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Abstract

An efficient, direct, second order solver for the discrete solution of a class of two-
dimensional separable elliptic equations on the sphere is presented. The method involves a Fourier
transformation in longitude and a direct solution of the resulting coupled second order finite-
difference equations in latitude. The solver is made efficient by vectorizing over longitudinal
wavenumber and by using a vectorized fast Fourier transform routine. It is evaluated using a
prescribed solution method and compared with a multigrid solver and the standard direct solver
from FISHPAK.
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I. Introduction

Numerical techniques used in global atmospheric models have evolved over the past several
decades. Models with explicit time differencing generally require very small time steps in order to
avoid linear computational instability associated with fast moving gravity waves, particularly
because of the convergence of meridians near the pole. The introduction of semi-implicit time
differencing (Robert, 1969) relaxed the requirement for linear computational stability and allowed
larger time steps relative to explicit schemes. Further advances occurred through the introduction
of semi-Lagrangian semi-implicit time differencing schemes (see Staniforth and Cote, 1991 and
Bates et al., 1992 for a comprehensive review of the evolution of the semi-Lagrangian approach).

The implicit (or semi-implicit) time differencing, in general, leads to an elliptic equation (two-
or three-dimensional and separable or non-separable depending on the formulation) on the sphere
(Temperton and Staniforth, 1987; McDonald and Bates, 1989; Tanguay et al., 1989; Bates et al.,
1990; Barros et al., 1989). Thus for the implicit schemes to be more economical compared to their
explicit counterparts, efficient solvers are of paramount importance.

Algorithms for the direct solution of separable elliptic equations have been around for awiiile.
Swarztrauber (1974a) developed a method of direct solution of separable elliptic equations by
extending the stabilized cyclic reduction algorithm. When the coefficients of the elliptic equations
are independent of one of the dimensions (which is the class of equations we are considering here),
the problem can be solved with the application of Fourier analysis. Hockney (1965) used this
approach to obtain the direct solution of Poisson's equation. Lindzen and Kuo (1969) suggested
the use of a Fourier transform in one direction combined with the direct solution of the resulting
second order ordinary differential equations in the other, for more general elliptic equations. Le
Bail (1972) applied fast Fourier transforms (FFT's) to solve a class of partial differential

equations.
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Until recently, fast du'cct solvers on the sphere have been available for the discrete Poisson
or Helmholtz type elliptic equations (Swarztrauber and Sweet, 1973, 1975; Sweet, 1973, 1974,
Swarztrauber, 1974; Adams et al., 1980). Thus many implicit time differencing schemes have
been geared towards obtaining such elliptic equations (€.g. McDonald and Bates, 1989). Bates et
al., (1990) (hereafter BSHB) were the first to obtain a more general elliptic equation for their
vector semi-Lagrangian semi-implicit time differencing scheme in the global shallow water
framework. Because no efficient direct solver was available at that time, they used the multigrid
solver developed by Barros (1991); multigrid methods can be applied to more general elliptic
equations and more complex domains (Phillips, 1984; Fulton et al.,1986; Barros et al., 1989;
Bates et al., 1990; Barros, 1991). However, when the scheme of BSHB was extended to a global
multi-level primitive equation model (Bates et al., 1992), it was soon realized that the original
multigrid solver was not efficient enough. This led to the development of the FFT based direct
solver presented here.

Tt should be emphasized that the idea of using FFT's is not new; they are routinely used to
solve Poisson and Helmholtz equations on the sphere. Recently, Cote and Staniforth (1990) have
also described and applied this approach to a more general elliptic problem.

Our solver is based on a latitude/longitude grid over the sphere. The solution method
involves a Fourier decomposition in longitude to separate that dependency. This reduces the
problem to a set of coupled ordinary differential equations in the latitudinal direction for each
longitudinal wavenumber. These coupled equations are solved using the procedure described in
Lindzen and Kuo (1969) and Chao (1979).

In Section II we present the elliptic equation, the separation of longitudinal dependency, the
latitudinal discretization, the method of solution for two coupled ordinary differential equations and
a brief description of the coding strategy and the calling sequence for the solver. In Section III, we
validate the algorithm and compare it with the multigrid method used by BSHB. A summary is

given in Section IV. The Appendix contains a listing of the source code for the solver.



II. Description of the solver
a) The elliptic equation

In this report we present a fast and direct algorithm to solve the following class of two-

dimensional elliptic equations on the sphere:
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where a is the radius of the sphere, A and 0 are the longitude and latitude, respectively, ¢ is the
solution, and F is the forcing (which is known). Here the coefficients c,(8), c,(8), ¢;(6), c,(6),
c5(0), and, c4(0) are at most functions of latitude. If any of these coefficients is also a function
of longitude, then it is nearly impossible to write an efficient direct solver for such an equation in

which case the multigrid method would be preferable (Phillips,1984).

b) Separation of longitudinal dependency

We solve (1) on a uniform longitude and latitude grid on the sphere. Any field defined on
this grid can be expanded into a finite Fourier series in the longitudinal direction A. Supposing that
we have I equally spaced grid points along a latitude circle, any function ¢ can be expanded in a

finite Fourier series as
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" Here (k) is the complex amplitude for wavenumber k and ¢(—k) is the complex conjugate of

t%(k) where i = v-1. The complex amplitude can be obtained by

A 1 .
¢(k>=%2¢(x,,)c"""-. 3)
1

Since we are considering real data, for k =0 (i.c. the longitudinal mean part) and k =I/2, only the
real part of the amplitude functions exist.

