A Study of the Control Problem of the Shoot Side Environment Delivery System of a Closed Crop Growth Research Chamber

C. C. Blackwell and A. L. Blackwell, The University of Texas at Arlington, Arlington, Texas

June 1992

n/Sn

National Aeronautics and Space Administration

CONTENTS

CONTENTS iii
LIST OF FIGURES AND TABLES vi
ABBREVIATIONS, ACRONYMS, DEFINITIONS, AND SYMBOLS vii
1-INTRODUCTION 1
1.1 - Organization of the Report 4
2 - DESCRIPTION OF THE SHOOT ENVIRONMENT DELIVERYSYSTEM4
3-PERFORMANCE AND PHYSICAL CONFIGURATION REQUIREMENTS 7
4 - PURPOSE OF THE MODEL 8
5 - THE MATHEMATICAL MODEL OF THE CROP SHOOT ENVIRONMENT DELIVERY SYSTEM 9
5.1 - SUMMARY OF THE PHASES OF THE MODEL GENERATION PROCEDURE 10
5.2-THE MODELING PROCESSES 12
5.3-THE MODELING SYSTEM 15
5.4 - THE PRIMITIVE EQUATIONS 16
5.5 - THE MODELED SCENARIO 41
CONTENTS (Continued)
5.6 - NOMINAL VALUES OF THE POINT VARIABLES AND
THE PATH VARIABLES 42
5.7-THE CONDENSED PRIMITIVE EQUATIONS 46
5.8 - THE STATE VARIABLE FORM OF THE LINEARIZED MATHEMATICAL MODEL 50
6 - SOME PROPERTIES OF THE LINEARIZED STATE VARIABLE MODEL 53
6.1-A REAL JORDAN CANONICAL FORM OF THE LINEAR TIME INVARIANT STATE VARIABLE
REPRESENTATION 54
7 - AN ELEMENTARY CONTROL STUDY 63
8-CONCLUUDING REMARKS 71
ACKNOWLEDGEMENTS 72
REFERENCES 72
APPENDICES 74
A1. A formal symbology and structure for generating the mathematicalmodel of mixed energy systems; A. L. Blackwell and C. C. Blackwell.1990. A modeling system for control of the thermal and fluid dynamicsof the NASA CELSS Crop Growth Research Chamber, SAETransactions: J. Aerospace, 90(1):1073-1089.A1.1

CONTENTS (Continued)
A2. A brief summary of some of the results obtained in the study; A. L. Blackwell and C. C. Blackwell. 1990. Development of a model for control of the NASA CELSS Crop Growth Research Chamber. Proceedings of the 1990 American Control Conference. San Diego, California, USA 23-25 May, 3:2113-2114.A2.1
A3. The linear state variable representation coefficient matrices. A3.1

LIST OF FIGURES AND TABLES

FIGURES

Figure 1. Diagram of a CELSS 2
Figure 2. Diagram of the Crop Shoot Side Environment Delivery System: overall system visualization emphasized 5
Figure 3. Diagram of the Crop Shoot Side Environment Delivery System: visualization needed for model synthesis emphasized 6
Figure 4. The fluid flow portion of the CSSEDS modeling system 13
Figure 5. The thermal portion of the CSSEDS modeling system 14
TABLES
Table 1. Assignment of the Perturbation Primitive Variables to the Fundamental Variables. 47
Table 2. Assignment of the Fundamental Variables to the Perturbation Primitive Variables. 48

ABBREVIATIONS, ACRONYMS, DEFINITIONS, AND SYMBOLS

ABBREVIATIONS AND ACRONYMS
AC/HS - Airflow cooling/heating system.
CELSS - Controlled ecological life support system.
CGC - Crop growth chamber.
CGRC - Crop growth research chamber.
CJEM - Complex Jordan eigenvalue matrix.
CJMM - Complex Jordan modal matrix.
CSSEDS - Crop Shoot Side Environmental Delivery System.
GIMC - Gas injection and mixing chamber.
JCT - Jordan canonical transformation.
MMA\&S - Mathematical modeling, analysis, and simulation.
RJCT - Real Jordan canonical transformation.
RJEM - Real Jordan eigenvalue matrix.
RJMM - Real Jordan modal matrix.
SVD - the Singular Value Decomposition.
DEFINITIONS
$(\cdot) \triangleq \mathrm{d}(\cdot) / \mathrm{dt}$
$\partial f / \partial x$ the partial derivative of f with respect to x

SYMBOLS

1 state coefficient matrix of the linear state variable format model of a system
$A_{1}, \cdots A_{5}$
A_{i}

A
A_{pf}
Av
air
${ }_{B}$
$b_{1} \quad$ rotational bearing linear drag coefficient ($\mathrm{N}-\mathrm{m} /(\mathrm{rad} / \mathrm{sec})$)
b_{2}
$B_{1}, \cdots B_{4} \quad$ coefficient matrices of linear model secondary equations
e
$c_{p_{i}}$
$\begin{aligned} c_{v_{i}} & \text { molar specific heat for a constant } \\ & \text { flowing in volume } i\left(\text { (Joules } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)\end{aligned}$
$\mathrm{Cc}_{\mathrm{j}, \mathrm{k}} \quad$ molar concentration of constituent k at the point j
CO_{2} carbon dioxide
$d(t) \quad$ the vector of modeled system disturbances
${ }^{\mathrm{d}} \mathrm{PPF}_{\text {ref }}$ distance from lamps at which PPF is at the required value (m)
$\mathrm{d}_{\mathrm{pf}} \quad$ thickness of plant root chamber (m)

SYMBOLS (continued)

ฐ

D
ε
f_{i}
g_{c}
$h_{c i}$
h_{i}

K
K

LAI
$f_{\text {fan }}(\cdot) \quad$ fan total pressure increment function
$\mathrm{h}_{\text {canopy }} \quad$ height of the plant canopy (m)
$h_{\text {chamber }} \quad$ height of the growth chamber (m)
$h_{j, k} \quad$ specific enthalpy of the $\mathbf{k}^{\text {th }}$ constituent at point j (Joules mol ${ }^{-1}$)
$L_{i} \quad$ effective duct length of path i (m)
state variable matrix coefficient of the secondary variable output equation of the linear state variable format model of a system duct diameter (m) control variable matrix coefficient of the secondary variable output equation of the linear state variable format model of a system rate of energy accumulation at point i (Watts) disturbance variable matrix coefficient of the secondary variable output equation of the linear state variable format model of a system Moody friction factor of the fluid flowing on the $i^{t h}$ path units resolution constant for Newton's mass acceleration law (Newton-meters $/ \mathrm{kg}-\mathrm{sec}^{2}$) convective heat transfer coefficient on path i (Watts $\mathrm{m}^{-2} \mathrm{~K}^{-1}$) local static enthalpy transport rate in path i (Watts) total enthalpy transport rate in path i (Watts) moment of inertia of motor and impeller ($\mathrm{kg} \mathrm{m}^{2}$) thermal conductivity of air mixture at point j (Watts/($\left.\mathrm{m}^{2}-\mathrm{K}\right)$) pressure loss coefficient for path i (unitless) pressure loss coefficient for path i (Newtons $/ \mathrm{m}^{2} /(\text { mole } / \mathrm{sec})^{2}$) leaf area index (actual leaf area/crop growth platform area)

SYMBOLS (continued)

$\mathrm{MW}_{\mathrm{j}} \quad$ molecular weight of the air mixture at point $\mathrm{j}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$
$n_{i} \quad$ total molar flow rate in path $i\left(\right.$ moles sec ${ }^{-1}$)
$n_{i, k} \quad$ molar flow rate of constituent k in path $i\left(\right.$ moles sec $\left.^{-1}\right)$
$N_{j} \quad$ total molar presence of material in volume marked by j
$N_{j, k} \quad$ moles of constituent k contained in volume marked by point j
$\mathrm{Nu}_{L, \mathrm{i}} \quad$ Nusselt number based on length L_{i}
$\mathrm{P}_{1} \dot{\mathrm{~V}}_{g}$ power expended in the upper chamber by the system when glove intrusion is changed (Watts)
$\mathrm{P}_{\mathrm{j}} \quad$ static pressure at point $\mathrm{j}(\mathrm{Pa})$
$\mathrm{P}_{\mathrm{j}}{ }^{\circ} \quad$ total pressure at point $\mathrm{j}(\mathrm{Pa})$
PPF photosynthetic photon flux ($\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{sec}^{-1}$)
$\mathrm{Pa} \quad$ Pascals (Newtons $/ \mathrm{m}^{-2}$)
$P_{r} \quad$ Prandtl number
$\dot{\mathrm{Q}} \quad$ heat flow rate (Watts)
resp respiration
$\mathrm{R} \quad$ universal gas constant (Joules $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
$\operatorname{Re}_{L j} \quad$ Reynolds' number based on length of the $\mathrm{j}^{\text {th }}$ path (unitless)
$\mathrm{SH}_{j} \quad$ specific humidity at point j (moles water vapor/mole dry air)
t time (seconds)
$\mathrm{T}_{j} \quad$ temperature at point j (K)
$u(t) \quad$ the vector of system control variables
$\mathrm{U}_{\mathrm{i}} \quad$ overall heat transfer coefficient on the $\mathrm{i}^{\text {th }}$ path (Joules $\mathrm{m}^{-2} \mathrm{~K}^{-1}$)
V_{i} speed of airflow in path i (meters/second)
$\dot{\mathrm{V}}_{g}$ glove port volume change rate $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$

SYMBOLS (continued)
$V_{j} \quad$ value of the volume marked as point $j\left(\mathrm{~m}^{3}\right)$
$\dot{\mathrm{W}} \quad$ rate of doing work. Power (Watts)
$x(t) \quad$ the vector of system dynamically independent (state) variables
$\delta(\cdot) \quad$ denotation of a variation of (.) from some (specified) reference value
$\eta(\mathrm{t})$ the vector of primary primitive variables (modeled system dynamically determined variables)
$\eta_{0} \quad$ overall efficiency of the air mover
$\mu_{i} \quad$ absolute viscosity of the air at point $\mathrm{i}\left(\left(\right.\right.$ Newtons $\left./ \mathrm{m}^{2}\right) /((\mathrm{m} / \mathrm{s}) / \mathrm{m})$
$\nu \quad$ light frequency (Hz)
$\rho_{j} \quad$ air density at point j (moles $/ \mathrm{m}^{3}$)
$\rho_{m, j} \quad$ mass density of air at point $\mathrm{j}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\sigma(\mathrm{t}) \quad$ the vector of secondary primitive variables (modeled system algebraically determined variables)
torque (Newton-meters).
torque exerted on the motor rotor - fan rotor unit (Newton-meters)
angular speed of the motor rotor - blower rotor unit; inertial coordinates (radians/second)
χ_{i} by-pass fraction of path i : the fraction of the flow in path i which is diverted to flow around the heat exchanger which is in one of the following flow paths.

1 - INTRODUCTION

It is widely understood that the use of mathematical modeling, analysis, and simulation (MMA\&S), when used wisely, is of great value as a means to gain early insights into the nature of a proposed engineering system and to enhance the probability of anticipating problem areas early in the program. It is also now widely understood that MMA\&S, when properly integrated into a system development program, can result in a system development cost which is orders of magnitude less expensive than the cost of development via the once traditional strategy of rushing through the preliminary design in an ad lib fashion to the early fabrication of the physical system, testing, changing design, rebuilding, retesting, etc. A combination of MMA\&S, design, fabrication, and testing will minimize total system development cost. Systems control is an area of one of the earliest applications of MMA\&S, possibly because of the subtle and often counter-intuitive nature of the dynamic stability problem. Results have been extraordinarily successful in many cases.

The Controlled Ecological Life Support System (CELSS) concept presents a prospective application of this system development strategy. It is interdisciplinary in its scientific and technological span and, of necessity, contains dynamic processes of wide diversity of physical origin. Such a system would contain at least a crop growth subsystem, a personnel subsystem, a waste treatment subsystem (Figure 1), and a management, automation, and control subsystem. Systems characterized by
this level of complexity and diversity almost always have the potential for counterintuitive behavior which, at best, results in unacceptable performance of the controlled system, and, at worst, results in self-destructive behavior when improperly chosen feedback control is imposed on the system.

Figure 1. Schematic showing the primary functional subsystems of a CELSS. Data acquisition, data processing, and control subsystems are not shown.

The Crop Growth Research Chamber (CGRC) project, an element of the CELSS program, can itself be profitably subjected to the MMA\&S treatment. (As pointed out earlier, CELSS must contain a crop growth subsystem, but its required envelope of operating conditions is much smaller than that of a CGRC.) The CGRC is intended to be a precision research apparatus to support research in crop growth science and technology and must provide a precisely controlled environment for this purpose. The performance requirements include
providing satisfactory (prescribed) time histories of fluid flows, concentrations of gases and liquids, temperatures, and pressures at designated points within the CGRC system, a scenario which is referred to as the multi-input, multi-output tracking problem in the field of systems control. Even a subsystem of a CGRC, such as the shoot side environmental control system, is sufficiently complex to present a challenging but clearly tractable and almost ideal subject for MMA\&S attention.

The development of a system to control the environmental conditions within the shoot side chamber of the CGRC involves (1) the selection of component devices (i.e. actuators) which will affect the environmental variables that are to be controlled, (2) the selection of component devices which will provide suitable measurements of the environmental variables (i.e. measurement instruments), and (3) the development of control algorithms which utilize the outputs of the measurement instruments to provide the necessary combinations and time sequencing of inputs to the actuators so that the required performance characteristics of the environmental variables within the CGRC are met.

The process of control system synthesis almost always involves a familiarization process, and the familiarization process almost always involves a process of starting with great but meaningful simplifications and moving in some rational sequence of stages to a stage in which sufficient complexity and detail is addressed. The conscious pursuit of this strategy and what it implies is apparently not generally intuitive.

The purpose of this report is to present the results of the authors' initial examination of the control problem related to the provision of the required
environment of the plant shoots of a hypothetical CGRC configuration. This configuration was thought to be consistent with the requirements of a CGRC but not expected to be the final configuration. Figure 2 is a minimally annotated schematic representation of the object of study, and is provided to help the reader gain insights into the relative positions of the major components and their sequence in the air flowstream.

