Old Dominion University Rescarch Foundation

o @

@ https://ntrs.nasa.gov/search.jsp?R=19920018586 2020-03-17T10:44:45+00:00Z

/ Z‘e’/

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529 5o A

P L
H . w
——

GEOMETRIC MODELING FOR COMPUTER AIDED DESIGN

By

James L. Schwing, Principal Investigator

Progress Report
For the period ended March 31, 1992

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Under

Research Grant NCC1-99

Lawrence F. Rowell, Technical Monitor
SSD-Vehicle Analysis Branch

June 1992
(NASA-CR-1903A3) GEQMETRIC MOUELING FOR N92-2T829
COMPUTER AIRED DESIGN Progress Report, -=THRU~-
period ending 31 Mar. 1992 (21d Dominion N92-27333

Univ.) 136 p unclas

G3/61 0095594

ANALYTIC REVIEW FORM

Primary Record IPS # qggq 4

—
—
-—

(Initials)

Document should not receive
analytic treatment

SUBSIDIARY ADD

Document page range to
Document page range to
Document page range to

New subsidiary #
New subsidiary #
New subsidiary #

SUBSIDIARY DELETE/CORRECTION

Subsidiary #

Delete
(1ps#)

Reason:

limited technical content
no separate authorship
context dependent

Other

Adjust paging

Subsidiary #

Delete
(1PS#)

Reason:

limited technical content
no separate authorship
context dependent

Other

Adjust paging

Subsidiary #

Delete
(1Ps#)

Reason:

limited technical content

no separate authorship
context dependent

Other

Adjust paging

o @

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

GEOMETRIC MODELING FOR COMPUTER AIDED DESIGN

By

James L. Schwing, Principal Investigator

Progress Report
For the period ended March 31, 1992

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Under

Research Grant NCC1-99

Lawrence F. Rowell, Technical Monitor
SSD-Vehicle Analysis Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

June 1992

1. Introduction

The primary goal of this grant has been the design and implementation of software to be used in the conceptual
design of aerospace vehicles. The work carried out under this grant has been carried out jointly with members of
the Vehicle Analysis Branch (VAB) of NASA Langley and Computer Sciences Corp. This has resulted in the
development of several packages and design studies. These include two software tools currently used in the
conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace
Research Tool, and EASIE, the Environment for Software Integration and Execution. Work under this grant
also includes contributions to the design studies of orbital vehicles, specifically, the HL-20.

SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass
property analysis. In addition, SMART has a carefully engineered user interface that makes it easy to learn and
use. A more detailed review of the capabilities of SMART can be found in [1]. This describes the necessary
characteristics built into SMART which allow it to be used efficiently as a front end geometry processor for
other analysis packages.

EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided
design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of
data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and
a collection of software tools to ease the task of coordinating eny:neering design and analysis codes. A more
detailed review of the characteristics of the EASIE system can be found in [2].

As conceptual aerospace design move to consider future vehicles several factors stand out. First, conceptual
designers face a pressing need to enhance their analysis capabilities as traditional formulae and historical data
are exceded by new conditions and requirements. The effort to generate new formulae and tables will proceed
by the application of higher order analysis packages such as EAL and PATRAN. Geometric input for structural
development in such packages is tedious at best.

Secondly, many modern analysis codes, such as POST, provide an excellent analysis capability with a high
degree of flexibility. Flexibility is further added to the design system by providing design engineers with tools
to interface analysis codes together (the tools of EASIE for example). The price for this high degree of
flexibility is two fold. Within a given program the high degree of flexibility leads to complex data structures.
The user of the program is made responsible for the creation and proper formatting of the input data file. The
user is also responsible for tracking the definition of the appropriate sets of input parameters. In addition,
allowing users to freely define execution sequences of analysis programs adds a high degree of interdependence
in the definition of data items. Consistency and integrity of the data is currently the responsibility of the user.

In what follows, this report will cover in further detail the advances made in each of the following areas.

o General consulting on the use and development of aerospace structural analysis codes.

o Continued the development of SMART routines for the generation of structural element generation and
automatic grid generation preprocessing.

« Enhancing the design of a database interface for POST that allows easier definition of data and helps
perform data consistency checks for the model.

o Build a prototype X-Window interface for EASIE.
« Initial work on the development of basic parallel algorithms.

ORIGINAL PAQGE IS
OF POOR QUALITY

-3- PRECEDING PAGE BLANK NOT FILMED

2. Use and Development of Structural Codes

Continuing research under this grant has been focused on the design and implementation of computer aided
design tools to support conceptual level aerospace design. This has included the use of a number of finite
element design and analysis codes involved in several design studies currenty underway in the VAB.

In order to provide the detailed understanding necessary to design and implement the integration of SMART and
advanced structural analysis programs as well as providing insight into the analysis programs themselves, the
services of an expert are required. This support has been supplied by Mr. James C. Robinson. The remainder of
this section consist of Mr. Robinson’s report on the project work he has condicted during this period.

The primary task during this period has been the analysis of the Rockwell developed configuration of the HL-20
vehicle. The existing HL-20 finite-element model was modified to conform to the Rockwell concept of the HL-
20. This required the addition of a partial circular cylindircal pressure shell and a flat floor area. The existing
upper part of the vehicle exterior forms the remainder of the pressure shell. Existing frames in the previous
conformal shell model were removed from the access doors. Frames were modeled for the new pressure shell
structure. The remainder of the conformal model was converted into access panels (large doors) on the upper
surface and a frame stiffened, heatshield structure on the lower surface.

THe model was analyzed and resized for five loading conditions. Two loading conditions controlled the sizing
of most of the structure. The first is the internal pressure case plus the 3-G axial acceleration of a normal
launch. The second is an abort condition which subjects the vehicle to an 8-G axioal acceleration and a 10 psi
over-pressure due to the explosion of the launch vehicle. The Rockwell concept with doors exterior to the
pressure shell causes the external and internal pressure loadings to be supported by two different load paths.
The considerable pressure loads in the vehicle exterior caused by the abort condition required that part of hte
structure to be resized to resist over-all buckling of the vehicle. This capability was not present in the resizing

program.

The creation and implementation of an algorithm to size a finite element model to prevent over-all buckling was
the second task for this period. Rigorous mathematical programming methods exist that may be used to resize a
structure for buckling but application at a level consistent with the strength resizing (approximately 3000
elements and five load cases) is not practical for preliminary design efforts. The method implemented uses EAL
generated strain-energy-densities for the critical buckling mode shapes and several small AWK scripts to
calculate new element sizes. While the method is heuristic in nature, it appears to provide a "hands-off” solution
to the problem.

3. Enhancements for SMART

3.1 Determination of the Structural Requirements

One of the major achievments of this period of research was the determination of those requirements that
structural engineers across the NASA-Langley base need in order to more readily carry out their model
preparation. The requirements are contained in the document "System Software Requirements for SMART -
Vehicle Structure Modules.” The document is included in * ~pendix A. This subsection will conclude with a
summary of the document.

This document specifies the functional requirements for software components which address the geometric and
data modelling needs of the aerospace structural engineer. The modules are to be included as part of the

3.2

3.3

(SMART) package. Hereafter, these software components will be referred to as SMART - Vehicle Structure
Module (VSM). The purpose of this document is to state precisely WHAT the SMART Structures modules
will do, without consideration as to HOW it will be done.

The software requirements document is intended to be used by the following groups: the SMART
Development Team, structural engineers in VAB, other interested structural engineers and SMART users at
NASA LaRC, and the design and implementation group at Old Dominion University. SMART provides
conceptual designers with a rapid vehicle geometry prototyping capability. Of current interest is the definition
and implementation of those characteristics which would provide the design engineer with a more effective
and efficient tool for building structural models. Construction of such models is currently a bottleneck toward
carrying out the analysis process. The goal of SMART VSM is to address this bottleneck.

The SMART VSM modules will be a set of software tools designed to aid in the development of geometric and
data models to be used in the structural analysis of aerospace vehicles. SMART VSM will provide the
following general capabilities:

» creating and editing structural elements for the wing and fuselage of a given aerospace vehicle,
« integrating wing and fuselage structural assemblies,
» integrating tail and fuselage structural assemblies,
« remapping of aerodynamic loads data in a manner consistent with the developed structural model,
« applying point and area based loads to the model, and
» preparing loads data for visual presentation.
The requirements listed in this document are currently in the process of implementation. Completion of the

implementation for testing will be by the end of June, 1992, with final implementation expected by the end of
the summer.

Design of Frames and Bulkheads

During the most recent term of this project, one of the enhancements made in the structural modeling
capabilities of SMART is that of the desing of frame and bulkhead components. This work was carried out by
Susan Schwartz and served as her Master’s project at Old Dominion. The text of her project is provided in
Appendix B.

SMART Related Publications

During the period of this grant, joint work with members of the VAB and the principal investigator lead to the
following publication.

» with W, Engelund and C. Cruz, "Conceptual Level Aerodyanmic Heating Predictions Using the
Aerodynamic Preliminary Analysis System (APAS)" - Proceedings of AIAA Aircraft Design Conference,
AIAA-91-3087, September 1991.

4.

4.1

4.2

4.3

5.

Enhancements for EASIE

Database Interface for POST

This section describes the work during this period on the database interface to POST. As described in the
introduction, many modern analysis codes provide an excellent analysis capability with a high degree of
flexibility. Within a given program the high degree of flexibility leads to complex data structures. The user of
the program is made responsible for the creation and proper formatting of the input data file. The user is also
responsible for tracking the definition of the appropriate sets of input parameters.

POST is an event driven program, the input to which falls into the above categories. POST is baich oriented
taking input data from an ascii "event’ file. The flexibility of POST leads to a high degree of interdependence
in the definition of data items. For example, when an altemate method of guidance is selected, a completely
different set of input parameters must be specified. POST provides no tools for the definition of such input.

Current research has designed and implemented the prior work of Schwing and Grimm [3] into a proto-type
which applies ‘these techniques to the parameter variables of POST. User reaction has been extremely
favorable. The next stage has been to adapt this proto-type for use with tabular variables and to enhance the
data interdependence factors described above. The work is being condicted by swdents Shawn Casey and
William Denny. The enhancements are projected for completion by the end of the summer 1992.

X-Windows and EASIE

Now that version 1 of EASIE has been released to the public the importance of the menu driven aspect of
EASIE has been emphasized. Currently, this user interface is designed for simple ascii terminals and does not
take advantage of recent advances in technology for presenting the user interface. On the forefront of these
advances is the windowing system for the Athena project at MIT, X-Windows. Most of the software in this
system is in the public domain and hardware in the form of X-servers and X-terminals is rapidly becoming
available. To do some crystal gazing, it would seem that this combination of public domain software and low-
cost hardware will lead to the next revolution of the user interface.

With this in mind, work under this grant has developed a new user interface for EASIE. This work has been
carried out as Master’s projects by students Ya-Chen Kao and Chia-Lin Tsai. They developed MOTIF based
interfaces for the ADE and CCE modes of execution. The text of their project reports is included in
Appendicies C and D.

EASIE Related Publications

During the period of this report, work with members of VAB and ACD and the principal investigator lead to
the following publication.

o with K. Jones, L. Rowell and A. Wilhite, "Environment for Application Software Integration and
Execution” - Procedings of the 7th ASCE Conference on Computing and Database, May 1991,

Parallel Algorithms

It has become clear that much of the future improvements in computing power will arise in the use of parallel
and/or distributed computing environments. Indeed, this can be seen in the new IRIS computers that have been
brought in to support the VAB analysis and design programs. They are all multi-processor machines. While

these machines can and do provide a certain amount of automatic algoritm adjustment to take advantage of this
environment, true efficient use of any parallel or distributed environment requires careful investigation of the
algorithms being developed. Algorithms initially developed for sequential single processor machines may not
perform anywhere near optimally under automated conversion.

During the period of this grant, the principal investigators and a doctoral student, Jingyuan Zhang, have
continued to be remarkably successful in the development of such baseline algorithms. Below is a list of
refereed publications related to this work.

e "On the Power of Two-Dimensional Processor Arrays with Reconfigurable Bus Systems" - Parailel
Processing Letters September 1991, v 1, no 1, pp 29 - 34.

e "An Optimal Encoding and Decoding Algorithm for Trees" - accepted by International Journal of
Foundation of Computer Science; preliminary version - Procedings of the 19th Annual ACM-CSC, Mar.

1991, pp 1-10.

"Integer Problems on Reconfiguratble Meshes™ - accepted by Journal of Computer ans Software
Engineering; preliminary version - Proceedings of the 29th annual Allerton Conference, Oct. 1991, pp 811-

820.

e "Fundamental Algorithms on Reconfigurable Meshes" - Proceedings of the 29th Annual Allerton
Conference, Oct. 1991, pp 821-830.

"A fast Adaptive Convex Hull Algorithm on Two-Dimensional Processory Arrays with a Reconfigurable
Bus Systems” - Proceedings of the 3rd NASA Symposium on VLSI Design, Nov. 1991, pp. 13.2.1-13.29.

"Sorting in O(1) Time on a Reconfigurable Mesh of Size nxn" - Parallel Computing: From Theory to Sound
Practice, Procedings of EWPC’ 92, Plenary Address, IOS Press, pp. 16 - 27, 1992,

» "Fast Mid-level Vision Algorithms on Reconfigurable Meshes" - Parallel Computmg From Theory to
Sound Practice, Proceedings of EWPC' 92, 10S Press, pp. 188 - 191, 1992,

6. References

1. A Solid Modeler For Aerospace Vehicle Preliminary Design, M.L. McMillan, J.J. Rehder, A.W. Wilhite
J.L. Schwing, J.L. Spangler, and J.C.Mills, presented to AIAA conference on CAD Modeling, August 1987,

2. Software Tools for the Integration and Executions of Multidisciplinary Analysis Programs, L Rowell, J.
Schwing, and K. Jones, AIAA-88-4448, Sept., 1988.

3. Data Management Interface for POST, J. Schwing, final report for NASA Task NAS1-18584-50, July
1989.

Appendix A

A
N92-27830 -

System Requirements Specification for SMART Structures Mode

1. Introduction 4 } AN
1.1 Purpose T

This document specifies the functional and informational requirements for software modules which address the
geometric and data modelling needs of the aerospace structural engineer. The modules are to be included as
part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis
Branch (VAB) at NASA Langley Research Center (LaRC). Hereafter, these modules will be referred 0 as
SMART Structures. The purpose of this document is to state precisely WHAT the SMART Stuctures
modules will do, without consideration as to HOW it will be done. Each requirement is numbered for
reference in development and testing.

12 Scope

This software requirements document is intended to be used by the following groups: the SMART
Development Team, structural engineers in VAB, other interested structural engineers and SMART users at
NASA LaRC, and the design and implementation group at Old Dominion University. SMART provides
conceptual designers with a rapid vehicle geometry prototyping capability. Of current interest is the definition
and implementation of those characteristics which would provide the design engineer with a more effective
and efficient tool for building structural models. Construction of such models is currently a botleneck toward
carrying out the analysis process. The goal of SMART Structures is to address this bottleneck.

The SMART Structures modules will be a set of software tools designed to aid in the development of
geometric and data models to be used in the structural analysis of aerospace vehicles. SMART Structures
WILL provide the following general capabilities:

* creating and editing structural elements for the wing and fuselage of a given aerospace vehicle,

* integrating wing and fuselage structural assemblies,

* integrating tail and fuselage structural assemblies,

« remapping of acrodynamic loads data in a manner consistent with the developed structural model,
« applying point and area based loads to the model, and

» preparing loads data for visual presentation.

SMART Structures WILL NOT provide the following capability:

* generation of the geometric surfaces defining any of the internal or external assemblies for wing, fuselage,
or tank surfaces since such capabilities are either currently or shortly will be supplied by other SMART
modules.

1.3 Terminology and References

Technical terms used in this document are common terms used in the engineering design of aerospace vehicles.
Complete definitions can be found in any standard text on the topic, for example (2,3]. Figures 1-4 below
illustrate the typical naming and placement of structural elements in aerospace vehicles.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 2

Trang
*39e

Crvevior Linding

noosrd Aso
Flap vene
Sooiler
tnbosrd eileron
Qutbosrd flep
Flap vene

Traking edge feo

fa) Typical ransport wirg 3) Typéeal fighser wing

Figure 1
Wing Structural Components

\ Flight station

Forwerd oressuwr ¢ buithesd
Stringer &3

Floor besm ‘
Y TWo0Ort DO

X Presenger cOMpentmert looi/
UoDart DeNm 3SeMONY =

Cargo compartment floar /
1Up0On DeEM FREMOlY

Figure 2
Fusaelage Structural Components

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specificaton for SMART Structures Mode

Page 3

Farmg suooort
Hruche g

Mein landing geer whe -

Wing roat rib

Figure 3

Audaes

Munged shroud doors
Auddger Night tab
Front spet
Ruddur mhm tad
Reer s08¢

front soar Elevetor
l Hwged shvoud doors

Subwrer -
prvot point Elevator Rignt tad

Sr1adilirer rem screw jack zp:::
boom
]» ' I Verveal stabMirer-ro-tursispe
' #rrech Attings
Figure 4

Tall Structural Components

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 4

Additional terminology used in this document.

* consistent - when applied to surface geometry and data patches relative o the structural model means that
the edges of the patches have been defined to correspond to structural elements immediately beneath the
surface.

* patch - a bicubic functional representation of a geometric or data surface using two parameters.
* grid point - the 1/3 points of the patches that define the geometry.
* swrface patch divider - a non-structural entity used to separate surface patches as structural entities such as
ribs and spars separate patches.
The following references are provided as background in basic aerospace design and in the software packages
SMART, PATRAN and APAS.

[1]1 Aerodynamic Preliminary Analysis System II (APAS), Part IT - User Manual, Rockwell
Intemational Corporation, April 1981.

(2] Basic Science for Aerospace Vehicles - 4th Edition, Northrup Institute for Technology,
McGraw-Hill, 1972.

(31 Colvin and Colvin, Aircraft Handbook, McGraw-Hill, 1929.

(4] McMillan, Rehder, Wilhite, Schwing, Spangler and Mills, A Solid Modeler for Aerospace
Vehicle Preliminary Design, ALAA paper 87-2901.

(5] PATRAN Plus User Manual, Vols. I & II, PDA Engineering, 1988.
(6] SMART User Reference Guide, Vehicle Analysis Branch, NASA Langley, 1991.
1.4 Overview of the Software Requirements Document

Section 2 of this document consists of a general overview of SMART Structures and includes the following
subsections:

* a perspective of how SMART Structures relates to the existing and proposed development and analysis
process in VAB,

* a general look a SMART Structures functions,

* user characteristcs,

e general constraints, and

* assumptions and dependencies.
Section 3 of this document consists of a detailed listing of the requirements for SMART Structures. Where
applicable, every requirement will address each of the following areas:

* introduction,

e inputs,

» processing, and

* outputs.

Finally, Section 3 will end with a listing of the external interface requirements including user interface and
software interface requirements.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page S

2. General Description
2.1 SMART Structures: A Perspective

The SMART Structures mode will be a assembly of the SMART geometric design system. The main
objectives of SMART Structures are the definition and editing of structural elements for aerospace vehicles
and, for further structural analysis, the preparation of geometric and data models consisten: .ith the structural
elements. Initial geometric surface descriptions of the aerospace vehicles will be prepared through other
design modules in SMART [4,6]. The basic interface to the rest of SMART is through the SMART data tree.
It is assumed that the aerospace vehicle assemblies, to which structure will be added, have been defined in
SMART and have bicubic surface definitions as described by {4,6]. Structural elements prepared by SMART
Structures will follow this same format and will be inserted into the SMART data tree and will thus be
available to SMART modules such as visualization.

SMART Structures will provide tools for the definition and editing of both point and area load data. In
addition, SMART Structures will be able to read data files created by APAS which contain loads and other
aerodynamic analysis information, such as heating. Once geometry and data surfaces have been prepared that
correspond to the underlying structural elements, SMART Structures will be able to write the results ©
PATRAN neutral files. Figure 5 below shows the interaction of various SMART modules and the APAS and
PATRAN analysis programs while figure 6 illustrates the proposed data flow for the structural analysis process
in VAB. SMART Files Primitives represents those functions in SMART available for defining geometric
surfaces, both general(box, sphere, etc.) and aero-specific (wing, tank, etc.). SMART Files represents those
functions in SMART that aid in the “-ading and writing of various types of data files.

APAS SMART
Geomeny File Fies

4

APAS
Data File \
SMART SMART P SMART

/ Structures | ——— Data Tree -aff——————| Primitives

PATRAN
Geometry/Data
Flie

Other SMART Modules

PATRAN

Figure 5
Data Flow Relative to Smart Structures

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specificadon for SMART Structures Mode

APAY
Aerodymemic Io oo ueee

Page §

Defrition 1
rterned Fiol
—=1 Geomelry MLP—O- Ehm:n(FEM .} Sincheel fWegh -1 P o
Meshing Anahsis Fovner .':c&":l.nq'
sMany, PALRAN EAL
Nesdred
slements EZDEIT
rl‘hmb«
k!
STAUCTUNES bk
—— -T‘.“T;"T: -— o — -,i ——————————————————
Weighits
o Conrﬂnﬂonn‘ 1
Sliing CAdy ':vdnnan - Htasnrg
Wekg | Toating,
Shock B "o
one
Ploring Plomrg
———————
Figure 6

Proposed Data Flow for Concaptual Vehicle Analysis in VAB

2.2 SMART Structures Functions

SMART Structures functionality is defined by the following groups of requirements:

Wing-type Elements - Definition and Editing

Note: wing-type includes consideration of tail, pylon, and other wing-like structures.