We first consider the case when 0<k <I/2. For any wavenumber k , eq. (1) reduces to a
second order ordinary differential equation in 6 for the complex amplitude. Without loss of
generality, let us consider a solution to (1) of the form

¢=4A>c"“,andF=IA3c"" €))

where ¢ = ¢° +i¢‘, F=F* +iF". After substituting (4) into (1) we obtain

A
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Separating (5) into real and imaginary parts, we obtain the following two coupled second order

ordinary differential equations:
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Equations (6) and (7) determine the latitudinal structures of the amplitude for k>0. When k=0 (i.c.
the longitudinal mean part) only the real part exists and we obtain a single second order ordinary

differential equation. Denoting the longitudinal mean part by an overbar, we have
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Finally, since the imaginary part is zero for k =I/2, the problem reduces to a single second
order ordinary differential equation governing the real part. This is obtained by ignoring the terms
with imaginary part in (6).

c) Latitudinal discretization

We represent the distance from the south pole to the north pole of the sphere by a set of J
equally spaced grid points. Each grid point is referred to by an integer index j, with j=1 and j=J
representing the south and north poles, respectively. For interior points of the domain, we
approximate the latitudinal derivatives in (6) and (7) by second order finite differences. Since the
elliptic operator is not formally defined at the poles, we use integral definitions there, as detailed

later. Thus for the interior, we assume
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Then from (6) and (7), we get
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where 1<j<J. As shown by Barros (1991), the same discretization can be obtained through the
finite volume discretization approach.

The centered differencing cannot be applied at the polar singularities. Therefore, at the poles
we follow the integral approach used by Barros (1991) and BSHB. Since the poles are singular
points, only the longitudinally symmetric component (k =0) is non zero there. Thus for the
longitudinally asymmetric components (k >0), the boundary conditions at the poles simply
become,

¢;=0 and ¢;=0 (11)
To obtain the boundary conditions for the longitudinally symmetric part (which has only real part),
we integrate (1) over the polar caps lying within A8/2 from the poles. Then the terms with A
derivatives vanish due to cyclic continuity in the longitudinal direction. At the north pole, we then

obtain,
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From (12) we obtain

a(c,(8)~F) cos0dodL =0 (13)
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Now the derivative of ¢ in the first term is evaluated by a centered difference and ¢ at J-1/2 is
approximated by the average of its values at J and J-1. The second term in (13) is approximated by

the mid-point rule applied to the spherical cap. Dividing by the approximation to the area of the
spherical cap, a®cos® 1-xA08(m / 2), and denoting the longitudinal average by an overbar, we obtain
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for the south pole. The above discretizations are second order accurate and maintain the

conservative properties of the derivatives in the continuous form.

d) Solution of two simultaneous second order finite-difference equations

In the previous section, we reduced the problem to solving (9) and (10) subject to (11) (for
1<k<]/2-1), to solving the discrete version of (8) subject to (14) and (15) (for k=0) and to solving
(9) without the imaginary part subject to (11) (for k£ =I/2). To solve (9) and (10) subject to (11),
we follow the approach of Lindzen and Kuo (1969) and Chao (1979). For the sake of

completeness, we repeat the method here as it is applied to our problem. Details of the method of



solution for k =0 and k =12 will not be presented here, however, the solutions can be obtained by
following the procedure below (or see Lindzen and Kuo, 1969).

For simplicity, we r;writc (9) and (10) as

A0}, + B0 + Ci05, + Ald), +Bio + 0y, =] (16)
and
Pio;, +Qjo; +Rj;, + Pioi, + Q0 + Ri0}, = F,-i, - (17

for j=2, 3, ..., J-1. The coefficients in (16) and (17) are defined from (9) and (10). We seek the

solutions to (16) and (17) in the form

0} = o0}, + i, +B (18)
and
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where the a's, B's and ¥'s are new variables yet to be determined. Evaluating (18) and (19) at j-1

and substituting into (16) and (17), we obtain
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' Eliminating ¢‘j from (20) and (il) and comparing the result with (18), we obtain

o =—(Cipi —Ria})/ (alp} - pia}),
o =—(Clp! —Rial)/ (alp} —pla}),
B;= (;p}—fja))/ @}p}—pa)).

Similarly,eliminating ¢; from (20) and (21) and comparing the result with (19), we obtain

Y.= (Cipi—Ria})/(alp}— piad),
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and
B =—(f;p} — fia})/ (a}p} — pla)).

