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Scattering and radiation analysis of

three-dimensional cavity arrays via a hybrid finite

element method

Jian-Ming Jin and John L. Volakis

Radiation Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

Abstract

A hybrid numerical technique is presented for a characterization

of the scattering and radiation properties of three-dimensional cavity

arrays recessed in a ground plane. The technique combines the finite el-

ement and boundary integral methods and invokes Floquet's represen-
tation to formulate a system of equations for the fields at the apertures
and those inside the cavities. The system is solved via the conjugate

gradient method in conjunction with the fast Fourier transform (FFT)

thus achieving an O(N) storage requirement. By virtue of the finite el-

ement method, the proposed technique is applicable to periodic arrays

comprised of cavities having arbitrary shape and filled with inhomoge-

neous dielectrics. Several numerical results are presented, along with

new measured data, which demonstrate the validity, efficiency and ca-

pability of the technique.



1 Introduction

Recently, a hybrid finite element technique (FE-BI) was proposed for a

characterization of the scattering and radiation properties of several three-

dimensional cavity-backed structures including microstrip patch antennas

and arrays [1]-[3]. The technique combines the finite element method with

the boundary integral equation to formulate a system suitable for solution

via the conjugate or biconjugate gradient method in conjunction with the

fast Fourier transform (FFT). By virtue of the finite element method, the

proposed technique is applicable to complex structures such as those involv-

ing inhomogeneous dielectrics, conducting and resistive patches, feed probes

and impedance loads. Accurate results have already been obtained for scat-

tering and radiation by cavities, slots and microstrip patch antennas and

these have demonstrated the method's capability.

In this paper, we develop the aforementioned finite element-boundary

integral technique for scattering and radiation by infinite cavity arrays. Al-

though, at least in principle, the technique is suitable for this application,
there are new issues which must be addressed. For example, the applica-

tion of Floquet's theorem leads to a system which is non-symmetric. In

addition, the matrix elements are dependent on the incidence angle in the

case of scattering or the scan angle if the array is treated as a radiator.

Consequently, for such a system an iterative solver is preferable over the
usual direct solvers. Another issue addressed in this paper concerns the

approximation of the finite array by a truncated infinite array. This kind

of approximation has been adopted by necessity to make practical use of

the infinite array analysis. However, its validity has not been examined for

three-dimensional arrays and the two-dimensional studies are not conclu-

sive [4]. Herewith we present three-dimensionai comparisons of measured

and calculated patterns which are perhaps the first to provide a measure of

this approximation.

The paper begins with a short description of the standard equivalence

principle for subdividing the exterior and interior computational region. Us-

ing Floquet's theorem the exterior fields are formulated and expressed by

an infinite sum involving the spectral representation of the exterior region's

Green's function. This gives a set of discrete equations for the fields at the

cavity interface. The interior fields are formulated via the finite element

method leading to a sparse system of equations. By invoking tangential

field continuity, this system is combined with the discrete set of equations

developed for the exterior region. The final system is solved via the conju-



gategradientmethodand certainrestructuringis carriedout to achievean
O(N) memory demand. Finally, a number of numerical computations are

presented which demonstrate the capability and accuracy of the technique.

2 Formulation

The geometry under consideration is illustrated in Fig. 1, where a peri-

odic array of cavities is recessed in an infinite ground plane. Each cavity

is identical but may be of arbitrary shape and filled with inhomogeneous

material. Also, the entire geometry may be covered with a thin dielectric

layer. For scattering computations the excitation is assumed to be a plane

wave and particular attention is given to the case of transverse electric (TE)

and transverse magnetic (TM) incidences. For the radiation problem, the

assumed excitation is a distributed current or current filament placed inside

the cavities.

A standard approach to formulate the scattering and radiation asso-

ciated with the subject array is to employ the equivalence principle and

close each cavity aperture with a perfect conductor. Above the aperture,

an equivalent magnetic current M(x, y) = E(x, y) × $ is introduced and by

invoking tangential electric field continuity across the aperture, the appropri-

ate equivalent sources for the fields in the cavity region are -M(x, y) placed

just below the aperture. To determine the equivalent currents M(x, y), the

fields in each region are represented appropriately and by enforcing tangen-

tial magnetic field continuity, a set of equations are derived for the solution

of M(x, y).

