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NOTATION

_ROMAN

i. Ita!icized Lower Case

g scalar mass flux

k thermal conductivity

1 length

m index limit

n index limit

q contact heat flux scalar

r radius

s condensation

t time

v velocity scalar

x displacement scalar

2. I_alicized Upper Case

A area

E external and mutual energy

K constant

M mass

N non-dimensional parameter

P pressure

Q heat

R gas constant

T temperature

U internal energy

V volume

3. Bold Italicized Lower Case

mass flux density
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q

V

Z

unit outward normal

contact heat flux

velocity

displacement

4. Bold UDDer Case

T extra stress tensor

5. Lower Case

gravitational acceleration

particle

QREEK

i. PpDer Case

=_

F

entropy

mole fraction

2. Lower Case

P

constant

thermal diffuslvity

dynamic viscosity

kinematic viscosity

density

generalized scalar, vector, or tensor quantity

angular velocity

OPERATORS

total derivative
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D

f()

A

V

:
Z

lVl'_

[tvT_

substantive derivative

function of

partial derivative

incremental change

divergence

integral

summation

time average of

volume average of

time average of volume average of

absolute value or magnitude of

scalar product of vectors, vector product of vector and tensor

scalar product of tensors

SUBSCRIPTS

a

b

c

ch

comp

elf

h

i

is

J

k

K

Ma

(m)

n

Pr

Re

(s)

sys

V

uw

acoustic

boundary

cold cavity

characteristic

computational

effective

hot cavity

index

isolated

index

index

Kurzweg

Mach

material body

momentum discrete volume

Prandtl

Reynolds

system of particles

system

at constant volume

upwind
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Va

0

=_

Valensi

fiduciary

at constant entropy

SUPERSCRIPTS

s

^

J

previous time step

distinguishing indicator

per unit mass

time rate of change

index
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INTRODUCTION

The activities described in this report cover two aspects pertinent to

Stirling machine simulation, namely, information propagation and entropy

transport. Information propagation issues have been shown in previous work to
manifest themselves in hardware such as transmission lines (Go90). While such

effects have not been definitely demonstrated for Stirling machines, there are

enough suggestions (Go87, Gog0) that such effects may be of concern in high

frequency, high working pressure devices such as the Space Power Demonstrator

Engine (SPDE) to warrant further study. Hence the work covered in this report

is aimed essentially at attempting to determine whether the discretised

primitive (or first order temporal differential) conservation balances are

adequate to simulate information propagation effects in circumstances when

they are known to be of importance.

Simulation of entropy in Stirling machines offers the opportunity of

giving the designer new insights into the sources of irreversibilities as well

as a criterion for judging the effectiveness of design optimizations.

Previous oscillating flow work in this area has been effective in simulating

the generation of entropy (Ko90) while less attention has been focussed on its

transport through the computational domain. The work reported herein thus is

aimed at correcting this imbalance by focussing on the transport of entropy

which includes a means of constructing the computation domain as an isolated

thermodynamic system.

Rather than simulating Stirling hardware directly, the approach adopted

has been to base the simulation investigations on simple physical systems for

which experimentally validated closed-form analytic solutions exist.

Specifically, the information propagation study is based upon Iberall's

analytic solution of the transmission line problem (Ib50) while the entropy

transport investigation is carried out in terms of Kurzweg's oscillating flow

apparatus (KZ84). This approach enables the behavior of the simulation in

terms of information propagation a_d entropy transport to be studied in

isolation. This avoids the complicating gas-dynamic interactions inherent in

Stirling hardware from masking the effects under study and consequently

leading to erroneous conclusions.

The report is divided into two parts. Part A describes the information

propagation investigations while part B is devoted to the entropy transport
work.
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PARTA

INFORMATION PROPAGATION

A. i INTRODUCTION

The investigation of information propagation effects is carried out in

terms of the following three tasks, namely:

ao The deveiopment of a new, non-pressure linked numerical algorithm for

applying the mass, momentum and energy transport equations in one

dimension and the application of the algorithm to Iberall's transmission

line problem.

bo An investigation of the use of a hybrid explicit/implicit integration

algorithm in Stirling machine simulation using the transmission line as
a validation vehicle.

C. The development of ann-step (Go90) implicit temporal integration

alg6rithm_an d its appii_cation to the transmissi0n line to test whether

the numerical integration algorithm itself infiuences the simulated

information propagation behavior.

The analytic and physical details of Iberall's transmission line are

described in detail in a previous NASA contractor report (no. 185285) (Go90)

and hence will not be repeated here.

A. 2 ANALYTIC BACKGROUND

The essence of the pressure-linked algorithm is obtained by substituting

the momentum equation into the continuity equation in which an equation of

state is used to express density in terms of pressure. Following the

derivatio6 presented in Gog0, the resulting equation may be expressed as:

R [tvlTAt Vn(s) A.(,) )

(A.2.1.1)

At (,)

where:
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m

([tVo]gVn(s>)" + At f( [tvn]g, [tv]T, [tv]P) (A.2.1.2)
g* =

vncs_

Thls equation yields an advanced time or implicit pressure field. The

information propagation characteristics of equation (A.2.1) may be

demonstrated by applying it to a sequence of adjacent discrete Volumes in a

one-dimensional field of constant cross sectional area. Hence simplifying the

equation and dropping the averaging notation for the sake of clarity yields:

Pii + _ At2A2RT tp
• V2 _ ii - Pij) = Ksource

J

(A.2.2)

where Pii is the diagonal or "central" pressure term, Pij are the outlying

pressures and Ksource is the source term. Now V/A represents the length of

the discrete volume in the computational direction and hence V/AAt represents

a computational speed Vcomp since At is the integration time increment. Thus

equation (A.2.2) may be expressed as:

[i 3_ [_I 2]va _j[v--_o_pl_pijVa
Pii + - = Ksource

• j •

(A.2.3)

where v a is the isothermal speed of sound for a fluid with constant specific

heats. Thus, in simple terms, the information propagation is determined by

the ratio Va/Vcomp (acoustic speed to computational speed). This conveniently
explains the behavior of the pressure linked analysis as it applies to the

transmission line as well as, for that matter, to the SPDE (Go90, chapters 3

and 4). In particular, for the transmission line, it was observed that the

transducer cavity to excitation pressure ratio asymptoted towards the value

calculated via Iherall's analysis as the time step was decreased, which is a

classic numerical result. Simultaneously, the phase angle between the

excitation and transducer cavity started out at a value much higher than the

Iberall prediction and decreased towards an asymptote with a value

approximately half that predicted by Iberall as the integration time step was

decreased. This phase angle behavior is explained by equation (A.2.3) since

simply increasing Vco m_ by decreasing At decreases the coupling between Pi-"
P d J

and Pii until the Courant limit defined by v_ - v .... is reached. Un er
these conditions, the phase angle predicted by equat_on_(A.2.1) should

correspond with the asymptotic value produced by a simulation in which the

pressure field is extracted e_xplicitly from the continuity equation, that is,

without the use of any information propagation (or implicit pressure field)

equation at all. Under these conditions, the requirement for using a unitary

pressure domain (UPD) or equilibrium hypothesis for modelling information

propagation (see Go90 section 2.6) would fall away and the criterion for

determining the time step size is the achievement of numerical stability.

Noting that the information propagation modelling capability per se is

quantified by the phase angle predictions, the above observations lead to the

3



proposition that the discretised primitive conservation balances intrinsically

are deficient as a basis for simulating the information propagation effects

occurring in a transmission line (specifically, low Math number or stationary

flow resonance induced shocks (Ji73)). Furthermore, by extension, this also

m_£ be true for the information propagation effects occurring in Stirling
machines with characteristic numbers less than 24. These effects include the

superposition of multiple reflected waves and microscopic scale regenerator

choking.

The principal argument in support of the proposition arises from

Iberall's analysis itself since Iberall does not solve the primitive

conservation balances but in fact solves the Kirchoff equations of sound

(Ib50, page I00, section 4). In particular, the relevant information

propagation equation is obtained by substituting a simplified differential

mass balance into a differential momentum balance which yields (quoting

Rayleigh (St45), article 348, equation (2)):

dv + 1 dP = ____V2v + _ d2s (A.2.4)

where s is the "condensation" defined by:

P - Po (A. 2 5)

Po

and P0 is a constant, fiduciary density.