1. Wing Box - Leading Edge Requirements

2. Wing Box - Trailing Edge Requirements

3. Wing Box - Root and Tip Rib Requirements
4, Rib Requirements

5. Spar Requirements

6. Multiple Wing Assembly Integration Requirements

7. Wing Section Cutout Requirements
8. Wing Output Requirements

Fuselage-type Elements - Definition and Editing

Note: fuselage-type include consideration of tank and other fuselage-like structures.

9. Fuselage Assembly Generation Requirements
10. Cross Section Generation Requirements

11. Ring Frame Requirements

12. Bulkhead Requirements

13. Longeron, Keel, and Beam Requirements

14. Fuselage Output Requirements

Assembly Placement and Integration

DRAFT - 10/30/91

SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 7

23

24

15. Wing - Fuselage Placement and Integration
16. Wing - Tail placement and Integration

Load Definition and Visualization
17. Point Load Requirements
18. Path and Area Load Requirements
19. Analysis-Generated Load Requirements
20. Load Output Requirements

External Interfaces
21. User Interface Requirements
22. Software Interface Requirements

User Characteristics

Users of the SMART system are aerospace design engineers. All users will be familiar with SMART as a
geometric design tool. Further, users of SMART Structures will have knowledge of structural design and
analysis programs. This includes knowledge of design parameters and input and output variables for
associated analysis programs such as APAS and PATRAN.

General Constraints

SMART Structures will be written in the "C" language, using the SMART graphics user interface developed
for the Silicon Graphics (SGI) IRIS 4D Workstation using SGI's GL graphics library. As graphics will be
used, the SMART Structures module will only run from the console. Note that this is consistent with the
current execution of SMART. It is further noted that this also implies the existence of a pointing device (the
mouse). No other hardware will be needed.

25 Assumptions and Dependencies

Software developed for SMART Structures is dependent on the operating system and libraries provided by SGI
with their IRIS Workstation products and graphics display and GUI modules already developed for SMART.
Changes in these underlying systems may result in changes in the operation or in the appearance of SMART
Structures.

SMART Structures will provide software tools to define and edit structural elements for all possible SMART-
produced wing geometries. At this time, the full range of wing definitions supported by SMART is yet to be
determined. It is not essential for the purpose of this document that all such geometries be currently defined;
however, it is assumed that any NEW wing geometries will satisfy the following characteristics.

1. Upper and lower surfaces will be defined by an array of bicubic patches consistent with the SMART
geometry format.

2. The SMART data tree will contain sufficient information so that a planform view of the wing can be
determined.
3. When previously defined by the SMART Wing modules, the SMART data tree will contain sufficient
information to determine the placement of flaps and other cutouts in the wing surface.
It is assumed that fuselage geometries will satisfy the following characteristics:
1. There may be several fuselage assemblies defined, for example, fore, center, and aft assemblies.
2. Surfaces are defined by an array of bicubic patches consistent with the SMART geometry format (6].

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 8

3. Functional Requirements

1. Wing Box - Leading Edge Requirements

1. General Requirements

The wing box is made up of the leading edge spar, the trailing edge spar and the root and tip ribs. This
section and the two which follow describe the requirements for defining and editing these structural
elements and the region immediately preceding the leading edge spar and following the trailing edge spar.

The purpose of this function is the generation of the geometry for the major structural element in each
wing assembly behind the leading edge usually referred to as the leading edge spar. In addition, geometry
for the leading edge rib elements within the leading edge is also generated. Figure 7 illustrates typical
positions for the leading edge spar and leading edge ribs.

leading edge
ribs \
leading edge

spar \

Figure 7
Leading Edge Spar and Rib Components

R1.1 The leading edge spar must be generated perpendicular to the wing planform.

R1.2 The extent of the leading edge spar must be defined by where it intersects the root and tip ribs
and the upper and lower surfaces of the wing.

R1.3 The extents of the leading edge ribs must be defined by where they intersect the leading edge,
the leading edge spar, and the upper and lower surfaces.

R1.4 The placement of the leading edge spar must be checked relative to the placement of the
trailing edge spar, the two spars must not be allowed to intersect.

2. Input Requirements

R1.5 The leading edge spar may be DEFINED as parallel to the leading edge with the distance
back from the leading edge determined by either

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 9

a. apercentage length of the root chord — 0% at the leading edge and 100% at the wrailing
edge, or

b. a measured distance behind the leading edge measured along the root chord which may
be input either by value or by pointing.

R1.6 The leading edge spar may be DEFINED as skew to the leading edge, requires two inputs to
fix its position behind the leading edge, determined by either

a. percentage of length of both the root and tip chords -- 0% at the leading edge and 100%
at the trailing edge, or

b. measured distances behind the leading edge along the root and tip chords which may be
input either by value or by pointing.

R1.7 The leading edge spar may be EDITED as parallel to the leading edge by updating current
values as follows:

a. apercentage length of the root chord,

b. a measured distance behind the leading edge measured along the root chord which may
be input either by value or by pointing.

R1.8 The leading edge spar may be EDITED as skew to the leading edge by allowing updates of
either of two inputs to fix its position as follows:

a. percentage of length of either the root or tip chords,
b. measured distances behind the leading edge along either the root or tip chords which
may be input either by value or by pointing.

If the leading edge spar was initially input as skew to the leading edge and later edited as
parailel to the leading edge, it is first made parallel to the leading edge, intersecting the root
chord at the same place as the initial skew leading edge spar.

R1.9 The leading edge spar may be DELETED.
Since much of the other internal structure depends upon the placement of the leading edge
spar, editing the leading edge spar requires deleting this structure and redefining it. Since this

may require extensive data reentry on the part of the user, the user will be notified of the
destructive nature of this choice and asked to verify the intention to make this change.

R1.10 The leading edge rib elements may be DEFINED as parallel to the root chord and specified
by:

a. equal spacing and the number of required ribs,
b. entering the value of the position of each desired rib,
¢. pointing at the position of each desired rib.
R1.11 The leading edge rib elements may be DEFINED as perpendicular to the leading edge and
specified by:
a. equal spacing and the number of required ribs,
b. entering the value of the position of each desired rib,
¢. pointing at the position of each desired rib.
R1.12 The leading edge rib elements may be EDITED as parallel to the root chord and specified by:

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 10

a. equal spacing and updating the number of required ribs,
b. changing the value of the position of each desired rib,
c. dragging any desired rib to a new position.

R1.13 The leading edge rib elements may be EDITED as perpendicular to the leading edge and
specified by:

a. equal spacing and updating the number of required ribs,
b. changing the value of the position of each desired rib,
c. dragging any desired rib to a new position.
Editing leading edge ribs initially defined as parallel to the root chord as perpendicular to the

leading edge (or alternately initially defined as perpendicular to the leading edge and edited as
parallel to the root chord) causes the ribs to be redefined immediately.

Editing non-equally spaced ribs as equally spaced causes the given number of ribs o be
redistributed equally before editing.
Rl.i4 All leading edge rib elements may be DELETED by choosing a delete all function.

R1.15 The leading edge rib elements may be DELETED by individually pointing at each rib to be
deleted.

3. Processing Requirements
R1.16 Surfaces will be generated to define a complete, separate leading edge assembly.

R1.17 Results are presented real-time on a both a planform view of the wing and a side view of the
wing.

R1.18 Since users must define the leading edge spar prior to defining the leading edge ribs, this
module notifies users of an attempt to define rib elements out of sequence.

R1.19 Surface patch dividers may be defined, edited and deleted like leading edge ribs.

2. Wing Box - Trailing Edge Requirements

1. General Requirements

The purpose of this function is the generation of the geometry for the major structural element in each
wing assembly preceding the trailing edge usually referred o as the trailing edge spar. In additon,
geometry for the trailing edge rib elements within the trailing edge is generated. Figure 8 illusrtates typical
positions for the trailing edge spar and trailing edge ribs.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 11

trailing edge

— spar
y d

trailing edge__———pp- | |
ribs

trailing edge

Figure 8
Trailing Edge Spar and Rib Components

R2.1 When previously defined, the wing planform will be drawn with outlines of flaps or other
trailing edge aero-surfaces so that the placement of the trailing edge spar may be as accurate
as possible.

R2.2 The trailing edge spar must be generated perpendicular to the wing planform.

R23 The trailing edge spar must be defined by where it intersects the root and tip chords and the
upper and lower surfaces of the wing.

R2.4 The extents of the trailing edge ribs must be defined by where they intersect the trailing edge,
the trailing edge spar, and the upper and lower surfaces.

R2.5 The placement of the trailing edge spar must be checked relative to the placement of the
leading edge spar, the two spars must not be allowed to intersect.

2. Input Requirements

R2.6 The trailing edge spar may be DEFINED as parallel to the trailing edge with the distance
back from the trailing edge determined by either

a. apercentage length of the root chord — 0% at the leading edge and 100% at the trailing
edge, or
b. a measured distance preceding the trailing edge measured along the root chord which
may be input either by value or by pointing.
R2.7 The trailing edge spar may be DEFINED as skew to the trailing edge, and requires two inputs
to fix its position preceding the trailing edge, determined by either

a. percentage of length of both the root and tip chords -- 0% at the leading edge and 100%
at the trailing edge, or

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 12

b. measured distances preceding the trailing edge along the root and tip chords which may
be input either by value or by pointing.

R2.8 The trailing edge spar may be EDITED as parallel (o the trailing edge by updating current
values as follows:

a. apercentage length of the root chord,

b. a measured distance preceding the trailing edge measured along the root chord which
may be input either by value or by pointing.

R29 The trailing edge spar may be EDITED as skew to the trailing edge by allowing updates of
either of two inputs to fix its position as follows:

a. percentage of length of either the root or tip chords,
b. measured distances preceding the trailing edge along either the root or tip chords which
may be input either by value or by pointing.

If the trailing edge spar was initially input as skew to the trailing edge, and later edited as
parallel to the trailing edge, it is first made parallel to the trailing edge, intersecting the root
chord at the same place as the initial skew trailing edge spar.

R2.10 The trailing edge spar may be DELETED.
Since much of the other internal structure depends upon the placement of the trailing edge
spar, editing the trailing edge spar requires deleting this structure and redefining it. Since this

may require extensive data reentry on the part of the designer, the designer will be notified of
the destructive nature of this choice and asked to verify the intention to make this change.

R2.11 The trailing edge rib elements may be DEFINED as parallel to the root chord and specified
by:
a. equal spacing and the number of required ribs,
b. entering the value of the position of each desired rib,
c. pointing at the position of each desired rib.
R2.12 The trailing edge rib elements may be DEFINED as perpendicular to the trailing edge and
specified by:
a. entering the value of the position of each desired rib,
b. equal spacing and the number of required ribs,
c. pointing at the position of each desired rib.
R2.13 The trailing edge rib elements may be EDITED as parallel to the root chord and specified by:
a. equal spacing and updating the number of required ribs,
b. changing the value of the position of each desired rib,
c. dragging any desired rib to a new position.
R2.14 The trailing edge rib elements may be EDITED as perpendicular to the trailing edge and
specified by:
a. equal spacing and updating the number of required ribs,
b. changing the value of the position of each desired rib,

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 13

c. dragging any desired rib to a new position.

Editng ribs initially defined as parallel to the root chord as perpendicular to the trailing edge
(or alternately initially defined as perpendicular to the trailing edge and edited as parallel to
the root chord) causes the ribs to be redefined immediately.

Editing non-equally spaced ribs as equaily spaced causes the given number of ribs 10 be
redistributed equally before editing.
R2.15 All trailing edge rib elements may be DELETED by choosing a delete all function.

R2.16 The trailing edge rib elements may be DELETED by individually pointing at each rib to be
deleted.

3. Processing Requirements
R2.17 Surfaces will be generated to define a complete, separate trailing edge assembly.

R2.18 Results are presented real-time on a planform view of the wing and on a side view of the
wing,

R2.19 Since users must define the trailing edge spar prior to defining the trailing edge ribs, this
module notifies users of an attempt to define rib elements out of sequence.

R220 Surface patch dividers may be defined, edited and deleted like trailing edge ribs.

3. Wing Box - Root and Tip Rib Requirements

1. General Requirements

The purpose of this function is the generation of the geometry for the other major structural elements of
any wing assembly, the root and tip ribs. Figure 9 illustrates a typical position for the root and tip ribs.

root
rib

Figure 9
Root and Tip Rib Components

R3.1 The tp rib must be generated perpendicular 1o the plane of the wing planform.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 14

R32 If the wing assembly being considered attaches to another assembly of the wing, the root rib
must be generated perpendicular to the plane of the wing planform.

R3.3 If the wing assembly attaches to the fuselage, the root rib must be initially generated in a
plane parallel to the plane of symmetry for the vehicle being defined. This angle can be
found by adding the dihedral angle to the perpendicular of the wing planform.

It should be noted that this initial definition of the root rib may be modified by the requirements of wing—
fuselage integration discussed below in the Processing Requirements of the wing-fuseslage section.

R3.4 Both of these ribs must contain the line segments in the wing planform defined by the root
and tip chords.

R3.5 The extents of the root and tip ribs are defined by where they intersect the leading and trailing
edges and the upper and lower surfaces.

2. Input Requirements
The requirements made for defining the root and tip ribs completely specify these elements, therefore no
user input is required.

3. Processing Requirements

R3.6 Any processing required must be completed automatically once both the leading and trailing
edge spars are defined.

4. Rib Requirements

1. General Requirements

The purpose of this function is the generation of the geometry for rib elements in the wing. Figures 10
and 11 illustrate typical positions for the placement of ribs in the wing box.

Figure 10
Ribs Deflned Parailel to Root Rib

DRAFT - 10/3091 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 15

Figure 11
Ribs Detined perpendicular to the 50% Chord

R4.1 Rib structural elements must be generated perpendicular to the wing planform.

R4.2 The extents of the ribs are defined by where they intersect the wing box and by the upper and
lower surface of the wing.

R43 When the spars are defined, the rib elements are subdivided where they intersect spar
elements.

2. Input Requirements
R4.4 The rib elements may be DEFINED as parallel to the root chord and may be specified by
a. equal spacing and the number of required ribs,
b. pointing at the position of each desired rib.

R4.5 The rib elements may be DEFINED as perpendicular to a user-specified percentage chord and
further specified by

a. equal spacing and the number of required ribs,
b. pointing at the position of each desired rib.

R4.6 The rib elements may be DEFINED by pointing to the wing box at the endpoints of the
desired rib; this method will be referred to as "freehand.”

R4.7 The rib elements may be DEFINED by entering the value of the endpoints of each desired rib.
R4.3 The rib elements may be EDITED as parallel to the root chord by

a. equal spacing and updating the number of required ribs,

b. dragging any desired rib to a new position.

R4.9 The rib elements may be EDITED as perpendicular to a potentially updated user-specified
percentage chord by

a. equal spacing and updating the number of required ribs,

b. dragging any desired rib to a new position.
R4.10 The rib elements may be EDITED by dragging any endpoint of a rib to a new position.
R4.11 The rib elements may be EDITED by changing the value of any endpoint of a rib.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 16

Editing ribs as parallel to the root rib (alternately as perpendicular to a percentage chord) not
initially defined in that format causes the ribs to be redefined immediately in the format
chosen for editing, i.e. the same number of ribs are redistributed equally spaced and parallel
to the root rib (alternately perpendicular to the percentac= chord).

R4.12 All rib elements may be DELETED by choosing a delete all function.

R4.13 The rib elements may be DELETED by individually pointing at each rib to be deleted.
Processing Requirements

R4.14 Results are presented real-time on a planform view of the wing.

R4.15 Validity of "freehand” input for ribs is checked to insure that ribs do not intersect except
perhaps at the boundaries of the wing box.)

The definition of rib and spar elements has a direct implication on the representation of elements for the
wing surfaces as follows:

R4.16 Geometry elements in the wing surfaces will be redefined so that the boundaries of the
surface patches matches to the boundary of an underlying rib or spar patch.

This geometry data is to be provided as input to analysis programs such as PATRAN [5]. Elements input
into such analysis programs are either in the form of three- or four-sided elements.* The process of
subdividing the wing box into ribs and spars can lead to elements with five or more sides which are not
acceptable for further analysis.

R4.17 Once the process of defining ribs and spars is finished, each surface element must be
reviewed for the number of sides generated. If five or more-sided elements exist, they must
be identified to the user. The user must be placed in a mode that allows editing the rib or spar
elements to correct this situation.**

R4.18 Surface patch dividers may be defined, edited and deleted like ribs. In addition, any section
of a rib (between two spars) may be designated as a section of a surface patch divider.
Conversely, any section of a surface patch divider may be designated as a rib section.

* Note: elements are not polygons; edges may be curved.

** Since the order of definition of ribs and spars is left to the user requirements R4.16 and 4.17 are placed with the processing requirements of
both ribs (here) and spars (requirements RS.18 and R5.19).

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 17

5. Spar Requirements

1. General Requirements

The purpose of this function is the generation of the geometry for spar elements in the wing. Figures 12
and 13 illustrate typical positions for the placement of spars in the wing box.

Figure 12
Spars Deflned at Equal Percentages of the Root and Tip Chords

Figure 13
Spars Defined Perpendicular to Existing Ribs

RS5.1 Spar structural elements must be generated perpendicular to the wing planform.

R5.2 The extents of the spars are defined by where they intersect the wing box and by the upper
and lower surface of the wing.

RS5.3 When the ribs are defined, the spar elements are subdivided where they intersect rib elements.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 18

2. Input Requirements

RS54

RS5.5

RS5.6

The spar elements may be DEFINED as endpoints placed at equally calculated percentages of
the root and tip chords and further specified by the number of spars.

The spar elements may be DEFINED as parallel to a user-specified percentage chord and
further specified by

a. equal spacing and the number of required spars,
b. pointing at the position of each desired spar.

The spar elements may be DEFINED as perpendicular to existing rib elements and fL‘xnher
specified by

a. equal spacing and the number of required spars,

b. pointing at the position of each desired spar.

The choice of whether to define ribs or spars first is left to the user. Thus, if the user decides

" to define spars first, this technique is not appropriate and the user is asked to use another

RS.7

R53

RS.9

R5.10

RS.11

RS5.12
R5.13

technique.

The spar elements may be DEFINED by pointing at the endpoints of the desired spar; this
method is referred (o as "frechand.”

The spar elements may be DEFINED by entering the value of the endpoints of each desired
spar.

The spar elements may be EDITED as endpoints placed at equally spaced percentages of the
root and tip chords and by updating the number of spars.

The spar clements may be EDITED as parallel o a potentially updated user-specified
percentage spar chord and further specified by

a. equal spacing and updating the number of required spars,
b. pointing at the position of each additional spar.
The spar elements may be EDITED as perpendicular to existing rib elements and further
specified by
a. equal spacing and updating the number of required spars,
b. pointing at the position of each additional spar.
The spar elements may be EDITED by dragging any endpoint of a spar 1o a new position.
The spar elements may be EDITED by changing the value of any endpoint of a spar.

Editing spars as endpoints at equally spaced percentages of the root and tip ribs (alternately
either as parallel to a percentage chord or as perpendicular to existing ribs) not initially
defined in that format causes the spars to be redefined immediately in the format chosen for
editing, i.e. the same number of spars are redistributed with endpoints at equally spaced
percentages of the root and tip ribs (alternately either as parallel to the percentage chord or as
perpendicular to existing ribs).

RS.14 All spar elements may be DELETED by choosing a delete all function.
RS5.15 The spar elements may be DELETED by individually pointing at each spar to be deleted.

DRAFT - 10/30/91

SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 19

3. Processing Requirements
RS.16 Results are presented real-time on a planform view of the wing.

R5.17 Validity of "freehand” input for spars is checked to insure that spars do not intersect except
perhaps at the boundary of the wing box.

The definition of rib and spar elements has a direct implication on the representation of elements for the
wing surfaces as follows:

RS5.18 Geometry elements in the wing surfaces will be redefined so that the boundaries of the
surface patches matches to the boundary of an underlying rib or spar patch.

This geometry data is to be provided as input to analysis programs such as PATRAN [5]. Elements input
into such analysis programs are either in the form of three- or four-sided elements. The process of
subdividing the wing box into ribs and spars can lead to elements with five or more sides which are not
acceptable for further analysis.

RS5.19 Once the process of defining ribs and spars is finished, each surface element must be
reviewed for the number of sides generated. If five or more sided elements exist, they must
be identified to the user. The user must be placed in a mode that allows editing of the rib or
spar elements to correct this situation.*

RS5.20 Surface patch dividers may be defined, edited and delcted like spars. In addition, any section
"of a spar (between two ribs) may be designated as a scction of a surface patch divider.
Conversely, any section of a surface patch divider may be designated as a spar section.

6. Multiple Wing Assembly Integration Requirements

1. General Comments

The purpose of this function is to allow the user to edit the structural elements of any wing assembly as
necessary to produce a model that has elements consistent with the requirements for input to analysis
programs such as PATRAN [5]. A summary of these requirements follow. Two assemblies which share a
common rib with a common airfoil (or upper and lower surface), must have the same number of spar
elements ending at the common boundary. In addition, corresponding elements from each of the
assemblies must intersect at a single point on the common boundary. Figure 14 illustrates this condition.

* Since the order of definition of ribs and spars is left to the user, requirements R5.18 and R5.19 are placed with the processing requirements of
both spars (here) and ribs (requirements R4.16 & R4.17).

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 20

Assembly 1

Assembly 2

Figure 14
Integration of Wing Assemblles

It is NOT the function of SMART Structures to provide facilities to edit the chord elements of the two
assemblies or their airfoils at intersection to obtain a match of these elements. It is assumed that this
malch is provided by the SMART Wing Generation module(s). . It is the function of this requirement to
provide editing facilities in order to facilitate the matching of spar elements at the common chord.