We begin the formulation by first invoking Floquet's representation to

express the magnetic current over the cavity apertures by the Fourier sum

oo

M(x,y)= _ _IpqCpq(x,y) (1)
p,q------oo

where

Mpq-- - TxT_I ffsM(x,y)¢;q(x,y)dxdy (2)

Cpq(z,y) = e-/(k'px+k_q_). (3)

In this, T_ and T_ denote the periodicities of the structure in the x and y
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directions,respectively,5' is the aperture of a unit cell and

2r i 2r i

k,p = _--_p + kx, kuq = _vvq + ku

with k_ = kosin9 icos¢i and k_ = kosin8 isin¢i. Also, (8 i,¢i) are the

incidence or scan angles and ko = 2rr/A is the free-space wavenumber. On

invoking image theory, the field produced by M(z, y) in the upper half space
can now be written as

ZZH'C(r) = -2jkoYo 8 (r, r'). M(r') doe' (4)

where Gdenotes the pertinent dyadic Green's function and Zo = 1/Yo is the

free space intrinsic impedance. Assuming that _ can be written in the form

1 /_o /_:_(k,,kuleJk_(x__,)ejk,(u_u,)f(zldk, dku, (5)

where f(z) is a function which reduces to 1 at z = 0, a substitution of this

expression along with (1) into (4) yields

HSC(r)=-2jkoYo __, G(k_,,k_q)._-I,qeJ(k_,x+k',v)f(z). (6)
p,q------c_

Since HSC(r) represents only the magnetic field due to the equivalent mag-

netic sources on the ground plane, the total field in the upper half space is

given by

H(r) = HinC(r) + Href(r) + I-pC(r) (7)

where Hinc is that generated by external sources (incident field) and H ref is

the corresponding reflected field by the ground plane without the aperture.

Both are nonzero only for scattering computations.

We now consider the fields inside the cavity. In accordance with the

variational principle, these must satisfy the variational equation [1]-[3]

,F(E) = 0 (8)

where the functional F is given by

+ fffv [j,oZo,"' . E- aMi" . (V × w)] dV

-jkoZo [[ M. H dS. (9)
ddS



Here, V represents the cavity volume and (er, Pr) denote the relative permit-

tivity and permeability of the material filling the cavity. Also, (jint, Mint)

are the sources within the cavity and are nonzero only when the cavity

houses an antenna configuration. The given functional is stationary about

E and was derived on the assumption that the cavity's aperture is closed

with a perfect conductor and in the presence of the magnetic current sheet

placed just below the closed aperture.

To solve for the electric field via (8), it is necessary to replace the mag-

netic field H in terms of the electric field or the magnetic current M = E × 5.

Since a knowledge of H is required only over the boundary/aperture sur-

face S, Maxwell's equations cannot be used and this makes it necessary to

introduce a different/independent condition relating E and H on S. Noting

that tangential H must be continuous across the aperture, H in (9) can

be replaced by the exterior magnetic field (7) for r E S. Doing so, the

functional (9) can be written as

F(E)
1

+//L . -!M,.,. x
- 2k_/_s M" fi G(k,p, kvq ) • _'lmeJ(k='*+k"Y)dS

p,q=--rx_

- 2jkoZo/fs M- Hinc dS. (10)

Since M = E x 5, this functional actually involves only the electric field and

can therefore be discretized via the finite element method for a solution of

the cavity and aperture fields via (8).

3 Discretization and solution

The finite element discretization of the first, second and last integrals of (10)

are straightforward once the basis functions are chosen, as described in [2].
We will therefore concentrate on the discretization of the third integral

co

' =ffsM. __, _'(k,_p, kvq). _'I_,qe "i(k=p=+k''_) doe. (11)
p,q=-oo

We first divide the region occupied by the periodic cell into small rectangles

of dimension Ax x Ay. Within each subdivision, the equivalent current may



thenbeexpandedusingrooftopbasisfunctionsas

M/2-1 N/2- I

Mx(x,y)= 57 __,
rn=-M/2 n=-N[2

M/2-I N/2-1

57 Z
rn=-M/2 n=-N/2

Mxm.Am+i/2(z)II.(y) (12)

Mum.IIrn(X) A.+I/2(Y) (13)

where

1- Ix - mAxllAx, Ix - mAxl < Ax (14)Am(x) = 0, Ix- rnAzl > Az

1, Ix- rnAzl < Axl2 (15)n,,,(x) = O, Ix - mAxl > Az/2.