.Equ_tion_(A. 2.4) is:_t_e inverse s_gtrica! form :_ - t_e well-kno_ wave

equation obtained by substituting the differentia_l _mqm@ntu!n- balance into the

differential mass balance. As noted by Organ (0J89), a simplified isothermal

form of the wave equation is given by:

1 aZP = Vzp (A. 2.6)

which has the characteristics solution:

p = f($+ ___z) (A.2.7)
V a

...... :: =:

Hence in respect of accurately modelling information propagation

effects, Iberall in effect agrees with Organ that the equations of sound

shouid be used to extract the pressure=fieid andn___o_ t_e ::Primitive:

conservation baiances. In the past, Org_anhas attempted to solve these

equations using the method of characteristics (0r82), but, recognizing the .....

intractability of this approach for the geometrical complexities of Stirling

machines, he has resorted to a linear solution of equati0n=(A.2.6) using the

principle of superposition (0J89)' Impiicit in this argument is the notion

that the second order differential equation (A.2.6) is not equivalent (at

least in numerically discretised terms) to the first order pressure-linked

equation (A.2.1) even though their method of derivation is ostensibly the same

(that is, substitution of a momentum equation into a continuity equation).

4



Rigorously, this can be shownto be the case since the integral transform of
the complete version of equation (A.2.6) obtained via the generalized
transport equation (Go90, equation (A.2.3)) is very different from equation
(A.2.1). Therefore, this argument offers a reasonable explanation for the
discrepancies observed to date between the predictions madeby the simulation
using equation (A.2.1) and Iberall's analysis - the slmulation is based upon
an effectively different description of information propagation.

However, if it is indeed true that _he dlscretised primitive
conservation balances used in the simulation inherently are incapable of
describing the information propagation effects under discussion in this
report, then all possible solutions of the primitive equations should show the
samebehavior, not just the pressure-linked forms evaluated to date. In
particular, the symmetrybetween the second order differential Kirchoff
momentumequation and the second order differential wave equation discussed
above must also hold for the first o;deAintegral equations. Thus a solution
obtained from the symmetrical form of the pressure-linked equation (A.2.1) not
involving an implicit solution of the pressure field should show the same
behavior as the pressure-linked form.

Therefore, if both symmetryand explicit solution bounding of an
implicit solution can be demonstrated for the transmission line, then the
proposition that the primitive discretised conservation balances are
inadequate for modelling transmission line information propagation effects
would gain significant substance.

A third element involved in this process is the notion that the
qualitative information propagation modelling behavior of the primitive
equations should be numerical integration process independent, particularly
for the implicit forms. (It can be taken as read that this independence has
been shown for explicit numerical integration, for example, see Roach (Ro82)).
A meansof testing this assertion is to implement the n-step implicit temporal

integration scheme outlined in Go90 and apply_it in both globally implicit and

conventional (a matrix inversion at each time step) environments. In both

cases, therefore, if the proposition is true, then the time step dependent

phase angle behavior observed to date should be invariant. .

The symmetry test is conducted in task a, the explicit solution bounding

test forms task b while the implicit numerical invariancy test is carried out

as task c.

A.3 A NON-PRESSURE-LINKED INVERSE SYMMETRIC INTEGRAL FORMULATION

If the pressure-linked formulation of equation (A.2.1) is obtained by

substituting the momentum conservation balance into the continuity equation,

then the inverse symmetric form is obtained by substituting the continuity

equation into the momentum conservation balance, so eliminating the pressures.

Hence substituting the equation of state (Go90, equation (2.33)) into the

continuity equation (Go90, equation (2.41)), temporally discretising the left

hand side and rearranging produces:



w

ttvjP = + {( _tv.jg- ctv.3PVncs_) " -.}dA
V (,)

(A.3.1)

Substituting equation (A,3.1) into the momentum equation (Go90, equation

(2.42)) yields:

w

d( Eta]g Vn(s))

-dt ,) [tvlg{([tvlV-vls)) -n}_ Mn(s) g

(') _ (S) - [tvJP Vn(s) " -.)dA .dA

(A.3.2)

- _._'(_v_T Ct). Vttv_;,v. try,7)d%

where g" represents the laminar and turbulent shear stress terms. Equation

(A.3.2) yields the advanced time or implicit mass flux field g. As before,

the information propagation characteristics of the equation may be

demonstrated by considering a sequence of adjacent discrete volumes in a one-

dimensional field of constant cross-sectional area. Thus, temporally

discretising the left hand side of equation (A.3.2), simplifying and dropping

the averaging notation yields:

giiV + A_{(gv) ii - (gv) ij} + _ A2RTAt (gii - gij) " Ksource
3 3

Rearranging, and noting that Vcomp

(gv) ii[ vii 3 NMa Vc°mP -_7 i +__

Ksource
z

A

V/AAt and VaZ _ RT yields:

I Va ](gv)

J ij
NMa Vcomp (A.3.3)

where NMa is the Mach number. Therefore for the transmission line, the

v a

dominant term is Vcomp NMa since NMa << i. This is also true in the Courant

limit when v_ = v ..... Hence the "information propagation" characteristics

(in terms of mass flux) of equation (A.3.3) have a discretised description



different from those of the pressure-linked equation (A.2.1) and thus use of

equation (A.3.2) provides a valid test for evaluating the symmetry of the

primitive conservation balances.

Thus the set of steps comprising the solution algorithm becomes:

a.

b,

c.

d.

e°

Guess the mass flux field [t%]9"

Explicitly compute the discrete volume masses from Gog0 equation (2.41)

and then infer [trip from known values of V(s)

Implicitly compute the temperature field using Go90 equation (2.43).

Explicitly compute the pressures from the equation of state (Go90

equation (2.33)).

Implicitly compute the mass flux field from equation (A.3.2).

f. Compare [tv,]g (computed) with [t%19" (guessed) and return to step b

with f([tv,]g, [t_]g') _ [t%19" if the mass flux field is insufficiently

converged.

A.4 EXPLICIT SOLUTION BOUNDING FORM

The hybrid explicit/implicit algorithm proposed by MacCormack (Mc82)

originally was investigated with a view to improving the efficiency of the

existing purely implicit algorithm since it q_ensibly offers a means of

eliminating the iteration procedure on which the algorithm is based.

MacCormack's algorithm may be viewed as a combination of two independent

entities. The first is the hybrid explicit/implicit integration algorithm

itself, while the second is an elaborate factorization procedure for

extracting a pseudo-characteristics solution from the Navier-Stokes equations

without explicitly solving an "information propagation" equation of the

pressure-linked variety. However, the factorization procedure does not appear

amenable to ready generalization (at least in discrete volume, integral terms)

since it is derived for a conformal mesh (Cartesian in Mc82) using the partial

differential form of the conservation equations.

In view of the discussion given in section A.2 above, only the hybrid

explicit/implicit numerical algorithm portion of MacCormack's algorithm has

been investigated since the pseudo-characteristics portion preempts an

isolated evaluation of the primitive conservation balance inadequacy

proposition. In other words, if MacCormack's full algorithm were to replicate

Iberall's analytic results, it would not be possible to determine whether this

was due to the implicit/explicit algorithm or the pseudo-characteristics

ORIGINAL PAGE IS
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formulation. Thus in view of tlme and funding constraints, investigation of

this latter aspect of MacCormack's algorithm as applied to a transmission line

was not attempted.

The basic elements of MacCormack's hybrid explicit/impllclt numerical

integration algorithm (as applied to the integral conservation balances) may

be described by the following sequence in terms of a general variable #:

a. Explicitly calculate the temporal gradient at the current time step:

d_ (t) = f(t _(t)) (A.4 I)
_-{ ,

b, Implicitly extract an estimated advanced time value #* from:

d_(t) + _f(t +At,_'(t+At))d#" (t +At) = (l-a)_a_ {-6F
(A.4.2)

C. Explicitly calculate the estimated advanced time temporal gradient:

d_" (t +At) = f(t +At,_°(t+At)) (A.4.3)

d. Implicitly extract a corrected advanced time value @ from:

d_" (t+At) + _f(t +At,_(t+At))d# (t +At) = (l-_)--d-_
(A.4.4)

e. Assemble an averaged final advanced time value:

_(t+At) --_(t)+ At (t+At) + it{

In steps b and c, _ is referred to as an "implicit blending factor".

(A.4.5)

On closer examination, the algorithm can be seen to be an interesting

assembly of several existing methods. When a - .5 (the numerical stability

limit), steps a and b comprise a single iteration of the Crank-Nicholson

_Igorit-hm-while steps c and d comprise a single _teration_ t_he standard

implicit algorithm (in this case, _ corresponds to the convergence factor).

Step e represents an aggregation procedure similar to that found in the Runge-

Kutta algorithm and its derivatives (such as those developed by Fehlberg and

Verner).

The algorithm was applied to the standard set of pressure-linked

integral equations and applied to the transmission line using the same

parameters listed in Go90, section 4.9. In the first instance, the

convergence of the algorithm at relatively large time steps (such as those

generated by the UPD hypothesis) was quite poor (that is, large truncation

errors). Hence severa! iterations of steps c, d and e were necessary in order

to produce a stable solution. These iterations submerged the benefit of steps

i



a and b, in effect making them redundant. Furthermore, there was no change in

the observed phase angle or amplitude ratio behavior in comparison with that

shown by the standard Crank-Nicholson algorithm (Go90, sections 4.8 and 4.9).