R6.1 It may be necessary for the designer to define assemblies in addition to those provided to
SMART Structures. Such assemblies would be separated by a plane, defined perpendicular to
the wing planfrom. The plane will be represented by a line segment drawn where this plane
intersects the wing planform.

2. Input Requirements
R6.2, New assemblies may be defined by
sclecting an existing rib or spar as the assembly boundary,

b. entering the valucs of the endpoints of the defining line segment on the boundary of the
wing box,
¢. pointing to the position of the endpoints of the defining line segment on the boundary of
the wing box. : -
R6.3 Any assembly may be named or renamed.

R6.4 For MATCHING assemblies at a common boundary, identify a assembly for editing and use
any of the spar or rib editing techniques described in the sections on Spar or Rib

Requirements,

R6.5 Point to a spar or rib endpoint at the common chord and move that point so that it matches
one of the spar or rib endpoints from the other assembly.

3. Processing Requirements
R6.6 Results are presented real-time on a planform view of the wing.

R6.7 Operations for the integration of wing assemblies require both the existence of two wing
assemblies and the existence of structural elements for both of the assemblies. The existence
of this information is checked and the user informed of the need to provide additional inputs

when necessary.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 21

7. Wing Section Cutout Requirements

1. General Comments

The purpose of this function is to allow the user to edit the structural elements of the wing assemblies as
necessary to define a region of the wing to be cut out for special purposes such as a landing gear box. Let
a spar (alternately rib) section be that section of a spar (rib) between two rib (spar) elements. It is
assumed that the desired cutout will be bounded by spar and rib elements. Required editing may mclude
the insertion or deletion of spar or rib elements.

2. Input Requirements
R7.1 Point at rib or spar section for deletion.

R72 Point to existing structural elements to define the endpoints of an additional rib or spar
sections; this method will be referred to as "freechand.”

73 Surface patches may be designated as missing or holes in the surface.
3. Processing Requirements
R7.4 Results are presented real-time on a planform view of the wing.

R7.5 Operations for the definition of structural elements for a wing cutout require the existence of
structural elements in the wing. The existence of this information is checked and the user
informed of the need to provide additional inputs when necessary.

R7.6 Validity of "frechand” input is checked to insure that inserted rib and spar section intersect
existing ribs and spars only at the designated endpoints.

8. Wing Output Requirements

1. General Requirements

Since processing in SMART Structures is a time-consuming procedure, user input is captured and stored
until the entire wing structure is defined. Upon finishing, one and two-dimensional geometry elements are
created for both the wing surface and the user-defined structural elements. Elements in the surface are
reformulated from the original SMART geometry so that the new surface patches are defined by the
boundaries of the underlying structural elements.

R8.1 The resulting elements must be added back to the SMART data tree for use by other SMART
modules, including visualization, and may be output as a PATRAN neutral file. Sufficient
information is output to the SMART data tree so that the wing structures can be recalled,
edited by SMART Structures and output again in edited form.

2. Input Requirements
R8.2 The user indicates that the editing of the structural model of the wing is complete.
3. Processing Requirements

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 22

Two types of elements need to be calculated, one- and two-dimensional.

R83

R38.4

R85

R8.6

R8.7

Two-dimensional elements are represented by bicubic surfaces.
One-dimensional elements are represented by cubic curves.

Both one- and two-dimensional elements are translated into a format appropnate for both the
SMART data tree (6] and a PATRAN neutral file {5]. Information for the PATRAN neutral
file is written at the user’s request.

Both one- and two-dimensional elements are generated for all rib and spar structural
elements. The user may indicate which type of element is to be saved for output.

SMART geometry surface elements are reformulated so that each boundary of the new
surface elements correspond to the boundary of one of the underlying structural elements.

Reformulation of the geometry surface elements may cause some deviation from the original
geometry surface elements.

9. Fuselage Assembly Definition Requirements

1. General Requirements

The purpose of this function is the identification of fuselage assemblies. Generally, the placement of
structural elements in the fuselage follows differing principles depending upon the position along the axis
of the fuselage and the structures and loads being supported there. Figure 15 illustrates a typical placement
of fuselage assemblies.

DRAFT - 10/30/91

Figure 15
Fuselage Components

SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 23

It is assumed that basic surface geometry for the fuselage has been provided in the SMART data tree,
along with sufficient information to determine top, front and side views.

R9.1 Stations separating assemblies are placed perpendicular to the x-axis.

2. Input Requirements

R9.2 The assembly divisions may be DEFINED by pointing to a top view of the fuselage at the
position assemblies are to be divided.

R9.3 The assembly divisions may be DEFINED by numeric input of the fuselage station value
which is to divide the assemblies.

R9.4 The assembly divisions may be EDITED by pointing to a top view of the fuselage moving the
position of the indicator dividing the assemblies.

R9.5 The assembly divisions may be EDITED by updating the numeric value of the station which
divides the assemblies.

R9.6 A assembly division may be DELETED by pointing at the division which is to be removed.
" Since much of the other internal structure depends upon the placement of the assembly
divisions, editing the assembly divisions requires deleting this structure and redefining it
3. Processing Requirements
R9.7 Resullts are presented real-time in a top view of the fuselage.

10. Cross Section Generation Requirements

1. General Requirements

The purpose of this function is the identification of fuselage stations where frames and bulkheads are
defined. Figure 16 illustrates the typical placement of stations within a fuselage assembly.

) Fuselage
Stations Assembly

N

mum‘\

Figure 16
Cross Section Placement

R10.1 Stations are placed perpendicular to the axis of the fuselage.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 24

R10.2 Each fuselage assembly is treated separately.
2. Input Requirements

R10.3 The assembly for which stations are to be generated is designated by pointing at a top view of
the fuselage.

R10.4 The station positions may be DEFINED by designating that stations should occur at a uniform
interval and a numeric value for that interval, for example, every 20 inches.

R10.5 The station positions may be DEFINED by pointing at a top view of the fuselage at the
position a station is to be inserted.

R10.6 The station positions may be DEFINED by numeric input of the desired location of the
station.

R10.7 The assembly divisions may be EDITED by updating the value for the size of the interval at
which stations should occur.

R10.8 The assembly divisions may be EDITED by pointing at a top view of the fuselage and
moving the station indicator to a new position. .

R109 The assembly divisions may be EDITED by updating the numeric value for the position of the
station.

R10.10 Editing non-equally spaced stations as equally spaced causes the given number of stations to
be redistributed equally before editing. Since this may delete user supplied data, the user will
be notified prior to this change.

R10.11 All stations may be DELETED by choosing a delete all function.

R10.12 A station may be DELETED by pointing individually at the station to be deleted.
3. Processing ‘

R10.13 Results are presented real-time in both top and side views of the fuselage.

11. Ring Frame Requirements

1. General Requirements

The purpose of this function is the designation of a given frame station and the generation of structural
elements corresponding to that frame. Figure 17 illustrates a typical frame station.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 25

R11.1
R112
R11.3

I l

Figure 17
Frame Structure

Ring frames are initially generated to have a uniform depth.
Structural elements representing the frame are generated as both one- and two-dimensional.
Only one ring frame is generated at the boundary of two assemblies.

2. Input Requirements

R11.4

R115

R11.6

R11.7

R11.8

R11.9

R11.10

R11.11

3. Processing
R11.12
R11.13

DRAFT - 10/30/91

In a given fuselage assembly, all station stations may be DESIGNATED as the sites for ring
frames.

In a given fuselage assembly, individual station stations may be DESIGNATED as the site for
a ring frame by pointing at that station.

Ring frames are initially DEFINED to have a constant depth by a user input value which is
then used as a default for all subsequent ring frames generated.

The default value for the depth of a ring frame may be EDITED at any time updating the
depth of [ramcs subsequently gencrated.

The value for the depth of a user-specified ring frame may be EDITED regeneraung that ring

, frame with the specified depth.

Since ring frames are represented by patches, ring frames patches may be EDITED by
changing the value of depth at either edge of the patch.

The depths along the edges of paiches in one ring frame can be used as a template for the
depths along the edges of patches in another ring frame. That is, corresponding edges of
patches will have the same depth.

Since structural elements representing the frames are bicubic patches, ring frames are
available to be EDITED by updating any of their patch control parameters.

Results are presented real-time in a front view of the station for which the frame is defined.

Editing structural elements of the frame as patches follows SMART interface conventions for
patch editing [5].

SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 26

12. Bulkhead Requirements

1. General Requirements

The purpose of this function is the designation of a given station station as a bulkhead and the generation
of structural elements corresponding to that bulkhead. Figure 18 illustrates a typical bulkhead.

Figure 18
Bulkhead Structure

R12.1 Bulkheads are initially generated from the outer skin to inner structure, if any, such as a tank.
R122 Structural clements representing the bulkhead are generated as both one- and two-
dimensional.
R123 Only one bulkhead is generated at the boundary of two assemblies.
2. Input Requirements

R12.4 In a given fuselage assembly, all station stations may be DESIGNATED as the sites for
bulkheads.

R12.5 Ina given fuselage assembly, individual station stations may be DESIGNATED as the site for
a bulkhead by pointing at that staton.

R12.6 Since structural elements representing the bulkheads are bicubic patches, they are available to
be EDITED by updating any of their control parameters.

3. Processing Requirements

R12.7 Results are presented real-time in a front view of the station for which the bulkhead is being
defined.

R12.8 Editing of structural elements representing the bulkhead follows SMART interface
conventions for patch editing.

DRAFT - 10/3091 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 27

13. Longeron, Keel, and Beam Requirements

1. General Requirements

The purpose of this function is the generation of structural elements representing longerons, keels, and
other beams. Figures 19 and 20 illustrate typical placements for longerons, keel and other beams.

i
o _o_ &

Figure 19
Placement of Longerons

floor

keel
beams

Figure 20
Keel Beam and Floor Structure

R13.1 Longeron and beam elements are generated along the outer skin of the fuselage parallel to the
axis of the fuselage (x-axis).

R13.2 Longeron elements are represented by one-dimensional elements.

R13.3 Keel, floor and other beam elements are represented by both one and two dimensional
elements.

2. Input Requirements

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 28

Generally, each station station intersects the same number of longeron, keel or other beam elements.

R134
R13.5

R13.6
R13.7
R13.8
R13.9
R13.10
R13.11
R13.12
R13.13

Elements will initially be DESIGNATED as longerons.

The initial positions of longerons are DEFINED by entering the number of longerons required
for a given station.

Additional longeron positions may be DEFINED by pointing to the desired locations.
Additional longeron positions may be DEFINED by entering values for the desired locations.
The value representing the number of longeron locations may be EDITED.

A longeron location may be EDITED by dragging it to the desired new position.

A longeron location may be EDITED by changing the values representing its position.

All longeron locations may be DELETED by choosing a delete all function.

Single longeron locations may be DELETED by pointing at them individually.

Since successive stations will have the same number of longeron positions, one station can be
used as a template for another. That is, corresponding edges of patches will used on

" successive station stations.

R13.14

R13.15
R13.16

R13.17

Positions for keel and other beams may be DESIGNATED by pointing at the desired
locations. By default, keel beam elements will be initialized with a depth equal to the frame
depth at that position and a direction perpendicular to the fuselage.

The depth of beam elements may be EDITED by changing its value.

The direction of beam elements may be EDITED by dragging the endpoint of the beam to the
desired direction.

The direction of beam elements may be EDITED by changing the values of the endpoint of
the beam,

In case the number of longerons is not fixed between a pair of station stations, the following editing
functions are necessary:

R13.18

R13.19

A longeron element may be ADDED by pointing at its endpoints in successive stations; this
method is referred to as "freehand.” :

A longeron section may be DELETED by pointing to it in a given station.

3. Processing Requirements

R13.20
R13.21

R13.22

DRAFT - 10/30/91

Results are presented real-time on both a front view and a side view of a given station.

The default longeron positions will be calculated using the following rule. The cross section
will be divided into segments based upon points of discontinuity of the fuselage curve. Arc
lengths of each segment will be computed. Longerons will be positioned at the points of
discontinuity between sections. The remaining longerons will be assigned to each segment in
a percentage proportional to the relative arc length of that segment. The longerons in each
segment will be placed uniformly along that segment.

Validity of "freehand” input for longerons is checked to insure that they do not intersect other
longerons,

SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 29

14. Fuselage Output Requirements

1. General Requirements

Since processing in SMART Structures is a time-consuming procedure, user input is captured and stored
until the entire fuselage structure is defined. Upon finishing, one and two-dimensional geometry elements
are created for both the fuselage surface and the frame, bulkhead and beam elements. One-dimensional
elements are created for the longeron elements. Elements in the surface are reformulated from the
original SMART geometry, so that the output patches are defined by the boundaries of the underlying
structural elements.

R14.1 The resulting elements must be added back to the SMART data tree for use by other SMART
modules, including visualization, and may be output as a PATRAN neutral file. Sufficient
information is output to the SMART data tree so that the fuselage structures can be recalled,
edited and output again in edited form.

2. Input Requirements
R14.2 The user indicates that the editing of the structural model of the fuselage is complete.
3. Processing Requirements

Two types of elements need to be calculated, one- and two-dimensional.
R143 Two-dimensional elements are represented by bicubic surfaces.
R14.4 One-dimensional elements are represented by cubic curves.

R14.5 Both one- and two-dimensional elements are translated into a format appropriate for both the
SMART data tree (6] and a PATRAN neutral file (5]. Informaton for the PATRAN neutral
file is written at the user’s request.

R14.6 Both one- and two-dimensional elements are generated for all frame, buikhead and beam
structural elements. The user may indicate which types of elements are to be saved for output.

R14.7 One-dimensional elements are created for the longerons.
R14.8 SMART geometry surface elements are reformulated so that each boundary of the new
surface elements corresponds to the boundary of one of the underlying structural elements.

Reformulation of the geometry surface elements may cause some deviation from the original
geometry surface elements.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 30

15. Wing - Fuselage Placement and Integration Requirements

1. General Comments

The purpose of this function is to provide for the relative placement of the wing and fuselage and for the
integration of major structural elements in the wing and fuselage to build an integrated structural model.
It is assumed that the wing and fuselage structural models have been completed by SMART Structures.
Figure 21 illustrates several different carry-through structures for wing - fuselage integration. Figure 22
illustrates several different techniques for joining wing-spar structure to fuselage-ring frame structure.

: 3
: e
2 -
: —
E\ =
:\ :—
E\‘ E_
— —
— FR—
H o
3 \ —
: N :
-)] —
= 4 H
: J s
— HE.

Figure 21
Carry-Through Structures

DRAFT - 10/30/91 SMART Requirements Docurment

System Requirements Specification for SMART Structures Mode Page 31

(a) High-Wing (b) Low-Wing

Heavy Forging

A
' ; ENNN\N\\\/H
=~ -

(c) Mid-Wing (d) Mid-Wing

Figure 22
Jolning Spar and Ring Frame Structures

R15.1 Itis assumed that the wing will be integrated to only one of the assemblies of the fuselage.

2. Input Requirements

R152 The right wing is presented in planform view together with a top view of the fuselage.
Symmetry defines the placement of the left wing. A side view is also presented to allow for
height alignment.

R153 The assembly of the fuselage with which the wing is to be integrated is [IDENTIFIED by
pointing,
R15.4 The wing may be PLACED relative (o this assembly by pointing at the desired position.

R15.5 The wing may be PLACED relative to this assembly by numerical input of the fuselage
station at which the leading edge - root rib intersection is to be placed.

R15.6 The placement may be EDITED by dragging the wing to a new position.

R15.7 The placement may be EDITED by updating the fuselage station value at which the leading
edge - root rib intersection is to be placed.

R158 The user may SELECT any one of the methods of carry-through illustrated in figure 21.
When possible ring frame and bulkhead stations will be moved in the x-direction to match
spar positions for the method of carry-through selected.

R15.9 Ring frames and buikhead stations may be EDITED to change their x-location by dragging
the station to a corresponding spar position.

R15.10 Ring frames and bulkhead stations may be EDITED to integrate wing fuselage structure by
adding a new frame or bulkhead station using the techniques of section 10, above.

R15.11 Ring frames and bulkhead stations may be EDITED to integrate wing fuselage structure by
deleting a frame or bulkhead station.

DRAFT - 10/3091 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 32

R15.12 The user may SELECT any one of the methods for joining spars to ring frames illustrated in
figure 22,

R15.13 Since structural elements representing the joining of spars to ring frames and bulkheads are
bicubic patches, they are available to be EDITED by updating any of their control parameters.

3. Processing Requirements
Since the bulk of processing consists of editing frame and bulkhead stations, processing proceeds as in
requirements R11.9-R11.10 and R12.6-R12.7.

R15.14 The root rib of the wing must be made to intersect with frame elements in the fuselage. This
may require that the root rib no longer be parallel to the plane of symmetry of the vehicle.

R15.15 Editing the root rib necessarily requires updating the spar elements that intersect it.

4. Fuselage Integration Output

R15.16 Since the positioning and definition of elements in both the wing-type object and fuselage-
type object may change due to this operation, all elements are verified to determine the need
for recalculation. When necessary both the SMART data tree and PATRAN neutral file
output must be updated.

16. Wing - Tail Placement and Integration Requirements

1. General Comments
The purpose of this function is to provide for the relative placement of the wing and tail (or other wing-
like structure such as a wing tip) and for the integration of major structural elements to build an integrated

structural model. It is assumed that the wing and tail structural models have been completed by SMART
Structures. Figure 23 illustrates several typical methods for wing-tail integration.

_

—
(a) Conventional Tail {b) + Tail (¢} T-Tail

Figure 23
Wing - Tail Integration

R16.1 Itis assumed that the wing will be integrated to only one of the assemblies of the tail.

2. Input Requirements

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 33

R162 The right wing is presented in planform view together with a top view of the tail. Symmetry
defines the placement of the left wing. A side view is also presented to allow for height
alignment. Initially the wing and tail are assumed to be perpendicular to each other.

R163 The assembly of the tail with which the wing is to be integrated is IDENTIFIED by pointing.
R16.4 The wing may be PLACED relative to this assembly by pointing at the desired position.
R16.5 The placement may be EDITED by dragging the wing t0 a new position.

R16.6 When possible spars in the tail will be moved to match spar positions for the wing being
attached.

R16.7 Spar locations in either the wing or tail may be edited as in wing-assembly integration
described in Requirements Section 6 above.

3. Fuselage Integratdon Output

R16.8 Since the positioning and definition of elements in both the wing and fuselage may change
due to this operation, all elements are verified o determine the need for recalculation. When
_necessary both the SMART data tree and PATRAN neutral file output must be updated.

17. Point Load Requirements

1. General Requirements
The purpose of this function is the placement and modification of structural loads associated with user-
specified points in the wing and fuselage.

R17.1 Loads may be represented either by scalar or vector values corresponding to the load
condition and an indicator of the grid point in the existing structural model at which the load
should be applied.

R17.2 Muitiple loads of various types may be applied at any given grid point in the structural model.
2. Input Requirements

R173 A load may be DEFINED for any existing grid point in the structural model of the wing or
fuselage; such a load will be called a point load.

R17.4 Multiple point loads may be defined for any grid point in the existing structural model.
R17.5 Any point load may be DEFINED as either a scalar or vector value.

R17.6 All point loads may be simultaneously DISPLAYED on a visual representation of the
structural model.

R17.7 Any point load may be EDITED by selecting the grid point at which the load is applied and
updating the value of the associated scalar or vector.

R178 Any point load may be DELETED.
3. Processing Requirements

If the structural model is edited after the point loads have been applied, one of two situation exist. Either a

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 34

given grid point at which a point load was applied remains in its original position on the structural model
or the associated grid point has either been moved or deleted.

R17.9 If the point is in its original position, point loads should remain attached to the same grid
point in the resulting structural model.

R17.10 If the grid point has been moved from its original position or deleted, the user is notified so
that the load can be appropriately placed in the modified model. An initial default for the
placement of the point load is that grid point in the modified model closest to the original grid

point.

18, Path and Area Load Requirements

1. General Requirements

The purpose of this function is the placement and modification of structural loads associated with
specified paths or areas in the wing and fuselage. For example loads associated with the placement of a
heavy pipe (path load) or a thermal protection system (area load).

R18.1 Loads can be reprcsented by scalar values at the grid points in the model representing the path
or area over which the load is to be spread.

R18.2 Multiple loads of various typcs may be applied at any given path or area in the structural
model.

2. Input Requirements

R18.3 A path may be DEFINED as any sequence of grid points in the existing structural model
where successive grid points share a common edge with the previous grid point.

R18.4 An area may be DEFINED as a connected collection of grid points in the existing structural
model.

R18.5 A load may be DEFINED for any existing path in the structural mode! of the wing or fuselage
by specifying the total load which will be spread uniformly over the indicated path; such a
load will be called a path load.

R18.6 A load may be DEFINED for any existing area in the structural model of the wing or fuselage
by specifying the total load which will be spread uniformly over the indicated area; such a
load will be called an area load.

R18.7 Multiple path or area loads may be DEFINED for any path or area in the existing structural
model.

R18.8 All path and area loads may be DISPLAYED on a visual representation of the structural
model.

R18.9 Any path or area load may be EDITED by selecting the path or area over which the load is
applied and redefining the collection of grid points comprising that path or area.

R18.10 Any path or arca load may be EDITED by selecting the path or area over which the load is
applied and updating the value of the total associated load.

R18.11 Any path or area load may be DELETED.

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 35

Processing Requirements

If the structural model is edited after the path or area loads have been applied one of two situation exist.
Either the grid points defining a given path or area remain in their original position on the structural model
or they have either been moved or deleted.

R18.12 If the grid points defining the path or area remain in their original position, the loads should
remain attached to the original path or area in the resuiting structural model.

R18.13 If some of the grid points have been moved from their original position or deleted, the user is
notified so that the path or area can be appropriately placed in the modified model. An initial
defauit for the placement of the load is that set of grid points in the modified model closest to
the original grid points.