1.1 ORGANIZATION OF THE REPORT

In the sequel, we describe the crop shoot side environmental delivery system (CSSEDS), define the specific purpose of the model, characterize the model in terms of the processes of which it is composed and how they interact, present the natural equations in both linear and nonlinear forms, extract the state variable representation of the model, present a canonical form of the state variable form, and present the results of a cursory study of the problem of choosing feedback control gains so that one of the unstable modes of the system is replaced by a stable mode.

2 - DESCRIPTION OF THE SHOOT ENVIRONMENT DELIVERY SYSTEM

Figure 3 is also a representation of the CSSEDS but is configured to be very useful to the modeling process and displays much more detail than does Figure 2. In Figure 3, large circled numbers indicate points (nodes) at which it is anticipated that the potential variables are important to the control and performance problem, and small numbers beside arrows with

Figure 2. Diagram of the crop shoot side environment delivery system. Relative position of primary functional subsystems and fluid flow paths are emphasized.
one-sided heads indicate flow paths for which it is anticipated that the flow variables will have similar importance. The function of the components of the CSSEDS will be explained by tracing the airflow clockwise around the circuit beginning with its entrance into the upper chamber. The plants receive radiant energy from a light source above (and external to) the chamber after it emerges from an electromagnetic radiation filter which removes most of the long-wave (IR) radiation from the spectrum. Water and nutrients are supplied to the roots by means of a nutrient delivery system that is materially isolated from the shoot side environment. The flow path for the air entering the chamber is assumed to be designed to assure that uniform conditions exist in the shoot side chamber.

Air enters near the top of the upper chamber and is thoroughly mixed with the air in the upper portion of the chamber. As the air moves from the upper chamber inlet to its exit, gaseous exchange of carbon dioxide, water vapor and
oxygen occurs between the crop canopy and the atmosphere. The resulting mixture exits the upper chamber via a flow path provided between the chamber walls and the plant support surface into the lower chamber and then into the ducting via an entrance located in the bottom. The flow is then directed through a pre-filter and a HEPA filter to remove particulates from the air as it leaves the chamber. Upon exiting the filter, the air sustains a pressure loss imposed by a valve. By means of a valve and fan, a portion of the air flow is diverted into a gas separator which removes excess oxygen and/or carbon dioxide as required. The required air movement around the flow path is accomplished by employing an air mover (e.g., a centrifugal pump or a blower), and at the discharge of the air mover, makeup gases are injected into the flow stream to maintain the required atmospheric

Figure 3. Schematic of the crop shoot side environment delivery system. Includes detail necessary for model synthesis.
composition. The water which is transpired by the plants is removed from the system airflow stream in the form of condensate by diverting a portion of the flow through a condensing heat exchanger. Two valves, one in the flow path through the condensing heat exchanger and one in the condensing heat exchanger bypass regulate the mass flow ratio of the paths. The flow is recombined and enters the cooling/heating subsystem. A portion of the flow can be diverted through either a heater or a cooling heat exchanger. Valves control the flow distribution among the three possible flow paths. Again, the flows are combined and the mixture is ducted to the chamber inlet, completing the traverse of the circuit.

3 - PERFORMANCE AND PHYSICAL CONFIGURATION REQUIREMENTS

It was established by a science advisory group that a CGRC which could be useful for their research would of necessity have certain performance capabilities and would have certain physical characteristics. The group limited itself to describing these capabilities and characteristics and left the details of how they might be obtained to the designers.
(1). Crop growth platform area $-2.0 \mathrm{~m}^{2}$
(2). Minimum upper crop shoot volume $-2.0 \mathrm{~m}^{3}$.
(3). With the lights on and no plants in the CGRC, the temperature rise of the air exiting the upper chamber must not be greater than 2 C .
(4). The CGRC must be able to provide a quantum light intensity of as much as 2000μ moles $/\left(\mathrm{m}^{2}-\mathrm{sec}\right)$.
(5). The airflow speed must not exceed $2 \mathrm{~m} / \mathrm{s}$ in the shoot upper chamber
(7). It is not permissible for the pressure within the shoot and root environments to be less than 0.5 mm Hg higher than the CGRC surroundings.
(8). The chamber walls must be kept at least 2 C higher than the air within the chamber.
(9). Water must not precipitate from the air anywhere other than in the water removal subsystem.

4 - PURPOSE OF THE MODEL

We consider the scenario in which the growth chamber contains a crop of plants forming a closed canopy and the system goal is to maintain temperature, relative humidity, pressure, carbon dioxide concentration, oxygen concentration, and mean air velocity in the chamber within set tolerances about constant operating points. The formal purpose of the model is to support the exploration of the generic stability properties of the system in the neighborhood of an operating condition of specific interest to members of a science advisory group, but it also played an important role in the process of familiarization. Of course, the scientists who expect to do research with this type of chamber are concerned about a great deal more than simple stability, but stability is a logical starting point for performance studies. The details of the operating condition for which the study was done are presented in Sections 3, 7.4, and 7.5.

5 - THE MATHEMATICAL MODEL OF THE CROP SHOOT ENVIRONMENT DELIVERY SYSTEM

The philosophy and procedure with which the mathematical model of the CGRC system was developed is documented in [1] (see Appendix A1). Here, we present a summary of the procedure at the level of detail necessary for purposes of continuity of thought.

The initial stage of the modeling process, the conceptualization of (1) which processes within the system are to be addressed, (2) how they interact with one another, (3) how the system interacts with the surroundings, and (4) how each process is to be characterized mathematically/numerically is a purely abstract process. To make each of these decisions tangibly available for the modeler's utility, as well as the equally important responsibility of communicating the details of the model to others, preparing an adequately annotated list suffices effectively for the first purpose, constructing a "modeling system" diagram is very useful for the second and third purposes, and listing the "natural equations" of the system is very effective for the fourth.

The behavior of any system is the resultant of the nature of the processes contained by the system, their interaction, the conditions at the time the system is set free, and the interaction of the the system with its surroundings. The use of mathematical modeling to predict the behavior of the system in the context of some question or questions requires (1) the recognition that these processes are in action, that they interact with one another and the details of those interactions, and that they interact with the surroundings and the details of those interactions, and (2) committing this recognition to a prescription of mathematical operations and parameter values. The intellectual process of accomplishing these actions is
called mathematical modeling.
In the course of generating a system representation, one synthesizes an idealized conceptual system (the "modeling system") of idealized processes ("modeling processes") which mimic the actual system's physical processes to an adequate degree. In this procedure, it is implicit that by contemplation of the actual system, one must correctly infer how the idealized processes must be arranged to interact so that the modeling system will emulate the actual system's behavior in the context of the problem being addressed to a degree of adequate accuracy. In Appendix A. 1 the reader can find a set of facts and thoughts about the CSSEDS which shape the contemplation. Logically, one first identifies the processes and then establishes how they interact.

5.1- SUMMARY OF THE PHASES OF THE MODEL GENERATION

PROCEDURE

In the sequel, the description of the stages of the model generation procedure will be found;
(1) List the physical processes which are to be represented by model processes
(2) Declare the interpretation of how the processes interact, sign conventions, point identities and path identities. This is done via process interaction diagrams Figures 4 and 5.
(3) Write the primitive equations; the mathematical model of each process in terms of the point variables and path variables associated with that process in Figures 4 and 5, and the compatibility equations (those which express constraints among the point and path variables). In this phase, the linearized form of the equation is also developed.
(4) Solve the primitive equations for the nominal values of the variables at the experimental operating condition.
(5) Write the linear primary equations. Take advantage of opportunities to eliminate variables ad lib using some of the equations. The object of this action is to reduce the number of equations which must be manipulated.
(6) Substitute nominal values into linearized equations to obtain equation forms which have numerical coefficients. This form is characterized by the linear equations:

$$
\begin{equation*}
A_{1} \dot{\eta}=A_{2} \eta+A_{3} \sigma+A_{4} u+A_{5} d \tag{5.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1} \sigma=B_{2} \eta+B_{3} u+B_{4} d \tag{5.1.2}
\end{equation*}
$$

The state variable format can then be determined, using, e.g., MATLAB

$$
\begin{equation*}
\dot{x}=A_{1}^{-1}\left(A_{2}+A_{3} B_{1}^{-1} B_{2}\right) x+A_{1}^{-1}\left(A_{4}+A_{3} B_{1}^{-1} B_{3}\right) u+A_{1}^{-1}\left(A_{5}+A_{3} B_{1}^{-1} B_{4}\right) d \tag{5.1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=B_{1}^{-1}\left(B_{2} x+B_{3} u+B_{4} d\right) \tag{5.1.4}
\end{equation*}
$$

(generalized inverse is implied) which is of the simple form

$$
\begin{equation*}
\dot{x}=\lambda x+9 B u+C d \tag{5.1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=\mathscr{I} x+8 u+\mathscr{F}_{d} \tag{5.1.6}
\end{equation*}
$$

(7) Analyze the state variable representation for the purpose of familiarization
with its dynamical properties and its controllability properties. There is a great variety of choices of what might be done and it varies with the application and the investigator. In the sequel, we present the results of:

1. the Jordan canonical transformation
2. the Real Jordan transformation
3. eigenvalue assessment
4. controllability assessment, and
5. an elementary feedback control study.

5.2-THE MODELING PROCESSES.

It was anticipated that the following physical processes would have to be included in the modeling system in order for the representation to be useful:
(1). Fluid inertance in upper duct.
(2). Radiant energy flow from the light source into the upper shoot chamber (source of PAR).
(3). Molar storage of N_{2} in upper chamber.
(4). Molar storage of O_{2} in the upper chamber.
(5). Molar storage of CO_{2} in upper chamber.
(6). Molar storage of $\mathrm{H}_{2} \mathrm{O}$ vapor in the upper chamber.
(7). O_{2} flux from crop into the upper chamber air.
(7). CO_{2} flux from the upper chamber air into the crop.
(8). $\mathrm{H}_{2} \mathrm{O}$ flux from the crop into the upper chamber air.
(9). Upper chamber gas state.
(10). Thermal energy of gas in upper chamber.
(11). Volume change of the upper chamber due to glove port activity.
(12). Heat exchange between walls of upper chamber and upper chamber air.
(13). Heat exchange between crop canopy and upper chamber air.
(14). Flow energy loss; airflow past plant platform.
(15). Molar storage of N_{2} in lower chamber.

Figure 4. The fluid flow modeling system. Only paths and points utilized in the model we present here are indicated. The fluid and thermal modeling systems are not isolated from each other. They exchange power.
(16). Molar storage of O_{2} in the lower chamber.
(17). Molar storage of CO_{2} in lower chamber.
(18). Molar storage of $\mathrm{H}_{2} \mathrm{O}$ in the lower chamber.
(19). Heat exchange between walls of lower chamber and lower chamber air.

Figure 5. The thermal exchange modeling system. The thermal and fluid flow modeling systems are not isolated from each other. They exchange power.
(20). Flow energy loss; exit from lower chamber.
(21). Flow energy loss; filter and lower valve.
(22). Extraction of excess oxygen; lower duct section.
(23). Fluid inertance; lower duct section.
(24). Flow energy loss; lower duct section.
(25). Energy conversion by the pump.
(26). Motor and pump rotor rotational inertia.
(27). Control moment on the motor armature.
(28). Motor and blower friction.
(29). Injection of CO_{2} into the gas addition mixing section.
(30). Molar storage of N_{2} in the gas addition mixing section.
(31). Molar storage of O_{2} in the gas addition mixing section.
(32). Molar storage of CO_{2} in the gas addition mixing section.
(33). Molar storage of $\mathrm{H}_{2} \mathrm{O}$ in the gas addition mixing section.
(34). Thermal energy storage in the gas addition mixing section.
(35). Flow energy loss; condensing heat exchanger bypass control valve.
(36). Flow energy loss; condensing heat exchanger air side flow control valve.
(37). Liquid water precipitation; condensing heat exchanger
(38). Thermal energy exchange; condensing heat exchanger.
(39). Flow energy loss; duct from condensing to heating/cooling system.
(40). Flow energy loss; air heater flow control valve.
(41). Flow energy loss; air cooler flow control valve.
(42). Flow energy loss; air heater/air cooler bypass flow control valve.
(43). Thermal energy exchange; air cooler heat exchanger.
(44). Flow energy loss; heater flow control valve.
(45). Volume change of the shoot upper chamber due to glove port activity.

The entire CSSEDS is assumed to be adiabatic with respect to its surroundings. All ducts are assumed to be of the same cross-sectional area for flow.

5.3-THE MODELING SYSTEM

In the coherent process of generating a system representation, one synthesizes an idealized conceptual system, the modeling system, of idealized processes. In the contemplation of the actual system, one must correctly infer which processes are at work and how the idealized processes must be arranged to
interact so that the modeling system will emulate the behavior of the actual system in the context of the problem being addressed to a degree of adequate accuracy. Logically, one first perceives the processes that are in action and then how they interact. Figures 4 and 5 together display the results of this activity. In Figure 4, the fluid flow processes and their interactions are declared and in Figure 5 the thermal processes and their interactions are displayed. It is important to note that they are not separate, they interact significantly. It is only for convenience in the presentation that they are placed in different figures.

5.4 - THE PRIMITIVE EQUATIONS.

The modeling system provides a basis for ordering the equations and labeling the variables of the model. First, for the matter exchange and storage portion of the modeling system, and then for the thermal exchange and storage portion of the system, we will list the primitive equations in the sequential order of the point numbers and/or path number(s) to which they refer. Reference to Figures 4 and 5 should be made as needed. The choice of representation of the flow processes via "compressible" or "incompressible" flow models is made based on the process being described. In the present case, the pressure variations across the modeled processes are rather small, and thus incompressible representations are appropriate.

The procedure is the same for each of the processes. First, the process is identified and then the modeling process equation which is needed is stated, first in its typically standard form. In many cases, these expressions are nonlinear. Next, supplementary equations are presented in order to demonstrate how relations
among the variables may be brought in to convert the expressions to relate only the selected set of variables. After this is done, the individual expressions are linearized about the prescribed operating condition. Then we move on to the next process or conservation constraint. In some cases, a process which might very well be included is stated, but because of the early phase nature of this study, insufficient physical configuration definition has been done, and it is judged that a meaningful study can be conducted though it is not included. "Meaningful" is a quality that is in the mind of the investigator; here we mean that we judge that a majority of the knowledgeable persons in the field would agree that it was a reasonable and understandable thing to do and that a worthwhile study could be conducted without accounting for the process.