Hence, in isolation, the particular explicit/implicit formulation of

MacCormack does not contribute towards an understanding of the information

propagation issues under discussion, in particular, it does not change the

influence of the pressure-linked equation (A.2.1). Furthermore, it does not

appear to yield any computational advantage in comparison with the standard

iterative implicit method. However, it must be emphasized that these

observations may not be true for MacCormack's method as a whole, that is,

including the pseudo-characteristics formulation of the conservation

equations.

Therefore, in order to ascertain the limiting behavior of the primitive

conservation balances without the use of a pressure-linked formulation (as

discussed in section 2), the standard implicit algorithm (Go90, section 2.5)

is modified to remove the pressure-linked equation (A.2.1) so that the

pressure field is extracted via an equation of state from the explicit mass

conservation balance. The modified algorithm may be listed as follows"

a.

b.

c.

do

e.

Guess the mass flux field [tv,]g_

Explicitly compute the discrete volume masses from Go90 equation (2.41)

and then infer [trip from known values of V(s)

Explicitly compute the pressures from the equation of state (Go90

equation (2.33)) using current estimates of the advanced time

temperature field.

Implicitly compute the temperature field using Go90 equation (2.43).

Implicitly compute the mass flux field from (Go90) equation (2.42) using

the explicitly derived pressures of step c as part of the source term.

f. Compare [t_]g (computed) with Its]g" (guessed) and return to step b

with f([tvn]g, [tvn]g') _ [t_]g ° if the mass flux field is insufficiently

converged.

This algorithm allows the explicit_information propagation boundary of

the implicitly solved primitive conservation balances to be determined without

introducing any complicating numerical effects.



A.5 n. -STEP iMPL.I..CIT TEMPORAL INTEGRATION ALGORITHM

The n - step implicit algorithm is based upon a simple multi-lncrement

expansion of the left hand side of the integral conservation balances.

Consider a generalized form for the transport property #:

d ttv_ v
= f(t,[tv]_) (A.5.1)

dt

Discretislng the left hand side linearly in terms of n time Steps yields:

( lj

where j is the time step index. Clearly, a linear expansion is not a

necessary restriction, other expansions using, for example, sinusoidal or

polynomial forms are equally valid. However, use of more complicated

expansions does not affect the argument in principle, although such higher-

order expansions probably yield superior numerical results.

Hence, in one-dimensional terms, if there are m discrete volumes, the

solution is obtained from a system of mxn equations, each with the implicit

form (after dropping the averaging notation for clarity):

where i is the spatial discretisation index. For the first time increment

(j - i), equatign (A.5.3) becomes:

(_v)_
- (K _)i_ I +

(A. 5.4)

where the superscript s denotes the initial conditions.

In general, there is no restriction on At, m or n so that At may be

equated with the cycle period. Under these conditions, the algorithm becomes

analogous to Gedeon's "globally implicit" technique with the important

exception of equation (A.5.4), that is, the assumption that @_ = @i is not

made. This version of the globally implicit technique yields a transient

evolution of the flow field without imposing external cyclic closure boundary

conditions: - Furthermo[eu_!he 9 ....step formulation is independent of the

specific form of equation (A.5.1). Hence i£-ca_be-appiied-to the pressure-

linked equation (A.2.1), the symmetric momentum linked equation (A.3.2) as

well as to the unmodified momentum and energy conservation balances (Go90,

equations (2.42) and (2.43) respectively). Thus the iterative integration

algorithms described in sections A.3 and A.4 and in Go90 section 2.5 may be

used without alteration using the n - step formulation. This allows the

integration algorithm independence of the primitive equations to be assessed

I0



without adulteration by extraneous effects as required by the discussion in

section A.2.

A.6 RESULTS

The simulations are tested for two transmission line geometries and

their respective boundary and excitation conditions as detailed in table A.I

giving a total of five test cases. The geometries and boundary conditions
are identical to two of the test cases reported by Watts (Wa65). Particular

care was taken to use exactly the same excitation pressure amplitudes as used

experimentally. Where possible, the excitation frequencies were chosen to

correspond with experimental tests in order to provide an experimental
baseline for the comparison of the simulation and experimental data. In thi_

regard, it must be pointed out that neither Watts nor Goldschmeid (Go68)

report any experimental data for validating the phase angle predictions of

equation (116) in Ib50. Hence it is assumed here that because Iberall's

amplitude ratio predictions (also obtained from equation (116)) are confirmed

by experiment, his phase angle predictions are likewise valid. However, this

may not be true, a qualification which must be borne in mind when reviewing

the results presented below.

The six inch line excited at I00 Hz has a characteristic number I (Nch)

of 22.86 (see table A.2) and is equivalent in information propagation terms to

the SPRE which has Nch - 24. Hence to the extent that the information

propagation effects occurring in the transmission line match those occurring

in the SPRE (as alluded to in section A,2, this similarity may be only

nominal), the simulation comparisons provide a test of the information

propagation modelling validity of the simulations as applied to the SPRE.

The results for the five test Cases are given in tables A.2 through A.6

located at the end of this section and are presented in terms of amplitude

ratio and phase angle, The amplitude ratio is defined as the ratio between

the transducer cavity and excitation pressure amplitudes while the phase angle

is the phase lag between the excitation and transducer cavity waveforms. With

reference to tables A.2 through A.6, the first line reports the analytic

predictions of Iberall's analysis and the second line gives the amplitude

ratio measured by Watts (Wa65) (where available). Thereafter, the tabulation

gives the results of eight different simulations each corresponding to a

different integration algorithm / equation formulation mix.

The first and third simulations correspond to the UPD and equilibrium

information propagation hypotheses (defined in Go90, section 2.6) using the

pressure-linked equation (A.2.1) (obtained by solving the continuity equation

after substitution of the momentum equation, hence the "UPD: continuity" and

"Equilibrium: continuity" nomenclature).

IThe characteristic number Nch is defined as the number of pressure wave

traverses occurring per cycle over the entire extent of the working space.

ii



Table A.I Transmission line geometries

Parameter 6 inch line

152.4Length (mm)

Diameter (nun) 4.66 4.66

Cavity volume (cm 3) .414 .414

Gas type air air

Mean pressure (bar) .77 .77

Excitation pressure

amplitude (bar) .00077 .00077

Temperature (°C) 28.9814 25.95

Excitation frequencies

(Hz)
i00; 230; 400

24 inch llne

609.6

55; ii0

The second and fourth simulations portray the UPD and equilibrium information

propagation hypotheses using the symmetric momentum equation (A.3.2) (obtained

by solving the momentum equation after substitution of the continuity equation

yielding the "UPD: momentum" and "Equilibrium: momentum" nomenclature), Both

equilibrium simulations are performed at 50 and i00 increments per cycle in

order to confirm the phase angle and amplitude ratio behavior. The first four

simulations are thus designed to accomplish the symmetry test.

The fifth simulation uses the algorithm described in section A.4

(explicit solution bounding) in which the momentum and energy balances are

solved implicitly and the pressure field is determined explicitly without a

pressure-linked equation. The number of increments per cycle is chosen purely

on the basis of numerical stability, being small enough to achieve a stable

solution but not so small as to undercut the Courant criterion and introduce

dispersion errors (Ro82).
q

The last three simulations test various forms of the n - step implicit

algorithm. The sixth simulation is based on the UPD hypothesis for

determining the number of time steps per cycle, while each time step is

divided into n substeps. Four values of n are tested in order to establish

the behavioral trends of the amplitude ratio and phase angle. The seventh

simulation embodies the globally implicit version of the n step implicit

algorithm while the last simulation is similar to the "UPD: n - step implicit"

simulation except that the time steps are variable and are determined

characteristically at each stage of the simulation.

The results for the test case approximating the SPRE in transmission

line information propagation terms are given in table A.2 (6 inch length with

100 Hz excitation). This case yields an analytic characteristic number of

22.862 which is confirmed within a tolerance of ±.002 by all the simulations.
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Iberall's analysis predicts an amplitude ratio close to unity and .03 higher
than that measured (the measured value is read manually off a logarithmic

graph in Wa65 and therefore is only approximate) while the predicted phase

angle of .5 ° is small. The predictions made by the momentum and continuity

linked equations are identical and show the same trends as the time step size

is decreased (number of increments per cycle is increased). As noted before,

these trends are typified by the amplitude ratio increasing towards the

Iberall value as the time step size is decreased while, concomitantly, the

phase angle decreases. Hence, in this case, the symmetry of the equations is

demonstrated.