R18.14 Data is kept on the patches with which the path and area loads are associated through their
grid points.

19. Analysis-Generated Load Requirements

Accept as input loads generated by the APAS and other aerodynamic analysis programs and use these w
generate data patches in a form compatible with the PATRAN neutral file and consistent with the structural
model.

1.

General Comments

As noted in section 2 above, models designed using SMART are subjected iteratively to several different
analysis techniques. Part of this process involves using SMART-generated vehicle geometry in the
aerodynamic analysis programs such as APAS. The various loads generated in this analysis are important
10 the structural analysis. It should be noted that aithough the geometric surfaces represented in both the
aero and structures model are the same, the representations employed are different, each tailored to meet
different needs. It is the purpose of this function to retrieve the aero data and the representation used for
the aero geometry and map the data to a form consistent with the representation of the structural geometry
defined above. :

It is assumed that the input will be in the format of data files handled by APAS (1] and will contain
parametric identifiers for the test cases run along with data for each surface panel that includes the
centroid of the panel, the loading information at that centroid and other functional outputs. It is assumed
that a "smoothed” bilinear interpolant to this data will provide sufficient accuracy for further structural
analysis.

2. Input Requirements

R19.1 The module must be able to present all available local data files for selection by the user.

R19.2 The module must be able to present parameter information identifying all test cases contained
in a specified data file for selection by the user.

R19.3 The module must be able to read the data file format.

3. Processing

DRAFT - 10/30/91 SMART Requirements Document

System Requirements Specificaton for SMART Structures Mode Page 36

R19.4 This module is responsible for creating a bicubic data surface representing a smoothed
approximation of the bilinear interpolant to the data found in the data file.

R19.5 Data patches may be output to a PATRAN neutral file [5].

R19.6 Data patches are further processed by rescaling data values so that ranges fall approximately
in the geometry range of the wing thickness and placed in the SMART data tree (6].

20. Load Output Requirements

Two types of elements need to be calculated at this stage, daw patches for output to PATRAN and scaled data
surface patches using the SMART format to aid in visualization of the surface.

R20.1 PATRAN data patches are output in the format described in [5].
R202 SMART data surface patches are output in the format described in [6].

21. User Interface Requirements

R21.1 SMART Structures must use the SMART graphics user interface developed for the Silicon Graphics
(SGI) IRIS 4D Workstation using SGI's GL graphics library and described in [6].

In addidon the following general user interface consideration must hold:

R21.2 Validity of keyboard inputs is checked; specifically, numeric input must be numeric and within
acceptable ranges defined by the extents of the wing planform or fuselage.

R21.3 Pointer input on points and edges is modified to attach to an existing point or edge within 5 raster
units if appropriate for the indicated operation.

R21.4 Since edit and delete operations must follow corresponding define operations, users are notified of
an attempt to edit elements out of order.

R21.5 Users are notified of mistaken input immediately.

R21.6 Requests for deletion are confirmed with the user.

R21.7 An UNDO feature which should allow for the restoration of the state of the structural model just
prior to the last user operation. This feature would apply to the immediately preceding operation as
tracking an entire sequence of preceding operations and the information necessary to restore the
model would be complicated and time consuming.

The following two points, while not requirements, would significantly improve the functionality of the SMART
Structures modules form the user’s point of view.

R21.8 An INTERMEDIATE SAVE feature which would allow the user to exit the SMART Structures
modules saving the current state of the structural model generation so that it could be restored for
completion at a later time.

DRAFT - 10/3091 SMART Requirements Document

System Requirements Specification for SMART Structures Mode Page 37

R21:9 The 'ability to save and edit a SCRIPT or JOURNAL file of a SMART Structures session which

would allow the user to replay a sct of modifications exactly as entered or in an appropriately
modified fashion.

22. Software Interface Requirements

The basic interface to the rest of SMART is through the SMART data tree.

R22.1 SMART Structures must be capable of reading any aerospace vehicle geometry generated by
SMART.

R22.2 SMART Structures must be capable of generating structural and visualization surfaces in a format
for inclusion in the SMART data tree.

R223 As detailed in sections 8, 14, 15, 19, SMART Structures must be capable of reading aerodynamic
analysis data files and writing PATRAN neutral files.

DRAFT - 10/30/91 SMART Requirements Document

Appendix B

o IHI
N9 2-2783
Surface Generation and Editing

Operations Applied to Structural Support
of Aerospace Vehicle Fuselages !

Susan K. Schwartz .

My
A Master’s Project !
submitted to the
Computer Science Department
of
Old Dominion University
in partial satisfaction of
the requirements for the degree of
Master of Science

Project Advisor: Dr. James L. Schwing,
Associate Professor of Computer Science

April, 1992

1This work was supported under NASA grant NCC1-99.

Abstract

SMART, Solid Modeling Aerospace Research Tool, is the Vehicle Analy-
sis Branch of NASA Langley Research Center’s computer-aided design tool
used in aerospace vehicle design. Modeling of structural components using
SMART includes the representation of the transverse or cross-wise elements
of a vehicle’s fuselage, ringframes and bulkheads. Ringframes are placed
along a vehicle’s fuselage to provide structural support and maintain the
shape of the fuselage. Bulkheads are also used to maintain shape but are
placed at locations where substantial structural support is required.

Given a Bézier curve representation of a cross-sectional cut through a
vehicle’s fuselage and/or an interior tank, this project produces a first-guess
Bézier patch representation of a ringframe or bulkhead at the cross-sectional
position. The grid produced is later used in the structural analysis of the ve-
hicle. The graphical display of the generated patches allows the user to edit
patch control points in real time. Constraints considered in the patch genera-
tion include maintaining “square-like” patches and placement of longitudinal,
or lengthwise along the fuselage, structural elements called longerons.

Contents

1 Introduction 5
2 Capabilities of SMART 6
3 Aircraft Structural Design 9
3.1 Design Considerations 9
3.2 The Actual Design L 11

4 Overview of Finite Element Analysis 15
4.1 Steps in the Finite Element Method 18
4.2 Creatingthe Mesh 0L 18

5 Geometric Representation 21
6 Algorithms for Generating Bulkheads and Ringframes 26
6.1 Capabilities Developed for SMART Prior to the Project 26
6.2 New Results 30
'6.2.1 Bulkheads L 30

6.2.2 Ringframes L. 36

7 Conclusion 37

Appendix A: Implementation of the Algorithms: Snapshots of
the SMART Display 39

Appendix B: Software Requirements for SMART Structures 65

Appendix C: SMART Code to Implement Algorithms 103

List of Figures

O Ut W W N -

-3

11

12
13
14

15
16
17
18

| SV ()
— O

The Layout of the SMART Screen [SMART, p. 2-1] |
Ringframe from an offset curve [REHDER, p-3]
Bulkhead between fuselage and internal tank [(REHDER, p. 4]
Semimonocoque construction [MCKIN, p.l44) . ..o
Typical semi-monocoque stiffened shell—L-1011 [NIU, p. 376)
Typical transport fuselage center section floor beams arrange-
ment. [NIU,p. 396] e
Typical pressure flat bulkhead [NIU, p. 398] ...
Fail-safe design by using longitudinal beam along side of fuse-
lage. [NIU,p. 391)
Sketch of main details of aeroplane structure [STING66, p. 203]
Finite difference and finite element discretizations of a turbine
blade profile. (a) Typical finite difference model. (b) Typical
finite element model. [HUEB,p. 5]
An arbitrary shape divided into nodes and elements. The
shape is governed by the partial differential equation shown.
The value of this equation at any point in an element is a

function of the values of the nodes &, bounding the element.

[BARAN,p. 3]
Model reduction due to structure symmetry
Two Bézier curves and their control points [FOLEY, p. 488|
The Bézier curve defined by the points P is divided at t =

into a left curve defined by the points L; and a right curv
defined by the points Ri. [FOLEY, p. 508) ...
Bicubic Bézier Patch
Vectors and points used to calculate a patch
A fuselage cross-section.

A simple tank cross-section (simple implies convex shape) with
component cubic Bézier curve segments and control points. . .

A fuselage cross-section with interior simple tank cross-section.

A multi-bubble tank cross-section with component cubic Bézier
curve segments and control points.

17

25
26
29
42

43

22

23

24

29

30

31

32

33

34

A fuselage cross-section with interior multi-bubble tank cross-
section.o o 47
A fuselage cross-section with generated interior circular tank
with cubic Bézier curve scgments showing the path of growth

for bulkhead patches. L. 48
A fuselage cross-section with generated interior circular tank
with first-guess bulkhead patches. 49

A fusclage cross-section with generated interior circular tank
with control points (plotted as one-third points) edited to
smoother patches. 0 L. 50
A fusclage cross-scction without interior tank with first-guess
bulkhead patches based on cubic Bézier inward growth curves. 51
A fuselage cross-section without interior tank with first-guess
bulkhead patches based on linear inward growth curves. 52
A fuselage cross-section with interior simple tank cross-section
and cubic Bézier growth curves between corresponding points.
Blue squares on the green cross-sections indicate locations
where original given cross-sections were split to accomplish
equal number of curves per cross-section, and corresponding

curves of near-equal percents of arclength. 53
Initial bulkhead patches based on cubic Bézier growth curves
between fuselage cross-section and simple tank cross-section. . 54
Bulkhead after editing of control points of patches between
fuselage cross-section and simple tank cross-section. 55

A fuselage cross-section with interior multi-bubble tank cross-
section and cubic Bézier growth curves between correspond-
ing points. Blue squares on the green cross-sections indicate
locations where original given cross-scctions were split to ac-
complish equal number of curves per cross-section, and corre-
sponding curves of near-equal percents of arclength. 56
Initial bulkhead patches based on cubic Bézier growth curves
between fuselage cross-section and multi-bubble tank cross-
section. L 57
Bulkhead after editing of control points of patches between
fuselage cross-section and multi-bubble tank cross-section. . . 58
Placement of twelve longerons on fuselage cross-section with
interior multi-bubble tank cross-section. 59

35

36

37

38

39

Placement of nine longerons on fuselage cross-section with in-

terior simple tank cross-section. 60
Placement of thirteen longerons on fuselage cross-section with
interior simple tank cross-section. 61
Placement of thirty longerons on fuselage cross-section with
interior simple tank cross-section. 62

A fuselage cross-scction with ringframe patches generated with
constant percent of growth along cubic Bézier curve segments. 63
A fuselage cross-section with constant width ringframe patches. 64

1 Introduction

“A model is a representation of some (not necessarily all) features of a con-
crete or abstract entitv. The purpose of a model or an entity is to allow
people to visualize and understand the structure or behavior of the entity,
and to provide a convenient vehicle for *experimentation’ with and prediction
of the effects of inputs or changes to the model [FOLEY, pp. 286-7].” In
many instances, the model is the only means in which analysis can be per-
formed to determine feasibility of an idea. Costs of creating an actual entity
or the testing facility for a particular entity may be prohibitive and a model
provides the simulation of the entity for experimentation and learning about
a proposed system.

The cost of memory and computing time has decreased drastically in
the past two decades and made the computer one of the most viable tools
for modeling. In particular, graphics-based modeling tools are now used “to
create and edit the model, to obtain values for its parameters, and to visualize
its behavior and structure [FOLEY, p. 287].”

In the mid 1970’s, the Vehicle Analysis Branch, VAB, of NASA Lang-
ley Research Center, LaRC, began development of its own solid modeling
system. Numerous commercially produced systems were evaluated and de-
termined not to meet the needs of the VAB. Thus, SMART, or Solid Modeling
Aerospace Research Tool, was begun in the 1980’s to provide the VAB with
1ts own computer-aided design tool for aerospace vehicle design.

A primary method of modeling used by aerospace and structural engi-
neers is based on the ability to create a “nice” grid on a surface. Finite
element analysis and computational fluid dynamics both rely on known val-
ues at points relatively close to one another to predict values of quantities
like stuctural stress at other points. Currently, the difficulties in producing
suitable grids for these analyses slows the design process. Manual means of
producing the grids are unsuitable and automating the process is the desired
method.

The goal of this project has been to automate the Bézier patch gener-
ation of fuselage bulkheads and ringframes used in the structural analysis
of aerospace vehicles. Sections two through five of this paper provide in-
sight into the basics of SMART, aircraft structural design, the finite element
analysis process, and the geometric representations used in the modeling pro-
cess. Section six presents the algorithms developed to generate the desired

[S1]

patches. Snapshots of the SMART display showing the implementation of
the algorithms are provided as Appendix A. Copies of the SMART struc-
tures requirements document and source code are provided as Appendices B
and C, respectively.

2 Capabilities of SMART

SMART, written in the C programming language, was developed for use on
the Silicon Graphics IRIS workstation, a computer which features custom
graphics hardware and the UNIX operating system. The initial modeling
requirements of the software included:

e ability to generate accurate 3-dimensional geometric descriptions of
complex vehicle shapes quickly and easily;

e facilitate easy manipulation of the vehicle components using a hierar-
chial component grouping scheme;

e provide data from a single geometric representation to a variety of
analysis programs; and

o real-time interaction with the user [MCMIL, p. 1].

The user interface of SMART was designed to accomodate “novice, oc-
casional, and experienced users [MCMIL, p. 2].” The main features of the
display, shown in Figure 1, are two large viewing windows or viewports, a
small textport area, two horizontal main menus, and an area for displaying
a variety of menus and slider bars pertinent to the given evolution. Most
user input is accomplished by positioning the mouse over the desired menu,
bar, or plotted geometric figure in the viewport and pressing an appropriate
button.

Objects may be created from basic primitive shapes, that is, SMART-
facilitated automatic generation of vehicle components, or by “free-hand”
rendering with the mouse over the viewport. In particular, SMART “has
an extensive capability for creating and modifying cross-section capability
to create completely arbitrary shapes [MCMIL, p. 3].” The cross-sections
are represented by either “Bézier cubic curves or a series of points connected

® ‘ (© MAIN OPTIONS
SMART NASA/LaRC/SSD/VAB ‘ ' @

TREE | rriniTives | FER i | IMAGES | PROPEATIES | PICTUAES | PATCH TaoLs | X T @
FILE - | CS SURFACE | cuTs | SogLgAm | PACYAGING | CMLCULATON | AWINATION | CFO GAIOS | WELP —

Figure 2-1
The Layout of the SMART Screen
A. Textport E. Mode Menubar
B. Clock F. View Windows
C. Function Name Area G. View Option Menubars
D. Intormation Display Area H. Menu Display Area

Figure 1: The Layout of the SMART Screen [SMART, p. 2-1]

Figure 2: Ringframe from an offset curve (REHDER, p. 3]

by straight lines, referred to as Cartesian cross-sections [MCMIL, p. 3].” A
discussion of Bézier curves is presented in Section 5 of this paper.

Once a geometric component is created, the component is accessed for a
variety of processes. A capability, currently being developed, is the consoli-
dation of the model generation process for structural analysis. New require-
ments specifications have been written and this project represents the fulfill-
ment of many of the ringframe and bulkhead generation and longeron place-
ment requirements. See [SOFT, pp. 24-28], provided in Appendix B of this
paper, for the pertinent portion of the requirements document. [REHDER,
pp. 3—4] describes the technique applied to constructing the model of these
components. A planar surface is generated between two curves: one of the
curves is formed by the outer surface of the fuselage; the other is a scaled
offset from the fuselage curve, creating a ringframe, as in Figure 2, or a sep-
arate curve representing the cross-section of a tank interior to the fuselage,
creating a bulkhead, as in Figure 3.

The planar surface, represented by Bézier bicubic patches, may be stored
in several different types of files. In particular, SMART has the capability
of writing an ASCII text file of the patch data for an entire vehicle in the
format known as a “neutral file.” This file may then be “read” by the PA-
TRAN structural analysis program [PATRAN] and this geometry is used as

AN

Figure 3: Bulkhead between fuselage and internal tank [REHDER, p. 4]

a template to create a suitable grid and then perform finite element analysis
on that grid for various pressure and stress loadings.

3 Aircraft Structural Design

3.1 Design Considerations

The design of an aircraft requires the combined efforts of both the aerody-
namics engineer and the structural engineer. The aerodynamicist considers
the vehicle as an aerodynamic shape and analyzes the reaction of the sur-
rounding air to the presence of the “envelope of specially shaped airframe
surfaces [STIN66, p. 190].” This envelope must distribute the loads to the
surrounding air. The airframe must also protect the items within, such as the
payload, fuel, and engines. Given an accurate distribution of the air-loads
of the vehicle, the structural engineer’s job is to produce a sound struc-
ture. Because there is great difficulty in accurately predicting these loads at
each point on the structure’s surface, the structural engineer considers the
“most critical design cases—which often run into thousands— arising from

the various combinations of speed, attitude and weight throughout the flight
[STINGS, p. 190].”

“Structural design affects the achievable flight envelope, stability and
control, the operational role and the development potential of an aeroplane
[STING6, p. 192].” There are many considerations for structural design and
each deserves to be fully explored. However, full explanations are beyond the
scope of this paper, and each will be given at most, a cursory explanation:

o The outer skin must remain reasonably wrinkle-free and smooth in l-g
flight, which is different from an unloaded vehicle on the ground.

e The fabrication material must have a high strength-to-weight ratio,
particularly at high temperatures, and high specific stiffness.

o The study of loads on a material is of major concern and both the way

. in which the load is applied and the area over which it is applied must
be considered. When a material is loaded in a particular way, it is said
to be stressed. There are three types of stress: tensile, compressive
or bearing, and shear. Tensile stress is caused by tension across a
cross-sectional element. Compressive stress is the reverse of tensile
stress. Shear stress occurs tangential to the surface. The material’s
shape multidimensionally changes when it is stressed. Shear strain is
defined as the angular displacement caused by shear stress. Similar
strain definitions apply to tensile and compressive stress. Although a
simplistic approach, it should be noted that stress causes strain and
strain causes stress.

¢ Heat is also a consideration. The boundary layer of air surrounding a
high-speed aircraft becomes heated and raises the temperature of the
skin of the aircraft. External radiant heat may also be a factor.

o The elasticity/plasticity of a material is an important factor. If the
strain caused by a stress completely disappears when the stress is re-
moved, the material is said to be wholly elastic. If the strain has not
disappeared, the material is said to have a permanent “set” and plas-
ticity has occurred. “A structure is designed so that the working range
of any component does not exceed its elastic limit. It is now possi-
ble to study stress-patterns established in structural components by
various applied loads.... A useful general law, known as Hooke’s Law,
states that within elastic limits of a material the strain produced is
proportional to the stress producing it [STIN66, p. 197].”

10

¢ Bending and torsion or twisting must also be accounted for. Bending
takes place when a load is applied to a point on the flexural axis of
a structural member and the reaction is at another point on the axis.
Torsion will also occur if the reaction is offset from the flexural axis.

o Fatigue is also studied. It occurs when repeated stresses, each much
lower than maximum tensile stress allowable, cause the cracking of
structural members.

None of these items can be taken in isolation and generally combinations
are considered simultaneously. “An important aid in structural analysis is
the Principle of Superposition: that the total strain caused by a load-system
may be considered as the sum of the individual strains caused by the various
load components, taken in isolation [STIN6G, p. 197].”

“The analysis of stress and strain in advanced aircraft structures has
forced the development of very elegant and complicated mathematical tech-
niques. The structural engineer must relate the effects of weights, aero-
dynamic inputs, elastic responses and stress distributions throughout the
structure as one whole, for a wide variety of different shapes. Fortunately,
the grid-like construction allows accurate analyses to be made and translated
into mathematical statements that can be handled by computers [STIN66,
p. 213].”

3.2 The Actual Design

The airplane has three basic parts, the fuselage, the wings, and the tail.
This paper will only address the fuselage, parts of which are the focus for
this project.

“The fuselage is the body to which the wings and the tail unit of an
airplane are attached and which provides space for the crew, passengers,
cargo, controls, and other items, depending upon the size and design of the
airplane. It should have the smallest streamline form consistent with desired
capacity and aerodynamic qualities of the airplane ... The main structure of
a spacecraft or missile may be called a fuselage but is more commonly called
the body or tank [MCKIN, p. 140].”

The modern aircraft’s fuselage is of a semi-monocoque construction, as
seen in Figures 4 and 5 . This means that the fuselage has a framework

11

Figure 4: Semimonocoque construction [MCKIN, p. 144]

which supports an external skin which must withstand most of the stresses
placed on the fuselage. The framework consists of several types of structural
elements. The vertical or transverse elements of the fuselage support are
called bulkheads, frames, and formers or rings. A bulkhead is a substantially
constructed cross-section cutting across a fuselage, perpendicular to the fuse-
lage’s longitudinal beam, as in Figure 6. A bulkhead is placed at points of
concentrated loads, and helps to distribute the loads over the skin and allows
little radial expansion. There may be cut-out areas for doorways and holes,
but doors and plates are used to maintain the structural requirement, as seen
in Figure 7.

A frame serves primarily to maintain the shape of the body and has the
outline of the cross-section of the vehicle, which can be seen in Figure 8. The
loads at the frames are smaller and construction of the frames can be lighter
than that of the bulkheads. Formers or rings have the same outline as the
frame but are lighter and are used to maintain a uniform shape of the skin.
This paper refers to all of these as ringframes.

The longitudinal components are longerons and stringers. They are sup-
ported by the bulkheads and frames and support the outer skin to prevent
bulging due to severe stresses. They also are used to carry the axial loads

12

Aftarpody

Aft saction

Fuselage
aftercody

Aft pressure

Mid secton buikheag

—
A

Fairing
Farward saction

<)
\ wing canter section
Floor Framae
Keeison
\ Flignt stagon Longerons
Forward pressurs bulkhead

Stringer

Seat rack

Floor beam
supoort post

SuDpOrt beam assembly

Cargo campartmaent floor /
SuPPOrt beam assembly

Figure 5: Typical semi-monocoque stiffened shell—L-1011 [NIU, p. 376]

13

Bulkneads

\ : Bulkheads

Wing center box

Figure 6: Typical transport fuselage center section floor beams arrangement.