Thus, if we know o, i}, BI, Bi, ¥}, and y; (which can be obtained from the lower boundary

(28)
(29)
(30)

(31)
(32)

(33)

condition), then all of the «'s, B's and y's are readily obtained for each j. In the present problem,

the boundary condition (11) implies that all o} =a} =B} =B, =] =7, =0.

Equations (18) and (19) can then be used to obtain ¢; and ¢} at all j=J-1, J-2,...1, provided

¢ and ¢! are known, which can be obtained from the upper boundary condition. In the presest

problem, ¢} = ¢; =0.

e) coding strategy

The first step of the solution procedure involves the use of a forward FFT to obtain the

complex amplitudes of the forcing function F that depend only on latitude. Then for each

wavenumber, the complex amplitude of the solution is obtained by solving the coupled second

order difference equations. Finally we use a backward FFT to obtain the solution.

We made this procedure very efficient by using the CRAY subroutine RFFTMLT to

transform (both forward and backward) all latitudes simultaneously . In addition, we wrote the
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code 1o solve two coupled sccc;nd order difference equations by vectorizing over longitudinal
wavenumbers. This vectorization coupled with the vectorized FFT package makes our direct
solver very efficient.

It should be pointed out that if the longitudinal derivatives are approximated by finite
differences, then the definitions of k and k 2 should be appropriately changed in all of the
equations above . Also the FFT has a restriction on I, namely that I= 2Px39x5", where p,qand r
are integers. However, there is no restriction on the choice of J.

The complete listing of the FORTRAN code for the solver is given in the Appendix. The

calling sequence for the solver is as follows:

CALL ELLSOL(IMA, IM, M, AE, INIT1, INIT2, DIFF, C1, C2, C3, C4, C5, C6, F1, FO
, WSV, WRK, IX)
where
IMA is the leading dimension of input and output arrays FI and FO.
IM is the longitudinal domain over which the solution is desired.
(IM should be less than or equal to IMA)

JM is the number of grid points from the south pole to the north pole.

AE is the radius of the sphere.

INIT1 is a logical variable, true only the first ime for a given M, JM and AE.

INIT2 is a logical variable, used only when INIT1 is false. It is true whenever the coefficients
of the elliptic equation change (except for C6).

DIFF is a logical variable, true if wavenumber k is based on finite-difference, false otherwise.

C1, C2, C3, C4, C5, C6 are the coefficients of equation (1) and have dimension JM.
C1, C2, C4, and C6 are defined at the grid points j and C3 and C5 are defined at the
midpoints between j and j+1. C6 can change any time. If any other coefficients change,

then INIT2 should be true.

10



Fl is an input array of dimer;sion (IMA,JM) containing the forcing F in the locations I=1,IM .
and J=1,JM.

FOis an output array o_f dimension (IMA,JM) containing the solution ¢ in the locations I=1,IM
and J=1,JM. |

WSV is an array whose dimension is at least [4*IM+9*JM+7]. This array stores some
constants to be used in subsequent calls to ELLSOL. It should not be overwritten unless the
next call to ELLSOL has INIT1 true.

WRK is a work array whose dimension is at least [14 * IM * JM]

IX is an integer array of dimension IM needed for the FFT (it should not be overwritten)
III. Evaluation of the solver

In this section, we present results from some tests to evaluate the solver. Since it is difficult
to find analytical solutions to (1) against which we can compare the numerical solutions, we adopt
the following "prescribed solution” procedure. Under this procedure, we assume a solution apriori
and apply the differential operator on the left hand side of (1) to obtain the forcing F. Then we
obtain the numerical solution for this forcing and compare the results with the original assumed

solution. Here we consider the following simple function for ¢:

¢;,; = 5.0x10* +1.0x10° cos@; cos(2i / I) (34)
where i and j are longitudinal and latitudinal indices, respectively. A contour map of this function
is shown in Fig. 1. The forcing F; ; is computed using a second order accurate finite-difference
operator corresponding to the left hand side of (1). In the following, we consider two cases. In
case 1 we apply the solver to the elliptic equation of BSHB and compare the results with those
obtained from the multigrid solver. In case 2 we apply it to the Poisson equation and compare the

results with those obtained from FISHPAK.

11
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The elliptic equation of BSHB is obtained by setting

¢(0)=G, c,(8)=0.0, c3(8)=G

c@=-2F =00, c®=-la/27F"

where

G=[1+F*"}, and  F=AtQsin0.

Here $=50000 is a mean value, At=3600 s, and Q is the earth's rotation rate. The 2D multigrid
solver of BSHB is used in the Full-Multigrid mode. We use a single V-cycle with one relaxation
sweep both before and after the coarse grid correction and eight relaxation steps on the coarsest
grid. These are identical to those used in BSHB and more details are available in that paper.