5.4.1 - SOME BASIC EQUATIONS.

Some frequently used models of commonly encountered physical processes are listed for easy reference.

Ideal gas law: $P_{j} V_{j}=N_{j} R T_{j}$
First law of thermodynamics for steady state, steady flow: $h_{\text {out }}-h_{\text {in }}=\dot{\mathrm{Q}}+\dot{\mathrm{W}}$ Molar density: $\rho_{\mathrm{j}}=\frac{\mathrm{N}_{\mathrm{j}}}{\mathrm{V}_{\mathrm{j}}}$
Molar flow rate: $\quad n_{i}=V_{i} \rho_{i} A_{i}$
Total pressure loss model: ideal gas, steady adiabatic no-work flow: flow from point 3 to point 1
$\left(\mathrm{P}_{3}+\frac{1}{2} \rho_{m_{3}} V_{3}{ }^{2}\right)-\left(\mathrm{P}_{1}+\frac{1}{2} \rho_{m_{1}} V_{1}{ }^{2}\right)=\Delta \mathrm{P}_{3 \rightarrow 1}^{o}$
$n_{i}=\sum_{k=1}^{4} n_{i, k} ; k=1 \Rightarrow$ nitrogen, $k=2 \Rightarrow$ oxygen, $k=3 \Rightarrow$ carbon dioxide, and $k=4 \Rightarrow$ water vapor

Molar content of the $\mathrm{j}^{\text {th }}$ volume:
$\mathrm{N}_{\mathrm{j}}=\sum_{k=1}^{4} \mathrm{~N}_{\mathrm{j}, k}$
Molar concentration: of the $k^{\text {th }}$ constituent in the $f^{\text {th }}$ volume:
$\mathrm{Cc}_{\mathrm{j}, \mathrm{k}}=\frac{\mathrm{N}_{\mathrm{j}, k}}{\mathrm{~N}_{\mathrm{j}}}$
5.4.2 - THE MATHEMATICAL MODEL OF THE INDIVIDUAL PHYSICAL PROCESSES IN THE MODELING SYSTEM AND OF THE CONSERVATION CONSTRAINTS

Fluid inertance of the air column in the upper duct system (path 1):
$\dot{n}_{1}=\frac{1000 g_{C} A_{1}}{M W_{1} L_{23}}\left(P_{35}-P_{3}\right)$
$\mathrm{A}_{1}=\mathrm{A}_{23}$
with linearization:
$\delta \dot{n}_{1}=\frac{1000 \mathrm{~g}_{\mathrm{C}} \mathrm{A}_{1}}{\mathrm{MW} \mathrm{L}_{23}}\left(\delta \mathrm{P}_{35}-\delta \mathrm{P}_{1}\right)$
Rate of accumulation of the air constituents in the shoot upper chamber (point 1):

> Using the relations
> $\mathrm{n}_{3, k}=\frac{\mathrm{N}_{1, k}}{\mathrm{~N}_{1}} \mathrm{n}_{3}, k=1,2,3,4$
> $\mathrm{n}_{1, k}=\frac{\mathrm{N}_{36, k}}{\mathrm{~N}_{36}} \mathrm{n}_{14}, k=1,2,3 ; \mathrm{n}_{1, k}=\frac{\mathrm{N}_{36, k}}{\mathrm{~N}_{36}} \mathrm{n}_{14}-\mathrm{n}_{18}, k=4$
> $\mathrm{n}_{14}=\mathrm{n}_{1}+\mathrm{n}_{18}$
one obtains:
Nitrogen.
$\dot{\mathrm{N}}_{1,1}=\mathrm{n}_{1,1}-\mathrm{n}_{3,1}$
$\dot{N}_{1,1}=\left(n_{1}+n_{18}\right) \frac{N_{36,1}}{N_{36}}-n_{3} \frac{N_{1,1}}{N_{1}}$
with linearization:

$$
\begin{aligned}
\delta \dot{N}_{1,1} & =\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,1}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{\delta N_{36,1}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{N_{36,1}}{N_{36}{ }^{2}} \sum_{k=1}^{4} \delta N_{36, k} \\
& -\delta n_{3} \frac{N_{1,1}}{N_{1}}-n_{3} \frac{\delta N_{1,1}}{N_{1}}+n_{3} \frac{N_{1,1}}{N_{1}^{2}} \sum_{k=1}^{4} \delta N_{1, k}
\end{aligned}
$$

Oxygen.
$\dot{\mathrm{N}}_{1,2}=\mathrm{n}_{1,2}-\mathrm{n}_{2,2}[\hbar \nu]-\mathrm{n}_{2,2}[$ resp $]-\mathrm{n}_{3,2}$
$\dot{\mathrm{~N}}_{1,2}=\left(\mathrm{n}_{1}+\mathrm{n}_{18}\right) \frac{\mathrm{N}_{36,2}}{\mathrm{~N}_{36}}-\mathrm{n}_{2,2}[\hbar \nu]-\mathrm{n}_{2,2}[$ resp $]-\mathrm{n}_{3} \frac{\mathrm{~N}_{1,2}}{\mathrm{~N}_{1}}$
with linearization:

$$
\begin{aligned}
\delta \dot{\mathrm{N}}_{1,2} & =\left(\delta n_{1}+\delta n_{18}\right) \frac{\mathrm{N}_{36,2}}{\mathrm{~N}_{36}}+\left(\mathrm{n}_{1}+\mathrm{n}_{18}\right) \frac{\delta \mathrm{N}_{36,2}}{\mathrm{~N}_{36}}-\left(\mathrm{n}_{1}+\mathrm{n}_{18}\right) \frac{\mathrm{N}_{36,2}}{\mathrm{~N}_{36}{ }^{2}} \sum_{k=1}^{4} \delta \mathrm{~N}_{36, k} \\
& -\delta n_{3} \frac{\mathrm{~N}_{1,2}}{\mathrm{~N}_{1}}-\mathrm{n}_{3} \frac{\delta \mathrm{~N}_{1,2}}{\mathrm{~N}_{1}}+\mathrm{n}_{3} \frac{\mathrm{~N}_{1,2}}{\mathrm{~N}_{1}{ }^{2}} \sum_{k=1}^{4} \delta \mathrm{~N}_{1, k}-\delta n_{2,2}
\end{aligned}
$$

Carbon dioxide.
$\dot{\mathrm{N}}_{1,3}=\mathrm{n}_{1,3}-\mathrm{n}_{2,3}[\hbar \nu]-\mathrm{n}_{2,3}[$ resp $]-\mathrm{n}_{3,3}$
$\dot{\mathrm{N}}_{1,3}=\left(\mathrm{n}_{1}+\mathrm{n}_{18}\right) \frac{\mathrm{N}_{36,3}}{\mathrm{~N}_{36}}-\mathrm{n}_{2,3}[\hbar \nu]-\mathrm{n}_{2,3}[$ resp $]-\mathrm{n}_{3} \frac{\mathrm{~N}_{1,3}}{\mathrm{~N}_{1}}$
with linearization:

$$
\begin{aligned}
\delta \dot{N}_{1,3} & =\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,3}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{\delta N_{36,3}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{N_{36,3}}{N_{36}{ }^{2}} \sum_{k=1}^{4} \delta N_{36, k} \\
& -\delta n_{3} \frac{N_{1,3}}{N_{1}}-n_{3} \frac{\delta N_{1,3}}{N_{1}}+n_{3} \frac{N_{1,3}}{N_{1}{ }^{2}} \sum_{k=1}^{4} \delta N_{1, k}-\delta n_{2,3}
\end{aligned}
$$

Water.
$\dot{\mathrm{N}}_{1,4}=\mathrm{n}_{1,4}-\mathrm{n}_{2,4}-\mathrm{n}_{3,4}$
$\dot{N}_{1,4}=\left(n_{1}+n_{18}\right) \frac{N_{36,4}}{N_{36}}-n_{18}-n_{2,4}-n_{3} \frac{N_{1,4}}{N_{1}}$
with linearization:

$$
\begin{aligned}
\delta \dot{N}_{1,4} & =\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,4}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{\delta N_{36,4}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{N_{36,4}}{N_{36}{ }^{2}} \sum_{k=1}^{4} \delta N_{36, k}-\delta n_{18} \\
& -\delta n_{3} \frac{N_{1,4}}{N_{1}}-n_{3} \frac{\delta N_{1,4}}{N_{1}}+n_{3} \frac{N_{1,4}}{N_{1}{ }^{2}} \sum_{k=1}^{4} \delta N_{1, k}-\delta n_{2,4}
\end{aligned}
$$

Total molar content of the upper chamber air.
$N_{1}=\sum_{i=1}^{4} N_{1, i}$
with linearization:
$\delta \mathrm{N}_{1}=\sum_{i=1}^{4} \delta \mathrm{~N}_{1, i}$
Energy accumulation in the shoot side upper chamber.
$\dot{E}_{1}=\sum_{k=1}^{4} \dot{h}_{1, k}-\sum_{k=1}^{4} \dot{h_{3, k}}-\sum_{k=2}^{4} \dot{h_{2, k}}+(\mathrm{UA})_{2}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+(\mathrm{UA})_{4}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)-\mathrm{P}_{1} \dot{\mathrm{~V}}_{1}$
where
$(\mathrm{UA})_{2}=\mathrm{h}_{\mathrm{c}_{2}} \mathrm{~A}_{\mathrm{pf}}$
$h_{c_{2}}=11.30\left(\frac{n_{3}}{0.1 \rho_{2}\left(A_{p f}+A_{3}\right)}\right)^{0.5}$
$(U A)_{4}=h_{c_{4}} A_{4}$
$h_{c_{4}}=\frac{2 \mathrm{Nu}_{x=L_{1}} \mathrm{k}_{1}}{\mathrm{~L}_{1}}$
$\mathrm{Nu}_{x=\mathrm{L}_{1}}=0.332 \mathrm{Re}_{\mathrm{L}_{1}}{ }^{1 / 2} \operatorname{Pr}_{1}{ }^{1 / 3}$
$\operatorname{Pr}_{1}=\frac{\mathbf{c}_{\mathrm{P}_{1}} \mu_{1}}{\mathrm{k}_{1}}$
$\operatorname{Re}_{\mathrm{L}_{1}}=\frac{\rho_{2} \mathrm{MW}_{1} V_{1} \mathrm{~L}_{1}}{1000 \mu_{1}}$

Inserting equivalent thermodynamic properties;

$$
\begin{aligned}
& \left(N_{1,1} c_{v_{1,1}}+N_{1,2} c_{v_{1,2}}+N_{1,3} c_{v_{1,3}}+N_{1,4} c_{v_{1,4}}\right) \dot{T}_{1}= \\
& \left(n_{1,1} c_{p_{35,1}}+n_{1,2} c_{p_{35,2}}+n_{1,3} c_{p_{35,3}}+n_{1,4} c_{p_{35,4}}\right)\left(\mathrm{T}_{35}-273.15\right) \\
& -\left(n_{3,1} c_{p_{1,1}}+n_{3,2} c_{p_{1,2}}+n_{3,3} c_{p_{1,3}}+n_{3,4} c_{p_{1,4}}\right)\left(T_{1}-273.15\right) \\
& -\mathrm{n}_{2,2}[\hbar \nu] \mathrm{c}_{\mathrm{p}_{2,2}}\left(\mathrm{~T}_{2}-273.15\right)-\mathrm{n}_{2,2}[\mathrm{resp}] \mathrm{c}_{\mathrm{p}_{1,2}}\left(\mathrm{~T}_{1}-273.15\right) \\
& -\mathrm{n}_{2,3}[\hbar \nu] \mathrm{c}_{\mathrm{p}_{1,3}}\left(\mathrm{~T}_{1}-273.15\right)-\mathrm{n}_{2,3}[\text { resp }] \mathrm{c}_{\mathrm{p}_{2,3}}\left(\mathrm{~T}_{2}-273.15\right) \\
& -\mathrm{n}_{2,4} \mathrm{c}_{\mathrm{p}_{2,4}}\left(\mathrm{~T}_{2}-273.15\right)+\mathrm{h}_{\mathrm{c}_{2}} 2 \text { LAI A }_{p f}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\overline{\mathrm{h}}_{\mathrm{c}_{4}} \mathrm{~A}_{4}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)-\mathrm{P}_{1} \dot{\mathrm{~V}}_{1}
\end{aligned}
$$

Using
$\mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{35}} \doteq \sum_{k=1}^{4} \mathrm{n}_{1, k} \mathrm{c}_{\mathrm{p}_{35, k}}$
$\mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}} \doteq \sum_{k=1}^{4_{k}^{k}=1} \mathrm{n}_{3, k} \mathrm{c}_{\mathrm{p}_{1, k}}$
and linearizing gives:

$$
\begin{aligned}
& \left(\mathrm{N}_{1,1} \mathrm{c}_{\mathrm{v}_{1,1}}+\mathrm{N}_{1,2} \mathrm{c}_{\mathrm{v}_{1,2}}+\mathrm{N}_{1,3} \mathrm{c}_{\mathrm{v}_{1,3}}+\mathrm{N}_{1,4} \mathrm{c}_{\mathrm{v}_{1,4}}\right) \delta \dot{\mathrm{T}}_{1}= \\
& \quad \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{35}} \delta \mathrm{~T}_{35}+\delta \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{35}}\left(\mathrm{~T}_{35}-273.15\right)-\mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}} \delta \mathrm{~T}_{1}+\delta \mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}}\left(\mathrm{~T}_{1}-273.15\right) \\
& \quad-\mathrm{n}_{2,2}[\hbar \nu] \mathrm{c}_{\mathrm{p}_{2,2}} \delta \mathrm{~T}_{2}-\delta \mathrm{n}_{2,2}[\hbar \nu] \mathrm{c}_{\mathrm{p}_{2,2}}\left(\mathrm{~T}_{2}-273.15\right) \\
& \quad-\mathrm{n}_{2,2}[\mathrm{resp}] \mathrm{c}_{\mathrm{p}_{1,2}} \delta \mathrm{~T}_{1}-\delta \mathrm{n}_{2,2}[\mathrm{resp}] \mathrm{c}_{\mathrm{p}_{1,2}}\left(\mathrm{~T}_{1}-273.15\right) \\
& \quad-\mathrm{n}_{2,3}[\hbar \nu] \mathrm{c}_{\mathrm{p}_{1,3}} \delta \mathrm{~T}_{1}-\delta \mathrm{n}_{2,3}[\hbar \nu] \mathrm{c}_{\mathrm{p}_{1,3}}\left(\mathrm{~T}_{1}-273.15\right) \\
& \quad-\mathrm{n}_{2,3}[\mathrm{resp}] \mathrm{c}_{\mathrm{p}_{2,3}} \delta \mathrm{~T}_{2}-\delta \mathrm{n}_{2,3}[\text { resp }] \mathrm{c}_{\mathrm{p}_{2,3}}\left(\mathrm{~T}_{2}-273.15\right) \\
& \quad-\mathrm{n}_{2,4} \mathrm{c}_{\mathrm{p}_{2,4}} \delta \mathrm{~T}_{2}-\delta \mathrm{n}_{2,4} \mathrm{c}_{\mathrm{p}_{2,4}}\left(\mathrm{~T}_{2}-273.15\right) \\
& \quad+\mathrm{h}_{c_{2}} 2 \text { LAI A} \mathrm{A}_{p f}\left(\delta \mathrm{~T}_{2}-\delta \mathrm{T}_{1}\right)+\mathrm{h}_{c_{4} \mathrm{~A}_{4}\left(\delta \mathrm{~T}_{4}-\delta \mathrm{T}_{1}\right)-\mathrm{P}_{1} \delta \dot{\mathrm{~V}}_{1}}
\end{aligned}
$$