The simulation with no pressure linking using 300 increments per cycle

produces an amplitude ratio equal to that produced by the i00 increment per

cycle equilibrium algorithm (at least to three decimal places) and a phase

angle lower than that produced at i00 increments per cycle. Hence, in this

case as well, an explicit determination of pressure indeed does produce a

bounding value of amplitude ratio and phase angle for the implicit continuity

and momentum linked equation algorithms.

Without going into needless repetitive detail, these observations apply

for the remaining test cases as well (tables A.3 through A,6). A few

interesting points to note are:

In table A.4, at 400 Hz excitation, Iberall's analysis underpredicts the

experimental amplitude ratio by 31% while the asymptotic simulated

pressure amplitude ratio for the first five simulations of 3.301 is 15%

less than Iberall's value and 41% less than that measured.

Also in table A.4, the equilibrium simulations as well as the case with

no pressure linking show identical results at a temporal discretisation

of I00 increments per cycle. This further demonstrates that the

explicit pressure determination defines the bounding case of the

implicit determinatio_ using either continuity or momentum equation

linking.

In table A.6, a comparison of the predictions of the equilibrium

simulations with the predictions produced by the simulation with no

pressure linking shows that when the temporal discretisation of the

explicit pressure simulation is coarser than that of the implicit

simulations, then the implicit simulations predict phase angles smaller

and amplitude ratios larger than the explicit simulation. This conforms

to the standard time step size dependent trend and shows that at small

enough time steps, extracting the pressure field implicitly via the

continuity and momentum linked equations is computationally redundant.

Therefore, the first five simulations demonstrate that the continuity

and momentum equation linked equations are indeed symmetric and that the

implicitly extracted pressure fields are the same as those extracted

explicitly at small enough time steps. In other words, explicit pressure

bounding for the primitive conservation balances is confirmed.

13



Consequently, the remaining n - step implicit simulations were carried

out using the momentum linked formulation as it is numerically more efficient

than its symmetrical continuity or pressure-linked counterpart because one

less matrix inversion is required for each iteration.

Reverting to table A.2, it may be observed that the UPD and

characteristically determined time step versions (numbers 6 and 8) produce

identical results in terms of amplitude ratio versus increments per time step.

The trend in both cases conforms to the standard pattern, namely, amplitude

ratio increasing with decreasing sub-time step size. Furthermore, the

amplitude ratio at 13 increments per time steps conforms to the limiting value

produced by the single step implicit simulations (numbers 3 and 4). In terms

of phase angle behavior, the UPD and characteristic versions of the n - step

implicit algorithm show the same trend (phase angle decreasing with increasing

number of increments) except that there is some disparity between the

numerical values. This is caused by the relative lack of cyclic convergence

of the characteristic version (cyclic energy balance errors > 1% versus

equivalent errors for the UPD version < .01%). The characteristic version

takes an inordinately large number of cycles to reach cyclic equilibrium and

hence the simulation was terminated before full convergence was achieved as a

matter of expediency. Hence the characteristic version, while being a useful

test of numerical algorithm independence, is not a practical methodology.

Finally, the behavior of the n - step globally implicit algorithm shown

in table A.2 is rather interesting. A discretisation of 20 increments per

cycle proved to be the largest practical value that would enable the

coefficient matrices to be inverted (using a computer with a 64 bit precision

word length) before numerical round-off errors caused the simulation to become

unstable. This situation could be alleviated somewhat by various

normalization schemes as well as by matrix partitioning algorithms. However,

in the context of this investigation, such endeavors would not add materially

to the outcome and hence were not attempted. In this context, the n - step

globally implicit scheme conforms to the established pattern of amplitude

ratio and phase angle behavior observed for all the other simulations.

Examining the phase angle behavior, one is tempted to infer that the value

asymptotes to the Iberall value of .525 ° However, in temporal discretisation

terms, at 20 increments per cycle, the algorithm is in the range of the UPD

algorithm, which with Nch = 22.864 yields a temporal dfscretisation of 23

increments per cycle. Thus at 20 increments per cycle, the n - step globally

implicit algorithm produces a phase angle greater than the 23 increment per

cycle UPD algorithm which is in conformity with the established trend.

With minor variations, these observations also apply to the results

produced by the n step implicit simulations for all the remaining test cases

in tables A.3 through A.6. The only exceptions worth noting occur in tables

A.4 and A.6 in which the phase angle produced by the globally implicit

simulation at i0 increments per cycle is greater than that produced at 5

increments per cycle. Once again, these exceptions are caused by cyclic

equilibrium convergence effects where the particular simulations are not as

converged as their counterparts. However, since the phase angles in all cases

at 20 increments per cycle are less than those at coarser discretisations, the
basic behavioral trend is not violated.

14



Therefore, the n - step globally implicit simulations confirm that the

simulation predictions are independent of the particular form of the

integration algorithm used to solve the conservation balances. Furthermore,

use of an n step implicit algorithm does not appear to offer any numerical

accuracy advantages that cannot be achieved at a lower computational cost

using a single step implicit Crank-Nicholson algorithm with a finer temporal

dlscretisation. In this vein, there does not appear to be any advantage in

using a globally implicit algorithm, at least in terms of a strict transient

simulation.
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Table A.2 6 inch transmission line with I00 Hz excitation

Reference
Number

Analysis

Iberall
(analytic)

Watts
(exper.)

UPD:
continuity

UPD:
momentum

Equilibrium:
continuity

Equilibrium:
momentum

Implicit:
no pressure
linking

UPD:
n - step

implicit

n - step

globally

implicit

n step

implicit:
character-

istically
determined

time step

Temporal
Discretisation

Parameter

Increments

per

cycle

Increments

per

cycle
,,,.,,._.......... , ,, ,

Increments

per

cycle

Increments

per

time step

Increments

per

cycle

Increments

per

time step

Parameter

Value

, . ,T

50

I00

Char.

Number

22.862

22.864

22,864

22.864

22.864

50 22.864

i00 22.864

300 22.864

13

22.864

22.864

22.864

22.864

5 22.864

I0 22.864

20 22.864

2 22.860

3

Amplitude
Ratio

1.060

1.03

,,,, ,,

i.049

I. 049

Phase

Angle

(deg)

0.525

0.97

0.97

1.051 0.59

1.052 0.41

1.051 0.59

1.052 0.41

1.052

1.050

0.32

0.80

1.051 0.56

1.052 0.38

1.052

1.011

I. 050

0,31

2.69

1.038 1.98

1.048 I.II
.,.,,,-

O. 54

22.860 1.051 0.54

5 22.860 1.052 0.43

13 22.860 0.181.052
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Table A.3 6 inch transmission line with 230 Hz excitation

Reference

Number

Analysis

Iberall

(analytic)

Watts

(exper.)

Temporal
Discretisation

Parameter

Parameter

Value

Char.

Number

9. 940

Amplitude
Ratio

1.381

UPD:
i .... 9.942 1.232

continuity

UPD:
2 .... 9.942 1.232

momentum

50 9.942 1.332
3 Equilibrium:

continuity i00

5O

4 Equil ibr ium-

momentum

9.943

9.942

Increments

per

cycle

Increments

per

cycle

1.336

1.332

Phase

Angle

(deg)

2.095

10.52

10.52

2.81

1.68

2.81

i00 9.943 1.336 1.67

Implicit: Increments

5 no pressure per 200 9.943 1.338 I.I0

linking cycle

2 9.942 1.302 6.06

6

UPD:

n step

implicit

Increments

per

time step

Increments

per

cycle

3 9.942 1.318

5 9.942 1.329

1.335i0

i0

Increments

per

time step

n step

globally

implicit

n - step

implicit"
character-

istically
determined

time step

7

20

9. 942

9.942 1.052

9.942 1.228

9.942 1.304

2 9.938 1.301

3 9.938 1.318

5 9.938 1.329

9.938I0 1.335

3.78

2.86

1.72

13.73

10.66

6.15

6.18

3.74

2.85

1.69
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Table A.4 6 inch transmission line with 400 Hz excitation

Reference
Number

Analysis Temporal
Discretisation

Parameter

Parameter
Value

UPD:
continuity

Char.
Number

Amplitude
Ratio

Phase
Angle
(deg)

, , , ,,

.- Iberall .... 5.716 3.885 10.886
(analytic)

__ Watts ...... 5.6 --
(exper.)

i .... 5.718 1.208 40.12

UPD:

momentum
,l

Equilibrium:

continuity

Equil ibr ium :

momentum

3

Increments

per

cycle

Increments

per

cycle

Increments

per

cycle

Increments

per

time step

Increments

per

cycle

Increments

per

time step

Implicit"

no pressure

linking

5O

I00

50

i00

5.718 1.209 40.18

5.721

5.721

5.720

5.721

UPD:

n - step

implicit

i00 5.721

17

3.180

3. 301

3.180

3.301

3.301

15.86

9.04

n - step

globally

implicit

15.85

9.03

2 5.719 1.997

3 5.720 2.470

9 5.721 3.171 14.76

5.721 3.285 8.96

9.07

39.2!