In the above, M and N denote the number of cells along the x and y

directions, respectively, and M_,,_n and Mumn are the unknown constant
coefficients of the expansion. Substituting these into (11), it is not difficult

to show that I can be written as

P,q

(16)

where

M_pq

M_pq

- MN1 sinc2(P_)sinc(__)e_jV,,qM

M/2-I N/2-1

57 M:,,,.,,_e-i(2'_I'''''IM+i'q'''IN) (17)
m=-M/2 n=-N/2

- MN1 sinc(P__)sinc2(_)e_jq,./N

M/2-1 N/2-1

_ M,.._e -j(2"p'mlM+l'_q'''lN) (18)
m=-M/2 n=-N/2

with p' = p + k_T_12_and q' = q + k_T_12_.
To construct the system implied by (8), it is necessary to differentiate F

with respect to the field expansion coefficients and set the result to zero. For

each coefficient, a single equation is obtained to make-up the overall system.

The equations resulting upon differentiation with respect to the interior



cavity fieldshavebeendevelopedin [1]-[3]. As part of this process,when
differentiatingwith respectto the aperturefieldsweencounterderivatives
of I and from (16) these are found to be

OI

i) Mx st

OI

OMyst

(MN)2 _p,q Gzz(kxp, kyq)sinc4 (P-_) sinc2 (_ -)

× Z M_mne-J(27rp'm/M+2rq'n/N)eJ(2rP's/M+2xq't/N)

lrrl. t n

+ (My) 2 _ G_v(k_v, k_,q) sine a sinc a
P,q

x Z M_,nn e-j(2rp'm/M+2"q'n/N) eJ(2rP's/M+2_rqq/N)
lr_n

(MN)2 _p,q S_(k:_,,k_,)sinc3 (P--_) sinca (_'_) e-J'_("/M-q'/N)

X Z Mxmne-J(27rp'm/M+2_rq'n/N)eJ(2rP's/M+2rq't/N)

lrD. i FI,

+ (My)-------_ _ G_(kxp, k_q) sine2 sine 4
P,q

× Z MY mne-j(2rp'mlM+2rq'n/N)ej(27rp's/M+2rq't/Nl" (20)
m_n

ejr(p'/M-q'/N)

(19)

The resulting system can be solved on imposing the boundary condition at

the cavity's metallic walls which amounts to setting the tangential electric

fields to zero at those walls. One of several solution algorithms can be used.

However, since some of the matrix elements are in terms of the incidence or

scan angles (see definitions of kxv and kyv), direct solution methods such as
the Gaussian elimination or LU decomposition methods are unattractive.

This makes iterative solvers more suitable and we will specifically employ

the conjugate gradient method.

In implementing the conjugate gradient algorithm, one needs to compute

matrix-vector products which involve the computation of (19) and (20). This

can be efficiently accomplished via the FFT and without a need to generate

the associated full submatrix. With this goal in mind, we rewrite (19) and

(20) as

OI T_:T_ M/2-1 N/2-1

OM_:,tf_t- (MN)2 _ __, A-xx(kxv",kyq '')
p"=-M/2 q"=-N/2



OI

OMua

M/2-1 N/2-1

× Z Z Mzmnfmne-J2r(f'm/M+q"n/N)

m=-M/2 n=-N/2

M/2-1

M/2 - I N/2-1

p"=-M/2 q"=- N/2

N/2-1

_, M_.,,,I.,,,e -i2'_p''r_/M+q'''/N)
m=-M/2 n=-N/2

T.Ty M/2-1 N/2-1

(MN)2 pn=-M/2 q"=-N/2

M/2-1 N/2-1

× }2
m=-M/2 n=-N]2

M/2-1

M/2-1 N/2-1

p"=- M/2 q"=-N/2

N/2-1

llft- f -j2_r(p"m/M+q"n/N)
L.., *'_ yrrtn j tr_n c

m=-M/2 n=-N/2

where finn = e-J(kLrnA*+k_nav) and

Axx(kxp,,,kyq,') =

Axv(k_:p,,,, kw,, ) =

7,y_(k_p,,,,kvq,,,) =

Ayy(kxp,,, , kvq,,,) =

with pm = p. + uM and qm

(21)

(22)

x eJ'r(P'" lM-q_ ''IN) (24)

Ovx(k_:p,,,,kw,,)sinc3 (p_'r)sinc a (q_'r)

× e -jr(p''' /M-q''/N) (25)

Gvv(k-p '', kw,') sinc 2 sine 4

(26)