Equation of state of the air in the shoot upper chamber.
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{N}_{1} \mathrm{R} \mathrm{T}_{1}$
with linearization
$\delta \mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{1} \delta \mathrm{~V}_{1}=\delta \mathrm{N}_{1} \mathrm{RT} \mathrm{T}_{1}+\mathrm{N}_{1} \mathrm{R} \delta \mathrm{T}_{1}$
Airflow total pressure loss: from shoot upper chamber to shoot lower chamber (path 3):
$\mathrm{P}_{1}-\mathrm{P}_{5}=\mathrm{K}_{3} \frac{\rho_{1} \mathrm{MW}_{3}}{1000 \mathrm{~g}_{\mathrm{c}}} \frac{V_{3}{ }^{2}}{2}=\mathrm{K}_{3} \frac{\mathrm{MW}_{3}}{2000 \rho_{1} \mathrm{~A}_{3}{ }^{2} \mathrm{~g}_{\mathrm{c}}} \mathrm{n}_{3}{ }^{2}$
with linearization:
$\delta \mathrm{P}_{1}-\delta \mathrm{P}_{5}=\frac{2 \mathrm{n}_{3} \mathrm{MW}_{3}}{2000 \rho_{1} \mathrm{~A}_{3}{ }^{2} \mathrm{~B}_{c}} \delta \mathrm{n}_{3}$
$\mathrm{MW}_{3} \doteq \sum_{k=1}^{4} \mathrm{MW}, \frac{\mathrm{N}_{1, k}}{\mathrm{~N}_{1}}$
$K_{3} \triangleq K_{3} \frac{2 \mathrm{n}_{3} \mathrm{MW}_{3}}{2000 \rho_{1} \mathrm{~A}_{3}{ }^{2} \mathrm{~g}_{\mathrm{c}}}$
$\delta \mathrm{P}_{1}-\delta \mathrm{P}_{5}=K_{3} \delta \mathrm{n}_{3}$
$\mathrm{A}_{5}=\mathrm{A}_{1}$
Rate of accumulation of the air constituents in the shoot lower chamber (point 5):
Using the relations
$n_{5, k}=\frac{N_{5, k}}{N_{5}} n_{5}, k=1,2,3,4$
and
$n_{5}=n_{9}+n_{10,2}$
one can obtain the following expressions for the accumulation of material in the lower shoot growth chamber.

Nitrogen.
$\dot{N}_{5,1}=n_{3,1}-n_{5,1}$
$\dot{N}_{5,1}=n_{3} \frac{N_{1,1}}{N_{1}}-n_{5} \frac{N_{5,1}}{N_{5}}$
$\dot{N}_{5,1}=n_{3} \frac{N_{1,1}}{N_{1}}-\left(n_{9}+n_{10,2}\right) \frac{N_{5,1}}{N_{5}}$
with linearization:
$\delta \dot{N}_{5,1}=\delta n_{3} \frac{N_{1,1}}{N_{1}}+n_{3} \frac{\delta N_{1,1}}{N_{1}}-n_{3} \frac{N_{1,1}}{N_{1}^{2}} \sum_{k=1}^{4} \delta N_{1, k}-\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,1}}{N_{5}}$
$-\left(n_{9}+n_{10,2}\right) \frac{\delta N_{5,1}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{N_{5,1}}{N_{5}^{2}} \sum_{k=1}^{4} \delta N_{5, k}$

Oxygen.

$$
\begin{aligned}
& \dot{N}_{5,2}=n_{3} \frac{N_{1,2}}{N_{1}}-n_{5} \frac{N_{5,2}}{N_{5}} \\
& \dot{\mathrm{~N}}_{5,2}=n_{3,2}-n_{5,2} \\
& \dot{\mathrm{~N}}_{5,2}=n_{3} \frac{\mathrm{~N}_{1,2}}{\mathrm{~N}_{1}}-\left(n_{9}+n_{10,2}\right) \frac{N_{5,2}}{N_{5}}
\end{aligned}
$$

with linearization:

$$
\begin{aligned}
& \delta \dot{N}_{5,2}=\delta n_{3} \frac{N_{1,2}}{N_{1}}+n_{3} \frac{\delta N_{1,2}}{N_{1}}-n_{3} \frac{N_{1,2}}{N_{1}^{2}} \sum_{k=1}^{4} \delta N_{1, k}-\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,2}}{N_{5}} \\
& -\left(n_{9}+n_{10,2}\right) \frac{\delta N_{5,2}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{N_{5,2}}{N_{5}^{2}} \sum_{k=1}^{4} \delta N_{5, k}
\end{aligned}
$$

Carbon dioxide:
$\dot{N}_{5,3}=n_{3} \frac{N_{1,3}}{N_{1}}-n_{5} \frac{N_{5,3}}{N_{5}}$
$\dot{N}_{5,3}=n_{3,3}-n_{5,3}$
$\dot{N}_{5,3}=n_{3} \frac{N_{1,3}}{N_{1}}-\left(n_{9}+n_{10,2}\right) \frac{N_{5,3}}{N_{5}}$
with linearization:
$\delta \dot{N}_{5,3}=\delta n_{3} \frac{N_{1,3}}{N_{1}}+n_{3} \frac{\delta N_{1,3}}{N_{1}}-n_{3} \frac{N_{1,3}}{N_{1}^{2}} \sum_{k=1}^{4} \delta N_{1, k}-\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,3}}{N_{5}}$
$-\left(n_{9}+n_{10,2}\right) \frac{\delta N_{5,3}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{N_{5,3}}{N_{5}{ }^{2}} \sum_{k=1}^{4} \delta N_{5, k}$
Water.
$\dot{\mathrm{N}}_{5,4}=\mathrm{n}_{3,4}-\mathrm{n}_{5,4}$
$\dot{\mathrm{N}}_{5,4}=\mathrm{n}_{3} \frac{\mathrm{~N}_{1,4}}{\mathrm{~N}_{1}}-\mathrm{n}_{5} \frac{\mathrm{~N}_{5,4}}{\mathrm{~N}_{5}}$
$\dot{N}_{5,4}=n_{3} \frac{N_{1,4}}{N_{1}}-\left(n_{9}+n_{10,2}\right) \frac{N_{5,4}}{N_{5}}$
with linearization:
$\delta \dot{N}_{5,4}=\delta n_{3} \frac{N_{1,4}}{N_{1}}+n_{3} \frac{\delta N_{1,4}}{N_{1}}-n_{3} \frac{N_{1,4}}{N_{1}^{2}} \sum_{k=1}^{4} \delta N_{1, k}-\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,4}}{N_{5}}$
$-\left(n_{9}+n_{10,2}\right) \frac{\delta N_{5,4}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{N_{5,4}}{N_{5}^{2}} \sum_{k=1}^{4} \delta N_{5, k}$
Total molar content of the shoot side lower chamber:

The total molar content of the shoot side lower chamber is given by $\mathrm{N}_{5}=\sum_{i=1}^{4} \mathrm{~N}_{5, i}$
with linearization:
$\delta N_{5}=\sum_{i=1}^{4} \delta N_{5, i}$
Energy accumulation in the shoot side lower chamber.
$\dot{E}_{5}=\sum_{k=1}^{4} \stackrel{\circ}{h_{3, k}}-\sum_{k=1}^{4} \stackrel{\circ}{h_{5, k}}+(\mathrm{UA})_{7}\left(\mathrm{~T}_{7}-\mathrm{T}_{5}\right)$
\downarrow

$$
\begin{aligned}
& \left(N_{5,1} c_{v_{5,1}}+N_{5,2} c_{v_{5,2}}+N_{5,3} c_{v_{5,3}}+N_{5,4} c_{v_{5,4}}\right) \dot{T}_{5}= \\
& \quad\left(n_{3,1} c_{p_{1,1}}+n_{3,2} c_{p_{1,2}}+n_{3,3} c_{p_{1,3}}+n_{3,4} c_{p_{1,4}}\right)\left(T_{1}-273.15\right) \\
& \quad-\left(n_{5,1} c_{p_{5,1}}+n_{5,2} c_{p_{5,2}}+n_{5,3} c_{p_{5,3}}+n_{5,4} c_{P_{5,4}}\right)\left(T_{5}-273.15\right) \\
& \quad+U A_{7}\left(T_{7}-T_{5}\right)
\end{aligned}
$$

Including the simplification
$\left(n_{9}+n_{10,2}\right) c_{p_{5}} \doteq n_{5,1} c_{p_{5,1}}+n_{5,2} c_{p_{5,2}}+n_{5,3} c_{p_{5,3}}+n_{5,4} c_{p_{5,4}}$
along with linearization gives:

$$
\begin{aligned}
& \left(\mathrm{N}_{5,1} \mathrm{c}_{\mathbf{v}_{5,1}}+\mathrm{N}_{5,2} \mathrm{c}_{\mathbf{v}_{5,2}}+\mathrm{N}_{5,3} \mathrm{c}_{\mathbf{v}_{5,3}}+\mathrm{N}_{5,4} \mathrm{c}_{\mathbf{v}_{5,4}}\right) \delta \dot{\mathrm{T}}_{5}= \\
& \mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}} \delta \mathrm{~T}_{1}+\delta \mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}}\left(\mathrm{~T}_{1}-273.15\right)-\left(\mathrm{n}_{9}+\mathrm{n}_{10,2}\right) \mathrm{c}_{5} \delta \mathrm{~T}_{5} \\
& -\left(\delta \mathrm{n}_{9}+\delta \mathrm{n}_{10,2}\right) \mathrm{c}_{\mathrm{p}_{5}}\left(\mathrm{~T}_{5}-273.15\right)+\mathrm{UA}_{7}\left(\delta \mathrm{~T}_{7}-\delta \mathrm{T}_{5}\right) \\
& \mathrm{MW}_{5}=\mathrm{MW}_{1} \\
& (\mathrm{UA})_{7}=\mathrm{h}_{\mathrm{c}_{\mathbf{7}}} \mathrm{A}_{\mathbf{7}} \\
& h_{c_{7}}=\frac{2 \mathrm{Nu}_{x=L_{5}} \mathrm{k}_{5}}{\mathrm{~L}_{5}} \\
& \mathrm{Nu}_{x=\mathrm{L}_{5}}=0.332 \operatorname{Re}_{\mathrm{L}_{5}}{ }^{1 / 2} \mathrm{Pr}_{5}{ }^{1 / 3} \\
& \mathrm{Re}_{\mathrm{L}_{5}}=\frac{\rho_{5} \mathrm{MW}_{5} V_{5} \mathrm{~L}_{5}}{1000 \mu_{5}} \\
& \mathrm{~L}_{5}=\mathrm{h}_{\text {chamber }}-\left(\mathrm{h}_{\text {canopy }}+\mathrm{d}_{\text {PPFref }}\right)-\mathrm{d}_{p f}
\end{aligned}
$$

Equation of state of the air in the shoot lower chamber
$\mathrm{P}_{5} \mathrm{~V}_{5}=\mathrm{N}_{5} \mathrm{RT}_{5}$
with linearization:
$\delta \mathrm{P}_{5} \mathrm{~V}_{5}+\mathrm{P}_{5} \delta \mathrm{~V}_{5}=\delta \mathrm{N}_{5} \mathrm{R} \mathrm{T}_{5}+\mathrm{N}_{5} \mathrm{R} \delta \mathrm{T}_{5}$
Airflow total pressure loss: flow from lower chamber into discharge duct (path 5).
$\mathrm{P}_{5}-\mathrm{P}_{6}=\mathrm{K}_{5} \frac{\mathrm{MW}_{6} \mathrm{RT}_{5}}{2000 \mathrm{P}_{5}} \frac{1}{\mathrm{~A}_{5}{ }^{2}} \mathrm{n}_{6}{ }^{2}$
with linearization:
$\delta \mathrm{P}_{5}-\delta \mathrm{P}_{6}=\mathrm{K}_{5} \frac{\mathrm{MW}_{6} \mathrm{RT}_{5}}{1000 \mathrm{P}_{5}} \frac{1}{\mathrm{~A}_{5}{ }^{2}} \mathrm{n}_{6} \delta \mathrm{n}_{6}$ (the incompressible flow model of this process is employed)
$\mathrm{MW}_{6}=\mathrm{MW}_{5}$
$\rho_{6}=\rho_{5}$

Airflow total pressure loss: flow duct (path 5 between points 6 and 8); both direction change ("bend") and duct length. Both Ignored: $P_{8}=P_{6}$