32.55

5 5.717 1.029 38.78

I0 5.718 1.791 42.70

20 5.720 31.522.604

1.972

2.412

3.123

3.281

n - step

implicit:
character-

istically

determined

time step 17

5.712

5.712

5,711

5.711

38.84

34.08

19.48

14.80
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Table A.5 24 inch transmission line with 55 Hz excitation

Reference

Number

I

2

3

4

5

Analysis

Iberall

(analytic)

Watts

(exper.)

UPD:

continuity

UPD:

momentum

Equilibrlum:

continuity

Equilibrium:

momentum

Implicit:

no pressure

linking

UPD:

n step

implicit

n step

globally

implicit

n - step

implicit:
character-

istically

determined

time step

Temporal
Discretisation

Parameter

Increments

per

cycle

Increments

per

cycle

Increments

per

cycle

Increments

per

time step

Increments

per

cycle

Increments

per

time step

Parameter

Value

50

i00

50

i00

170

2

3

5

I0

5

i0

20

Char.

Number

10.340

Amplitude

Ratio

1.299

Phase

Angle

(deg)

3. 607

10.341 1.162 8.62

10.341 1.162 8.62

10.341 1.234 3.22

10.341 1.237 2.50

10.341 1.234 3.23

10.341 1.237 2.50

10.341 1.238 2.23

10.341 1.214 5.47

10.341 1.226 4.03

1.233

1.237

10.341

I0. 341

3.32

2.53

10.341 1.032 11.30

10.341 1.161 8.68

10.341 1.214 5.50

2 10.338 1.215 5.16

3 10.338 1.226 4.25

5 10.338 1.234 3.50

10.338 1.238 2.84i0
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Table A.6 24 inch transmission line with II0 Hz excitation

Reference
Number

Analysis

Iberall
(analytic)

Watts
(exper.)

Temporal
Discretisation

Parameter

Parameter
Value

Char.
Number

5.170

Amplitude
Ratio

4.252

UPD:i .... 5.171 1.008
continuity

UPD:2 .... 5.171momentum

Equilibrium:
continuity

50

100

50
Equilibrium:
momentum

4

5. 174

5.174

5.174

Increments

per

cycle

Increments

per

cycle

1.008

3.070

3.209

3.070

Phase

Angle

(deg)

25.419

40.10

40. ii

19.60

13.26

19.60

i00 5.174 3.209

Implicit: Increments

5 no pressure per 90 5.174 3.196 13.99

linking cycle

2 43.62

13.26

5.172 1.743
,, ,, ,

3 5.173 2.211 38.82

I0 5.174 3.063 19.55

20 5.174 3.204 13.30

5 5.171

UPD:

n - step

implicit

n step

globally

implicit

1.007 39.91

i0 5.172 1.743 43.97

20 5.173 2.512 33.88

2 5.167 1.798 42.56

5.167

5.166

2.262

3.069

2.942

Increments

per

time step

i0
...... J

Increments

per

cycle

Increments

per

time step

n step

implicit:
character-

istically

determined

time step

6

2O 5.166

37.81

19.14

16.79
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A.7 CONCLUSION

The results confirm that the discretised primitive integral conservation

balances have the following features:

they are mathematically symmetrical with respect to continuity and

momentum equation linking.

- when they are solved implicitly, as the time increment is decreased, the

pressure field solution obtained using either a continuity or momentum

linked equation set approaches the solution obtained explicitly from the

continuity equation via an equation of state.

- in terms of the transmission line, their solution is independent of the

form of the implicit numerical integration algorithm used.

Therefore, in the light of these confirmations, it seems reasonable to

conclude that the discretised pressure or mass flux linked primitive

conservation balances used in the simulations are not unconditionally valid

for modelling transmission line information propagation effects at

characteristic numbers less than about 24. To the extent that these specific

effects are also present in Stirling machines (in particular, the SPDE and

SPRE), it is consistent to infer that Stirling machine simulations based on

these primitive conservation balances are also open to question.

In particular, at low characteristic numbers, neither the pressure-

linked nor mass-linked formulations appear to replicate the physical behavior

described by the Kirchoff momentum equation or by the wave equation, despite

attempts to impose a characteristics solution on the pressure-linked

formulation using either a UPD or a characteristically determined, variable

time step hypothesis.

This position is supported by Iberall's analysis itself, by the results

of Organ's linear wave equation approach (OJ89) as well as by MacCormack's

analysis (Mc82),
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PART

ENTROPY TRA_S_0RT

I

B. 1 INTRODUCTION

The investigation of entropy transport resolved itself into two tasks.

In the first task, a previously developed suite of codes used for simulating

the Mechanical Engineering Test Rig (METR) (Go90) was applied to Kurzweg's

apparatus and validated against his experimental and closed-form analytic

data. Thereafter, an entropy transport equation was developed and evaluated

in the validated codes. These activities may be resolved into the following

specific tasks:

a. The adaptation of the Mechanical Engineering Test Rig (METR) one- and

two-dlmenslonal codes (Go90) to Kurzweg's enhanced diffusion oscillating

flow test apparatus (KZ84).

b.

The formulation of an entropy postulate and its rigorous transformation

into an entropy transport equation to be tested in a code applied to

Kurzweg's apparatus.

B.2 INITIAL OBSERVATIONS

Kurzweg's apparatus is based on incompressible (water) fluid flow.

However, in view of NASA's interest in the compressible oscillating flows

occurring in Stirling cycle machines, it was originally intended to simulate

Kurzweg's apparatus using a compressible fluid. This was also logistically

prudent since the METR codes are strictly appropriate for compressible flows.

However, early on during task a it became clear that the original intention of

using a compressible fluid was not feasible for at least the following
reasons:

reference KZ84 provides insufficient geometrical detail about the

variable volume cavities at either end of the capillary tube bundle to

enable the compressible flow boundary conditions to be specified

completely.

in order to remain within the laminar flow regime specified for the

applicability of the analysis described in KZ84, very small compressible

flow oscillation frequencies and tidal displacements are required. Under

these conditions, other effects not accounted for by Kurzweg (such as

buoyancy effects) may be expected to influence the results. In this

case, the validity of the experimental data in KZ84 under compressible

flow conditions is questionable.
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Thus it was decided to enhancethe METR codes to describe incompressible

flows also so that they could be applied directly to Kurweg's apparatus

without the above two limitations ....

Initial validation efforts with the two-dimensional code at the chosen

test point (see section B.3), consistently yielded effective diffusivities

four to five times larger than those measured or predicted analytically. The

simulation was found to be very sensitive to axial discretisation so that each

decrease in discrete volume axial length decreased the simulated effective

diffusivity, edging it ever closer to the nominal experimental value. At a

discretisation of i discrete volume per millimeter, the overprediction had

been reduced to a factor of 2 at the expense of a very large increase in

computational effort, almost overwhelming the computer equipment available for

the project.

These observations are prima facie evidence of the ubiquitous "false

diffusion" problem that plagues numerical analysis in general and integral

analysis in particular. Hence further progress mandated the development of an

algorithm for eliminating the false diffusion problem inherent in the

discretised integral description of the continuum mechanics used in the

simulation. This made inclusion of entropy transport in the simulations of

vital importance, since false diffusion correction schemes do have the

potential for violating the second law of thermodynamics.

In order to develop such a false diffusion correction algorithm, it was

judged prudent to do the development work using a one-dimensional simulation

of Kurzweg's apparatus rather than a twoldimgnsional code since this was felt

to be more time-effective in the long run. Furthermore, since the one-

dimensional simulation uses the standard Kays and London (KL64) steady-state

heat transfer coefficient and friction factor correlations, such a simulation

provides another experimentally based test point for evaluating the accuracy

of such correlations in describing oscillating flows.

B.3 TEST CONDITIONS

The test apparatus simulated is shown in figure B.I. Essentially, the

device consists of an upper and a lower cavity joined by an acrylic tube

containing a bundle of glass tubes. These tubes apparently are not fitted_

into a manifold ateither end so that the Dgt flow area consists of the

internal tube areas as well as the triangular areas between the tubes (figure

B.2). The external axial faces of the hot and cold reservoirs are fitted with

flexible membranes so that when the entiK_ apparatus is oscillated by a

shaker, the fluid (water) will undergo corresponding oscillations. Finally,

the apparatus is cocooned in insulation so maintaining a nominally adiabatic

boundary with the surroundings.
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Figure B.2 Typical segment of the tube bundle cross-section

The experimental methodology employed is open to criticism. Initially,

the lower (cold) cavity is filled with dyed cold water, while the tube bundle

and upper cavity are filled with hot water• Hence, the tidal displacement is

determined by measuring the extent of penetration of the dyed water into the

tube bundle, it must be noted that such simplicity is prone to errors such

as:

the mass and thermal diffusion of the cold water into the hot water

which leads to a "fuzzy" boundary zone making the precise measurement of

tidal displacement difficult.

radial non-uniformity of the flow oscillations arising from the specific

geometry of the shaker/flexible membrane interface, that is, the tidal

displacements at the center of the tube bundle may be different from

those at the containing wall.
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surface tension effects within the capillaries which would complicate

the external measurement of the mid-meniscus position.