[NIU, p. 396]

Figure 7: Typical pressure flat bulkhead [NIU, p. 398]

14

Seat track
or seat rail

Tension
oads due
to cabin

pressure

» Floor besmn

Figure 8: Fail-safe design by using longitudinal beam along side of fuselage.

[NIU,p. 391]

caused by bending. Longerons are especially designed to take the end loads
fore and aft of the vehicle and run the length of the fuselage. Stringers are
shorter and of lighter construction. See Figure 5.

The external skin is formed from metal sheets which are attached to the
frames and bulkheads by riveting or welding. It carries the loads of sheer
stress and cabin pressure. Figure 9 shows the combined features mentioned
above.

The semi-monocoque structure is considered to be “very efficient, i.e., it
has a high strength to weight ratio, and it is well suited for unusual load
combinations and locations. It has design flexibility and can withstand local
failure without total failure through load redistribution [NIU, p. 377].7

4 Overview of Finite Element Analysis

Finite element analysis is defined to be a “group of numerical methods for
approximating the governing equations of any continuous system [BARAN,
p. 1]”. Originally developed for the study of stresses in complex airframe

15

'Ruddervator’ - combined 2levator

i d either as ltarge and ruader: leading edge spar wittr
gi::,?ﬁ?;ricimeboxesl or by scgarate riblets and skin cr disred skin to replace
stabilising riblets.

ribs and spars \

'
- Stringers running length of tail boom,
riveted o spot weided inside skin

Ailercas and flaps similar to
fuddervators

"Tip fairings

Ceash arch attached to forward
buikhead and box beam keel
supports port and staboard
glazed petal-type canopy doors

4 @ Main fuselage frames supporting wing
. spars, boom and front fuselage box-beam. ate ribs and soars of orsian box
Large box-beam keel fastened to main Rear frame supports engine mounting \i??ha‘D—nose Ieading edge fairing,

fuselage frame supports seals, houses
control runs and rods and takes
retractable nose wheel at forward end.

Figure 9: Sketch of main details of aeroplane structure [STIN66, p. 203]

16

(a)

Figure 10: Finite difference and finite element discretizations of a turbine
blade profile. (a) Typical finite difference model. (b) Typical finite element
model. [HUEB, p. 3]

structures (HUEB, p. 3], the finite element method today is also used in a
variety of engineering disciplines. [t is particularly effective for problems with
complex geometries. Until recently, finite element analysis was restricted to
expensive mainframe computers, but the significant declines in hardware and
processing costs have made this process available to virtually all engineers
and scientists. Civil and aerospace engineers remain the most frequent users
of this method.

The difficulty of a continuous system or structure is the infinitely many
values of the unknown quantity being evaluated at each point of the struc-
ture. The objective of finite element analysis is to approximate the governing
differential equation of the system or structure at selected points with a suf-
ficient degree of accuracy. A mathematical model of the physical system is
created. The points or nodes, when connected, define the elements of the
model. This process of creating nodes and elements is called discretization
and is illustrated in Figure 10. Simplifying assumptions are made to create
approximating functions, from the original differential equations, which are
then applied to the specified nodes of the model. Solutions are created for
individual elements and then combined to represent a solution for the en-
tire problem. The size and number of elements and simplifying assumptions
determine the accuaracy of the analysis.

17

4.1

Steps in the Finite Element Method

Finite element analysis can be performed in a sequence of five steps, each of
which has its own difficulties and time requirements. They are summarized

as follows:

1.

[8]

Perform the discretization. Dividing the physical structure into ele-
ments is the most important phase because this will greatly affect the
accuracy of the analysis. Elements may take various shapes depending
on the nature of t* problem. This is discussed in greater detail in the
next section.

Define the geometric properties of each element and any material prop-

erties and boundary or loading conditions pertinent to the analysis.

Formulate interpolation equations for each element. These are often
polynomial in nature because of the ease in integrating and differen-
tiating them. The interpolation functions in these equations give “an
analytical expression for the displacement at any point inside the ele-
ment” [BARAN, p. 4]. The value of the equation at any point in an
element is a function of the nodes bounding the element. See Figure 11.

Assemble the system equations, accounting for properties outlined in
Step 2 above, and solve the equations.

Make additional calculations, if necessary. The solution of the system of
equations may be used to calculate other parameters. For example, in
structural analysis, nodal values represent body displacements. These
values are then used to calculate strains and stresses in the elements.

4.2 Creating the Mesh

There are two basic categories of planar elements: line and area. Beam and
spring elements are examples of line elements. Beam elements are used in a
variety of engineering problems to represent parts whose lengths are much
greater than the cross-sectional depth or width. Area elements include flat
plate or shell elements. The plate elements have a thickness much smaller
than their other dimensions and are usually represented by three or four

18

Nodes

Elemants

$s \?s

-
-
-
|

1 2

X

Bl .o ds)

Figure 11: An arbitrary shape divided into nodes and elements. The shape
is governed by the partial differential equation shown. The value of this
equation at any point in an element is a function of the values of the nodes
®; bounding the element. [BARAN, p. 3]

nodes. Solid or volume elements are a third type of element used to account
for parts whose thickness is significant compared to other dimensions.

The model being created is an idealization of the actual physical structure
being analyzed. By understanding the physical problem, the regions of the
structure most likely to be stressed are determined. A coarse mesh is created,
placing nodes at stress, support, and load points. Finer meshes can be created
from this initial mesh, if necessary. Huebner quotes John M.Biggs as saying
that it is a “waste of time to employ methods having precision greater than
that of the input of the analysis [HUEB, p. 88].”

The shape and element pattern of the finite element model is determined
by the location of the nodes. Other significant locations of nodes include
structure corners and discontinuities. The model should closely approximate
the shape of the actual structure. The size of the model can be reduced
by accounting for the structure’s symmetry, as in Figure 12. Establishing
a coordinate system with an origin on an axis of symmetry allows easier
definition of nodes and elements.

Ultimately, the choice of nodes and elements depends on the type of

19

l l
: :
| I
-\
l I
l I
} z

I\ Axis of symmctxy—/‘

Figure 12: Model reduction due to structure symmetry

finite element analysis being performed and the accuracy required. Huebner
suggests the following as rules for finite element modeling [HUEB, pp. 94-99]:

If the problem involves concentrated loads and/or geometric disconti-
nuities, minimum dimensions and areas requiring a refined mesh should
be determined using St. Venant’s principle. This states that “localized
loads or geometric discontinuities cause stresses and strains only in the
immediate vicinity of the load or discontinuity ([HUEB, p. 99}.”

Stress analysis requires a more refined mesh than displacement analysis.

Nodes should be placed at supports, load points, and other locations
where information, such as displacements or temperatures, is required.

Uniform mesh spacing should be used, if possible. If it is necessary
to transition from coarse to fine meshes, the dimensions of adjacent
elements should not differ by more than a factor of two. The transition
should be made across a series of elements.

When using plate or axisymmetric elements, quadrilaterals are the pre-
ferred shape because they are more accurate than triangles. Triangular
elements should be used only when required by the geometry or for
transitions.

The aspect, or length-to-width, ratio of triangular or quadrilateral el-
ements should be as close to unity as possible. Aspect ratios as large
as 5.0 are permissible, but below 3.0 is preferrable.

In triangular and quadrilateral elements, no extremely obtuse or acute
angles should be used. The optimum is the equilateral triangle, where
all angles are 60 degrees, or right angles in the quadrilateral, but devi-
ations of up to 30 degrees is permissible.

Curved surfaces should be modeled with flat elements whose nodes are
all in one plane. The angle subtended by the surface and the plane
should be less than 13 degrees.

Poisson’s ratio, should be less than 0.5. An elastic material elongates
in the direction of an applied tension while its cross-section contracts
perpendicular to the tension direction. During simple compression, the
material contracts in the tension direction and expands perpendicularly
to the tension. Poisson’s ratio is the ratio of the resultant perpendicular
strains to the parallel strains. Most metallic materials have a value of
0.25-0.3 and an assumed value of 0.3 is used. It is also assumed that
Poisson’s . .iio approaches 0.5 as the stresses reach a maximum for the
material [NILES, pp. 151-152].

o Lengths and areas of line and area elements must be non-zero. Values
of zero may produce unpredictable results.

¢ Elements should not extend across discontinuities or changes in thick-
ness. This tends to cause numerical errors and inaccurate results. Ad-
ditional nodes and smaller elements should be used.

e It is assumed that flat plate elements have no in-plane rotational stiff-
ness. If in-plane twisting is allowed, plate elements do not accurately
represent the model’s flat plates.

5 Geometric Representation

Vehicles are drawn using curves and surfaces which approximate the desired
shape of the vehicle. There are numerous ways to represent such curves

21

-

Figure 13: Two Bézier curves and their control points [FOLEY, p. 488]

and surfaces. As surface representations are a generalization of curve rep-
resentation, this section will first consider working with curves. Often, a .
parameterization of curves, where each coordinate, z,y, and 2, is a function
of a parameter, t, i.e.,, T = z(t),y = y(t),z = z(t), is used to avoid prob-
lems occuring with explicit and implicit equations used to describe geometric
figures. For specifics, see [FOLEY, p. 478].

The predominant method used in SMART is the Bézier form of the para-
metric cubic polynomial curve segment. This consists of 4 points, By, P,
P,, and P; where P, and P; are endpoints of the curve segment and P; and
P, are additional control points. Generally not on the curve segment, points
P, and P, indirectly specify the tangent vectors to the curve at P, and Ps.
Specifically, the direction of the tangent vector at P, is determined by P P,
and the direction of the tangent vector at P; is determined by P3P,. See
Figure 13.

To determine a point P on the curve segment, the parameterization of the
domain is set up so that at parameter t =0, P = Fo, and at t = 1, P =P
The weighting factors for each point, known as the Bernstein polynomials,
are:

B3(t) = (1=t
BX(t) = 3t(l-—t)?
B3(t) = 3t*(1-t)
Bg(t) = ¢

(%)
[OV]

The resultant equation to evaluate P is:
3
P(t) = ZPJ- X Bf(t)
1=0

Note that P(¢) is guaranteed to be cubic in t because it is a linear combination
of cubic polynomials. The sum is computed for each coordinate, r and y in
2-D; z, y, and z in 3-D).

There are several advantages inherent to this representation:

o Cubic curves do not “wiggle” as much as higher order polynomials and
give a relatively smooth approximation of the desired shape. Note that
a cubic curve is the lowest degree polynomial to interpolate to four
‘requirements: the two endpoints and the specified derivatives at each

endpoint [FOLEY].

o The resultant curve segment is contained by the convex hull of its
representative points. This guarantees that the curve segment is planar.

¢ Calculation of the derivative at any point on the curve segment, most
notably at the endpoints, is easy. For a given t, P'(t) is calculated as
the linear combination of the derivatives of the Bernstein polynomials.

o The storage requirements for a curve segment are minimal—the four
points and possibly, information about slope continuity with adjoining
segments.

* Another way to compute P(t) involves successive linear interpolations
of pairs of the given four points. This linearity allows the Bézier rep-
resentation to inherit the property of affine invariance. That is, when
applying an affine transformation, scaling, rotation, shearing, or trans-
lation, to a Bézier curve, the result is the same whether the trans-
formation is applied to the original four points, followed by the curve
generation, or if the curve is generated from the points, followed by the
transformation. Therefore, these viewing transformations need only
be applied to the four control points of the segment, which minimizes
computation time.

To represent a given shape, successive Bézier curves are placed end-to-
end. Continuity of scgments is guarantced if P5 of one curve is set to Py of
the next curve. If slope continuity from one seginent to the next is required,
then f% and P; of the first curve and P and P, of the second curve must
remain collinear. Moving P, or P, “controls” the slope at the endpoint(s).

Sometimes a Bézier curve needs to be split into two pieces. If the param-
eter ¢ is normally defined over the interval [0, 1], a value of ¢ in this interval
can be specified to represent a certain percentage ¢ along the curve, or the
place where the curve should be split. In essence, the first piece of the curve
would be exactly the original curve over the parameter’s interval [0, ¢| and the
second curve is the piece corresponding to [c, 1]. [FOLEY, pp. 507-510] and
[FARIN, pp. 75-77] describe this process using the geometric construction’
technique developed by F. de Casteljau in 1959. As in Figure 14, “the point
on the curve for a parameter value of ¢ is found by drawing the construction
line L, so that it divides PP, and P, P in the ratio of ¢ : (1-1t), HR;
so that it similarly divides P P; and P3Py and L3, to likewise divide L, H
and HRs;. The point L, (which is also R;) divides L3/t by the same ratio
and gives the point Q(t) [FOLEY, p. 508],” the value of the Bézier curve at
parameter t. The points Ly, L, La, and L4 are the control points for the first
curve and Ry, Ry, 3, and Ry are for the second curve.

Bézier representation can be extended to surfaces. Bézier bicubic patches
are determined by sixteen control points, positioned in a 4 x4 gridlike pattern.
The four points on a side of the patch form a Bézier curve segment. The
center four points control slopes of the surface. The parameterization requires
two variables, s and t, and a point P(s,t) is calculated by:

Powo Por Por Pos - t3
Pos Pos Pos Fo7 T t?
s st s 1 x Mg x P Pos Pio Pus x Mg x

P12 PIB PN PlS

where Mg is the coeflicient matrix for the Bernstein polynomials and the P’s
are the control points of the patch. Slope continuity between two patches is
achieved by maintaining collincarity of a control point on the border between
them and the control points on either side of the border. Additionally, the
ratio of distances between control points on either side of the boundary and
the boundary control points must be consistent along the edge. Calculation

24

P=R
4 4

Figure 14: The Bézier curve defined by the points P is divided at t = 3 into
a left curve defined by the points L, and a right curve defined by the points
R;. [FOLEY, p. 508]

of the slope at a given point on a patch is achieved by partial derivatives
with respect to parameters s and/or t. See Figure 15. ,

All surfaces in SMART are represented with Bézier bicubic patches; how-
ever, sometimes two other representations for curves are used, each of which
is equivalent to the Bézier representation. The first is the one-third point
representation which requires using the coordinate values of the points on
the Bézier curve at parameter values of ¢t = 0,%,%, and 1. Note that the
endpoints of the curve for both representations are the same. The one-third
points are used in this project to place “control-like” points directly on the
curves for clarity in editing multiple, closely spaced Bézier curves.

The Hermite representation is the other method. Often the slopes of the
tangent vectors to each endpoint are known. The Hermite representation
utilizes the two endpoints and the two tangent vectors to represent the curve.
There are matrices which allow easy conversion from one representation to
the other, which are included in Appendix C in the matrices2.h file.

Figure 15: Bicubic Bézier Patch

6 Algorithms for Generating Bulkheads and
Ringframes

6.1 Capabilities Developed for SMART Prior to the
Project

As with many graphics programs, the image on the screen is constantly
redrawn at speeds which fool the human eye into believing that the image
has remained continuously on the screen. This is generally accomplished with
a looping routine in the software. The main loop checks the mouse location
and based on its present coordinates, determines whether the user had placed
the mouse over a menu, a bar, or over a viewport on the screen. Based on the
mouse’s position, certain calculations are accomplished or editing capabilities
are available. The display is refreshed each time through the loop, regardless
of the function being performed. The loop is exited by explicit menu choices.
The structure of the main loop in this portion of SMART is:

while (true)
begin
if choosing a main-menu option then
exit main loop and redisplay;

else if over a menu then
begin

if over main-cross-section-menu then
exit main loop and redisplay;
else if over store-patches-menu then
store patches in SMART data structure and redisplay;
else if over type-of-growth-menu then
redisplay patches using Bézier or linear format;
else if over growth-direction-menu then
redisplay with patches interior or exterior to cross-
section;
else if over new-edge-menu then
store partial patches, begin new calculations from old
leading edge, and redisplay;
end

else if over a bar then
begin
if over patch-growing-bar then
calculate partial patches to given percentage and
redisplay;
else if over radius-bar then
calculate new patches given new radius length and
redisplay;
else if over centerline-bar then
calculate new patches given new centerpoint position
and redisplay;
else if over ringframe-bar then
calculate new patches for ringframe value and redisplay
with ringframe patches;
end

else if over the right-viewport then
edit control points and redisplay;
end

The initial algorithms for creating bulkhead patches centered on a given
fuselage cross-section represented by a linked list of Bézier curves. Due to the
symmetry of the cross-section about a vertical axis of symmetry, the cross-

Q]
b |

section representation is actually one half of the complete cross-section, as in
Figurc 12. Tor the remainder of this paper, reference Lo a cross-scction will
imply the “hall-cross-section” unless explicit indication to the contrary.

Because many interior tanks of a vehicle are spherical or multi-bubble
spherical in shape, the software created a first-guess semicircular cross-section
of a tank, interior to the fuselage cross-section, with its endpoints on the
on the axis of symmetry of the fuselage cross-section. The points on the
tank cross-section were generated around the semicircle to correspond to the
percent of arclength of the one-third points of the curves of the fuselage
cross-section. The centerpoint of the semicircle was placed at the calculated
midpoint between fuselage cross-section endpoints, and the default radius
was half the minimum distance from the centerpoint to any one-third point
on the fuselage cross-section. The analogous representation using a circle
external to the cross-section has also been developed and may potentially be
used by aerodynamicists for computational fluid dynamics.

The patches generated between the given cross-section and the semi-circle
represented a structural bulkhead between the fusclage and the tank. The
percent-of-arclength guide for generating tank points enabled the patches to
have reasonable wedge-like shape, which is as close to square-like patches as
possible.

The original algorithm was as follows:

procedure bulkhcad-first-guess (cross-section, centerpt, radius)

begin
for each curve in cross-section do
begin
calculate 1/3 pts on curve;
calculate inward pointing normal vectors to each 1/3 pt;
calculate normalized vectors from centerpt in direction
of each 1/3 point;
calculate tank-points at length radius f[rom centerpt in
direction of normalized vectors;

comment: The two points and two vectors comprise

the Hermite representation of the curve, as seen
in I'igure 16.

28

Cross-section curve

Centerpoint

Figure 16: Vectors and points used to calculate a patch

calculate Bézier curves between corresponding
1/3 points and tank-points;
calculate Bézier patch from 4 Bézier curves
place patch on linked list;
end
end

Using established SMART routines, graphical bars and menus were cre-
ated to enable the user to change parameters. A bar is used to change the
radius of the interior tank, allowing growth until the tank cross-section is
at most tangent to the fuselage cross-section. The radius is also allowed to
decrease to zero to represent a position in the fuselage where there is no
interior tank and only a bulkhead. Another bar allows the centerpoint of the
semi-circle to move along the axis of symmetry until the tank cross-section
is tangent to the fuselage cross-section. Menus are used to allow choice of
linear or Bézier curve patch growth between the cross-sections.

Editing of control points is important to allow smoothing of patch wedges.
Because the points on the tank were generated according to a given radius,

29

these points can be “dragged” with the mouse around the semicircle by de-
termining the change in arclength and recalculating the actual point on the
circle. Movement is restricted to tank-points which are patch “corner” points
and one-third points on either side of the corner point are then recalculated.
Patch corner points on the axis of symmetry are required to remain on the
axis.

The eight patch control points not . either cross-section may also be
“dragged” with the mouse to smooth the interior shape of the patches. The
change in mouse position is used to calculate the new one-third point posi-
tion. Points on the fuselage may not be edited in order to preserve the pre-
viously determined shape based on aerodynamic and structural constraints.
Due to the speed of the Silicon Graphics processor, changes in patches are
redisplayed in real time.

6.2 New Results

The specific tasking of this project was to allow automatic generation of a
bulkhead or ringframe for a given cross-section(s). The bulkhead would be
drawn between two given cross-sections, one representing the fuselage and
the other representing the interior tank. This allows the interior tank to
have any predetermined shape and not be limited to being circular. The
ringframe would be drawn interior to the fuselage cross-section at a default
width which could be edited.

6.2.1 Bulkheads

There were several problems to consider in creating patches for the bulk-
head between the two cross-sections. The requirement to have “square-like”
patches supports the current method of calculating each patch using corre-
sponding curve points of the two cross-sections. The most obvious problem is
that both cross-sections may not have the same number of Bézier curve seg-
ments. Even if the number of curves is the same, their respective arclengths
may not pair up in a fashion to create “nicely” shaped patches. These prob-
lems were solved with the following algorithm which compared arclengths
of successive curves on each cross-section, splitting curves into two curves
when differences in arclength was greater than a predetermined percentage.
Locations where splits are made are internally stored and create an addi-

30

tional editing capability, explained in further detail below. The algorithm is
as follows:

procedure match-curve-arclengths (fuselage-cross-section,
tank-cross-section)
begin
calculate percent of arclength of each curve in
fuselage-cross-section;
calculate percent of arclength of each curve in
tank-cross-section;
determine value where curve percents of arclength
are close enough;

look at first curves in each cross-section;

while there is another curve in the fuselage-cross-section
and another curve in the tank-cross-section do
begin
if difference in percents of arclength of current
curves in each cross-section is greater than
close-enough-value then
begin
split curve with larger percent of arclength (pal):
first curve will have same pal as smaller curve;
look at second curve of split curve (other piece
of larger curve, farther along the cross-section)
and the next curve on the other cross-section;

end
else
look at the next curves on both cross-sections;
end
end

This algorithm accomplishes two things: both cross-sections end up with
the same number of Bézier curves and corresponding curves have near-equal
percents of arclength, within an agreed-upon factor. As mentioned above,
information is stored as to which curve endpoints were created by splitting

31

original curves. Although the percent of arclength is a reasonable way to
line up corresponding curves, it is sometimes preferrable to move the curve
cndpoints to straighten the patch wedges. “New” endpoints can be “dragged”
with the mouse: the change in mouse position is translated into the change
in percent of arclength of the split in the original curve and the original
curve is resplit with the new percent. The subdivision of a Bézier curve
is accomplished by finding control points of the curve as represented by a
higher degree polynomial. Each piece of the curve will represent the same
cubic polynomial on its own interval domain, as explained in Section 5 of
this paper on Bézier curves or [FARIN, pp. 75-6]. Therefore, each new
curve is an exact duplicate of the corresponding piece of the original curve.
By returning to the original curve each time, the original shape of the cross-
section is preserved, but editing of at least some of the curve endpoints is
now also a feature of the software.