We solved the above problem for various resolutions ranging from (IJ) = (48,25) to
(1,)=(768,385). Figures 2a and 2b show the numerical solution for the direct method and the
multigrid method, respectively with (I,1)=(96,49). The solutions appear to be almost identical to
that shown in Fig. 1. However, the accuracy of the solution is revealed in Figs. 3a and 3b which
show the difference between the exact and the numerical solutions for both solvers. Notice that in
Fig. 3a the error is multiplied by a factor of 108 while in Fig. 3b, it is multiplied by a factor of 10.
Thus in this case the direct solver is several orders of magnitude more accurate. Similar results
were also found at other resolutions (not shown). Furthermore, the accuracy of the multigrid
solver did not improve significantly when both the number of V-cycles and the number of
relaxation sweeps were increased. However, we do recognize that the level of accuracy of the
spatial discretization should be the level of accuracy desired for any problem. Nevertheless, an
efficient direct solver is always preferable since its solution is close to machine accuracy.

We next examine the efficiency of the solvers. For this purpose, we present in Fig. 4 the

CPU time (t) taken for 500 calls to the solver on a single processor of the CRAY YMP as a

12



‘ function of the total number (N) of grid points (i.e. IxJ). In Fig. 4a the axes are linear whilein .
Fig. 4b they are logarithmic. The timings are also presented in Table 1. Clearly the direct solver is

faster at all resolutions examined. Also, note that for both solvers, the time (t) is almost a linear

function of the total number of grid points (N).

Table 1: CPU time (t) in seconds for 500 calls to the direct solver, the multigrid solver and the
solver from FISHPAK on a single processor of the CRAY YMP as a function of

resolution.

(48,25) 0.513 2.323 3.14

(72,46) 1.110 - -

(96,49) 1.401 7.008 12.615
(144,91) 4.062 - -
(192,97) 5.253 23.301 53.914
(288,181) 14.464 - -
(384,193) 19.563 85.588 241.579
(576,361) 55.889 - -
(768,385) 77.998 326.955 -

case2

Now we consider the Poisson equation which is obtained by setting ¢, (8) = c3(8)=1 and
C1(8) =c4(8) =c5(0) =c¢(0)=0. It should be pointed out that when c4(6) = 0 we cannot

determine the constant part and thus there is no unique solution. In addition, if the forcing has a

13



global mean componeht, then there is no solution to the problem. Therefore, in our solver we
remove the global mean from the forcing F whenever c(6) =0 . This is equivalent to the
perturbation method of Swarztrauber (1974b).

We used the forcing as in case 1 to compare the numerical solution with the assumed one.
The errors in the numerical solution (not shown) are of the order 10-6 or less. Similar results are
found for other resolutions.

For this case, we compare the efficiency of our direct solver with the direct solver from the
FISHPAK package (Adams et al., 1980). As before, we show the CPU time (t) taken for 500
calls to both solvers as a function of the total number (N) of grid points (Fig. 5). Again, our direct
solver is significantly faster at all resolutions and there is a noticeable divergence between the two
curves as the resolution increases.

We also confirmed that our solver works equally well for a general case in which all of the
coefficients in (1) are nonzero functions of 6. Finally, we repeated each case above by assuming a
prescribed solution made up of random numbers. We found for all cases that the errors were

comparable to those discussed above.

IV. Summary

An efficient, direct solver for the discrete solution of a class of two-dimensional separable
elliptic equations on the sphere has been discussed. It is based on a Fourier decomposition in
longitude and a direct solution of the resulting coupled second order finite-difference equations in
latitude. These equations are solved following the approach of Lindzen and Kuo (1969) and Chao
(1979).

For the elliptic equation of BSHB we find that the direct solver is both more efficient and
accurate than the multigrid solver at all resolutions. For the special case of Poisson's equation we
find, at all resolutions, that the direct solver presented here is more efficient than that available in

FISHPAK (Adams et al.,1980).

14



Thus our solver is both a;:curatc and efficient and general enough that it could be used for .
any separable elliptic equation on the sphere with coefficients independent of longitude. It can also
be applied to limited areas on the sphere if cyclic boundary conditions are invoked in longitude and
if appropriate boundary conditions are used in latitude. It is currently being used in the global
multi-level primitive equation semi-Lagrangian semi-implicit model of Bates et al. (1992) at the
Goddard Laboratory for Atmospheres and in the adjoint model development (Li et al., 1991) at the
Florida State University. While the solver is accurate and flexible, it takes only a few percent of

the CPU time taken by the multi-level model dynamics.
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VII. Appendix