Kurzweg and Zhao do not appear to acknowledge these problems in the

light of the good agreement they obtain (in logarithmic terms) between their

analytic and experimental results (KZ84, figure 2). However, since they use a

data fitting approach to obtaining this agreement (by adjusting the Prandtl

number via the choice of system temperature), it is reasonable to suppose that

many of the systematic errors which would degrade this good agreement are

buried in the data fitting process.

The upper and lower cavity temperatures are measured via thermometers

read at one minute intervals for a total experimental run time of 6 minutes.

The heat flowing through the tube and resuitant effective diffuslvity are

determined exclusively from these measurements. In particular, the resulting

inferred temporal temperature gradient of the cold cavity (from which the net

heat flowing down the tube is computed)_'iS highly approximate in comparison

with the instantaneous axial temperature gradient used in the effective

diffusivity calculation (KZ84, equation I) (a time-averaged axial temperature

gradient would have been more appropriate). Hence this additional source of

systematic error is also embedded in the Prandtl number data fit.

Needless to say, these issues complicate the simulation, particularly

when the objective is to obtain agreement with the experimental and

"validated" analytic results. However, of perhaps even more importance from a

simulation perspective, is the difficulty of simulating the initial

discontinuous (literally "brick wall") temperature profile at the tube bundle

/ cold cavity interface. Such a condition has been documented in the

literature (for example, BB75) to magnify the effects of false diffusion in

producing erroneous advective fluxes.

Hence within these limitations, the following simulation approach is

adopted

a. All the available physical parameters describing the apparatus and test

conditions given in KZ84 are used as described in table B.I.

b, The three additional geometrical parameters needed to implement the

simulation were determined by direct measurement of figure B.I in the

hope that the relative scale of the figure is somewhat representative of

reality. These parameters are:

Hot/cold cavity cross-sectional area ratio = i

Stationary hot/cold cavity length ratio = 1.714

Cold cavity / casing cross sectional area ratio _ 4 8

Fortunately, under incompressible flow conditions, errors in these

ratios do not effect the flow within the tube bundle provide4 mass flux

boundary conditions are used. They do have an effect when pressure

boundary conditions are invoked.
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Table B.I Explicit apparatus and test parameters

Parameter Description

Number of capillary tubes

Parameter Value

31

Capillary tube length 200 mm

Tube bundle casing diameter 12.7 mm

Capillary tube internal diameter I mm

Net flow area 0.67 cm 2

Cold cavity volume 114 cm 3

Gold cavity initial temperature 22 °C

Hot cavity initial temperature 78 °C

C. The test point was chosen from KZ84 figure 2 (a logarithmic plot) in

terms of Eurzweg's correlation factor KK which is defined as:

= _2_ (B.3 i)KK .....
r

where:

Ax = tidal displacement

w = kinematic viscosity

- angular velocity

r - capillary tube radius

The nominal chosen value of KK = 122 cm2/s corresponds to the

middle of the test range where evidently three tests were carried out at

the same KK (or three data points from the same test). These three

points yield values Just above that calculated using the analytic result

given by equation (15) in KZ84. Furthermore, at this point in the

correlation, the analytic result is bounded below by two additional

experimental values at a slightly greater (in a IQgarithmic context) KK

of 149 cmZ/s. Hence the "fit" of the analytic result appears to be very

good at this point. The test KK is achieved by choosing an oscillation

frequency of 6 Hz and a tidal displacement of 37.83 mm whiGh both fall

within the parameter ranges actually tested.

d. As noted by Kurzweg and Zhao, the accuracy of their analysis is

critically dependent upon the choice of temperature at which the fluid

parameters are evaluated, particularly the Prandtl number, which is

strongly dependent on temperature in the 22 to 78 °C range. Therefore,

the fluid parameters used in the simulations are chosen to be those at

60 °C as recommended in KZ84 (figure 2). The relevant parameters for
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water at this temperature together with those of glass (necessary for
modelling the capillary tube walls) are given in table B.2.

Table B.2 Fluid and wall material properties

Property Water (Sc79) Glass (ASH81)
i

Density (kg/m 3) ' 983.3 2470

Specific heat capacity (J/kg.K) 4191 750

Thermal conductivity (W/m.K) 0.65 1.0

Dynamic viscosity (kg/m.s) 47.0 x 10 -5 --

Prandtl number 3.01 --

e.

It must be pointed out that a better approach would be to include these

parameters in the simulation as temperature dependent entities.

However, in the interest of reducing the differences between the

simulation and the analysis (the major objective being to use the

analysis as fitted to the experimental data as the validation standard),

it was decided to proceed on the above basis.

The method used to calculate the effective diffusivity in the simulation

corresponds to that of KZ84 and is given by:

I_ Vc dT c_eff = ube (rh- rc)--_
(B.3.2)

In applying equation (B.3.2), the rate of temperature change in the cold

cavity is computed as the net cyclic temperature change rate, that is,

the difference between the cold cavity temperatures at the end and

beginning of a cycle divided by the period. This enables the change in

effective diffuslvity to be tracked as a function of time so that the

simulation can be terminated as soon as the rate of change of the

simulated effective diffusivity becomes small. Ultimately, of course,

the effective diffuslvity becomes infinite when the hot and cold

cavities reach thermal equilibrium. This achieves the same physical

purpose as Kurzweg's experimental procedure while minimizing the amount

of computation. In practice, a simulation period of .5 minutes proved

more than adequate under these conditions.

B.4 THE FALSE DIFFUSION CORRECTION METHODOLOGY

False diffusion arises in transient continuum mechanics numerical

analysis in the discretisation of the advection terms in the conservation

balances. Typically, when using any variation of upwind difference or upwind

parameter methodology (whether the second upwind difference formulation of
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Gentry, Martin and Daly (GM66) or the equilibrium analytic approach of

Patankar (Pa80))$ the advected flux on the Control volume boundary is biased

towards the upwind advected parameter rather than the actual value of the

parameter at the boundary. In general, the actual value of the advected

parameter is different from both the upwind and downwind va!ues in a

continuous system. In Stirling machine analysis, false diffusion is known to

be a significant cause of error in modelling the working fluid in the

regenerator (originally pointed out by Gedeon (Ge84)).

The literature on false diffusion is quite voluminous as it long has

been recognized as one of the principal difficulties in numerical analysis.

However, most of the algorithms developed for correcting or eliminating false

diffusion are based on discretisations of the differential conservation

balances, particular examples being the SHASTA algorithm of Book, Boris and

Hain (BB75) and the sequential backward difference predictor / forward

difference corrector methodology of MacCormack (Mc82). Unfortunately, none of

these schemes works well in an integral environment where there are no

parameter gradients to be exploited in the advection terms.

The first attempt made was to invoke the upwind linear extrapolation

method successfully used in Go87 for modelling false diffusion in the

regenerator of Stifling machines. Theoretically, such an approach could be

expected to work well in simulating Kurzweg's apparatus, since in time, the

temperature profile between the hot and cold cavities becomes linear.

However, at startup, in the presence of the discontinuous temperature gradient

at the cold cavity entrance, the method fails badly, and later, even under

milder temperature gradient conditions, the method yields an over-predictlon

of the effective diffusivity.

Hence, after much analysis and computation, an apparently effective and

unconditionally stable false diffuslon correction methodology was developed.

The methodology may be described in terms of the following generalized

algorithmic sequence:

a, Pre4ict the parameter field _" using a conventional second upwind

difference spatial discretisation (Go87). In general, an explicit,

implicit or hybrid integration scheme may be used for this step.

b. Calculate the source term from:
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;_. • • (s.4.1)Ksource = (¢.w-_n) (gn'") dA

C0

where:

@uw = #i-i if gni _ 0

_uw = @i if gni < 0

It may be noted that no restrictions need be placed on the form of the

interpolating function f provided it is bounded symmetrically, for

example, f may be a polynomial of odd order.

The correction field A# is found implicitly from:

MA_At = _ _uw(-gn'-n)dA+KsOurce
(B.4.2)

where:

A@u w = d_i_ 1 if -gni _ 0

A@u w = A_i if -gni < 0

d. Calculate the corrected parameter field _ given by:

= _'+_
(B.4.3)

e. Iterate from step a until the change in the corrected parameter field

becomes appropriately small.