The other problem that nceded consideration was the placement of long-
erons in the longitudinal structural design. The places where these longerons
intersect the fuselage cross-section needed to be at “corner” points of the
patches for later structural analysis, as explained in sections 3 and 4 of this
paper on acrospace vchicle structure and finite clement analysis. The shape
of the vehicle in many instances reflects only aerodynamic requirements, and
curve endpoints in the fuselage cross-section are usually not in the locations
of longeron placement.

The guidance from enginecrs at NASA Langley Research Center’s Vehi-
cle Analysis Branch can be suminarized: longerons are ideally spaced equally
around the fuselage, but must especially be placed at discontinuity points,
or curve endpoints where successive curves are not slope continuous with
one another. Thus, a percentage of the longerons to be placed on the cross-
section, equal to the percent of arclength of the portion of the cross-section
between discontinuity points, should be equally spaced between the discon-
tinuity points. If the desired placement of the longeron is too close to an
already existing curve endpoint, a very narrow patch, which is undesirable,
might be created. To resolve this, if a desired longeron position is within a
curve-length, from the curve endpoint, corresponding to less than twenty-five
percent of the equal spacing curve-length for that section of the cross-section
between discontinuities, the longeron could be placed at the endpoint.

The resulting algorithm is shown in two parts. The first is the computa-
tion of a comparison value used to determine if the placement of the longeron

32

requires the splitting of an existing curve or if it will be placed on an existing
curve endpoint:

procedure compute-compare-value (equal-spacing-length,
push-up-length,back-up-length, length-not-yet-included)

comment: Because longerons may be placed at curve endpoints
and not exactly at the equal-spacing-length, the quantities
pus.-up-length, or the curve-length difference of the
positioning point located past the end of equal-spacing-length,
back-up-length, or the curve-length difference of the
positioning point located before the end of equal-spacing-length,
and length-not-yet-included, or the curve-length total
from previous curves which did not total to equal-spacing-length
yet, keep track of differences in the calculated and actual
position of the previously-placed longeron. The use of
the term “section”in the following algorithms refers to
the current portion of the fuselage cross-section between
discontinuities.

begin
if first curve in section then
compare-value = equal-spacing-length;

else
begin :
if push-up-length and back-up-length are both zero then
compare-value = equal-spacing-length;
else if push-up-length > 0 then
compare-value = equal-spacing-length — push-up-length;
else if back-up-length > 0 then
compare-value = equal-spacing-length + back-up-length,
if longeron not placed on previous curve then
compare-value = compare-value — length-not-yet-placed:
end
end

The actual algorithm for placing longerons is:

33

procedure place-longerons(fuselage-cross-section,
number-longerons-to-place)

comment: The first endpoint of a curve is the one closest to the
beginning of the cross-section, the second endpoint is
further along the cross-section.

begin
for each section of fuselage-cross-section between discontinuities do
begin
number-longerons-for-section =
(number-longerons-to-place) x (pal-of-section):

if number-longerons-for-section > 0 then
begin
calculate equal-spacing-length;

comment: equal-spacing-length = pal-of-section divided
by (number-longerons-for-section + 1)

look at first curve of section;

while all longerons not placed in section do
begin
compute-compare-value;

if pal-current-curve = compare-value then
begin
place longeron at second endpoint of curve;
look at next curve in section;
end

else if pal-current-curve > compare-value then
begin
if not first curve of section and
longeron was not placed on previous curve and

34

compare-value < 25% of equal-spacing-length then
begin
place longeron at first endpoint of curve;
back-up-length = compare-value:;
end

else if pal-current-curve and compare-value
differ by > 25% of equal-spacing-length then
begin
split current curve (wrt compare-value);
place longeron at split point:
look at curve beginning at split point;
end

else if pal-current-curve and compare-value
differ by < 25% of equal-spacing-length then

begin
place longeron at -acond endpoint of curve;
push-ahead-lengti. = difference of

pal-current-curve and compare-value;

look at next curve in section;

end

end

else (pal-current-current < compare-value)
begin
increase length-not-yet-included by
pal-current-curve;
look at next curve in section;
end
end

place longeron at last endpoint of section;
end
end
end

35

This algorithm would be applied to the fuselage cross-section prior to
the match-curve-arclengths algorithm to ensure that the interior tank Cross-
section matches the fuselage cross-section for which the longerons have been
considered.

6.2.2 Ringframes

The original algorithms enabled constant percentage ringframes, i.e., those
ringframes whose width at each one-third point of the fuselage cross-section
was a given percentage of the length of the Bézier curve from the one-third
point to the corresponding tank cross-section point, to be created. However,
in actual aerospace vehicle design, the requirement for ringframes is constant
width and not constant percentage, although constant width is a misnomer.
At points of discontinuity, the width of the ringframe is usually a little wider,
the leading edge of the ringframe maintaining the basic shape of the cross-
section at a place of greater structural stress.

To create a realistic width for the ringframe at points of discontinuity, the
following algorithm was used to change the calculated “normal” to the cross-
section at the discontinuity point. When normal vectors to each one-third
point are calculated, because the tangent to each curve at the discontinuity
is different, the curves would have a different normal vector emanating from
the same point. This algorithm provides an alternative to just averaging the
two normals at the discontinuity point:

procedure normal-at-discontinuity

begin
for each discontinuity point do
begin
calculate normal vector to second endpoint of
first curve meeting at discontinuity;
calculate normal vector to first endpoint of
second curve meeting at discontinuity;
compute points corresponding to tails of two
normal vectors;
compute tangent vectors to each curve at discontinuity;
compute intersection point between two lines through

36

respective points at the head of the normal
vectors in the direction of the tangent vectors:
new-normal = vector from discontinuity to intersection
end
end

The ringframe patches are then constructed as follows:

procedure ringframe-patches

begin
for each curve in fuselage-cross- section do
begin
calculate 4 inward Bézier curves using Hermite
representation of one-third point on fuselage-cross-
section curve, point in direction of normal at
ringframe-width, two vectors of ringframe-width
length in direction of normal;
calculate patch from 4 curves;
place patch in linked list;
end
end

7 Conclusion

The algorithms just described have been implemented in the current cross-
sections portion of SMART and preliminary feedback from the previously
mentioned NASA engineers has been extremely positive. The final implemen-
tation will be placed within the currently being developed structures portion
of SMART. Actual “snapshots” of the SMART display showing these results
are provided in Appendix A of this paper.

The development of software can be a very long and sometimes difficult
evolution. Getting a user to specify his or her requirements such that they
truly reflect the needs of the user can be extremely frustrating. The specifi-
cations may represent a simple concept yet the implementation may be very
complex, and the reverse is also often true. This project has added a new

37

dimesion to SMART and should enable the designing and testing of the de-

sign phases of aerospace vehicle research and development to be accomplished
more expediently in the future.

38

Appendix C

NO2- ‘ZN

Master’s Project Report

Application Driven Interface Generation
for EASIE

by
Ya-Chen Kao

Advisor : Dr. James L. Schwing

April 28, 1992

Department of Computer Science
Old Dominion University ~
Norfolk, VA 23529 - 0162

-.<

2«

ABSTRACT

The Environment for Application Software Integration and Execution, EASIE, provides a user
interface and a set of utlity programs which support the rapid integration and execution of analysis
programs about a central relational database. EASIE provides users with two basic modes of
execution. One of them is a menu—driven execution mode, called Application—Driven Execution
(ADE), which provides with sufficient guidance to review data, select a menu action—item, and
execute an application program. The other mode of execution, called Complete Control Execution
(CCE), provides an extended executive interface which allows in depth control of the design

process.

Currently, the EASIE system is based alphanumeric interaction techniques only. Itis the purpose
of this project to extend the flexibility of the EASIE system in the ADE mode by implementing it
in a window system. Secondly, a set of utilities will be developed to assist the experienced engineer
in the generation of an ADE application.

Table of Contents

1. Introduction
2. EASIE: ADE-mode Considerations
2.1 Concepts of EASIE system
2.2 Sample Session for ADE mode
2.3 Menu Manipulation and Construction in ADE mode
2.4 The Drawbacks of EASIE in ADE mode
3. Principles of Interface Design
4. Modification of EASIE in ADE mode
4.1 Window System: OSF’s MOTIF
4.2 Design Considerations for ADE Facilitator
4.3 Demonstration of the ADE Facilitator
5. The General Structure of Solution
5.1 Data Structure
52 Mechanisms
5.3 Capabilities and Limitations of ADE Facilitator
6. Conclusions
7. References
Appendix: program Listing

1. Introduction

The Environment for Application Software Integration and Execution, EASIE, which developed
for NASA by Old Dominion University, Computer Sciences Corporation and Vehicle Analysis
Branch of NASA Langley, provides with a methodology and a set of software utility program to ease
the task of coordinating engineering design and analysis codes.

EASIE provides a user interface and a set of utility programs which support the rapid integration
and execution of analysis programs about a central relational database [1]. EASIE provides users
with two basic modes of execution. One of them is a menu-driven execution mode, called
Application-Driven Execution (ADE), which provides users with sufficient guidance to review
data, select a menu action—item, and execute an application program. The other mode of execution,
called Complete Control Execution (CCE), provides an extended executive interface which allows
in depth control of the design process. In CCE, commands can be issued via menu selection or
directly typed. Although CCE provides the flexibility of an operating system, it also is complicated
to use like an operating system. Most users currently access the EASIE system via the menu—driven
mode known as ADE.

In general, the EASIE system addresses the needs of two different classes of users who be involved
in the buildup and use of an engineering design system.

The first classification represents the engineer/designer/analyst. This group conducts the design
study through the execution of modeling and analysis programs and the generation of data required
to this evaluate the design against its objectives. EASIE documentation will refer to this group as
“EASIE system users” or, more often, as “designers”. In general, these users are only interested in
executing programs already installed into an EASIE design system [1].

A second group aided by EASIE will be referred to as "application programers” or experts”.
These programers/engineers are responsible for the development and irxiprovemcnt of modeling and
analysis programs used in the engineering design process. EASIE documentation will refer to this
group as “experienced engineers”. They are the experts with respect to particular application
programs and can defines its input and output variables [1].

2. EASIE : ADE—-mode Considerations

The predominant design method used by engineers is the iterative technique. One processes to
a final solution through successive applications of analysis techniques to increasingly refined data.
EASIE provides a basic user tools which support the selection and execution of application
programs, viewing, and editing of program data. EASIE also provides tools for a design team to
easily manage the design environment by providing the ability to quickly integrate new analysis
programs and data with the existing environment.

2.1 Concepts of EASIE system

Configuration data is stored in a system—managed database. An advantage of the EASIE user
interface is that data held in the database are automatically communicated to either a user or an
application program in an appropriate format. Once the basic data definitions and values have been
made, a copy of this “master” database is placed in a controlled project directory. Access to this
database is provided on a “read only” basis. Thatis, the users may display the configuration data
for review, or they may make copy of the database for their personal files. Updates to the master
database can be entered only by the design manager [1].

Reviewer:

The EASIE software interface provide a program called the "/REVIEWER” which can access any
data. Based upon an indicated analysis program or other dataset in the database for a designer, the
REVIEWER, using information contained in the database, can then make the appropriate selection
to retrieve the necessary input and present that data at the terminal.

Data Templates:

The software screen forms used to control the flow of data to and from the database are called
data templates. A data template is basically a list of all data required for input (or supplied as output)
by a given program along with their required data formats. Since data templates are generated by
EASIE utility program. Finally, access to these data templates is used in conjunction with the
REVIEWER to directly modify the variables in the database when presented during the Review
process [1].

Formatter:

A final utility called the Formatter uses the data templates to enable the automatic generation of
FORTRAN subroutine source code, called Formatter code, which can be placed in the application
program allowing it to retrieve data or store data into the database during program execution.

2.2 Sample Session for ADE mode

Menu displayed during an ADE session are typically created by experienced engineers to guide
new users through the proper sequence of steps to conduct some particular design activity. Given
such an interface, an introductory user can easily learn to manipulate data and execute programs in
the Application Derived Executive (ADE) mode. Now we look at an example to describe an
interaction with EASIE for a given application. This example illustrates capabilities of the EASIE
system. It consists of four short programs that define and draw a box. Figure 1 represents the basic
relationship among these programs and their data.

Within the concepts of the EASIE system, we can realize this figure in a straight forward manner.

Master
Conliguration
Database

Default
(protected)

Template
Boxin

User

Database

lengtn
width
hesgrd

r
Tempiate
Makgeoin
length
wiakh
height

Program
Makgeo

_Program

Nudata

Tempiate
Mekgeoot
mooel
modes
faces

Box

Fiqure 1.

vaiume

Contiguration

Drawit

Program
Orawin

l Template

_Boxout

rotation
ry.2
faces

P}ogram
Draw

P e ST H I 5553
¥

R
3!

3
w A R R T e TR

Flow Diagram For Sample Session Using EASIE

The Box program extracts dimensional data from the database, calculates physical
properties(volume), and stores it in the database. The MAKGEO program extracts the dimensional
data from the database, create a geometric boundary representation for the box, and stores that data
in the database. The object of the DRAW program is to display the box geometry that exists in the
database.

The session commences with the user entering the following command (underlined text represents

user input) .

$ exmenu

CS - SELECT A CONFIGURATION

DC - DELETE A USER CONFIGURATION

CD - EDIT A CONFIGURATION DESCRIPTION FILE

R - REVIEW PROGRAM INPUT

E - EXECUTE A PROGRAM

P - PRINT OUTPUT FILES

X - EXIT

Input: label ~ menu choice, <CR> —reprint menu — CS

SCREEN 1

Screen 1, the first screen presented, provides a menu of the commands available for basic
interaction: selection, deletion, editing , and review of configuration data, program execution, and
printed out. From figure 1, the first choice from this menu would be CS for the selection of a

configuration database.

MASTER CONFIGURATIONS
DEFAULT

USER CONFIGURATIONS
SHOULD A NEW CONFIGURATION BE CREATED (Y = yes)

X

COPY SOURCE CONFIGURATION (FOR DEFAULT VALUES)
TO THE DESTINATION CONFIGURATION

ENTER SOURCE CONFIGURATION (”1” TO LIST) :
DEFAULT

ENTER DESTINATION CONFIGURATION ("1” TO LIST) :
NUDATA

5

&

COMMENCING DATABASE COPY

SCREEN 2

Screen 2 is the result of that selection. The first four lines displayed indicate the existence only
the master configuration database DEFAULT. Since EASIE users may changed only personal
database. Then, the following steps are the copy of configuration. In ADE mode, the menu provides
basic selections available for designers, then designers use the keyboard for alphanumeric input to
the program. Successive menu choices allow designers to complete a special execution of programs.
Details of the sample session described above can be found in the EASIE Volume III - Program
Execution Guide.

Control of the system during ADE is governed by a command procedure designed by the
experienced engineer who , as it will be seen, must also be an expert on the EASIE system. The
next section demonstrates how procedures are structured in EASIE. Thus the construction of such
procedures should be considered a priority in order to fit the needs of designers who will use the ADE
mode.

2.3 Menu Manipulation and Construction in ADE mode

Since design is generally iterative in its nature, the procedures controlling the EASIE sessions
for ADE users should have the ability to jump and loop when needed. During the execution of a
procedure, EASIE will keep track of its position via a procedure counter (pc). The procedure counter
may be reset by jumping to a labeled statement within a procedure. Labels are placed in a procedure
with a comment statement of the form below:

CLABEL : <label_id >

Consider this example.
GET JMPL THERE

.CLABEL:THERE

Menus can be presented to the ADE user via the "GET MENU” command. The format for this
command is :
GETMENU <n> where < n > represents an associated menu number.

Menus are stored in separated files, whose format is detailed below. The combination of this
command, along with the ability to jump and loop within a procedure, provides EASIE with the

flexibility to make the ADE interface work. The procedure file to be executed is linked to a
particular choice of USER-ID and is automatically executed when EASIE is initiated with that ID.
The following illustrates the procedure and its associated menu files [1].

CLABEL : MM
GET MENU 1
CLABEL : R
GET MENU 2
CLABEL:E
GET MENU 3
CLABEL: CS
GET CFG
GET JMPL MM
CLABEL : DC
RM CFG
GET]MPL MM
CLABEL: CD
CD CFG -
GET JMPL MM
CLABEL : BIR
RVU BOXIN
GET JMPL R
CLABEL : BOR
RVU BOXOUT
GET JMPL R
CLABEL : MR
RVU MAKGEOIN
GET JMPL R
CLABEL : DR
RVU DRAWIN
GET JMPLR
CLABEL : BX
EX APPL BOX
GET JMPLE
CLABEL : MX
EX APPL MAKGEO
GET JIMPLE
CLABEL : DX
EX APPL DRAWIT
GET JMPL E
CLABEL: X
L
N

Figure 2. A printout of the procedure file

CS CS SELECT A CONFIGURATION
DC DC DELETE A USER CONFIGURATION
CD C EDIT A CONFIGURATION DESCRIPTION FILE

R R REVIEW PROGRAM INPUT
E E EXECUTE A PROGRAM

P PRINT OUTPUT FILES

X X EXIT

Figure 3a. EXMENU.PROC_1.

BIR BI REVIEW INPUT FOR BOX
BOR BO REVIEW OUTPUT FOR BOX
MR M REVIEW INPUT FOR MAKGEO
DR D REVIEW INPUT FOR DRAWIT
MM R RETURNTO MAIN MENU

Figure 3b. EXMENU.PROC_2.

BX B EXECUTEBOX

MX M EXECUTE MAKGEO

DX D EXECUTE DRAWIT

MM R RETURN TO MAIN MENU

Figure 3c. EXMENU.PROC_3.

A review of the commands in figure 2 procedure reveals the use of the GET MENU command
three times — namely, command 1, 2 and 3. Since each of these has a different number, it refers
to each of the menus listed on figure 3. For example, GET MENU 2 refers to the menu contained
in file EXMENU.PROC_2. In general, the use of the statement GET MENU < n > in a procedure
with the name <proc_id> requires the existence of a menu file.

In general, when a procedure is activate, command are being sent to the EASIE command
processor from the procedure, and thus are not expecting feedback from a user. Itis clear from the
above example that construction of an ADE-mode procedure is a nontrivial operation and requires
an expert on the EASIE system. Unfortunately, EASIE does not provide the analyst with utilities
to create a predefined procedure and associated menu files.

As a final note, EASIE user file directory will contain a large variety of files. Though an
explanation of each of these files is attracted, there would generally be little reason for a general user

to become involved with any of the details or naming conventions used in these files. Such details
can and generally should be left for the EASIE system to monitor. Although most designers prefer
to access EASIE via the ADE mode interface, many have voiced disappointment over the lack of
a modern interface. In addition to the preceding section makes it clear construction of such an
interface is difficult at best. This has led us to identify two major problems with the current EASIE
ADE mode interface.

2.4 The Drawbacks of EASIE in ADE mode

® The EASIE system is based alphanumeric interaction.
® Control of the system during ADE mode is governed by command procedure. The construction
of such procedures are designed by an experienced analyst.

3. Principles of Interface Design

Most computer users feel that computer systems are unfriendly, uncooperative and that it takes
too much time and effort to get something done. They feel dependent on specialists, and they notice
that "software is not soft”. Users use computers as tools for achieving tasks of particular problem
domains such as text processing,financial planning, or computer—aided design. It is too much to ask
users to learn about something as complex as a large computer program by direct observation of what
the program does. Therefore, the overall goal of the design methodology is to help programmers
deliver their designs, not only by reducing the complexity of the delivery process, but also by helping
to ensure that the delivered system provides a good interface for users.

The quality of the user interface often determines whether users enjoy or despise a system and
ultimately whether the system is even used. The following will describe five principles of interface

design [4] [S].

3.1. Put the User in Control

An effective interface allows users to form an accurate and detailed cognitive representation of
the structure of the software and to learn quickly how to operate it. A poor interface frustrates and
confuses users placing them in constant doubt about where they are in application; it makes users
unsure that they can predict how the software will respond to their direction; it creates difficulties
in operating the software; and it makes it easy to make errors but not to recover from them.

In order to solve this problem, different interface construction techniques have been proposed.
® Provide online help that informs the user about the structure and operation of the application.
® Provide effective prompts and status messages that guide the user through procedures and keep

them informed about program status.
® Provide error messages that allow the user to understand both what went wrong and how to
smoothly recover from the error.
® Provide the user with the means to move freely within and between screens and the ability to
move easily to major menu items and to quickly exit from the application.
® Provide consistency in the use of words, formats and procedure.

3.2. Address the User’s Level of Skill and Experience

One of the most difficult problem for you as a software developer is overcoming this gap between
your skills and the skills of most users. If the application you are developing will be used by people
with no computer experience, then your design must favor these users over the more experience
ones. In order to solve this problem, different interface construction techniques have been proposed.
® Avoid jargon .