SUBROUTINE ELLSOL(IMA, IM, JM, AE, INIT1, INIT2, DIFF

*, ci, c2, C3, Cc4, C5, C6, FI, FO, WsV, WRK, IX)
C - .
C******i**********i*******'k'k************************t***************i*****
C* *
c* (IMA, JM) is the dimension of the forcing FI (input) and the *
c* solution FO (output). IM is less than or equal to IMA and *
Cc* represents the physical domain (in longitude) over which the *
c* solution is computed. AE is the radius of the sphere. *
c* *
Cc* INIT1, INIT2 and DIFF are logical variables. *
c* When INIT1 is true, the value passed for INIT2 is ignored *
C* 7 *
Cc* C1l, C2,...C6 are arrays of dimension JM containing the coefficients*
Cc* of the elliptic equation. : *
C* *
Cc* WSV, WRK and IX are other miscellaneous work arrays. *
C’k *
c* The dimension of WSV should be at least [4*IM + 9*JM + 7]. *
Cc* This array stores ¢onstants needéd in subsequent calls to ELLSOL. *
c* It should not be overwritten unless INIT1 is true for the *
c* next call to ELLSOL. *
C* *
Cc* The dimension of WRK should be at least [14 * IM*JM]. *
C* *
Cc* The dimension of IX should be at least IM and it should not be *
Cc* overwritten unless INIT1 is true for the next call to ELLSOL. *
C* *
C*************i****i************t*********************t******************'
C

DIMENSION FI(IMA,JM), FO(IMA,JM)

*, Cl(JdM), C2(JM), C3(JM), C4(IM), CS(IM), C6 (JM)

*, Wsv(1l), WRK(1l), IX(IM)
C

LOGICAL INIT1, INIT2, DIFF
(&

ITRG = 3*(IM+2) + 1

IMB2 = IM / 2

IJM = (IMB2-1) * JM

IOMM = IJM*22 + JM

IIJM2 = IJMM + (IM+2)*(JIM-2)
C

CALL DIRSOL(IMA, IM, JM; IMB2, ITRG, AE, INIT1, INIT2, DIFF

*, c1, C2, ¢3, c4, C5, Cc6, FI, FO, IX
C

*, WSV (1), WSV (IM+1), WSV (JM*2+1), WSV(JIJM*3+1)

*, WSV (IJM*4+1), WSV (JIJM*5+1), WSV (IM*6+1), WSV (IM*7+1)

*, WSV (JM*9+1), WSV(JM*9+IMB2+1)}, WSV (JM*9+1IM+1)
C

*, WRK (1), WRK (IJM+1), WRK (IJM*2+1), WRK(IJM*3+1)

*, WRK (IJM*4+1), WRK(IJM*5+1), WRK (IJM*6+1), WRK(IJM*7+1)

*, WRK (IJM*8+1), WRK(IJM*9+1), WRK{(IJM*10+1), WRK(IJM*11l+1)

*, WRK (IJM*12+41) ,WRK(IJM*13+1}, WRK (IJM*14+1), WRK{IJM*15+1)

*, WRK (IJM*16+1) ,WRK(IJM*17+1), WRK(IJM*18+1), WRK (IJM*19+1)

*, WRK(IJM*20+1),WRK(IJM*21+1), WRK(IJM*22+1), WRK{IJMM+1)

*, WRK{(IJM2+1), WRK(1l), WRK (IM+1), WRK (IM*2+1)

*, WRK (JM*3+1), WRK(JIM*4+1))
C

RETURN

END
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SUBROUTI&E DIRSOL (IMA, IM, JM, IMB2, ITRG,

*, cl, C2, C3, C4, C5, Cs,

*, CDS1, CDN1, CDS2, CDN2,

*, WV, WVsQ, TR

*, . AN1, BN1, CN1, DN1, FN1,
*, AN2, BN2, CN2, DN2, FN2,
*, ALl1, AL2, GM1, GM2, BTI1,
*, FM, A, B, AN, BN, CN,

ITRG SHOULD AT LEAST BE 3*({IM+2) + 1
INTEGER FORWARD, BACKWARD

PARAMETER (FORWARD=-1, BACKWARD=1}
PARAMETER (PI=3.1415926535898, TWOPI=PI+PI,

AE, INIT1, INIT2, DIFF

FI, FO, IX
CDC1, CDC2, CDC3, CPH
PN1, ON1, RN1
PN2, QN2, RN2
BT2
DN, FN}

PI102=0.5*PI)

DIMENSION FI(IMA,JM), FO(IMA,JM)

*, C1l(JM), C2(JM), C3(JM), C4(IM), C5(JIM), Ce(JIM)
*, TR{ITRG), IX(IM), WVSQ{IMB2), WV(IMB2)
DIMENSION AN1(IMB2-1,JM), BN1(IMB2-1,JM), CN1(IMB2-1,JM)

*, AN2 (IMB2-1,JM), BN2(IMB2-1,JM}), CN2{(IMB2-1,JM)

*, ON1(IMB2-1,JdM), PN1(IMB2-1,JM), RN1{IMB2-1,JM)

*, QN2 (IMB2-1,JM), PN2(IMB2-1,JM), RN2(IMB2-1,JM)

*, DN1{IMB2-1,JM), DN2(IMB2-1,JM)

*, FN1(IMB2-1,JM), FN2(IMB2-1,JM)

*, AL1(IMB2-1,JM), AL2(IMB2-1,JM)

*, GM1 (IMB2-1,JM), GM2(IMB2-1,JM)

*, BT1(IMB2-1,JM), BT2(IMB2-1,JM)