In practice, the iteration required in step e does not add to the

iterations required in any case to implement the pressure or non-pressure

linked algorithms discussed in part A. Two interpolating functions have been

tested for use in step b, namely linear and cubic polynomials. As shown by

the results (section B.7), both schemes produce almost the same results,

however, during the transient start-up phase, the cubic function yields a

better approximation of the temperature field at the cold cavity entrance.

A negative consequence of the false diffusion correction algorithm

described above is that it necessitates one more matrix inversion per

conservation equation per iteration. However, in terms of an integral

analysis, this is more than offset by at least a six-fold reduction in the

required discreti_ation combined with better accuracy at the coarser

discretisation than obtained using the upwind approach alone at the finer

discretisation. In this context, it must be pointed out that the flux

correction methodology developed is still embryonic and is capable of much

enhancement.
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B.5 P_VE_OPMENT OF AN _NT_OPY TRANSPORT EQUATION

The approach adopted in deriving the entropy transport equation is

ideDtlcal in nature to that documented in Go87 for the mass, momentum and

energy balances. The essential difficulty (at least philosophically) is in

defining an appropriate entropy postu!ate. One traditional approach is to

define entropy as being that which requires thermodynamic processes to be

unidirectional, for example, according to Wark (Wa77):

"Any system having certain specified constraints and having an

upper bpund in volume can reach from any initial state a stable

equilibrium state with no net effect on the environment."

The corollary to this postulate, known as the Kelvin-Planck statement (Wa77),

is sufficient to allow proof of C!auslus' inequality as a theorem, that is for

a closed system:

which in turn allows the "increase in entropy" principle to be derived, or_

d_ .6_ (B. 5.2)

where E denotes entropy.

Equation (B.5.2) is invoked by some authors directly as an entropic

postulat!onal basis, for instance Slattery's entropy postulate (S181) that:

"The minimum rate of production of entropy in a body is

proportional to the rate of energy transmission to the body."

or symbolically:

: (B.5.3)

where the terms on the RHS represent the entropy changes produced by contact

energy transmission to the body through its bounding surface and by external

and mutual energy transmission respectively.

However, from a computational point of view, neither of these postulates

is determinate, that is, they do not allow entropy to be definitely

calculated. Hence for this reason, the following entropy postulate based on a

statement originally proposed by Truesdell and Toupin (TT60) as the basic

assumption of thermodynamics is preferred:
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Postulate V A dimensionally independent scalar parameter _ (termed specific

entropy) and the substate densities are sufficient to determine

the specific internal energy of a material particle independently

of time, place, motion and stress.

That is :

(B.5.4)

This postulate is not equivalent to those quoted above in the sense that

it is not based upon a manifestation of entropy, but rather is an equation of

state for internal energy which requires that entropy be a fundamental

property. However, the consequences of equation (B.5.4) must satisfy the

previous conventional postulates as expressed in a general fashion by equation

(B.5.3).

When a particular body is thermodynamically homogeneous, that is every

particle p is behaviorally identical, equation (B.5.4) may be simplified to:

0= 0_,V, Fi) (B.5.5)

where F is the mass (or mole) fraction of species i. In terms of the single

component working fluids being considered here (and hence also for Stirling

machines in most cases), it is useful for the sake of simplicity to proceed by

considering single specie entities only, that is:

= 0(_,#) (B.5.6)

dU = Td_--PdV
(B.5.7)

Taking the substantive derivative, multiplying through by p, substituting Go87

equation (C.7) (which relates the change in size of a discrete volume to the

motion of its enclosing boundaries) and simplifying:

PD-{ = p2 -P(V.v) (B.5.8)

The substantive differential energy balance at every point in a material body

is given by (Go87):

DU = pE + (T:Vv) -P(V.v) -V._"
P-D--_

(B.5.9)
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Equating (B.5.8) and (B.5.9), expanding and rearranging:

+ -v.- w
p_ (r:Vv) (B.5.10)

P = T z z

Integrating (B.5.10) over the material body volume V(m ) and substituting Go87

equations (C.9) and (C.10) yields after simplification and rearrangement:

= + - + ( -.)dAd _V(.oP'_" dV ;V(,,,) T
(B.5.11)

Rearranging the right hand side:

P_ dV+ _ i (T-Vw) }-aT
(B.5.12)

Comparing equations (B.5.12) and (B.5.3) and noting that the last

integral on the RHS of (B.5.12) is strictly positive (because # = -kVT ),

reveals that the postulational basis of equation (B.5.4) indeed satisfies the

conventional entropy postulate as defined by equation (B.5.3) while

simultaneously being determinate.

Converting equation (B.5.10) into partial temporal derivative form and

substituting into the generalized transport equation (Go87, equation (C.12))

yields the final version of the entropy balance:

-c

"---6F'-- Jr(,)T[

+

(B.5.13)

In implementing the entropy transport equation, it was found that great

care must be taken in locating the entropy boundary (within which the cyclic

entropy is computed) and in describing the thermal transport across that

boundary. In this context, it should be noted that, by definition, the second

law of thermodynamics treats isolated systems so that Clausius' inequality

applies over the integral of the subsystems of which the isolated system is

comprised. In the limit, the only true isolated system is the entire

universe, so that extracting a computationally isolated system which can in

general exchange heat with its superordinate body is not obvious in all cases.

The approach adopted may be visualized in terms of figure B.3.
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Y _/(An)is
boundar isolated system

.  gnJis
(qn)is

Figure B.3 Isolating boundary entropy contribution

Consider a segment of the isolating boundary (An)is across which flows a mass

flux (gn)is and a thermal diffusion flux (_n)is The operating entroplc

principle governing the isolating boundary is:

The net contribution of the entropic and thermal fluxes crossing the

isolating boundary is assigned to the isolated system entropy

irrespective of the spatial location of these fluxes (which in general

span a part of the isolated system as well as the bounding environment).

Hence, applying equation (B.5.13) to the situation depicted in figure B.3

yields:

d CV]-'_-M d tV]=--M + _( -{(_n)isVTb}
= [_Jinternal =V)b _ _ dV

(#nhs
dA

(B.5.14)

where _ is an appropriate fraction for delineating the integration sub-volume

(typically _ - .5 for a conformal Cartesian mesh). It should be noted that

the advection entropy flux does not appear in equation (B.5.14) because its

net contribution to the isolated system entropy is zero.

The success in using the full entropy transport equation including

generalized isolated boundary heat transport may be judged from the results

presented in section B.7. As envisaged when proposing this study, Kurzweg's

laminar flow apparatus provides an ideal test bed for such an entropy

transport equation, since the transport Of entropy is clearly visible from a

system perspective and not compartmentalized between system components as

occurs; for example, in Stirling machines,

B.6 OTHER ISSUE S

During the process of testing the false diffusion correction algorithm,

it was found that careful attention had to be paid to modelling the conduction

heat transfer in the capillary tube walls. In particular, the effective
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diffusivity was found to be sensitive to the manner in which the wall/fluld

interface is discretised, both in the capillary tubes as well as in the hot

and cold cavities. Although in the simulations (both one- and two-

dimensional) the capillary tube walls are modelled as axially discretised,

one-dimenslonal entities and this approach seems to yield good results, there

is a suspicion that a one-dlmenslonal approach is probably inadequate,

particularly at high radial heat transfer rates. Thus, in the future, thought

should be given to modelling Stirling heat exchanger walls as radially

dlscretised two-dlmenslonal entities to determine whether the above suspicion

has any basis.

Finally, as the results show, the limitations of a first order temporal

integration scheme became manifest, particularly in the two-dimensional

simulation. However, owing to time constraints, the first order temporal

integration algorithm in the METR two-dimensional code could not be upgraded

to second order (a second order one-dimensional code had been developed and

tested previously (Go90)).

B.7 RESULTS

The results of all the simulations undertaken are summarized in table

B.3. At the chosen test point, the effective dlffuslvity produced by

Kurzweg's analysis amounts to 4.8 cmZ/s with the corresponding experimental

values ranging between 5.8 and 7.4 cmZ/s. Using an axial discretisation of 30

discrete volumes (.15 discrete volumes per millimeter) and a temporal

discretisation of i00 increments per_cycle, the first order one-dimensional

simulation with no false diffusion correction over-predicted the effective

diffusivity by a range of 2.9 to 4.4 times (corresponding to the upper

experimental and analytic values respectively). As noted above, including the

false diffusion correction produced a simulated value for effective

diffusivity within the experimental range and at most 36% greater than that

analytically predicted, In contrast, upgrading the one-dimensional simulation

t0 Second order £emporal accuracy, reduced the over-prediction of effective

diffusivity with no correction to a range of 2.6 to 4.1 times. Including

either linear or cubic false diffusion correction produced a result within

3.5% of the analytic value.

