribution function, and F,(x), Fy(y) are
the marginal distributions.
For the Gumbel a - case, the right side of (9) becomes

I = [> [©exp[-x-y-2e*-2¢c? + a(e’+ &) ] dx dy
=[> [ exp[-x-y-2 e'x(1+z:—i) + a e"‘(l—{-:—i)'l] dx dy. (10)

Let e¥*=¢e' or y-x=t, y=t+x, and (10) becomes
I = [>e" [*exp[-2x-e™(2(1+e™) ~a(l+e')!)] dx dt.
The inner integral is

[ e A qx where A = 2(1+et) —a(l+e)’!
[ e*d(et)

= % [e7™ e'Ae—x_T + f°° e g A dx]
= i— [O + i !OZO d(e‘Ae_x)] — Lz .

A
Therefore,
o < dt

foo {2(14+€7Y) —a(14et) 1}?

_ roo : (1+e )
!oo {2(1+e€ t)(1+e )-3}2

(1+e )2
= [ dt.
f {2( 2+e +e )—a}2

Let 1+4e'=2, e'dt=dz, then

e-2t 12 dz

[ = =

1 {2(2 ebre?tyr - % et)/et}2

— fOO Z2

1 20+ eH? -2 -1))?
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Thus equation (9) can be written as

2
1+5= Jo 52t 7=l (11)

a g 25 .
. H(1+35-5 tan '#)ifa>0,
1, if q=0,
where gq=a(2-2),0<a<l.

Therefore,

a

2_
a(1+Z -2 tan! 22), if ¢ > 0,
1+4% {1“ Na e A (12)

otherwise.

A table is given in Gumbel and Mustafi [5], which shows the grade correlation
coefficient k as a function of a (k is almost a linear function of a). Hence a can be

estimated from the sample grade correlation coefficient using (12).

B.2. (ii) Estimating the parameter m using the standard deviation of the difference
of the reduced variates

The quadrant method was based on the value of the critical content (_}1'3. The
conditions 0<a,;<1 on the parameters impose conditions on 61,3, and hence some
restrictions on the quadrant method. Another method is available to estimate the
parameter m.

The difference of the two reduced variates for the bivariate extreme value
distribution is a logistic distribution (this does not hold for the two dependent reduced
variates in the a - case).

Let t=Y-X, X and Y are reduced variates, then the probability distribution of t is

F(t) = (1 +e™)L

The t variate has zero mean and standard deviation

o= (13)
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This leads to the following estimate of m

L §
m_ﬁ—st’ (14)

where S, is the sample value of o, (obtained from the observed reduced differences).

Also, it is known that the correlation coefficient p between the reduced variates

X and Y is related to m by
1

m=(l-p)2. (15)
This gives another estimate of m
1
m=(1-p)2. (16)

B.3. The “strip estimate”

Posner et al. [11] proposed a method of estimating a or m based on the
distribution of |X-Y|. Recall that in general the bivariate extreme value distribution,
see equation (III.3), is given by

F(x,y) = exp[-(e™ + ) g(y -x)],
where g is the dependence function.
In this case they proved that
P {a<X-Y <b} =h(b) - h(a), (17)
where
h(t) = (1 + ")t + ’?S—'(‘g (18)
In particular, if g is given by
g(t) = 1 - 3sech?() =1 - 2u(t),

then

5 /
P{X-Y|<s) = &1 4 280 _ pg) .

eé+1 8(6) 5
If vy(6) is the number of times |[X-Y|<é in a sample of size N, then VN; ) is

an estimator of the probability P(§) above. Thus an estimator a4 of a is obtained by

solving the equation
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vN() 0y 2g’(6)

N o e6+1 g(4)
L 2@
IR PYCIEI (19)

where
u(t) = sech? (%), and
u'(t) = -sech? (%) tanh(%).

For the m - case:

1
(emt+1)m
g(t)_ et’+1 3 1§m<oo
t mt Ii, 1 mt. . mt % t
g'(t) (e"+1)(e+1) e (e "+1)Me
(et+1)2
gl(t) — emt emt

Therefore, an estimator ™ of a is obtained by solving the equation

vn(®) by b §
=l gl e
N o (ema P +1)

— 2:3;16 1
e™m +1

b,
= £ . 20
emé—{-l ( )
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VI. HYPOTHESES TESTING AND GOODNESS-OF-FIT TEST

Tests of hypotheses on parameters can be done by relating the acceptance region to
the confidence region. Confidence interval estimation is available in the literature, see
for example [19], pp. 49-80.

A goodness-of-fit test for the smallest extreme is Gumbel distribution against the
alternative, which is Weibull extreme distribution; this was discussed by Montfort [10].

Another test of the hypotheses that the largest extreme is Gumbel against the
alternative that it is either Weibull or Fréchet is due to Tiago de Oliveira [17,18]. |

As pointed out in B.2.(ii), if t=Y-Y, where X and Y are dependent reduced
variates of the Gumbel type, then t has a logistic distribution in the m - case but not
the a-case. This fact could be used to discriminate between the choice of the a-case

and the m - case.
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variables have a lower bound of zero. Thus, the need for practical models of bivariate
extreme value probability distribution functions with lower limits was identified. We
discuss the Gumbel models and present practical forms of bivariate extreme probability

probability distribution functions can be expressed in terms of the marginal extremel
distributions and a “dependence"” function subject to certain analytical conditions.
Properties of such bivariate extreme distributions, sums and difference of paired
extremals, as well as the corresponding forms of conditional distributions, are
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