All computer terms and other technical jargon not familiar to the users must be eliminated from

the interface or explained to the users. The design must be subjected to ensure that potential users

understand the words contained in menus, messages, help text and tutorials.
e Use appropriate transaction control procedures.
New users will be most comfortable with menu or simple question—-and-answer dialogue.

Experienced users can use these methods, but they may want to be able to string together sequences

of commands and use function keys to speed up the operation of an application.
e Provide several levels of detail for error and help messages.

Experienced users need error and help messages to remind them of what they already know. New

users, however, need step—by-step procedures and examples that instruct them in the operation

of the application. The needs of both these groups can be met by providing more than one level
of help and error message.

3.3. Be consistent in wording, formats, and procedures

Consistency is an important feature that should be built into every interface and it should be
maintained across applications. Consistency helps the user to learn an application more easily, to

use it more easily, and to recover more easily when there is a problem.

3.4. Protect the user from inner working of the hardware and software that is behind the
interface

One of the characteristics of a poor interface is that it displays information about the internal
workings of the software that the typical end user cannot understand. For example, displaying a

10

message such as "FORTRAN END" may tell you that the software is operating normally, but it may
be meaningless to the end user. In addition, many new users are very sensitive about their lack of
knowledge of computer hardware and software. Asa consequence, they are immediately upset when
words and phrases that describe the internal workings of the software are displayed on the screen.
A good interface will protect the user from having to know about the inner workin g of hardware and
software tools.

3.5. Minimize the burden on the user’s memory
Human beings are poor at recalling detailed information but are remarkably good at recognizing
it. A good interface design should minimize the need for the user to memorize and later recall
information. Whenever possible, users should be able to choose from lists and be allowed to use
their recognition memory rather than their recall memory. Here different interface construction
techniques have been proposed.
® Be Consistency in your use of words, formats, and procedures. Consistency reduces the user’s
need to learn and remember new information.
® Display status messages that remind users where they are in an application and what options are
in an application and what operations are in effect.
® Provide online help that is designed as an aid to memory.
® Use memory joggers in prompts and data entry captions. For example, tell users how to format
dates, such as (mm/dd/yy).

4. Modification of EASIE in ADE mode

4.1 Window system : OSF’s MOTIF

Almost all modern user interface are window-based. Windows allow the user to interact with
multiple source of information at the same time. Window techniques allow a reladvely rapid access
to more information than is possible with a single frame of the same screen size. The window system
provides many of important features of the modern interface, for example, applications that show
results in different area of display, the ability to resize the screen areas in which those applications
are executing, pop—up and pull-down menus and dialog boxes.

Currently, the EASIE system is based alphanumeric interaction techniques only. The goal in the
design of any menu should be to facilitate the user’s ability to make a choice quickly and accurately.
It is the purpose of this project to extend the flexibility of EASIE system in the ADE mode by
implementing it in a window system. The user-interface, with its windows and pulldown menus,
is popular because it is easy to learn and requires little typing skill. The windowing system chosen
to implement EASIE is OSF/MOTIF. What follows is a brief description of Modf [2] [3].

11

OSF/Motif is a graphical user-interface toolkit, window manager, style guide, and user—interface
language. Motif’s graphical interface is based on the X window system from MIT. This underlying
technology provides you with a network—based graphical user interface. Motif is composed of a
style guide, window manager, interface toolkit and presentation description language.

® Style guide
The style guide describes a standard behavior and a set of connections for applications, to ensure
a consistent feel on multiple applications. The style guide includes extensions for powerful
network—based workstation. Its “look” is based on the HP-three dimensional screen—button
appearance.

® Window manager

The window manager lets you manipulate multiple applications on the screen and plays a
principle role in enforcing the style guide.

¢ Interface toolkit
The OSF/Motf toolkit is based on the X windows intrinsics, a toolkit framework provided
with MIT’s X window system. The intrinsics use an object-oriented model to create graphical
objects known as widgets or gadgets. The specified widgets maintain consistency between
applications.

® Presentation description language
This language enables application developers to describe the presentation characteristics of
the application interface independent of the actual application code. The separation between
application and interface lets you make many changes to the overall appearance and layout of an
application without having to modify, recompiler, or relink the application itself.

4.2 Design Considerations for ADE Facilitator

Menus displayed during ADE mode are typically created by experienced engineers to guide other
designers in the proper sequence of steps to conduct some particular design activity. In this project,
in addition to implementing ADE mode in a window system, a set of utilities are developed to assist
the experienced engineer in the generation of an ADE application. Itis assumed that an experienced
engineer has sufficient knowledge of the desired application to develop an organized approach to
use of that application. The ADE facilitator has been developed to capture this information in a way
that automatically includes a number of good interface design principles. Thus we have designed
the ADE facilitator to overcome the problem listed in section 2.4. In addition, the ADE facilitator
provides the engineers a simple environment to generate the ADE application easily. Experienced
engineers are not required to have any knowledge of principles of interface design or OSF/MOTIF

12

. They make use of the ADE facilitator to build up an application—dependent hierarchy menu in any
desired format.
In order to develop ADE facilitator as a good interface, there are a lot of issues we considered.

® The layout of menus

When the user interface makes use of graphical objects such as window and menus, it is called
a graphical user interface(GUT). Compared with the nongraphical application, interactive graphicals
makes menu selection such simpler and faster. The menu is displayed on the screen, the user points
to a selection with a graphical input device, like mouse. This menu can facilitate the user’s ability
to make a choice quickly and accurately.

In application programs with commands or many different operands, the size and complexity of
the interface can become a serious problem. A simple solution is to use a multilevel menu. With
a hierarchical menu, the user first selects from the choices set at the top of the hierarchy, which causes
a second choice set to be available. The process is repeated until a leaf node of the hierarchy tree
is selected. Since the ADE facilitator captures the organization of an experienced engineer, a natural
task decomposition is obtained.

® Feedback

Feedback is as essential in conversation with a computer. A selected objected or menu command
is highlighted, so the user can know that action has been accepted. In this project, when the
application designer travels the menus being built, information about the current level of menu
hierarchy is displayed in a list window. This list window provides good feedback for the application
designer. In addition, the full feedback facilities of OSF/MOTTF are automatically provided for the
final ADE application.

® Error Recovery

A poorly design interface gives the user no choice but to proceed with the command. A
well-designed interface lets the user back out of such situation with a cancel command. With good
error recovery, the user is free to explore unlearned system facilities without ” fear of failure ”. In
a less serious type of error, the user may want to correct one of units of information needed for a
command. The dialogue style in use determines how easy to make such corrections are.
Command-language input can be corrected by multiple backspaces to the item in error, followed
by reentry of the corrected information and all the information that was deleted. This project
provides these capability automatically through its OSF/MOTTIF interface.

¢ Be Consistent

Consistency reduces the user’s need to learn and remember new information. For example, when
the select procedure is used on all menu, a user has to learn it only once and it is easier to remember.
In this project, we provide the capability for selecting menu by pushing first button of the mouse,

13

and pointing a special item before doing insertion with second button of the mouse. Again these are
capabilities provided automatically through the OSF/MOTTF interface.

® Provide online documentation to help the user to understand how to operate the application

In this project, we have provided a help menu that gives the user a brief overview of how to use
this application.

4.3 Demonstration of the ADE Facilitator

In windows 1~28, we demonstrate the use of the ADE facilitator. These windows also illustrate
those characteristics we mentioned above that lead to a well designed interface. For this example
we develop an interface for the sample problem stated in section 2.2. This interface is developed
with the following steps.

Window 1 is an original ADE facilitator, there is no menus with it.

Step 1. Push the "Add menubar Item” button.

Step 2. Type in the name of new menubar item.

Step 3. Click on the "ok” button.

Windows 2 ~7 show the procedure of creating new items on the menubar using stepl~step3
recursively.

Step 4. Point the pulldown menu of a menubar item using first button of the mouse.

Step 5. Push the ”"Add Item with subltem” button.

Step 6. Type in the name of a new item.

Step 7. Click on the “’ok” button.

Windows 8~11 show the procedure of creating a new cascading item using step 4~step 7.
Step 8. Point the pullright menu of a branch item.

Step 9. Push "Add Menu Item” button.

Step 10. Click on the "ok” button.

Step 11. Type in the EASIE command.

Step 12. Click the "ok” button.

Windows 12~14 show the procedure of creating a new leaf item using step 8 ~ step 12.
Window 135 is the resulting of built menu of first item at the menubar.

Step 15. Select an item on list window using the first button of the mouse.

Step 16. Release the button.

Windows 16 ~17 show the procedure of deleting an item from the menu using step 15 ~ step 16.
Window 18 ~23 show the procedure of building the menus of second item at the menubar.
Window 24 shows the menu of third item at the menubar.

Step 17. Push "Delete Menubar Item” button.

14

Step 18. Type in the name of the item existing on the menubar.

Step 19. Click on the "ok” button.

Windows 25 ~26 show the procedure of deleting a menubar item.

Window 27 is the dialog box for ’save” button.

Window 28 is the dialog box for "Exit” button.

Windows 29 ~34 show the EASIE user interface built by ADE facilitator. This user interface helps
the EASIE user make a choice quickly and accurately. When a leaf node of a hierarchy menu is
selected, a special command will be showed up on the list window and being sent to the EASIE

command processor at the same time.

5. The general Structure of the Solution

As seen in the previous chapter, presentation of an ADE facilitator menu is best carried out in a
hierarchical manner. This hierarchy is easily described by the tree data structure shown below.

5.1 Data Structure

typedef structure menu {
structure info data;
structure menu *sub_menu;
structure menu *next;
} *node;

Since the purpose of the ADE facilitator and the creation of an ADE application, the menu
structure cannot be known ahead of time and therefore must be dynamic. The usual approach to
declare a space large enough to hold the maximum amount of data we could logically expect cannot
work. Thus tree components are created only as they are needed. Each component contains
information about the location the next components. Such a tree can expand or contract as the ADE
facilitator is executed and we use this dynamic data structure to hold the structure of the newly
created menus.

In general, each node of this structure contain information related to the menu choice it represents
as well as two information of locations. The first location is that of next menu itern at same level
of hierarchy, and the other is the location of the first choice for a submenu item.

Figure 4 demonstrates the structure of menus.

15

290 NUAW JO AMdNNS Y 91ngig

[nu

o «— || K989E9bE

v «—4|'leevzgot
::r— [P SE— Y
i ({nu LS8EE
1601 [[nu nu <1 || 7807 | «—— ! 8501 MU «—+ | 16801 [Inu
q ﬁ :3:
_ _ ! _
L9 ¢ [Nue—1 99 pe U «—vp- 9

5.2 Mechanisms

We provide two operations on the data structure mentioned above.
(i) Add an item to the menu.
(ii) Delete an item from the menu.
Each item has its own ID. We use a binary expression to represent the location of an item or
subitem in the hierarchy of the menu to which it belongs.

D=00001100001=33
I |
second level first level

figure 5.

The first five bits from right side stand for the first level of hierarchy in the menu, the second
five bits stand for the second level of hierarchy and so on. For example, consider the ID number
33in figure 5. This binary expression represents the first subitem of the first item at the first level
of hierarchy in the menu. Thus the current implementation use a five bits to stand for each level,
and therefore there are 32 items at most for each level of hierarchy in the menu.

We use bitwise operators to deal with the problem from adding or deleting a menu or submenu
item. Except for the ID of any item at the first level of hierarchy menu, simple addition or subtraction
operations on the ID are not sufficient to find the ID of the next submenu item.

ID1=00001100001=33
D2=00010100001=65
figure 6.
In figure 6 ID1 represents the first submenu item of first item located at the first level of hierarchy.
ID2 represents the second submenu item of first item located at the first level of hierarchy. Using
the bitwise operators, we can easily realize the relationship between [D1 and ID2 as follows.
num = (ID1 & 01740) >> §;
num ++ ;
numtemp = (ID1 101740) ;
nim=~((~num<<95);
ID2 = num & numtemp;
Based upon this encoding the menu hierarchy can easily be stored in file format. The resulting menu
tree needs to be stored for both later editing or using in an ADE session by a design engineer.
Currently we differentiate leaf nodes in the tree from branch nodes as follows.
(1) Format for an item with submenu (branch node) :
ID name
(1) Format for an item without subitem (leaf node) :

16

ID name
command name
Of course, design engineers do not need to have this knowledge of the format of a file, it is handled
automatically for them. When they develop an application—dependent menu, the ADE facilitator is
going to help them store the menu tree.

5.3 Capabilities and Limitations of ADE facilitator
We note the following capabilities of designed into the ADE mode facilitator.
® Add an item with submenu into the pulldown or pullright menu at any special position.
® Add an item without submenu into the pulldown or pullright menu at any special position.
® Delete an item with submenu from the pulldown or pullright menu.
® Delete an item without submenu from the pulldowm or pullright menu.
® Add an item into the menubar at any special position.
® Delete an item from the menubar.

We also note two cautions for the current implementation.
® We can create six levels of menus at most.
® Each level of menu could have 32 items at most.

6. Conclusions

In this project, we used OSF/MOTTF toolkit based on the X window system to implement new
ADE mode. In addition, we designed an interface with facilities to help the design manager easily
build the application—dependent menu, called the ADE facilitator. With this, an EASIE design
manager can quickly develop an application—dependent menu to any desired format, and the EASIE
user can make a choice quickly and accurately.

17

7. References

1. James L. Schwing, Lawrence F. Rowell E. Criste, The Environment for Application Software
Integration and Execution (EASIE), Volume III, NASA Technical Memoradum, April 1988.

2. Douglas A. Young, The X Window System Programming and Application with Xt, OSF/MOTIF
edition, Prentice Hall.

3. Dan Heller, Motif Programming Manual, O’Reilly & Associates , Inc, 1991.

4. William M. Newman, Robert F. Sproull, Principles of Interactive Computer Graphics, second

edition, Mcgraw-Hill Book Company, 1979.
5. Joseph S. Dumas, Designing User Interfaces for Software, Prentice Hall, 1988.

18

Appendix D

N92-27833

/

MASTER PROJECT o 7]
;o

¥

Generating
The Complete Control
Environment
Inferface
for X
EASIE |

by
Chia-Lin Tsai

Project Advisor:
Dr. James L. Schwing
Associate Professor of CS

Computer Science Department
Old Dominion University
Norfolk, VA 23529
April 1992

ABSTRACT

The Environment for Application Software Integration and
Execution, EASIE, was designed to meet the needs of conceptual
design engineers that face the task of integrating the results
of many stand-alone engineering analysis programs. EASIE is
a set of utility programs which supports rapid integration and
execution of programs about a central relational database, and
it provides users with two basic modes of executing
operations: Application-Derived Executive (ADE), a menu-driven
execution mode which provides users with sufficient guidance
to quickly review data, select menu action items, and execute
application programs, and Complete Control Executive (CCE),
which provides a full executive interface allowing users in-
depth control of the design process. Users can switch between
these modes as needed. This project will consider the CCE
mode interface.

Two objectives of this project are to redesign the
selecting menus by using a windowing system and to reorganize
the selecting structures of the selecting menus. The project

will be implemented in the X window system, OSF/Motif version.

ii

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

PAGE
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES iv
1 AN INTRODUCTION TO THE EASIE SYSTEM ..ccseecssssccecs 1
1.1 Why EASIE was developed 1
1.2 What EASIE was 1
1.3 What two operation modes of EASIE were 2
1.4 What CCE mode was 2
2 A COMPARISON BETWEEN THE CURRENT EASIE SYSTEM .
AND THE DESIGN PRINCIPLES .cccecessccscscsoscossssase 3
2.1 Be consistent 3
2.2 Provide feedback 4
2.3 Minimize error possibilities 4
2.4 Provide error recovery 4
2.5 Accommodate multiple skill levels 5
2.6 Minimize memorization 5
3 TWO OBJECTIVES OF THIS PROJECT .ccesceccssacsscccsss 6
3.1 Redesign the selecting menus 6
3.2 Reorganize the selecting structures 8
4 AN OUTLINE OF THIS PROJECT .cccccceccsssccscnascssasess 10
4.1 A general view 10
4.2 Improvements 12
4.3 A sample session using the CCE mode 13
4.4 A command summary using the CCE mode 17
5 CONCLUSION "l.'...ll.ll.ll..'.'l.lll.ll...'..lIl‘.l 21
REFERENCES

APPENDIX A: State-transition diagrams of this project
APPENDIX B: User manual of this project
APPENDIX C: Sample screens using the CCE mode of this project

APPENDIX D: Programs and files of this project

iii

LIST OF FIGURES

Figure PAGE
1 WorkSpace Control menu e ec e e nas e 9
2. Basic Environment File, easie.input 11

iv

1. AN INTRODUCTION OF THE EASIE SYSTEM

1.1 WHY EASIE WAS DEVELOPED

The Environment for Application Software Integration and
Execution, EASIE, was designed to meet the needs of conceptual
design engineers that face the task of integrating the results
of many stand-alone engineering analysis programs (REF 9].
The need for such techniques and tools has stemmed from the
computer aided design and engineering activities with Langley

Research Center’s Space Systems Division (SSD).

1.2 WHAT EASIE WAS

EASIE provides access to the programs via a quick,
uniform interface. The most predominant system design
methodology uses the iterative technique. One progresses to
a final solution through successive application of analysis
techniques to increasingly refined data. EASIE facilitates
this process.

In addition, EASIE is a set of utility programs which
supports rapid integration and execution of programs about a
central relational database. EASIE provides utilities which
aid in the execution of the following tasks: selection of
application programs, modification and review of program data,
automatic definition and coordination of data files during
program execution and a logging of steps executed throughout

a design. Therefore, EASIE provides both a methodology and a

set of software utility programs to ease the task of

coordinating engineering design and analysis codes.

1.3 TWO OPERATION MODES OF EASIE

EASIE provides users with two basic modes of executing
operations. The first, Application-Derived Executive (ADE),
is a menu-driven execution mode which provides users with
sufficient guidance to quickly review data, select menu action
items, and execute application programs. The second mode of
execution, Complete Control Executive (CCE), which provides a
full executive interface allowing users in-depth control of
the design process. For example, when using CCE, technigques
are provided which allow the user to establish a design
sequence and then automatically re-execute the sequence. This
allows the engineer to refine input iteratively énd review the
results with minimum interaction. Users can switch between
these modes as needed. This project will consider redesigning

the CCE-mode interface.

1.4 WHAT CCE MODE WAS

The CCE-mode interface provides the flexibility of an
operating system without requiring the user to track a
multitude of files, directories, or data. In CCE, commands
can be issued via menu selections or typed in via a command
line. Various levels of menus, display, and help text are

avallable.

2. A COMPARISON BETWEEN THE CURRENT EASIE SYSTEM

AND THE DESIGN PRINCIPLES

To design a good human interface, we have to consider a
number of design principles which are to help ensure good
human factors in a design: be consistent, provide feedback,
minimize error ©possibilities, provide error —recovery,
accommodate multiple skill levels, and minimize memorization.
These principles are discussed more fully in [REF 8].

As described above, EASIE provides significant
functionality; however, this utility is buried in the current
user interface. To see these problems, let us consider each

of the factors above with respect to the EASIE interface.

2.1 BE CONSISTENT

First, the EASIE interface is consistent. The conceptual
model, functionality, sequencing, and hardware binding in
EASIE have been uniform. For example, in the output portion
of EASIE, the menu items are always displayed in the same
relative position within the menu, system-status messages are
shown at a logically fixed place, and the same codings are
always employed. In addition, when considering the input
portion of EASIE, keyboard characters always have the same
function and can be used whenever text is being input, global

commands such as Help, Status, and Cancel can be invoked at

any time, and generic commands such as Move, Copy, and Delete
are provided and can be applied to any type of object in the

EASIE system.

2.2 PROVIDE FEEDBACK

Feedback can be given at three possible levels,
corresponding to the hardware-binding, sequencing, and
functional levels of user-interface design. Currently, the
EASIE interface 1is restricted to keyboard input, thus
hardware-binding is trivially satisfied. EASIE provides some
sequencing feedback such as when each word of the input
language (command, position, object, etc.) is accepted by the
system. However, EASIE does not provide functional feedback,
for example, there is no acknowledgement communicated to the

user when an operation is processing.

2.3 MINIMIZE ERROR POSSIBILITIES

Users will make input errors in any system, and it is the
job of the user interface to minimize error possibilities.
The system tries to minimize the errors as possible. No

matter how, there may be some error occurred in the future.

2.4 PROVIDE ERROR RECOVERY
It is important to provide error recovery: Undo, Abort,
Cancel, and Correct. Unfortunately, EASIE currently only

provides the Cancel feature.

2.5 ACCOMMODATE MULTIPLE SKILL LEVELS

User interface methods which can be used to help
accommodate multiple skill levels are accelerators, prompts,
help, extensibility, and hiding complexity. EASIE, however,
does not provide accelerators which are faster interaction
techniques that replace slower ones. Secondly, it provides
some prompts which is to suggest what to do next, but these
are not generally sufficient. Thirdly, the EASIE interface
does not offer a sufficiently detailed help facility. For
example, the EASIE interface does not give a full explanation
about how to use commands. EASIE does offer a primitive
extensibility which means letting the user add additional
functionality to the interface by defining new commands as
combinations of existing commands. Finally, the EASIE
interface does not provide complexity hiding which can allow
new users to learn basic commands and to start doing
productive work without becoming bogged down with specifying
options, learning infrequently used specialized commands, or

going through complicated start-up procedures.

2.6 MINIMIZE MEMORIZATION

The final principle of user interface design is to
minimize memorization. The original configuration of the
EASIE system seems to be redundant. A new user has to read

commands on a complicated menu to get what is needed. It is

not economic.

3. TWO OBJECTIVES OF THIS PROJECT

There are two objectives of this project: redesign the
selecting menus by using a windowing system, and reorganize
the selecting structures according to the design principles

outlined above.