Applying the second-order simulation at two other values of K K using

cubic false diffusion correction yields the results compiled in table B.4.

As discussed in section B.3 above, in view of the experimental

uncertainties, perhaps the "fitted" analytic value is indeed a reasonable

estimate of the actual effective diffusivity, in which case, discrepancies

less than 3.5% are an adequate validation of the false diffusion correction

methodology.
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Table B.4 Effective diffusivity comparison

Correlation

Factor EE

(cmZls)

Effective Diffusivity (cmZ/s)

Kurzweg' s

Analysis
i

4.8

Experimental

i

l-d Simulation

(cubic correction)

Analysis/
Simulation

Discrepancy

(_)

122.0 5.8 7.4 4.9459 3.04

286.1 11.31 ii.i 11.0539 2.26

818.5 32.36 19.1 25.9 31.2692 3.37

However, of perhaps more interest, is the observation that all the one-

dimensional simulations were carried out using the nominal steady-state Kays

and London correlations without the necessity of any heat transfer coefficient

multipliers. For all these simulations, the Valensi number (square of the

Womers!ey number) is 19.7 which remains constant because it is independent of

tidal displacement. KK was varied in the simulations via the tidal

displacement while the frequency was kept constant at 6 Hz.

At a Valensi number of about 20, Uchida's analysis (UC56) of oscillating

laminar flows as quoted by Simon and Seume (SS86), yields amplitude

coefficients of pressure drop and wall shear stress of abou t 3.1 and 1.3

respectively. Also, at this Valensi number, Uchida's analysis predicts lead

phase angles of pressure drop and wall shear stress of approximately 68 ° and

28 ° respectively. Noting that for steady flow the amplitude coefficients are

unity and the lead phase angles are zero, it is evident that the simulations

represent a flow regime which is different from steady flow (particularly in

phase lead terms). Hence in view of the good agreement obtained in table B.4,

an argument can be made for the adequacy of the steady-state correlations for

predicting heat transfer under laminar oscillating flow conditions at Valensl

numbers less than 20 when the effects of false diffusion are minimized (if not

eliminated).

In developing the two-dimensional results, the importance of temporal

discretisation has already been alluded to. For this, reason, the high
temporal discretisations required to minimize the limitations of the first

order temporal integration algorithm used placed a severe load on the

available computing resources which constrained the number of runs carried out

to the half-minute closure point.

The axial discretisation was maintained at 30 discrete volumes while the

radial discre_isation could be comfortably limited to 8 discrete volumes.

With the false diffusion correction activated, increasing either of these

values produced a negligible change in the end result.
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Hencein this context, other than tile temporal discretisation, the only
significant parameter was found to be the massflux boundary condition. Two
conditions were tested, namely:

specifying a radially uniform flow at the cold end tube entrance equal
to the rate of change of the cold cavity volume.

using the rate of cold cavity volume change to generate a slnusoldally
varying pressure which in turn allows the entrance mass fluxes to be
calculated (a somewhatnebulous approach in the light of the paucity of
data describing the hot and cold cavities).

In both cases, the hot cavity is treated as being isobaric at
atmospheric pressure and gravity induced buoyancy forces are included in the
momentumbalance.

In all cases, the uniform flux boundary condition produced slightly
better results as might be expected. A shown in table B.3, only the linear
false diffusion correction methodology was tested. At a temporal
discretisation of 400 increments per cycle, the uniform flow boundary
condition simulation produced an effective diffusivity between the
experimental and analytic values, while increasing the discretisation to 600
increments per cycle yields a simulated diffusivity 6.5%higher than the
analytic result and shows the diffusivity converging to the value predicted
using the second order one-dimensional code. Nevertheless, while yielding a
satisfactory result, a discretisation of 600 increments per cycle is not
practical for an implicit code.

At the half minute cut-off, the false diffusion correction was
deactivated with a resultant escalation of the effective diffusivity to an
unconverged value in excess of 30 cm2/s. This is indicative qualitatively of
the effectiveness of the false diffusion correction algorithm in two
dimensions.

The results produced by the entropy transport equation are depicted in
figures B.4 through B.9. Figure B.4 shows that the entropy is highest midway
along the tube bundle and decreases towards both cavities. The hot cavity
always has a lower entropy than the cold cavity. Numerical output from the
simulation (not shown) confirms that the cyclic integral of the entropy over
the entire fluid system increases monotonically.

The cyclic temperature surface is depicted in figure B.5. Essentially,
this shows a fairly invariant linear temperature profile flattening
alternately in the regions adjacent to the hot and cold cavities as the mass
flux reverses direction.

Combining figures B.4 and B.5 yields the temperature-specific entropy
(T-E) diagrams of figures B.6 to B.9. Within the tube, figures B.7 and B.8
show closed cycles whoseareas are exactly equal to the generated cyclic
irreversibilities at those locations. As the tube acts as a thermal transfer
device between the hot and cold cavities and is externally adiabatic, closure
of the T-E diagrams is thermodynamically necessary and thus an indication that
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the entropy transport equation is operating correctly. All the entropy
generated in the tube is pumpedtowards the hot and cold cavities, both of
whose entropies must increase monotonically which indeed is the case as shown
in figures B.6 and B.9. In figure B.6, during the first part of the cycle
when the flow is positive (that is, from the cold to the hot cavity), the
specific entropy increases marginally while the temperature drops (dissipation
is not explicitly included in the cavities because of the absence of adequate
geometrical data, see section B.3). Whenthe flow reverses, the entropy
generated in the capillary tubes is transported into the cold cavity so
producing the requisite monotonic cyclic entropy increase.

The inverse process occurs in the hot cavity as shown in figure B.9.
During the first half of the cycle when the flow is positive, entropy is
transported into the hot space while its temperature decreases. Notice that
over the cycle, the hot space has cooled while the cold space has become
warmer.

At first sight, it may seemunreasonable that the temperature of the
cold cavity decreases during positive flow and the hot cavity temperature
increases during negative flow. However, bearing in mind that in an integral
analysis the reported temperatures are the volume-averaged temperatures and
that an axial temperature gradient exists through the cavities, then as mass
is removed from a cavity, its volume-averaged temperature must change. Hence,
in the cold cavity, the removedfluid is hotter than the remaining fluid and
hence the volume-averaged temperature decreases, with the inverse process
occurring in the hot cavity. This is a direct consequenceof the flux
correction methodology and reveals how it provides a more accurate description
of the continuum mechanics than the upwind difference approach. In
particular, in the absenceof diffusion heat transfer from the ends of the
capillary tubes, the upwind algorithm yields constant temperatures in the
cavities during their respective periods of massefflux.
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B.8 CONCLUSION

The significant results obtained from the work carried out in part B,

have been the development of a tentatively effective false diffusion

correction methodology, its demonstration in one- and two-dlmensional

simulations and the development and evaluation of a rigorous entropy transport

equation. Using Kurzweg's oscillating flow apparatus as the target hardware,

in terms of the prevailing geometrical and experimental uncertainties, the

simulated data compare favorably with those generated analytically and

experimentally.

A comparison of the simulation and experimental/analytic data suggests

that under laminar, incompressible flow conditions at Valensi numbers less

than 20, standard steady-state heat transfer correlations are adequate for

predicting oscillating flow boundary heat transfers provided that the effects

of false diffusion are accounted for in the simulation.

Use of a fullLentropy transport equation in the simulation provides

useful physical insights into the irreversibility processes occurring within

oscillating flows.

The results produced should shed some additional light on the loss

mechanisms occurring within Stirllng cycle machines, at least in terms of

isolating possible sources of error in existing simulation design codes.
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CLOSURE

The work carried out in part A suggests that the next logical steps for

investigating information propagation effects in Stirling machines might be:

the development and validation of a simulation based on a solution of

the full second order wave equation or Kirchoff momentum equation.

a transmission llne based investigation and validation of MacCormack's

characteristic factorlzation algorithm.

an experimental program to measure information propagation effects in

transmission lines and Stirling machines using precise digital acoustic

techniques. These tests should emphasize the accurate measurement of

phase angles in order to validate this aspect of Iberall's analysis as

well as to determine the information propagation characteristics of

actual Stirling hardware.

The results of part B suggest that the false diffusion correction

methodology developed may yield some improvement in the accuracy of existing

one-dimensional Stirling machine simulation codes. This improvement would

result from standard steady-state heat transfer correlations yielding better

accuracy while the enthalpy fluxes at the heater and cooler entrance and exit

ports also would be more accurately modelled.

Inclusion of entropy transport (as opposed to entropy generation alone)

in Stir!ing machine codes would yield a reliable method for tracking

irreversibilities within the engine and would allow a better comparison of the

performance of different simulation codes. Hence, as a next step, it seems

appropriate that the false diffusion correction algorithm and entropy

transport equation be ported to existing codes which should then be re-

validated against experimental data.
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