Airflow total pressure loss: in expansion between points 8 and 9 (path 5)
Ignored: $\left(\mathrm{P}_{9}=\mathrm{P}_{8}\right)$
Airflow total pressure loss: HEPA filter (path 6)
$\mathrm{P}_{9}-\mathrm{P}_{10}=K_{6} \mathrm{n}_{5}^{2}$
K_{6} is essentially a porous plug characteristic. Linearization gives
$\delta \mathrm{P}_{9}-\delta \mathrm{P}_{10}=2 K_{6} \mathrm{n}_{5} \delta \mathrm{n}_{5}$
Airflow total pressure loss: from HEPA filter discharge through control valve 12 (path 7). Includes contraction loss in reentering duct upon exiting HEPA filter, the fixed (wide open) loss of the valve, and the loss due to the valve element being partially closed. A_{v} is the control variable.
$\mathrm{P}_{11}-\mathrm{P}_{12}=K_{7} \mathrm{n}_{5}{ }^{2}$
$K_{7}=K_{7}^{o}+K_{7}^{1}$
$K_{7}^{o}=\frac{\mathrm{K}_{7}^{o} \mathrm{MW}_{7} \mathrm{RT}_{11}}{2 P_{11} \mathrm{~g}_{c} \mathrm{~A}_{7}^{2}}$
$K_{7}^{1}=\frac{\mathrm{K}_{7}^{1} \mathrm{MW}_{7} \mathrm{RT}_{11}}{2 P_{11} \mathrm{~g}_{c} \mathrm{~A}_{v}^{2}}\left(1-\frac{\mathrm{A}_{v}^{2}}{\mathrm{~A}_{7}^{2}}\right)$
linearization gives:
$\delta \mathrm{P}_{11}-\delta \mathrm{P}_{12}=\delta K_{7}^{1} \mathrm{n}_{5}{ }^{2}+2 K_{7}^{1} \mathrm{n}_{5} \delta \mathrm{n}_{5}$
$\mathrm{MW}_{7}=\mathrm{MW}_{5}$
All the pressure loss from point 5 to point 12 can be combined:
$\mathrm{P}_{5}-\mathrm{P}_{12}=\left(K_{5}+K_{6}+K_{7}^{\circ}+K_{7}^{1}\right) \mathrm{n}_{5}{ }^{2}$
linearization gives:
$\delta \mathrm{P}_{5}-\delta \mathrm{P}_{12}=2\left(K_{5}+K_{6}+K_{7}\right)\left(\mathrm{n}_{9}+\mathrm{n}_{10,2}\right)\left(\delta \mathrm{n}_{9}+\delta \mathrm{n}_{10,2}\right)+\left(\mathrm{n}_{9}+\mathrm{n}_{10,2}\right)^{2} \delta K_{7}$

Oxygen extraction: at point 12.
$\mathrm{n}_{8}=\mathrm{n}_{5}-\mathrm{n}_{10,2}$
Airflow total pressure loss: due to extraction of oxygen at point 12.

Ignored.

Airflow total pressure loss due to flow shear at duct wall: all the lower duct system friction-induced pressure loss is lumped into one single section in this model (path 13 between points 12 and 13).

$$
\left.\begin{array}{l}
\mathrm{P}_{12}-\mathrm{P}_{13}=K_{8} \mathrm{n}_{8}^{2} \\
K_{8} \doteq(.0735)\left(\frac{\pi \mathrm{D}_{8} \mathrm{~L}_{8}}{\mathrm{~A}_{8}}\right)\left(\operatorname{Re}_{\mathrm{L}_{8}}\right)^{-\frac{1}{5}}\left(\frac{\mathrm{MW}}{8}\right. \\
2000 \rho_{8} \mathrm{~A}_{8}^{2}
\end{array}\right)
$$

$$
\begin{aligned}
& V_{8}=\frac{\mathrm{n}_{8}}{\rho_{8} \mathrm{~A}_{8}} \\
& \rho_{8}=\rho_{6} \\
& \mathrm{MW}_{8}=\sum_{k=1}^{4} \mathrm{MW}_{7, k} \frac{\mathrm{~N}_{5, k}}{\mathrm{~N}_{5}}-\mathrm{MW}_{7,2} \frac{\mathrm{n}_{10,2}}{\mathrm{n}_{8}} \\
& \mathrm{n}_{9}=\mathrm{n}_{8} \\
& \mathrm{MW}_{\mathbf{8}}=\mathrm{MW}_{9}
\end{aligned}
$$

linearization gives:
$\delta \mathrm{P}_{12}-\delta \mathrm{P}_{13}=2 \mathrm{~K}_{8} \mathrm{n}_{9} \delta \mathrm{n}_{9}$
Fluid inertance in the lower duct:
$\dot{n}_{9}=\frac{1000 \mathrm{~g}_{\mathrm{c}} \mathrm{A}_{9}}{\mathrm{MW}_{9} \mathrm{~L}_{9}}\left(\mathrm{P}_{13}-\mathrm{P}_{14}\right)$
$\mathrm{A}_{9}=\mathrm{A}_{8}$
$\mathrm{L}_{9}=\mathrm{L}_{8}$
$\mathrm{MW}_{9}=\mathrm{MW}_{8}$
linearization gives:
$\delta \dot{n}_{9}=\frac{1000 \mathrm{~g}_{\mathrm{c}} \mathrm{A}_{9}}{\mathrm{MW}_{9} \mathrm{~L}_{9}}\left(\delta \mathrm{P}_{13}-\delta \mathrm{P}_{14}\right)$

Air Mover and Drive Motor Subsystem (AM\&DMS).

It was concluded that it was desirable for the model of the AM\&DMS to reflect the addition of power to the fluid-thermodynamic systems and the rotational dynamics of the rotor components. To accomplish this, the relations among pressure rise, torque, rotational speed, molar flow rate, power transfer, and the rotational dynamics equations must be generated.

The Fan Equations.

An option to using First Principles in the modeling of the air mover characteristics is the use of the empirical fan equations which are implicit in the
conventional fan curves so common in industry;

$$
P_{16}-P_{15}=f_{f a n}\left(\omega_{37}, n_{12}\right)
$$

linearization gives:
$\delta \mathrm{P}_{16}-\delta \mathrm{P}_{15}=\frac{\partial \mathrm{f}_{f a n}\left(\omega_{37}, \mathrm{n}_{12}\right)}{\partial \omega_{37}} \delta \omega_{37}+\frac{\partial \mathrm{f}_{f a n}\left(\omega_{37}, \mathrm{n}_{12}\right)}{\partial \mathrm{n}_{12}} \delta \mathrm{n}_{12}$
this is a steady flow relation, and approximations of the partial derivatives can be taken directly from fan curves.

Power Conversion (mechanical rotational power to fluid power):
With perfect power conversion, the mechanical rotational power supplied to the fluid via the air mover impeller would be converted to fluid power. Since the process is not perfect, the overall efficiency is used to describe the actual situation: Mechanical power in (delivered to blower rotor) \times efficiency $=$ increase in fluid power out
$\omega_{37} \tau_{36} \eta_{o}=\left(\mathrm{P}_{16}-\mathrm{P}_{15}\right) \frac{\mathrm{n}_{12}}{\rho_{14}}$
assuming constant density, linearization gives:
$\omega_{37} \delta \tau_{36} \eta_{o}+\delta \omega_{37} \tau_{36} \eta_{o}=\left(\mathrm{P}_{16}-\mathrm{P}_{15}\right) \frac{\delta \mathrm{n}_{12}}{\rho}+\left(\delta \mathrm{P}_{16}-\delta \mathrm{P}_{15}\right) \frac{\mathrm{n}_{12}}{\rho}$
Air Temperature Rise Due to Air Mover.
The temperature rise associated with the passage of the air through the air mover is the sum of that due to the isentropic pressure rise:
$\mathrm{n}_{12} \mathrm{c}_{\mathrm{p} 12} \mathrm{~T}_{16}-\mathrm{n}_{12} \mathrm{c}_{\mathrm{p} 12} \mathrm{~T}_{15}=\left(\mathrm{P}_{16}-\mathrm{P}_{15}\right) \frac{\mathrm{n}_{12}}{\rho_{14}}$
and that due to the overall inefficiency of the air mover:
$\mathrm{n}_{12} \mathrm{c}_{\boldsymbol{p} 12} \mathrm{~T}_{16}-\mathrm{n}_{12} \mathrm{c}_{\boldsymbol{p} 12} \mathrm{~T}_{15}=\left(1-\eta_{o}\right) \omega_{37} \tau_{36}$
Linearization of each (assuming constant density) gives:
$\mathrm{c}_{\mathrm{p} 12} \delta \mathrm{~T}_{16}-\mathrm{c}_{\boldsymbol{p}} \delta \mathrm{T}_{15}=\left(\delta \mathrm{P}_{16}-\delta \mathrm{P}_{15}\right) \frac{1}{\rho_{14}}$
and
$\mathrm{c}_{p 12} \delta \mathrm{~T}_{16}-\mathrm{c}_{p} \delta \mathrm{~T}_{15}=\left(1-\eta_{o}\right) \delta \omega_{37} \tau_{36}+\left(1-\eta_{o}\right) \omega_{37} \delta \tau_{36}$
$\mathrm{n}_{12}=\mathrm{n}_{9}$
Combined pump and motor rotor dynamics.
Drive motor rotor and pump rotor:

$$
\left(\mathrm{J}_{\text {impeller }}+\mathrm{J}_{\text {motor }}\right) \dot{\omega}_{37}+b_{1} \omega_{37}+b_{2} \omega_{37}^{2}=\tau_{c}-\tau_{36}
$$

linearization gives:

$$
\left(\mathrm{J}_{\text {impeller }}+\mathrm{J}_{\text {motor }}\right) \delta \dot{\omega}_{37}+\left(b_{1}+2 b_{2} \omega_{37}\right) \delta \omega_{37}=\delta \tau_{c}-\delta \tau_{36}
$$

The Gas Injection and Mixing Chamber

The gas injection and mixing chamber is modeled to serve two purposes: account for the injection of carbon dioxide, oxygen, water vapor, and nitrogen content into the flowstream, and to reflect the effects of the volume of the ducting and fittings in that area on the overall system dynamics.

Airflow total pressure loss: into gas injection and mixing chamber.
$\mathrm{P}_{16}-\mathrm{P}_{36}=\frac{\mathrm{K}_{13} \mathrm{MW}_{13} \mathrm{RT}_{16}}{2 \mathrm{P}_{16} \mathrm{~g}_{c} \mathrm{~A}_{13}^{2}}\left(1-\frac{\mathrm{A}_{13}^{2}}{\mathrm{~A}_{14}^{2}} \mathrm{n}_{13}{ }^{2}\right.$
$\mathrm{MW}_{13}=\mathrm{MW}_{9}$
this pressure loss is ignored
Rate of accumulation of the air constituents in the gas injection and mixing chamber (point 36):

In the following, the equations of like level are grouped. Previously all equations addressing the same constituent were grouped.

$$
\begin{aligned}
& \dot{\mathrm{N}}_{36,1}=n_{13,1}+n_{17,1}-n_{14,1} \\
& \dot{N}_{36,2}=n_{13,2}+n_{17,2}-n_{14,2} \\
& \dot{N}_{36,3}=n_{13,3}+n_{17,3}-n_{14,3} \\
& \dot{N}_{36,4}=n_{13,4}+n_{17,4}-n_{14,4}
\end{aligned}
$$

$$
\begin{aligned}
& n_{13, k}=\frac{N_{5, k}}{N_{5}}\left(n_{9}+n_{10,2}\right), k=1,3,4 ; n_{13, k}=\frac{N_{5, k}}{N_{5}}\left(n_{9}+n_{10,2}\right)-n_{10,2}, k=2 \\
& n_{14, k}=\frac{N_{36, k}}{N_{36}}\left(n_{14}\right)=\frac{N_{36, k}}{N_{36}}\left(n_{1}+n_{18}\right), k=1,2,3,4 \\
& \dot{N}_{36,1}=\left(n_{9}+n_{10,2}\right) \frac{N_{5,1}}{N_{5}}+n_{17,1}-\left(n_{1}+n_{18}\right) \frac{N_{36,1}}{N_{36}} \\
& \dot{N}_{36,2}=\left(n_{9}+n_{10,2}\right) \frac{N_{5,2}}{N_{5}}-n_{10,2}+n_{17,2}-\left(n_{1}+n_{18}\right) \frac{N_{36,2}}{N_{36}} \\
& \dot{N}_{36,3}=\left(n_{9}+n_{10,2}\right) \frac{N_{5,3}}{N_{5}}+n_{17,3}-\left(n_{1}+n_{18}\right) \frac{N_{36,3}}{N_{36}} \\
& \dot{N}_{36,4}=\left(n_{9}+n_{10,2}\right) \frac{N_{5,4}}{N_{5}}+n_{17,4}-\left(n_{1}+n_{18}\right) \frac{N_{36,4}}{N_{36}}
\end{aligned}
$$

linearization gives:

$$
\begin{aligned}
& \delta \dot{N}_{36,1}=\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,1}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{\delta N_{5,1}}{N_{5}}-\left(n_{9}+n_{10,2}\right) \frac{N_{5,1}}{N_{5}{ }^{2}} \sum_{k=1}^{4} \delta N_{5, k} \\
& \quad+\delta n_{17,1}-\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,1}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{\delta N_{36,1}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{N_{36,1}}{N_{\beta 6}{ }^{2}} \sum_{k=1}^{4} \delta N_{36, k} \\
& \delta \dot{N}_{36,2}=\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,2}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{N_{5,2}}{N_{5}}-\left(n_{9}+n_{10,2}\right) \frac{5,2}{N_{5}^{2}{ }^{4}} \sum_{k=1}^{4} \delta N_{5, k} \\
& -\delta n_{10,2}+\delta n_{17,2}-\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,2}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{\delta N_{36,2}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{N_{36,2}}{N_{36}^{2}} \sum_{k=1}^{4} \delta N_{36, k}
\end{aligned}
$$

$$
\delta \dot{\mathrm{N}}_{36,3}=\left(\delta \mathrm{n}_{9}+\delta \mathrm{n}_{10,2}\right) \frac{\mathrm{N}_{5,3}}{\mathrm{~N}_{5}}+\left(\mathrm{n}_{9}+\mathrm{n}_{10,2}\right) \frac{\delta \mathrm{N}_{5,3}}{\mathrm{~N}_{5}}-\left(\mathrm{n}_{9}+\mathrm{n}_{10,2}\right) \frac{\mathrm{N}_{5,3}}{\mathrm{~N}_{5}{ }^{2}} \sum_{k=1}^{4} \delta \mathrm{~N}_{5, k}
$$

$$
+\delta n_{17,3}-\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,3}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{\delta N_{36,3}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{N_{36,3}}{N_{36}{ }^{2}} \sum_{k=1}^{4} \delta N_{36, k}
$$

$$
\delta \dot{N}_{36,4}=\left(\delta n_{9}+\delta n_{10,2}\right) \frac{N_{5,4}}{N_{5}}+\left(n_{9}+n_{10,2}\right) \frac{\delta N_{5,4}}{N_{5}}-\left(n_{9}+n_{10,2}\right) \frac{N_{5,4}}{N_{5}^{2}} \sum_{k=1}^{4} \delta N_{5, k}
$$

$$
+\delta n_{17,4}-\left(\delta n_{1}+\delta n_{18}\right) \frac{N_{36,4}}{N_{36}}-\left(n_{1}+n_{18}\right) \frac{\delta N_{36,4}}{N_{36}}+\left(n_{1}+n_{18}\right) \frac{N_{36,4}}{N_{36}{ }^{2}} \sum_{k=1}^{4} \delta N_{36, k}
$$