DIMENSION AN (JM}, BN(JM), CN(JM), DN(JM), FN(JIM)

*, CDN1 (JM), CDS1(JM), CDN2{(JM), CDS2(JM)

*, CDC1(JM), CDC2(JM), CDC3(JM), FM(JIM), CPH(JM, 2)
DIMENSTON A(IM+2,J0M-2), B{(IM*2,JM-2)

LOGICAL INIT1, INIT2, DIFF, FIRST, SETCO

DATA JMM1, JMM2, IMP1, IMP2, LEN/5*0/, AREA/0.0/

DATA FIM, DLM, DPH, RDLM,
DATA FIRST/.FALSE./

SAVE

RDPH, DY, AESQ,

INITIALIZATION ON FIRST CALL

IF (INIT1) THEN

CALL FFTFAX(IM, IX, TR)
JMM1 = JM - 1

JMM2 = JOM - 2

IMP1 = IM + 1

IMP2 = IM + 2

LEN = IMB2 - 1

FIM = 1.0 / FLOAT(IM)
DLM = TWOPI * FIM

DPH = PI / FLOAT(JMM1)
RDLM = 1.0 / DLM

RDPH = 1.0 / DPH
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10

20

30

40

25

26
27

42

+ (J-1)*DPH

DY °~ = AE * DPH

AESQ = AE * AE

DO 10 J=1,JM

TEM = -PIO2

CPH(J,1) = COS(TEM + 0.5*DPH)

CPH(J,2) = COS{TEM)

CONTINUE

CPH(1,2) = 0.0

CPH(JM,2) = 0.0

FIRST = .TRUE.

INIT2 = .TRUE.
ENDIF

IF (INIT2) THEN

DO 20 J=2,JMM1

* *

TEM1 = 1.0 / (CPH(J,2) * 2.0 * DY)
TEM2 = 1.0 / (CPH{J,2) * DY*DY)
CDN1(J) = CS(J) * CPH(J,1) * TEM1
CDS1(J) = C5(J-1) * CPH(J-1,1) * TEM1
CDN2(J) = C3(J)  * CPH(J,1) , * TEM2
CDS2(J) = C3(J-1) * CPH(J-1,1} * TEM2
eDC1(J) = C1(J) / (CPH(J,2) * CPH(J,2) * AESQ)
cDC2(J) = C4(J) / (AE * CPH(J,2))
CDC3(J) = C2(J) / (AE * CPH(J,2) * 2.0 * DY)
CONTINUE
cDC1(1l) = 4.0 * C3(1) / (DY*DY)
CDC1(JM) = 4.0 * C3(JMM1) / (DY*DY)
CDNP = C5(JMM1) * 2.0 / DY
cDsP -C5(1 ) * 2.0 / DY
IF (DIFF) THEN
DO 30 I=1,IMB2
WVSQ(I) = (SIN(0.5*I*DLM) * (RDLM * 2.0))
WV (I) = SIN(I*DLM) * RDLM
CONT INUE
ELSE
DO 40 I=1, IMB2
WVSQ(I) = I * I
Wwv o (I) =1
CONT INUE
ENDIF
ENDIF

Do 25 J=1,JM

IF (C6(J) .NE. 0.0) GO TO 26

CONTINUE

SETC0 = .TRUE.
CALL REMGLM{IMA,
GO TO 27

SETC0 = .FALSE.
CONTINUE

DO 42 J=2,JMM1
FM(J) = 0.0

DO 42" 1=1,IM
FM(J) = FM(J) +
CONTINUE

M, JM, FI,

FI(I,J)
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43
C
45
C
50
C
C
C
C
C
60
C
C
70
C
80
C
C
C
Chét

DO 43 J=2,JMM1
FM(J) = FM(J) * FIM

CONTINUE

DO 45 J=2,JMM1

DO 45 I=1,1IM

A(I,J-1) = FI(I,J) - FM(J)

A{I,J-1) = FI(I,J)

CONTINUE

DO 50 J=1,JMM2

A(IM+1,J) = A(1,J)

A(IM+2,J) = A(2,J)

CONTINUE

CALL RFFTMLT (A,B,TR, IX, 1, IMP2, IM,JMM2, FORWARD)

DO 60 J=2,JMM1

DO 60 I=1,LEN

AN1(I,J) = CDS2(J) - CDS1{J)

BN1(I,J) = -(CDS2(J) + CDN2(J) + WVSQ(I) * CDC1l(J)
+ CDS1{J) - CDN1{(J) - C6(J))

CN1(I,J) = CDN2{(J) + CDN1(J)

AN2(I,J) = CDC3(J) * WV(I)

BN2(I,J) = - CDC2(J) * WV(I)

CN2(I,J) = - CDC3.(J) * WV(I)

DN1(1,J) = A(I+I+1,3-1)

ON1(I,J) = CN2(I,J)

PN1(I,J) = - BN2(I,J)

RN1(I,J) = AN2(I,J)

ON2(I,J) = AN1(I,J)