= q"+ vN. In accordance with the definition

Z Ozx(kxP'"' kvq"') sinc4 sines

1_,1,'_-- 00

(23)

a_(k_v,,, k_e,,)_inc_ (P@')_,n_ _ (_-_-)
lg st/_-_ --CO



of the discrete Fourier transformation, (21) and (22) can be symbolically

written as

= -'M'N_T_Ty__, {A_x(kxp,,,k_q,,)o.T {M,:,n,_.fm,_}

+ Ax_(kxp",k_q,,)o.T {Myrnnfrnn}} (27)

= --M--_.rT"T_-1 {_i,,(k,,,,, k,q,,) o .r {Mx,,,,I,,,,,}

+ _iuu(k::p,,,kyq,,)o :F{Murnnfm,}} (28)

where _ and F -1 denote forward and inverse Fourier transformation and

the symbol o implies the Hadamard product. This result demonstrates the
convolutional form of the boundary integral and is essential in retaining an

O(N) memory requirement for the solution algorithm. Because of (27) and

(28), the generation of the full submatrix for the aperture fields is eliminated.

Details relating to the implementation of the conjugate gradient algorithm

in conjunction with the FFT operations required in (27) and (28) can be

found in the literature [5].

4 Numerical results

The formulation described above has been implemented and tested for sev-

eral scattering and antenna geometries. In the following, we present some
results which demonstrate the validity and capability of the method. By

practical necessity, all of the computed scattering patterns will be for a fi-

nite size array. They were obtained by multiplying the scattering pattern

for a single unit cell of the infinite array with the standard array factor.

First, we consider a 21 x 21 array of rectangular cavities of size 0.9,_ x

0.4,k x 0.1)_. The cavities are 1,_ apart in the x direction and 0.5,_ apart in

the y direction. The approximate backscatter RCS for this finite array is

given in Fig. 2 and is compared with results obtained via the so-called mode

matching technique [6]. Both RCS patterns are virtually the same, but

this only validates the infinite array solution since the finite array pattern

computed via the mode matching technique was also obtained from a similar

approximation of the infinite array solution.

To validate the approximate finite array solution, it is necessary to com-

pare our results with an exact solution which is based directly on the finite

array model. No such results are available and thus for this purpose, a 5 x 5



arraywasmanufacturedconsistingof 3 cm × 3 cm × 0.45 cm cavities placed

4 cm apart from each other in both the z and y directions. This array was

mounted on a diamond-shaped low cross section body and the backscatter

RCS was measured as a function of incidence angle in the principal plane

perpendicular to the structure for both E0 and E¢ polarizations. Measure-

ments were collected at several X-band frequencies and in all cases a good

agreement was observed between theory and experiment. A typical compar-

ison is given in Fig. 3 at 9.1 GHz and we remark that no measured data are

displayed near broadside and grazing due to the obvious interference from

the test platform.

In addition to scattering computations, the proposed method can also

be employed for the analysis of a periodic microstrip patch array with each

radiating element situated in the cavity. The microstrip patch array in the

absence of cavities, i.e., on an infinite substrate, has, of course, been studied

extensively [7], [8]. However, it has been proposed [9] to place metal walls

between the radiating elements to reduce mutual coupling which in turn

could cause severe mismatch and blindness. Aberle [10] applied this idea

to microstrip patch arrays using a modal technique, specifically developed

for a metal circular cavity and uniform filling. By virtue of the finite ele-

ment method, the presented technique allows much more flexibility in cavity

shape and fil/Jng. While an extensive investigation of this problem is beyond

the scope of this paper, here we present two examples which illustrate the

method's capability. For this purpose, let us consider the array of cavity-

backed patches illustrated in Fig. 4. In the first example, we assume that

a 0.3A x 0.3A rectangular patch is placed at the aperture center of a cavity

0.45A x 0.45A x 0.02A in size and filled with a dielectric having er = 2.8

(the periodicity of the cavity array is one half of a wavelength in either

directions). The computed active input resistance and scanning reflection

coefficient for this array are displayed in Fig. 5 as a function of scan angle. In

the second example, we assume that a 1.8 cm × 1.8 cm rectangular patch is

placed at the aperture center of a cavity 3.3 cm × 3.3 cm × 0.318 cm in size

and filled with a dielectric having er = 2.33 (the array's periodicity is now

3.6 cm in either direction). The calculated scanning reflection coefficient for

this array at 4.9 GHz is shown in Fig. 6. It is clear from the pattern in Fig. 6

that nearly total scan blindness occurs at 6 = 43.8 ° in the E-plane but no

blindness is observed in the H-plane. Note that the blindness angle can be

predetermined from grating theory and for the uncoated array it occurs only

when Tx or Ty is greater than one half of a wavelength. When the array is

coated with a dielectric layer, additional blindness angles may occur which

10



canbe also predetermined from surface wave theory [7].