Energy balance in the gas injection and mixing chamber
$\dot{\mathrm{E}}_{36}=\sum_{k=1}^{4} h_{13, k}^{o}+\sum_{k=1}^{4} h_{17, k}^{o}-\sum_{k=1}^{4} h_{14, k}^{o}$
\downarrow

$$
\begin{aligned}
& \left(N_{36,1} c_{v_{36,1}}+N_{36,2} c_{v_{36,2}}+N_{36,3} c_{v_{36,3}}+N_{36,4} c_{v_{36,4}}\right) \mathrm{T}_{36}= \\
& \quad\left(n_{9,1} c_{p_{16,1}}+n_{9,2} c_{p_{16,2}}+n_{9,3} c_{p_{16,3}}+n_{9,4} c_{p_{16,4}}\right)\left(T_{16}-273.15\right) \\
& \quad+\left(n_{17,1} c_{p_{17,1}}+n_{17,2} c_{p_{17,2}}+n_{17,3} c_{p_{17,3}}+n_{17,4} c_{p_{17,4}}\right)\left(T_{17}-273.15\right) \\
& \quad-\left(n_{14,1} c_{p_{36,1}}+n_{14,2} c_{p_{36,2}}+n_{14,3} c_{p_{36,3}}+n_{14,4} c_{p_{36,4}}\right)\left(T_{36}-273.15\right)
\end{aligned}
$$

$\mathrm{n}_{9} \mathrm{c}_{\mathrm{p}_{16}} \doteq \mathrm{n}_{9,1} \mathrm{c}_{\mathrm{p}_{16,1}}+\mathrm{n}_{9,2} \mathrm{c}_{\mathrm{p}_{16,2}}+\mathrm{n}_{9,3}{ }^{\mathrm{p}_{16,3}}+\mathrm{n}_{9,4} \mathrm{c}_{\mathrm{p}_{16,4}}$
$n_{14} c_{p_{36}} \doteq n_{14,1} c_{p_{36,1}}+n_{14,2} c_{p_{36,2}}+n_{14,3} c_{p_{36,3}}+n_{14,4} c_{p_{36,4}}$
linearization gives:

$$
\begin{aligned}
& \left(N_{36,1} c_{v_{36,1}}+N_{36,2} c_{v_{36,2}}+N_{36,3} c_{v_{36,3}}+N_{36,4} c_{v_{36,4}}\right) \delta \dot{T}_{36}= \\
& \quad \delta n_{9} c_{p_{16}}\left(T_{16}-273.15\right)+n_{9} c_{p_{16}} \delta \mathrm{~T}_{16} \\
& \quad+\left(\delta n_{17,1} c_{p_{17,1}}+\delta n_{17,2} c_{p_{17,2}}+\delta n_{17,3} c_{p_{17,3}}+\delta n_{17,4} c_{p_{17,4}}\right)\left(T_{17}-273.15\right) \\
& \quad+\left(n_{17,1} c_{p_{17,1}}+n_{17,2} c_{p_{17,2}}+n_{17,3} c_{p_{17,3}}+n_{17,4} c_{p_{17,4}}\right) \delta T_{17} \\
& -\left(\delta n_{1}+\delta n_{18}\right) c_{p_{36}}\left(T_{36}-273.15\right)-\left(n_{1}+n_{18}\right) c_{p_{36}} \delta T_{36}
\end{aligned}
$$

Equation of state for the gas injection and mixing chamber.
$\mathrm{P}_{36} \mathrm{~V}_{36}=\mathrm{N}_{36} \mathrm{RT}_{36}$
$\delta \mathrm{P}_{36} \mathrm{~V}_{36}=\left(\sum_{k=1}^{4} \delta \mathrm{~N}_{36, k}\right) \mathrm{RT} \mathrm{T}_{36}+\mathrm{N}_{36} \mathrm{R} \delta \mathrm{T}_{36}$
Airflow total pressure loss: exiting from the gas injection and mixing chamber. (GIMC).
$\mathrm{P}_{36}-\mathrm{P}_{17}=\mathrm{K}_{14} \frac{\mathrm{MW}_{36} \mathrm{RT}_{36}}{2000 \mathrm{P}_{36}} \frac{1}{\mathrm{~A}_{14 u}{ }^{2}}\left(\frac{\mathrm{~A}_{14 u}{ }^{2}}{\mathrm{~A}_{14 d}{ }^{2}}-1\right) \mathrm{n}_{14}{ }^{2}$
where
$\mathrm{A}_{14 u}$ is the flow area at the upstream end of flow path 14
$\mathrm{A}_{14 d}$ is the flow area at the downstream end of flow path 14
$\mathrm{MW}_{36}=\sum \rho_{36, i} \mathrm{c}_{p, i}$; the molecular weight of the gas in the GIMC this pressure loss is ignored

Water Vapor Removal System

The water removal system must route the necessary fraction of the total flow through the condensing heat exchanger so that the evapo-transpiration water is removed. It is presumed that the temperature of the air exiting the condensing heat exchanger is fixed (e.g., by the use of feedback control) at a prescribed level, and is saturated at that temperature.

By-Pass Fraction Determination

The by-pass fraction is the fraction of the total flow through the water vapor removal system which is diverted around the heat exchanger
$\chi_{14} \triangleq \frac{n_{16}}{n_{14}}=\frac{n_{14}-n_{15}}{n_{14}}$

There are three equivalent, relevant, and related relationships among specific humidity, concentration, and partial pressure,
(1) $\mathrm{SH}_{14}=\mathrm{N}_{36,4} / \sum_{i=1}^{3} \mathrm{~N}_{36, i}$, (2) $\mathrm{SH}_{14}=\mathrm{Cc}_{14,4} /\left(1-\mathrm{Cc}_{14,4}\right)$, and
(3) $\mathrm{Cc}_{14,4}=$ (partial pressure of the water vapor at 36) $/ \mathrm{P}_{36}$

The water removed by the heat exchanger can be expressed in terms of the total air side flow by
$\mathrm{n}_{18}=\left(\mathrm{SH}_{36}-\mathrm{SH}_{21}\right)\left(1-\mathrm{SH}_{36}\right) \mathrm{n}_{15}$
and linearization gives:

$$
\begin{aligned}
& \delta \mathrm{n}_{18}=\left(\delta \mathrm{SH}_{36}-\delta \mathrm{SH}_{21}\right)\left(1-\mathrm{SH}_{36}\right) \mathrm{n}_{15}-\left(\mathrm{SH}_{36}-\mathrm{SH}_{21}\right) \delta \mathrm{SH}_{36} \mathrm{n}_{15} \\
&+\left(\mathrm{SH}_{36}-\mathrm{SH}_{21}\right)\left(1-\mathrm{SH}_{36}\right) \delta \mathrm{n}_{15} \\
& \mathrm{n}_{15}=\left(1-\chi_{14}\right) \mathrm{n}_{14}
\end{aligned}
$$

linearization gives
$\delta \mathrm{n}_{15}=-\delta \chi_{14} \mathrm{n}_{14}+\left(1-\chi_{14}\right) \delta \mathrm{n}_{14}$
The nominal value of χ_{14} is established by setting n_{18} to equal $n_{2,4}$ to determine the nominal value of n_{15}, and then solving for χ_{14}. The requirement of matter conservation in the flow split establishes that
$\mathrm{n}_{15}+\mathrm{n}_{16}=\mathrm{n}_{14}=\mathrm{n}_{1}+\mathrm{n}_{18}$
which with linearization gives:
$\delta \mathrm{n}_{15}+\delta \mathrm{n}_{16}=\delta \mathrm{n}_{1}+\delta \mathrm{n}_{18}$
Airflow total pressure loss: through control valve 21 (heat exchanger by-pass)
$\mathrm{P}_{18}=\mathrm{P}_{17}$
$\mathrm{P}_{19}=\mathrm{P}_{17}$
as is pressure loss in the by-pass up to the control valve.
$\mathrm{P}_{20}=\mathrm{P}_{18}$
$\mathrm{P}_{20}-\mathrm{P}_{23}=\frac{\mathrm{K}_{20} \mathrm{MW}_{36} \mathrm{RT}_{36}}{2 \mathrm{P}_{20} \mathrm{~g}_{c} \mathrm{~A}_{v 20}^{2}}\left(1-\frac{\mathrm{A}_{v 20}^{2}}{\mathrm{~A}_{20}^{2}}\right) \mathrm{n}_{20}{ }^{2}$
$\mathrm{P}_{20}-\mathrm{P}_{23}=K_{20} \mathrm{n}_{20}{ }^{2}$
$K_{20} \doteq \frac{\mathrm{~K}_{20} \mathrm{MW}_{36} \mathrm{RT}_{36}}{2 \mathrm{P}_{20} \mathrm{~g}_{c} \mathrm{~A}_{v 20}^{2}}\left(1-\frac{\mathrm{A}_{v 20}^{2}}{\mathrm{~A}_{20}^{2}}\right)$
$\mathrm{MW}_{20}=\mathrm{MW}_{36}$
linearization gives:
$\delta \mathrm{P}_{20}-\delta \mathrm{P}_{23}=2 \mathrm{n}_{20} K_{20} \delta \mathrm{n}_{20}+\mathrm{n}_{20}^{2} \delta K_{20}$
$\mathrm{n}_{21}=\mathrm{n}_{20}$
Airflow total pressure loss: through control valve 22 and dehumidifying heat exchanger.

Control valve in water removal system heat exchanger path duct:
$\mathrm{P}_{21}-\mathrm{P}_{22}=K_{19} \mathrm{n}_{21}{ }^{2}$
$K_{19} \doteq \frac{\mathrm{~K}_{19} \mathrm{MW}_{36} \mathrm{RT}_{36}}{2 \mathrm{P}_{21} \mathrm{~g}_{\mathrm{c}} \mathrm{A}_{v 19}^{2}}\left(1-\frac{\mathrm{A}_{v 19}^{2}}{\mathrm{~A}_{19}^{2}}\right)$
linearization gives:

$$
\delta \mathrm{P}_{21}-\delta \mathrm{P}_{22}=\delta K_{19} \mathrm{n}_{21}^{2}+2 K_{19} \mathrm{n}_{21} \delta \mathrm{n}_{21}
$$

For the heat exchanger:
$\mathrm{P}_{19}-\mathrm{P}_{21}=K_{15} \mathrm{n}_{19}{ }^{2}$
For preliminary work, one can estimate K_{15} via Reynolds' analogy or simply budget a reasonable pressure loss. Linearization gives:

$$
\delta \mathrm{P}_{19}-\delta \mathrm{P}_{21}=2 K_{15} \mathrm{n}_{19} \delta \mathrm{n}_{19}
$$

These two pressure loss expressions can be combined:

$$
\begin{aligned}
& \delta \mathrm{P}_{19}-\delta \mathrm{P}_{22}=\mathrm{n}_{19}{ }^{2} \delta K_{19}+2\left(K_{15}+K_{19}\right) \mathrm{n}_{19} \delta \mathrm{n}_{19} \\
& \mathrm{MW}_{22}=\mathrm{MW}_{21}=\mathrm{MW}_{14} \\
& \mathrm{MW}_{22}=\sum_{k=1}^{4} \mathrm{MW}_{36, k} \frac{\mathrm{~N}_{36, k}}{\mathrm{~N}_{36}}-\mathrm{MW}, 4 \frac{\mathrm{n}_{18}}{\mathrm{n}_{15}} \\
& \mathrm{n}_{22}=\mathrm{n}_{15}-\mathrm{n}_{18}
\end{aligned}
$$

Energy balance: condensing heat exchanger. (reference is liquid water at triple point)

$$
\mathrm{n}_{15} \mathrm{c}_{p, 36} \mathrm{~T}_{36}-\mathrm{n}_{22} \mathrm{c}_{p, 21} \mathrm{~T}_{21}-\mathrm{n}_{18} h_{38}=0
$$

linearization gives:

$$
\delta \mathrm{n}_{15} \mathrm{c}_{p, 36} \mathrm{~T}_{36}+\mathrm{n}_{15} \mathrm{c}_{p, 36} \delta \mathrm{~T}_{36}-\delta \mathrm{n}_{22} \mathrm{c}_{p, 21} \mathrm{~T}_{21}-\mathrm{n}_{22} \mathrm{c}_{\mathrm{p}, 21} \delta \mathrm{~T}_{21}-\delta \mathrm{n}_{18} h_{38}+\mathrm{n}_{18} \delta h_{38}=0
$$

Energy balance: recombination of flow streams of the water vapor removal system.