3.1 REDESIGN THE SELECTING MENUS

Redesign of the menus of the Complete Control Executive
(CCE) mode will be implemented in the X window systemn,
OSF/Motif version. Since the initial menus of CCE mode are
alphabetical with numerical selection, we want to redesign
those menus to be windows. This will allow the accommodation
of skill level in the EASIE system: hide complexity from the
user.

Window-based user interfaces [REF 7] have become a common
feature of most computer systems, and users are beginning to
expect all applications to have polished user-friendly
interfaces. The X window System, developed at Massachusetts
Institute of Technology (MIT), is an 1industry-standard
software system that allows programmers to develop
sophisticated user interfaces that are portable to any system
that supports the X protocol. In addition, X allows programs
to display windows containing text and graphics on any
hardware that supports the X protocol without modifying,

recompiling, or relinking the application. X is based on a

6

network-transparent client-server mode. The X server creates
and manipulates windows in response to requests from clients,
and sends events to notify clients of user input or changes in
a window’s state. One important different between X and many
other window systems is that X does not define any particular
user interface style. X also provides a device-independent
layer that serves as a base for a variety of interface styles.

The OSF/Motif version of the X window system [REF 2] is
a graphical user interface combining a toolkit, presentation
description language, window manager, and style guide. First,
the OSF/Motif toolkit 1is a rich and varied collection of
widgets and gadgets for building OSF/Motif applications. The
toolkit provides a standard graphical interface upon which the
window manager is based. Second, the OSF/Motif presentation
description language allows application deQelopers and
interface designers to create simple text files that describe
the visual properties and initial states of interface
components. Third, The window manager works with the toolkit
to manage the operation of windows on the screen. The window
manager provides functions for moving and resizing w«indows,
reducing windows to icons, restoring windows from icons, and
arranging windows on the workspace. Finally, the style guide
describes the standard for window manager and toolkit
behavior. It is a guide to usage, providing application
‘writers with guidelines for using toolkit widgets, widget

writers with guidelines for designing new widgets, and window

manager writers with guidelines for designing new or
customized window managers. Together, these four elements
provide the OSF/Motif to be a standard of user interface

behavior for applications.

3.2 REORGANIZE THE SELECTING STRUCTURES

The second objective 1s the reorganization of the
interface with respect to the previously mentioned design
principles. Version 1.0 of the EASIE interface has seven
different standard menus in addition to a "Permanent" Menu of
commands. They are Utility Selection Menu, Workspace Control
Menu, Data Review/Modification Menu, Application Execution
Menu, Procedure Execution Menu, Procedure Building Menu,
Template Building Menu, and the "Permanent" Menu mentioned
above. We find that the old ones are to be redundant and
ineffective. One objective of the reorganization will be the
minimization of memorization. Let us take an examp 2 of
Workspace Control Menu shown in Figure 1 on the next page.

There are twenty-eight choices. It is difficult for
users to select their choices. They have to read all the
selections, then make their decisions. Therefore, we want to
reorganize those menus to be more efficient. Let us have an
example. If your selection concerning the WORKSPACE, then
there will be only six choices: READ DESCRIPTION, NEW, COPY,
ACTIVATE, SAVE TEMPLATE, and REMOVE FROM UFD. It will be

easier for users to choose what they need. In addition, the

user can not enter some commands with file name or with path
if he/she does not know or make sure about the file names or
paths. There is no way for the user to get the information of

the file name or path he/she needs.

WORKSPACE CONTROL
COMMAND FORMAT

1 - READ DESCRIPTION - WORKSPACE RD WS <name>
2 - - CONFIGURATION RD CFG <name>
3 - - TEMPLATE RD TPL <name>
4 - - APPL. PROG. RD APPL <name>
5 = - PROCEDURE RD PROC <name>
6 - CLEAR LOG OF OLD INFORMATION CL

7 - TYPE - COMMAND LOG TY LOG <name>
8 - - PROCEDURE TY PROC <name>
9 - NEW - WORKSPACE N WS

10 - -~ CONFIGURATION N CFG <name>
11 - COPY - WORKSPACE CP WS <f,to>
12 - ~ PROCEDURE CP PROC <f,to>
13 - ACTIVATE - WORKSPACE ACT WS <name>
14 - - CONFIGURATION ACT CFG <name>
15 - - TEMPLATE ACT TPL <name>
16 - - APPL. PROG. ACT APPL <name>
17 - - UTILITY ACT UTL <menu>
18 - - INPUT TEMPL ACT ITPL

19 - - OUTPUT TEMPL ACT OTPL

20 - - PROCEDURE ACT PROC <name>
21 - - PROGRAM UFD ACT PUFD <path>
22 - SAVE TEMPORARY - WORKSPACE SA WS <name>
23 - - PROCEDURE SA PROC <name>
24 - REMOVE FROM UFD - WORKSPACE RM WS <name>
25 - - CONFIGURATION RM CFG <name>
26 - - TEMPLATE RM TPL <name>
27 - - PROCEDURE RM PROC <name>
28 - SET USER LOGIN CHARACTERISTICS SLOG

ENTER COMMAND:

Figure 1. WorkSpace Control menu

4. AN OUTLINE OF THIS PROJECT

4.1 A GENERAL VIEW

The main purpose of this project is not to change the
existing EASIE system, but to design a nice-looking, window
selection menu for EASIE. The work of this project is to
provide a front end to EASIE for users which handles basic
menu processing and passes some commands as necessary to the
EASIE command processor. Thus, some processing and error
checking will be provided by the front end. EASIE commands
are written into a file called easie.file in the user or home
directory where they are available to the EASIE command
processor, and they are also shown in the window for the user.
Error messages and warnings will also be displayed in this
window.

When the user starts EASIE, the user may enter a file
name as an argument. Alternatively, the system will use a
default file name called easie.input. The contents of this
file define the basic operating environment for EASIE and
include basic filenames and default directories. They are
WorkSpace (.WS), Configuration (.CFG), Application (.APPL),
Template (.TPL), Procedure (.PROC), home directory, program
directory, and base directory. For format purpose, a blank
line is entered if there is no corresponding file name or
directory for a particular environment. The contents may be

changed after being executed by the system. The following is

10

an example format of the easie.input.
/tmp_mnt/home/tsai_c/project/ws.WS
/tmp _mnt/home/tsai c/project/cfg.CFG
/tmp_mnt/home/tsai_c/project/tpl.TPL
/tmp_mnt/home/tsai_c/project
/tmp_mnt/home/tsai_c/project/program

/tmp_mnt/home/tsai_c/project/base

Figure 2. Basic Environment File, easie.input

The state diagrams in Appendix A define the operation
implemented for the improved EASIE interface. Appendix B
gives a user manual for the new CCE mode interface of the
EASIE system. What follows is a description of the new CCE
interface.

Upon initialization, the CCE mode interface will pop up
a window with eight basic selections in a main menu bar and
the current status or operating environment in the working
area. These eight selections are Tools, Open, Retrieve,
Update, Organize, Execute, Print, and List. The user can use
a mouse to choose any of these selections. The main menu is
further organized in a hierarchy which is a pull-down for the
first level of sub-menu and a pull-right for further levels of
sub-menu.

The working area will show the current status which
includes the file names of WorkSpace, Configuration,
Application, Template, Procedure, the home, program, and base
directories. These data are read from the default file,
easie.input, or the filename which the user entered as an

11

argument. If there is no such file name or if the file does
not specify that environment variables, the system will
display <null> on the corresponding position in the working
area. The current status will be updated during executing the
system. Before exiting the system, the user will be asked
whether to save the current status or not. If the answer is
"OK", the updated status will be saved; otherwise, the updated
status will not be saved, and the status will be kept as same

as the first time the user logged in.

4.2 IMPROVEMENTS

First, we have given the user a windowing system for
selecting choices. Thus, it is simpler for the user to select
his/her choice and memorization and confusion of the previous
system minimized. Second, we offer on-line help to assist the
user. The user can get the on-line help whenever he/she
pushes the help buttons. Third, we provide enhanced utility
to the user, for example, the user can change his/her program
or base directory as he/she needs. We also provide List
selection for the user. The system provides a list of all
appropriate files for a given situation, again, limiting the
memorization and confusion factors. Fourth, we offer the
current status. The current status indicates the current
operating environment of EASIE for the user. Fifth, the user
is provided with a file list for selecting when he/she needs

to enter some file names. Finally, we remove some unnecessary

12

and confusing menu choices, for example, Toggle the display
mode (EASIE command T), Return to Previous Menu (EASIE command
R), Quit this sequence of menus and return to the utility
selection menu (EASIE command Q), Zero: cancel a command

sequence (EASIE command O).

4.3 SAMPLE SESSION USING THE CCE MODE

The following EASIE session is included as a sample for
the CCE mode user to follow. The screens given in Appendix C
were re;orded during the session. References to screens in
Appendix C will be denoted by Screen n where n represents the
screen number. This sample session has been put together to
highlight the capabilities of the EASIE system using the CCE
mode environment. To initialize EASIE, we type "easie". As
described above this uses the file "easie.input". For
reference, the contents of this file have been given
previously in Figure 2.

Screen 1 is the general log-in screen presented to users
who log in using default log-in characteristics. It includes
a menu bar with eight selections, and a working area shown the
current status. The user can resize the screen 1 by using the
mouse device. Screen 2 is the resizing window. We will use
screen 2 to present the main window in the following examples.
Screen 3 shows the contents of the input file, easie. input
under the /tmp_mnt/home/tsai_c/project directory, and it just

shows the user the contents of the input file before executing

13

the program.

The menu is organized in a hierarchy which is a pull-down
for the first level of sub-menu, and a pull-right for further
levels of sub-menu. The first level in the main menu is the
selections of the main menu bar which are Tools, Open,
Retrieve, Update, Organize, Execute, Print, and List. Now we
choose the Tools selection, pull the sub-menu down, and select
the General Concept from the pull-right sub-menu. Note that
if there are pull-right sub-menus for the choice, there is a
triangle after that choice. Screen 4 shows the condition
above. Screen 5 shows the pop-up window after pushing the
General Concept choice. The user can push the OK button in
the pop-up help window. The pop-up help window will be
closed.

Screen 6 shows that we choose the System command. A
System Command widget will be popped up. Screen 7 is the pop-
up widget. The user can type the system command in the
widget, and push the Ok button or strike the Enter key. The
EASIE command will be generated and written into one specific
file, easie.file. Pushing the Clear button will erase the
contents which the user typed in. The Help button will pop a
help widget up and show the on-line information for that
widget. Screen 8 is the pop-up on-line help widget pushed by
the Help button. If the user pushes the Close button in
Screen 7, the System Command widget and the on-line help

widget will be closed. The situation for the Comment choice

14

under the Tools selection is similar to the System command.

Screen 9 shows the results when the user pushes the clear
Log choice. There are two sub-choices for the clear Log. An
appropriate EASIE command will be generated by pushing each of
these sub-choices.

Screen 10 represents the results of pushing the Open
selection. Next we pushed the HOME sub-choice which means we
want to activate an application from the home directory. An
ACTIVATE-Application-HOME dialogue widget will be popped up.
In this widget, all files with an .APPL extension will be
appeared. The functions of the buttons on the bottom of this
widget are similar to the buttons described above, except for
the Filter button. Screen 11 shows how the user chose the
file name he/she wants. The chosen file name will appear in
the Selection column. The Filter button is a Qay to change
the directory. Select the directory the user want to change
to, and then push the Filter button. The list of file names
wili be modified and shown for the new directory. Screen 12
shows the widget described above. Screen 13 shows the on-line
help information for the user by pushing the Help button.

Screen 14 shows the result when we chose the WorkSpace
sub-choice under the New pull-down sub-menu. New means that
we want to clear the WorkSpace filename in the current status.
Screen 15 is presented the result.

The Retrieve selection and the Update selection are

similar to the Open selection. Notice that the sub-choice

15

Directory under the Update selection is an improvement of the
modified CCE mode. Let us take a look of this choice. Screen
16 shows that we pushed the BASE sub-choice of the Directory
under the Update selection. It means that we want to update
the directory for base programs and configurations. A Change-
Directory widget will be popped up, and the default base
directory will be shown in this widget. Screen 17 is the pop-
up widget. The functions of this widget are similar to the
System command’s.

Now we take a look of the Organize selection. There are
four choices: Copy, Remove, Save, and ReName. Screen 18 shows
the result when we chose the Application sub-choice of the
Copy. When the Application sub-choice under the Copy pull-
down menu selected, this result is in Screen 19. Screen 19
presents all the file names with .APPL extension under the
directory. The functions of this widget are same as the
ACTIVATE-Application-HOME widget. After selecting a file
name, the system will pop a COPY-to widget for the user to
enter the copy-to file name. Screen 20 demonstrate the COPY-
to widget. The functions of this widget is similar to that of
the pop-up widget of the System command choice. The functions
of the Remove, Save, and ReName sub-choices under the Organize
selection, the Execute selection, the Print selection, and the
List selection are similar to the functions mentioned above.

Next we consider how to exit the EASIE system. We select

the Quit EASIE choice under the Tools selection. Screen 21

16

shows the choice. A question widget will be popped up.
Screen 22 is the pop-up question widget. It will ask the user
whether to save the current status or not. Pushing the 0k
button means to save the modified status. Pushing the Cancel
button means to keep the original status as the first time the
user logged in. Screen 23 presents the result when the user
pushes the Ok button for saving the modified status. Screen
24 shows an example of EASIE commands generated during
executing the system. These generated EASIE commands will be
written into a file called easie.file, and will be sent to the

EASIE command processor.

4.4 COMMAND SUMMARY USING THE CCE MODE

The following section summarizes and collects the EASIE
command information of the CCE mode interfaée as it is
organized in this project. There are eight selections in the
menu bar of the main window. They are Tools, QOpen, Retrieve,
Update, Organize, Execute, Print, and List. In what follows,
we distribute EASIE commands under each of these choices. It
should be noted that the user is no longer responsible for
knowing the structure of these commands. The new interface
automatically provides this information. Some selections do
not have the EASIE commands since the functions of those
selections can be performed by the modified CCE mode
‘interface. For example, Help choice under the Tools

selection, and the List selection. As described above, some

17

functions have been added to the modified CCE mode interface,
for example, changing the base or the program directory.

Tools Selection

S - System command
Used to pass a command to the operation system.
Form: S <system command>
Example: S ls

C - Comment
Used to place a comment in the command log. This allows
notes to be inserted in the log for later reference and
clarity.
Form: C <comment>
Example: C enter today’s date

CL - Clear Log
Used to remove prior information from a cluttered command
log or clear the log completely.
Form: CL <type>
Example: CL D
Allowable object types: D - prior to a given date
T - total, a new log started

L - Log out
Used to give an orderly closeout of the EASIE system, and
return the user to the computer’s operation system.
Before exiting the EASIE, the system will pop up a
question widget, and ask the wuser: "Save Current
Status?". If the answer is "OK", the system will save
the current status into a file called easie.input;
otherwise, it will not save the updated status, and it
will keep the original status. After that, the system
will close all the windows which the user opened during
executing the system.
Form: L
Example: L

Open Selection

ACT - Activate
Used to associate the indicated object with the user’s
workspace.
Form: ACT <type> <filename>
Example: ACT CFG /tmp _mnt/home/tsai_c/project/cfg.CFG
Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

N - New
Used to create a new object or get a fresh object.

18

Form: N <type>
Example: N WS
Allowable object types: WS, CFG, TPL, PROC

Retrieve Selection

TY - Type
Used to type the indicated file at the terminal.
Form: TY <type> <filename>
Example: TY PROC /tmp_mnt/home/tsai_c/project/proc.PROC
Allowable object types: LOG, PROC, BAT, FILE

RVU - Review
Used to review data from the configuration database.
This command invokes the interactive "REVIEWER" program,
and will display for possible modification a "view" of a
configuration database. A view of a database is defined
as the collection of variables defined by a data
template.
Form: RVU <type>
Example: RVU IDB
Allowable object types: IDB, ODB, TPL

RD - Read Description
Used to read a file description associated with any
workspace, program procedure, template, or database.
Form: RD <type> <filename>
Example: RD APPL /tmp_mnt/home/tsai_c/project/appl.APPL
Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

Update Selection

ED - Edit
Used to invoke a system editor for certain operations.
Form: ED <type> <filename>
Example: ED PROC /tmp_mnt/home/tsai_c/project/proc.PROC
Allowable object types: LOG, PROC, TPL

CcD - Change Description
Used to change a file description of the indicated object
by using the system editor.
Form: CD <type> <filename>
Example: CD TPL /tmp_mnt/home/tsai_c/project/tpl.TPL
Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

Organize Selection

CP - Copy
Used to copy one file to another.
Form: CP <type> <filename> <filename>

19

SA -

CN -

Example: CP CFG /tmp_ mnt/home/tsai_c/project/cfg.CFG
/tmp_mnt/home/tsai_ c/project/configuration.CFG
Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Remove

Used to remove a file from the user’s file directory.

Form: RM <type> <filename>

Example: RM CFG /tmp_mnt/home/tsai_c/project/cfg.CFG

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Save

Used to save the indicated object for the later work.
Form: SA <type> <filename>

Example: SA PROC /tmp_mnt/home/tsai_c/project/proc.PROC
Allowable object types: PROC, WS

Change Name

Used to change the name of a file as indicated.

Form: CN <type> <old filename> <new filename>
Example: CN TPL /tmp . mnt/home/tsai_c/project/tpl.TPL
/tmp mnt/home/tsa1 c/prOJect/template TPL
Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Execute Selection

EX -

SUB

Execute

Used to execute an indicated appllcatlon program oOr
procedure command file.

Form: EX <type> <filename>

Example: EX APPL /tmp mnt/home/tsai_ c/project/appl.APPL
Allowable object types: APPL, PROC

-Submit

Used submit a job for batch processing.

Form: SUB <type> <filename>

Example: SUB APPL /tmp _mnt/home/tsai_ c/project/appl.APPL
Allowable object types: APPL

Print Selection

PR -

PRVU

Print

Used to print an indicated file at a local hard copy
printer.

Form: PR <type> <filename>

Example: PR LOG /tmp mnt/home/tsai_c/project/log.LOG
Allowable object types: LOG, PROC, BAT, FILE

- Print Review

Used to print a template or a view of the database.
Form: PRVU <type>

Example: PRVU IDB

Allowable object types: IDB, ODB, TPL

20

5. CONCLUSION

EASIE is consisted of a set of utility programs to meet
the needs of conceptual design engineers who needs many stand-
alone engineering analysis programs. Since the selecting menu
of the original EASIE interface are the alphanumerical menu
selection, and the structures of the selecting menu are not
well-organized. Thus, the main purpose of this project is to
give a front end to EASIE for the users. This project 1is
considered in CCE mode, and is implemented in the X window
system, OSF/Motif version.

This paper is organized by the introduction of the EASIE
system, a comparison between the current EASIE system and the
design principles, two objectives of this project, and an
outline of this project.

At the beginning, this paper gives the reader a general
concept about the EASIE system. By comparing to the design
principles, we found that the current EASIE got some flaws.
Therefore, the two objectives of this project are to redesign
the selecting menus and reorganize the selecting structures.
To redesign the selecting menus by using a windowing system 1is
to hide complexity from the user. To reorganize the éelecting
structures is to minimize memorization. Finally, we give the
reader a general concept about the modified EASIE system in
CCE mode and some improvements we did.

Although we enhance some functionality to the current

21

EASIE system in CCE mode, there are still some potential bugs
in this project. First, the input file must be in the correct
format; otherwise, the system will not perform well. This
project does not provide file-existence checking. Second, we
suggest that we can minimize the levels of pull-right menus.
It may be more organizing if we put the choices in the second
level of pull-right menus to be some buttons in the pop-up
widget as pushing the choice of the first level of pull-right

menu.

22

REFERENCES

[REF 1] , by the staff of O‘Reilly and Associates,
Inc., X_Toolkit Intrinsics Reference Manual, second edition
for X11, release 4, Volume five, O’Reilly & Associates, Inc.,
1990

(REF 2] , OSF/Motif Style Guide, Open Software
Foundation, Prentice-Hall, Inc., New Jersey, 1988

(REF 3] Al Kelley and Ira Pohl, A Book On C Programming in
C, second edition, The Benjamin/Cummings Publishing Company,
Inc., California, 1990

[(REF 4] Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Langquage, second edition, Prentice-Hall Inc., New
Jersey, 1988

[REF 5] Brian W. Kernighan and Rob Pike, The UNIX Programming
Envircnment, Prentice-Hall, Inc., New Jersey, 1984

(REF 6] Dan Heller, Motif Programming Manual For OSF/MOTIF
Version, Volume Six, Motif edition, O’Relilly & Associliates,
Inc., 1991

[REF 7] Douglas A. Young, The X Wwindow System Programming and
Applications with Xt, OSF/MOTIF edition, Prentice-Hall, Inc.,
New Jersey, 1990

(REF 8] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes, Computer Graphics: Principles and
Practice, second edition, Addison-Wesley Publishing Company,
U.S.A., 1990

[REF 9] James L. Schwing, Lawrence F. Rowell, and Russell E.
Criste, The Environment for Application Software Integration
and Execution (EASIE) Version 1.0 Volume III Program Execution
Guide, NASA TM-100575, National Aeronautics and Space
Administration (NASA) Langley Research Center, Hampton,
Virginia, April 1988

[REF 10] Joseph S. Dumas, Designing User Interfaces for
Software, Prentice Hall, New Jersey, 1988

[REF 11] Samul P. Harbison and Guy L. Steele Jr., A_Reference
Manual, 3rd edition, Prentice-Hall, Inc., New Jersey, 1991

[REF 12] William M. Newman and Robert F. Sproull, Principles
of Interactive Computer Graphics, second edition, McGraw-Hill
Book Company, U.S.A., 1979

23