5 Conclusions

In this paper, we presented a hybrid numerical method for scattering and

radiation analysis of a three-dimensional cavity array recessed in a ground

plane. The solution method combined the finite element and the boundary

integral formulations along with Floquet's field representation to generate
a matrix system for the cavity and aperture fields in a periodic cell. This

system was solved via the conjugate gradient method in conjuction with

the FFT for an efficient evaluation of the required matrix-vector products.

Numerical results were presented to demonstrate the validity, accuracy and

capability of the method and these included backscatter RCS patterns, input

impedance and scanning reflection coefficient computations for microstrip

patch arrays.

Appendix: Dyadic Green's functions

To implement the formulation described in the paper, we need explicit ex-

pressions for the dyadic Green's function in the spectral domain. When the

ground plane is uncoated, these are given by

_**(k.,k,) = (k_,- k_)/(2jk.) (29)

Gy_(k_:,ku) = (k_)- k2v)/(2jkz) (30)

G:_v(k_:,ku) = Gxu(kx,ku) = -k::ku/(2jkz) (31)

where kz = Ck02 - k_ - k_. For a coated ground plane, the required expres-
sions are

= _-_ _ k_r_)/(2k_k_ _) (32)
2.2 2 2_,(k_,k_) = (_.kok_r,- kz,Gr_)/(2kgk_,__) (33)

O_(k.,k_) = _. = -k.k_ (k_,r: + _kgr,)/(2k_kz,_=) (34)

where

e,k,2 sin kzld - jk,l cos k,1 d
F, = (35)

e_kz2 cos k_ld + jk_l sin kzld

k_2 cos k.ld + jk,l sin kzld
F2 = (36)

kz2 sin k_ld - jkzl cos k_ld

11



kz2, = erko2 -/32, kz22 = k_ -/32, f12 = kx2 + k 2 and d is the thickness of the

dielectric layer.
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Figure captions

Problem geometry.

Backscatter RCS aa0 of a 21×21 array of rectangular cavities in a

ground plane. For this computation Tx = 15, Ty = 0.55, the cavity
size is 0.95 x 0.45 x 0.15, and ¢ = 20 °.

Fig. 3. Principal backscatter RCS pattern of the 5 x 5 cavity array. For this

computation T_ = T_ = 4 cm, the cavity size is 3 cm × 3 cm x 0.45

cm and f=9.1GHz. (a) E0 pattern. (b) E¢ pattern.

Fig. 4. Array of patches residing on the surface of individual rectangular cav-

ities.

Fig. 5. Scanning reflection coefficient and active resistance as a function of

scan angle for an infinite cavity-backed patch array. For this compu-

tation Tx = T_ = 0.55, the cavity size is 0.455 x 0.455 x 0.025 and the

patch size is 0.35 x 0.35. The cavity is filled with a dielectric having

er = 2.8.

Fig. 6. Scanning reflection coefficient as a function of scan angle for an infinite

cavity-backed patch array. For this computation Tz = T_ = 3.6 cm,

the cavity size is 3.3 cm x 3.3 cm x 0.318 cm and the patch size is 1.8

cm x 1.8 cm. The cavity is filled with a dielectric having er = 2.33.
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Fig. 1 Problem geometry.
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pattern. (b) E_ pattern. 18
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Fig. 4 Array of patches residing on the surface of individual rectangular cavities.
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Fig. 5 Scanning reflectioncoefficientand activeresistanceas a functionof scan angle

foran infinitecavity-backedpatch array.For thiscomputation T= = T_ = 0.5A,

the cavitysizeis0.45A x 0.45A × 0.02A and the patch sizeis0.3A× 0.3A.The cavity

isfilledwith a dielectrichaving E_= 2.8.
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Fig. 6 Scanning reflection coefficient as a function of scan angle for an infinite cavity-

backed patch array. For this computation % = % = 3.6 cm, the cavity size is 3.3

cmx 3.3 cm × 0.318 cm and the patch size is 1.8 cm × 1.8 era. The cavity is filled

with a dielectric having _, = 2.33.
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