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{P}_{24}}\left(\mathrm{~T}_{24}-273.15\right)=\mathrm{n}_{21} \mathrm{c}_{\mathrm{p}_{23}}\left(\mathrm{~T}_{23}-273.15\right)+\mathrm{n}_{22} \mathrm{c}_{\mathrm{p}_{22}}\left(\mathrm{~T}_{22}-273.15\right) \\
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{24}} \doteq \sum_{k=1}^{4} \mathrm{n}_{1, k} \mathrm{c}_{\mathrm{p}_{24, k}} \\
& \mathrm{n}_{21} \mathrm{c}_{\mathrm{P}_{23}} \doteq \sum_{k=1}^{4} \mathrm{n}_{21, k} \mathrm{c}_{\mathrm{p}_{23, k}} \\
& \mathrm{n}_{22} \mathrm{c}_{\mathrm{P}_{22}} \doteq \sum_{k=1}^{4} \mathrm{n}_{22, k} c_{\mathrm{p}_{22, k}} \\
& \mathrm{n}_{21}=\mathrm{n}_{20}=\mathrm{n}_{1}-\mathrm{n}_{10,2}-\mathrm{n}_{15} \\
& \mathrm{c}_{\mathrm{P}_{23}}={ }^{{ }^{\mathrm{P}_{36}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{p}_{22}}={ }^{\mathrm{c}_{\mathrm{p}_{21}}} \\
& \mathrm{c}_{\mathrm{p}_{24}}=\mathrm{c}_{\mathrm{p}_{36}}=\mathrm{c}_{\mathrm{p}_{21}} \\
& \mathrm{~T}_{23}=\mathrm{T}_{36} \\
& \mathrm{~T}_{22}=\mathrm{T}_{21}
\end{aligned}
$$

linearization gives:

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{24}} \delta \mathrm{~T}_{24}+\delta \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{24}}\left(\mathrm{~T}_{24}-273.15\right)=\left(\mathrm{n}_{1}-\mathrm{n}_{10,2}-\mathrm{n}_{15}\right) \mathrm{c}_{\mathrm{p}_{36}} \delta \mathrm{~T}_{36} \\
& \quad+\left(\delta \mathrm{n}_{1}-\delta \mathrm{n}_{10,2}-\delta \mathrm{n}_{15}\right) \mathrm{c}_{\mathrm{p}_{36}}\left(\mathrm{~T}_{36}-273.15\right)+\left(\delta \mathrm{n}_{15}-\delta \mathrm{n}_{18}\right) \mathrm{c}_{\mathrm{p}_{21}}\left(\mathrm{~T}_{21}-273.15\right) \\
& \quad \mathrm{n}_{1} \delta \mathrm{~T}_{24}+\delta \mathrm{n}_{1}\left(\mathrm{~T}_{24}-273.15\right)=\left(\mathrm{n}_{1}-\mathrm{n}_{10,2}-\mathrm{n}_{15}\right) \delta \mathrm{T}_{36} \\
& \quad+\left(\delta \mathrm{n}_{1}-\delta \mathrm{n}_{10,2}-\delta \mathrm{n}_{15}\right)\left(\mathrm{T}_{36}-273.15\right)+\left(\delta \mathrm{n}_{15}-\delta \mathrm{n}_{18}\right)\left(\mathrm{T}_{21}-273.15\right)
\end{aligned}
$$

Airflow total pressure loss: combining flows of water removal system paths
(1) heat exchanger bypass path (path 16)
$P_{24}-P_{23}=\frac{K_{21-23} M W_{21}^{2} R T_{25}}{P_{24}}\left[a_{1}\left(\frac{n_{23}}{A_{23}}\right)^{2}-a_{2}\left(\frac{n_{21}}{A_{21}}\right)^{2}-a_{3}\left(\frac{n_{21}{ }^{2}}{\mathrm{~A}_{23} A_{21}}\right)-a_{3}\left(\frac{n_{22}{ }^{2}}{A_{22} A_{23}}\right)\right]$
This pressure loss is ignored.
(2) heat exchanger path (path 15)

$$
\mathrm{P}_{24}-\mathrm{P}_{22}=\frac{\mathrm{K}_{22}-23 \mathrm{MW}_{22}^{2} R T_{21}}{\mathrm{P}_{22}}\left[\mathrm{a}_{1}\left(\frac{\mathrm{n}_{23}}{\mathrm{~A}_{23}}\right)^{2}-\mathrm{a}_{2}\left(\frac{\mathrm{n}_{22}}{\mathrm{~A}_{22}}\right)^{2}-\mathrm{a}_{3}\left(\frac{\mathrm{n}_{22}{ }^{2}}{\mathrm{~A}_{23} \mathrm{~A}_{22}}\right)-\mathrm{a}_{3}\left(\frac{\mathrm{n}_{22}{ }^{2}}{\mathrm{~A}_{22} A_{23}}\right)\right]
$$

This pressure loss is ignored.
Airflow total pressure loss: duct between water removal subsystem and air temperature manipulation subsystem (path 23).

$$
\begin{aligned}
& \mathrm{P}_{24}-\mathrm{P}_{25}=K_{23} \mathrm{n}_{23}^{2} \\
& K_{23} \doteq(.0735)\left(\frac{\pi \mathrm{D}_{23} \mathrm{~L}_{23}}{\mathrm{~A}_{23}}\right)\left(\mathrm{Re}_{\mathrm{L}_{23}}\right)^{-\frac{1}{5}}\left(\frac{\mathrm{MW}_{23}}{2000 \rho_{23} \mathrm{~A}_{23}{ }^{2}}\right) \\
& \mathrm{Re}_{\mathrm{L}_{23}}=\frac{\rho_{23} \mathrm{MW}_{23} V_{23} \mathrm{~L}_{23}}{1000 \mu_{23}}, \mathrm{v}_{23}=\frac{\mathrm{n}_{23}}{\rho_{23} \mathrm{~A}_{23}} \\
& \mathrm{MW}_{23}=M W_{1} \\
& \mathrm{n}_{23}=\mathrm{n}_{1}
\end{aligned}
$$

linearization gives
$\delta \mathrm{P}_{24}-\delta \mathrm{P}_{25}=2 \mathrm{~K}_{23} \mathrm{n}_{1} \delta \mathrm{n}_{1}$

The Airflow Cooling/Heating System

The airflow cooling/heating system ($\mathrm{AC} / \mathrm{HS}$) must route the necessary fraction of the total flow through either the cooling heat exchanger or the heating heat exchanger so that the temperature of the flowstream exiting the $\mathrm{AC} / \mathrm{HS}$ is at the required level. It is presumed that the temperature of the air exiting the active heat exchanger is fixed (e.g., by the use of feedback control) at a prescribed level, and no condensation occurs.

By-Pass Fraction Determination

For the present demonstration, the by-pass fraction is the fraction of the total flow which is diverted around the cooling heat exchanger
$x_{23} \triangleq \frac{n_{25}}{n_{23}}=\frac{n_{23}-n_{26}}{n_{23}}$
$\mathrm{n}_{25}=\chi_{23} \mathrm{n}_{23}$
linearization gives:

$$
\delta n_{25}=\delta x_{23} n_{23}+\chi_{23} \delta n_{23}
$$

The nominal value of χ_{23} is established by performing a thermal energy balance analysis so that the required nominal discharge temperature at 35 is achieved, as is explained in the following.
Matter conservation across the flow split requires that

$$
n_{25}+n_{26}=n_{23}
$$

and linearization (in this case, a redundant operation) gives:
$\delta n_{25}+\delta n_{26}=\delta n_{23}$
$\mathrm{n}_{1}=\mathrm{n}_{23}$
Energy balance at recombination of airflow streams from airflow cooling system.

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{P}_{35}}\left(\mathrm{~T}_{35}-273.15\right)=\mathrm{n}_{31} \mathrm{c}_{\mathrm{P}_{33}}\left(\mathrm{~T}_{33}-273.15\right)+\mathrm{n}_{32} \mathrm{c}_{\mathrm{P}_{34}}\left(\mathrm{~T}_{34}-273.15\right) \\
& \quad+\mathrm{n}_{30} \mathrm{c}_{\mathrm{P}_{30}}\left(\mathrm{~T}_{32}-273.15\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{35}} \doteq \sum_{k=1}^{4} \mathrm{n}_{1, k} \mathrm{c}_{\mathrm{P}_{35, k}} \\
& \mathrm{n}_{31} \mathrm{c}_{\mathrm{p}_{33}} \doteq \sum_{k=1}^{4} \mathrm{n}_{31, k} \mathrm{c}_{\mathrm{p}_{33, k}} \\
& \mathrm{n}_{32} \mathrm{c}_{\mathrm{p}_{34}} \doteq \sum_{k=1}^{4} \mathrm{n}_{32, k} \mathrm{c}_{\mathrm{p}_{34, k}} \\
& \mathrm{n}_{31}=\mathrm{n}_{28} \\
& \mathrm{n}_{32}=\mathrm{n}_{27} \\
& \mathrm{c}_{\mathrm{p}_{33}}=\mathrm{c}_{\mathrm{p}_{24}} \\
& \mathrm{c}_{\mathrm{p}_{34}}=\mathrm{c}_{\mathrm{p}_{29}} \\
& \mathrm{~T}_{33}=\mathrm{T}_{24} \\
& \mathrm{~T}_{34}=\mathrm{T}_{29}
\end{aligned}
$$

along with linearization, gives:

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{P}_{35}} \delta \mathrm{~T}_{35}+\delta \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}_{35}}\left(\mathrm{~T}_{35}-273.15\right)=\mathrm{n}_{28} \mathrm{c}_{\mathrm{P}_{24}} \delta \mathrm{~T}_{24}+\delta \mathrm{n}_{28} \mathrm{c}_{\mathrm{p}_{24}}\left(\mathrm{~T}_{24}-273.15\right) \\
& \quad+\left(\delta \mathrm{n}_{1}-\delta \mathrm{n}_{28}\right) \mathrm{c}_{\mathrm{P}_{29}}\left(\mathrm{~T}_{29}-273.15\right)
\end{aligned}
$$

or, since

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{P}_{35}}=\mathrm{c}_{\mathrm{p}_{24}}=\mathrm{c}_{\mathrm{p}_{29}} \\
& \mathrm{n}_{1} \delta \mathrm{~T}_{35}+\delta \mathrm{n}_{1}\left(\mathrm{~T}_{35}-273.15\right)=\mathrm{n}_{28} \delta \mathrm{~T}_{24}+\delta \mathrm{n}_{28}\left(\mathrm{~T}_{24}-273.15\right) \\
& \quad+\left(\delta \mathrm{n}_{1}-\delta \mathrm{n}_{28}\right)\left(\mathrm{T}_{29}-273.15\right) \\
& \mathrm{MW}_{26}=M W_{27}=M W_{1} \\
& \mathrm{P}_{28}=\mathrm{P}_{25} \\
& \mathrm{P}_{34}=\mathrm{P}_{35}
\end{aligned}
$$

One may establish the nominal value of χ_{23} for the scenario demonstrated in this study through simultaneous solution of the two equations

$$
\mathrm{n}_{23} \mathrm{c}_{\mathrm{p}_{35}}\left(\mathrm{~T}_{35}-273.15\right)=\mathrm{n}_{25} \mathrm{c}_{\mathrm{P}_{33}}\left(\mathrm{~T}_{33}-273.15\right)+\mathrm{n}_{25} \mathrm{c}_{\mathrm{p}_{34}}\left(\mathrm{~T}_{34}-273.15\right)
$$

and
$\mathrm{n}_{25}=\chi_{23} \mathrm{n}_{23}$
to satisfy the requirement for T_{35}
Airflow total pressure loss: air entering each of the three airflow temperature manipulation subsystem ducts;
(1) heating heat exchanger path (path 24).

$$
P_{25}-P_{26}=\frac{K_{23-24} M W_{23}^{2} R T_{25}}{P_{25}}\left[a_{1}\left(\frac{n_{24}}{A_{24}}\right)^{2}-a_{2}\left(\frac{n_{23}}{A_{23}}\right)^{2}-a_{3}\left(\frac{n_{24} n_{23}}{A_{24} A_{23}}\right)\right]
$$

This pressure loss is ignored.
(2) bypass path (path 25)
$\mathrm{P}_{25}-\mathrm{P}_{27}=\frac{\mathrm{K}_{23-25} \mathrm{MW}_{23}^{2} \mathrm{RT}_{25}}{\mathrm{P}_{25}}\left[\mathrm{a}_{1}\left(\frac{\mathrm{n}_{25}}{\mathrm{~A}_{25}}\right)^{2}-\mathrm{a}_{2}\left(\frac{\mathrm{n}_{23}}{\mathrm{~A}_{23}}\right)^{2}-\mathrm{a}_{3}\left(\frac{\mathrm{n}_{25} \mathrm{n}_{23}}{\mathrm{~A}_{25} \mathrm{~A}_{23}}\right)\right]$
This pressure loss is ignored.
(3) cooling heat exchanger path (path 26)
$\mathrm{P}_{25}-\mathrm{P}_{28}=\frac{\mathrm{K}_{23-26} \mathrm{MW}_{23}^{2} \mathrm{RT}_{25}}{\mathrm{P}_{25}}\left[\mathrm{a}_{1}\left(\frac{\mathrm{n}_{26}}{\mathrm{~A}_{26}}\right)^{\mathbf{2}}-\mathrm{a}_{2}\left(\frac{\mathrm{n}_{23}}{\mathrm{~A}_{23}}\right)^{2}-\mathrm{a}_{3}\left(\frac{\mathrm{n}_{26} \mathrm{n}_{23}}{\mathrm{~A}_{26} \mathrm{~A}_{23}}\right)\right]$
Airflow total pressure loss: air flowing in each of the three airflow temperature manipulation subsystem ducts;
(1) heating heat exchanger path (path 24).
$\mathrm{P}_{26}-\mathrm{P}_{31}=\frac{\mathrm{K}_{24} \mathrm{MW}_{23}^{2} \mathrm{RT}_{25}}{\mathrm{P}_{26}}\left(\frac{\mathrm{n}_{24}}{\mathrm{~A}_{24}}\right)^{2}$
This pressure loss is ignored.
(2) bypass path (path 25)
$P_{27}-P_{30}=\frac{4 f_{25} L_{25}}{D_{25}} \frac{M W W_{25}^{2} R T_{25}}{2 P_{27} A_{25}{ }^{2}} \mathrm{n}_{25}{ }^{2}$
This pressure loss is ignored.
(3) cooling heat exchanger path (path 26).
$\mathrm{P}_{28}-\mathrm{P}_{29}=\frac{\mathrm{K}_{26} \mathrm{MW}_{23}^{2} \mathrm{RT}_{25}}{\mathrm{P}_{28}}\left(\frac{\mathrm{n}_{26}}{\mathrm{~A}_{26}}\right)^{2}$
linearization gives
$\delta \mathrm{P}_{28}-\delta \mathrm{P}_{29}=K_{26} \delta \mathrm{n}_{\mathbf{2 6}}$
this pressure loss is combined with the fixed part of the control valve pressure loss.