PN2(I,J) = BN1(I,J)

RN2(I,J) = CN1(I,J)

DN2(I,J) = A{I+I+2,J-1)

CONTINUE

CALL SO20DE(LEN, JM, AN1, BN1, CN1, DN1, AN2, BN2, CN2, DN2

*, ON1, PN1, RN1l, ON2, PN2, RN2, FN1, FN2

' ALl1l, AL2, GM1, GM2, BT1, BT2)

DO 70 J=2,JMM1

DO 70 I=1,LEN
A{(I+I+1,J-1) = FN1(I,bJ)
A(I+I+2,3-1) = FN2(I,J)
CONTINUE

DO 80 J=2,JMM1
AN(J) CDhs2(J) - CDs1(J)
BN (J) -{(CDS2(J) + CDN2(J) + CDS1(J) - CDN1(J)
+ WVSQ(IMB2) * CDC1(J) - Cé6(J))

CN(J) = CDN2(J) + CDN1(J)
DN(J) = A(IMP1,J-1)
CONTINUE

CALL SO1ODE(JM, AN, BN, CN, DN, FN, ALl, BT1)

DO 90 J=2,JMM1
A(IMP1,J-1) = FN(J)

BN (J) = -(AN(J) + CN(J) - C6(J))

BN(J§ = -(CDS2(J) + CDN2(J) + CDS1(J) - CDN1(J) - C6(J))
DN (J) = A(1,J-1)

DN (J) = FM(J)

90 CONTINUE
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92

94

100

110
120

130

*
*

* % * *

*

BN(1) = - (-C6(1) + CDC1{(1) - CDSP)
BN(JM) = - (-C&(JM) + CDC1(JM) + CDNP)
AN(JM) = CDC1(JM) - CDNP

CN{1)} = CDC1(1) + CDsP

DN(1) = FI(1,1)

DN(JM) = FI(1,JM)

CALL SO10D2 (JM, AN, BN, CN, DN, FN, ALl, BT1)

IF (SETCO0) THEN
FLDM = (FN(1) + FN(JM)) * (AREA*CPH(1,1)*0.25)
Do 92 J=2,JMM1
FLDM = FLDM + FN(J) * (CPH(J,2)*AREA)

CONTINUE
DO 94 J=1,JM
FN(J) = FN(J) - FLDM
CONTINUE
ENDIF
DO 100 J=2,JMM1
A(l, J-1) = FN(J)
A(2, J-1) = 0.0
A(IMP2,J-1) = 0.0
CONTINUE

CALL RFFTMLT (A, B, TR, IX, 1, IMP2, IM, JMM2, BACKWARD)

DO 120 J=1,JMM2
DO 110 I=1,IM

FO(I,Jd+1) = A(I,Jd)

FO(I,J+1) = A(I,J) + FN{(J+1)
CONTINUE

CONTINUE

DO 130 I=1,IM

FO(I,1) = FN(1)

FO(I,JM) = FN(JM)

CONTINUE

RETURN

END

SUBROUTINE SO20DE(LEN, JM, AN1, BN1, CN1l, DN1, ANZ,
P ON1, PN1, RN1, QN2, PN2, RN2, FN1,
. AL1, ALZ2, GM1, GM2, BT1, BT2)

DIMENSION AN1(LEN,JM), BN1{(LEN,JM), CN1(LEN,JM)
. AN2 (LEN,JM), BN2(LEN,JM), CN2(LEN,JM)
. ON1 (LEN,JM), PN1(LEN,JM), RN1(LEN,JM)
. ON2 (LEN,JM), PN2(LEN,JM), RN2(LEN,JM)

BN2, CN2, DN2
FN2

DN1 (LEN,JM), DN2(LEN,JM), FN1(LEN,JM), FN2(LEN,JM)

DIMENSION ALl (LEN,JM), AL2(LEN,JM), GM1(LEN,JM), GM2 (LEN, JM)

‘ BT1 (LEN,JM), BT2(LEN,JM)
JMM1 = JM - 1

DO 10 I=1,LEN
AL1(I,1) 0.
AL2(1,1)
BT1(I, 1)
BT2(1,1)
GM1(I,1)
GM2(I,1)

wnw wnn

COOOO
COOOOO

10 CONTINUE
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DO 30 J=2,JMM1
ML =J -1 -

DO 20 I=1,LEN

SAl = AN1(I,J) * AL1(I,JM1) + AN2(I,J) * GM1{(I,JM1l) + BN1(I,J)
SA2 = AN1(I,J) * AL2(I,JM1) + AN2(I,J) * GM2(I,JMl) + BN2(I,J)
SB1 = ON1(I,J) * AL1(I,JM1) + QN2(I,J) * GM1(I,JMl) + PN1(I,J)
SB2 = ON1{(I.J) * AL2(I,JM1) + QN2(I,J) * GM2(I,JM1l) + PN2(I,J)
sD1 = DN1(I,J) - AN1(I,J)} * BT1(I,JM1l) - AN2(I,J) * BT2(I,JM1)
Sb2 = DN2(I,J) - ON1(I,J) * BT1(I,JM1l) - QN2(I,J) * BT2(I,JdM1)
RM = 1.0 / (SA1*SB2 - SB1*SA2)

AL1(I,J) = - RM * (CN1(I,J) * SB2 - RN1(I,J} * SA2)

AL2(I,J) = - RM * (CN2(I,J) * SB2 - RN2(I,J} * SA2)

BT1(I,J) = RM * (SD1 * SB2 - SD2 * SA2)

GM1(I,J) = RM * (CN1(I,J) * SB1 - RN1(I,J} * SAl)

GM2(I,Jd) = RM * (CN2(I,J) * SB1 - RN2(I,J) * SAl)

BT2(1,J) = - RM * (SD1 * SB1 - sSD2 * SAl)

CONTINUE

CONTINUE

DO 40 I=1,LEN

FN1(I,JM) = 0.0

FN2(I,JM) = 0.0

CONTINUE

DO 60 J=JMM1,1, -1

DO 50 I=1,LEN

FN1(I,J) = AL1{I,J)*FN1(I,J+1) + AL2(I,J)*FN2(I,J+1) + BT1{(I,J)
FN2(I,J) = GM1(I,J)*FN1(I,J+1) + GM2(I,J)*FN2(I,J+1) + BT2(I,J)
CONTINUE

CONTINUE

RETURN
END

SUBROUTINE SO1ODE{(JM, AN, BN, CN, DN, FN, AL, BT)
DIMENSION AN(JM), BN(JM), CN(JM), DN(JM), FN(JM)
DIMENSION AL(JM}, BT (JM)

JM1 = JdM - 1

AL(1) = 0.0

BT(1) = 0.0

FN(JM) = 0.0

DO 10 J=2,JMM1

JgM1I =3 -1

SAl = 1.0 / (AN(J) * AL(JM1) + BN(J))
AL(J) = - CN(J) * SAl

BT(J) = (DN(J) - AN(J) * BT(JM1)) * SAl
CONTINUE

DO 20 J=JMM1,1,-1

FN(J) = AL(J)*FN(J+1) + BT(J)

CONTINUE

RETURN

END
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SUBROUTfNE $010D2 (JM, AN, BN, CN, DN, FN, AL, BT)
DIMENSION AN(JM), BN(JM), CN(JM), DN(JM), FN{JM)
DIMENSION AL(JM), BT({JIM)

JMM1 = JM - 1

TéM = 1.0 /-BN(l)

AL(1) - CN(1) * TEM
BT (1) DN(1) * TEM

Do 10 J=2,JMM1

JM1 =J -1

SAl = 1.0 / (AN(J) * AL(JM1) + BN(J)})

AL(J) = - CN(J) * sAl

BT(J) = (DN{(J) - AN(J) * BT (JM1)) * SAl

CONTINUE

FN(JM) = (DN(JM) - AN(JM) *BT(JMM1)) / (BN(JM} + AN (JM) *AL (JMM1) )

Do 20 J=JdMM1,1,-1
FN(J) = AL(J)*FN(J+1) + BT(J)
CONTINUE

RETURN
END

SUBROUTINE REMGLM(IMA, IM, JM, FLD, CPH, FIRST, AREA)
DIMENSION FLD(IMA,JM), CPH(JM,2)

LOGICAL FIRST
DATA JMM1/0/, FIM/0.0/

SAVE

IF (FIRST) THEN
JMM1 =JM - 1
FIM = 1.0 / FLOAT(IM)
AREA = 0.0
DO 10 J=2,JMM1
AREA = AREA + CPH(J,2)
CONTINUE
AREA = 1.0 / (AREA + CPH(1,1) * 0.5)
FIRST = .FALSE.

ENDIF

FLDM = (FLD(1,1) + FLD(1,JM}) * {AREA*CPH(1,1)*0.25)
Do 20 J=2,JMM1

DO 20 I=1,IM

FLDM = FLDM + FLD(I,J) * (CPH(J,2)*AREA*FIM)
CONTINUE

DO 30 I=1,IMA*JM
FLD(I,1) = FLD(I,1) - FLDM
CONTINUE

RETURN
END
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Contour map of the prescribed solution (Eq. 34) to the elliptic equation with (1J) =
(96,49). The contour interval is 300.

Numerical solution in case 1 for (a) the direct solver and (b) the multigrid solver with

(1Y) = (96,49). The contour interval is 300.

As in Fig. 2 except for the difference between the numerical and prescribed solutions.
The contour interval is 1. In (a) the difference is multiplied by a factor of 108 and in

(b) the difference is multiplied by a factor of 10.
CPU time (t) taken for 500 calls to the direct and to the multigrid solvers on a single
processor of the CRAY YMP as a function of the total number (N) of grid points. In

(a) the axes are linear while in (b) the axes are logarithmic.

As in Fig. 4b except for the present and the FISHPAK direct (subroutine HWSSSP)

solvers.
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