Airflow total pressure loss: control valves in the air temperature manipulation system
(1) heating heat exchanger path and control valve (path 29).
heat exchanger; use Reynolds' analogy or budget a reasonable pressure loss
$\mathrm{P}_{26}-\mathrm{P}_{31}=\frac{\mathrm{K}_{24} \mathrm{MW}_{24} \mathrm{RT}_{26}}{2 \mathrm{P}_{26} \mathrm{G}_{c} \mathrm{~A}_{24}^{2}} \mathrm{n}_{29}{ }^{2}=K_{29} \mathrm{n}_{29}{ }^{2}$
linearization gives:
$\delta \mathrm{P}_{26}-\delta \mathrm{P}_{31}=2 K_{29} \mathrm{n}_{29} \delta \mathrm{n}_{29}$
control valve:
$\mathrm{P}_{31}-\mathrm{P}_{32}=\frac{\mathrm{K}_{29} \mathrm{MW}_{23} \mathrm{RT}_{31}}{2 \mathrm{P}_{31} \mathrm{~g}_{\mathrm{c}} \mathrm{A}_{v 29}^{2}}\left(1-\frac{\mathrm{A}_{v 29}^{2}}{\mathrm{~A}_{29}^{2}}\right) \mathrm{n}_{29}{ }^{2}=K_{29} \mathrm{n}_{29}{ }^{2}$
linearization gives:
$\delta \mathrm{P}_{31}-\delta \mathrm{P}_{32}=\delta K_{29} \mathrm{n}_{29}{ }^{2}+2 K_{29} \mathrm{n}_{29} \delta \mathrm{n}_{29}$
This pressure loss was not relevant to the scenario demonstrated in this study.
(2) bypass path (path 28).
control valve:
$\mathrm{P}_{30}-\mathrm{P}_{33}=\frac{\mathrm{K}_{28} \mathrm{MW}_{23} \mathrm{RT}_{31}}{2 \mathrm{P}_{30} \mathrm{~g}_{\mathrm{c}} \mathrm{A}_{v 28}^{2}}\left(1-\frac{\mathrm{A}_{v 28}^{2}}{\mathrm{~A}_{28}^{2}}\right) \mathrm{n}_{28}{ }^{2}$
$\mathrm{P}_{30}-\mathrm{P}_{33}=K_{28} \mathrm{n}_{28}{ }^{2}$
linearization gives
$\delta \mathrm{P}_{30}-\delta \mathrm{P}_{33}=\delta K_{28} \mathrm{n}_{28}{ }^{2}+2 K_{28} \mathrm{n}_{28} \delta \mathrm{n}_{28}$
(3) cooling heat exchanger and control valve (path 27).
heat exchanger: use Reynolds' analogy or budget a reasonable pressure loss,
$\mathrm{P}_{28}-\mathrm{P}_{29}=K_{26} \mathrm{n}_{26}{ }^{2}$
linearization gives
$\delta \mathrm{P}_{28}-\delta \mathrm{P}_{29}=2 K_{26} \mathrm{n}_{26} \delta \mathrm{n}_{26}$
control valve:
$\mathrm{P}_{29}-\mathrm{P}_{34}=\frac{\mathrm{K}_{27} \mathrm{MW}_{23} \mathrm{RT}_{31}}{2 \mathrm{P}_{29} \mathrm{~g}_{c} \mathrm{~A}_{v 27}^{2}}\left(1-\frac{\mathrm{A}_{v 27}^{2}}{\mathrm{~A}_{27}^{2}}\right) \mathrm{n}_{27}{ }^{2}$

$$
\mathrm{P}_{29}-\mathrm{P}_{34}=K_{27} \quad \mathrm{n}_{27}^{2}
$$

linearization gives:

$$
\delta \mathrm{P}_{29}-\delta \mathrm{P}_{34}=\delta K_{27} \quad \mathrm{n}_{27}^{2}+2 \mathrm{~K}_{27} \quad \mathrm{n}_{27} \delta \mathrm{n}_{27}
$$

$$
\mathrm{n}_{27}=\mathrm{n}_{26}
$$

Airflow total pressure loss: recombination of air temperature manipulation subsystem flow (into path 1).
(1) heating heat exchanger path (path 30)

$$
P_{32}-P_{35}=\frac{K_{25}-33 M W_{1}^{2} R T_{35}}{P_{35}}\left[a_{1}\left(\frac{n_{28}}{A_{28}}\right)^{2}-a_{2}\left(\frac{n_{21}}{A_{21}}\right)^{2}-a_{3}\left(\frac{n_{21}{ }^{2}}{A_{23} A_{21}}\right)-a_{3}\left(\frac{n_{22}{ }^{2}}{A_{22} A_{23}}\right)\right]
$$

This pressure loss is ignored.
(2) bypass path (path 31)

$$
P_{33}-P_{35}=\frac{K_{22-23} M W_{22}^{2} R T_{21}}{P_{22}}\left[a_{1}\left(\frac{n_{23}}{A_{23}}\right)^{2}-a_{2}\left(\frac{n_{22}}{A_{22}}\right)^{2}-a_{3}\left(\frac{n_{22}{ }^{2}}{A_{23} A_{22}}\right)-a_{3}\left(\frac{n_{22}{ }^{2}}{A_{22} A_{23}}\right)\right]
$$

This pressure loss is ignored.
(3) cooling heat exchanger path (path 32)

$$
P_{34}-P_{35}=\frac{K_{23-25} M_{23}^{2} R T_{25}}{P_{25}}\left[a_{1}\left(\frac{n_{25}}{A_{25}}\right)^{2}-a_{2}\left(\frac{n_{23}}{A_{23}}\right)^{2}-a_{3}\left(\frac{n_{25} n_{23}}{A_{25} A_{23}}\right)\right]
$$

This pressure loss is ignored.
$\mathrm{MW}_{28}=\mathrm{MW}_{1}$
$\mathrm{n}_{1}=\mathrm{n}_{27}+\mathrm{n}_{28}$
$\mathrm{P}_{30}=\mathrm{P}_{25}$
$\mathrm{P}_{33}=\mathrm{P}_{35}$
The heating heat exchanger control valve is fully closed in the scenario for which this study is done. The overall pressure loss for the airflow heating/cooling subsystem can be expressed in terms of either of the two active paths (25-28-31 or 26-27-32):

$$
\begin{aligned}
& \delta \mathrm{P}_{25}-\delta \mathrm{P}_{35}=2\left(\mathrm{n}_{1}-\mathrm{n}_{27}\right) K_{28}\left(\delta \mathrm{n}_{1}-\delta \mathrm{n}_{27}\right)+\left(\mathrm{n}_{1}-\mathrm{n}_{27}\right)^{2} \delta K_{28} \\
& \delta \mathrm{P}_{25}-\delta \mathrm{P}_{35}=2\left(K_{26}+K_{27}\right) \mathrm{n}_{27} \delta \mathrm{n}_{27}+\delta K_{27} \mathrm{n}_{27}^{2}
\end{aligned}
$$

Airflow total pressure loss from inside the discharge end of the flow duct (path 1) into the shoot upper chamber:
$\mathrm{P}_{3}-\mathrm{P}_{1}=\mathrm{K}_{1} \frac{\mathrm{MW}_{1}{ }^{2} \mathrm{RT}_{3}}{\mathrm{P}_{3} \mathrm{~A}_{3}^{2}}\left[1-\frac{\mathrm{A}_{3}^{2}}{\mathrm{~A}_{1}^{2}}\right] \mathrm{n}_{1}{ }^{2}$
linearization gives:
$\delta \mathrm{P}_{3}-\delta \mathrm{P}_{1}=2 \mathrm{~K}_{1} \frac{\mathrm{MW}_{1}{ }^{2} \mathrm{RT}_{3}}{\mathrm{P}_{3} \mathrm{~A}_{3}^{2}}\left[1-\frac{\mathrm{A}_{3}^{2}}{\mathrm{~A}_{1}^{2}}\right] \mathrm{n}_{1} \delta \mathrm{n}_{1}-\mathrm{K}_{1} \frac{\mathrm{MW}_{1}{ }^{2} \mathrm{RT}_{3}}{\mathrm{P}_{3}^{2} \mathrm{~A}_{3}^{2}}\left[1-\frac{\mathrm{A}_{3}^{2}}{\mathrm{~A}_{1}^{2}}\right] \mathrm{n}_{1}{ }^{2} \delta \mathrm{P}_{3}$
This pressure loss is ignored.
Recognizing the effect of glove port activity on upper chamber volume completes the inventory of relevant processes:
$\dot{\mathrm{V}}_{1}=\dot{\mathrm{V}}_{g}$
$\delta \dot{\mathrm{V}}_{1}=\dot{\mathrm{V}}_{g}$

5.5 - THE MODELED SCENARIO

The control study is directed to a plausible research experimental condition. The defining parameters of this experiment are:
(1). Temperature of the air exiting the upper chamber, $\mathrm{T}_{1}: 20 \mathrm{C}$.
(2). Relative humidity of the air exiting the upper chamber, $\mathrm{RH}_{1}: 70 \%$.
(3). Absolute pressure of the air in the upper chamber, $\mathrm{P}_{1}: 101,458 \mathrm{~Pa}$.
(4). Temperature of the upper chamber wall, $T_{4}: 22 \mathrm{C}$.
(5). Source of PAR: on.
(6). Leaf area index: 30.
(7). Energy radiated from lamps which enters the CGC: 6000 Watts.
(8). Canopy absorbs all incident radiation.
(9). One-sixth of the absorbed energy evaporates transpiration water
(10). Five-sixths of the absorbed energy heats the air flowing through the CGC.

The system performance and physical configuration requirements, the
parameters of the prescribed experiment, along with enough bridging assumptions, when substituted into the modeling equations, generate the nominal values of each of the flow variables and point variables of the CSSEDS model.

Solving the above nonlinear equations for the equilibrium values of the system variables provides one with the values of all the variables which can be used in the linearized equations to determine the dynamical properties of the system for values of the system variables in the neighborhood of those of the experimental scenario.

5.6 - NOMINAL VALUES OF THE POINT VARIABLES AND THE FLOW

VARIABLES

$\mathrm{A}_{\mathrm{pf}}=2.0 \mathrm{~m}^{2}, \mathrm{~A}_{1}=0.1297 \mathrm{~m}^{2}, \mathrm{~A}_{3}=0.64 \mathrm{~m}^{2}, \mathrm{~A}_{4}=7.791 \mathrm{~m}^{2}, \mathrm{~A}_{5}=0.1297 \mathrm{~m}^{2}$, $\mathrm{A}_{7}=6.2402 \mathrm{~m}^{2}$
b1 $=0.0$ Newton-meters/radian per second,
$b_{2}=0.0013$ Newton-meters/(radian per second $)^{2}$,
$\begin{array}{ll}\left(\mathrm{c}_{\mathrm{p}_{1,1}}\right)_{\text {nom }}=29.1531 \text { Joules } \mathrm{mol}^{-1} \mathrm{~K}^{-1}, & \left(\mathrm{c}_{\mathrm{p}_{1,2}}\right)_{\text {nom }}=29.4908{\mathrm{Joules} \mathrm{mol}^{-1} \mathrm{~K}^{-1}}^{\left(\mathrm{c}_{1,3}\right)_{\text {nom }}=37.0476 \text { Joules } \mathrm{mol}^{-1} \mathrm{~K}^{-1},}\end{array} \quad\left(\mathrm{c}_{\mathrm{p}_{1,4}}\right)_{\text {nom }}=33.7301$ Joules $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ The above values are also used for these properties at points 2,17 , and 36 .
$\left(\mathrm{c}_{\mathrm{p}_{1}}\right)_{\text {nom }}=29.14$ Joules $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
The above value is used for this property at points $5,12,16,17,21,24,35$, and 36 .
$\begin{array}{ll}\left(c_{v_{1,1}}\right)_{\text {nom }}=20.8387 \text { Joules } \mathrm{mol}^{-1} \mathrm{~K}^{-1}, & \left(\mathrm{c}_{\mathrm{v}_{1,2}}\right)_{\text {nom }}=21.2055 \mathrm{Joules} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \\ \left(\mathrm{c}_{\mathrm{v}_{1,3}}\right)_{\text {nom }}=28.7333 \mathrm{Joules}_{\mathrm{mol}} \mathrm{m}^{-1} \mathrm{~K}^{-1}, & \left(\mathrm{c}_{\mathrm{v}_{1,4}}\right)_{\text {nom }}=25.4158 \mathrm{Joules} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\end{array}$
The above values are also used for these properties at points 5 and 36 .
$\mathrm{d}_{p f}=0.12439 \mathrm{~m}$
$\mathrm{D}_{8}=0.4064 \mathrm{~m}$

$$
\begin{aligned}
& \frac{\partial f\left(\omega_{37}, n_{9}\right)}{\partial \omega_{37}}=40.6 \mathrm{~Pa} /(\text { radian per second }), \quad \frac{\partial f\left(\omega_{37}, n_{9}\right)}{\partial n_{9}}=1.792 \mathrm{~Pa} /(\text { mole per second }), \\
& \mathrm{h}_{\text {chamber }}=0.7576 \mathrm{~m} \\
& \mathrm{~h}_{\text {canopy }}+\mathrm{d}_{\text {PPF }_{\text {ref }}}=\mathrm{h}_{\text {chamber }} \\
& \left(\mathrm{h}_{\mathrm{c}_{2}}\right)_{\text {nom }}=34.577 \text { watts } \mathrm{m}^{-2} \mathrm{~K}^{-1} \text {, } \\
& \left(\mathrm{h}_{\mathrm{c}_{7}}\right)_{\text {nom }}=7.3196{\text { watts } \mathrm{m}^{-2}} \mathrm{~K}^{-1} \\
& \mathrm{~J}_{\text {impeller }}=4.468 \mathrm{~kg} \mathrm{~m}^{2}, \quad \mathrm{~J}_{\text {motor }}=1.328 \mathrm{~kg} \mathrm{~m}^{2} \\
& \left(\mathrm{k}_{1}\right)_{\text {nom }}=0.0263 \text { watts } \mathrm{m}^{-1} \mathrm{~K}^{-1} \\
& K_{\text {filter }}=.09555 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2}, \quad \mathrm{~K}_{3}=1.0 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \text {, } \\
& K_{5}=1.0 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \text {, } \\
& K_{7}{ }^{0}=0.00016 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \text {, } \\
& K_{6}=K_{\text {filter }}=.09555 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{7}{ }^{1}=0.055332 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{8}=0.002031 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{15}=68.4 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{22}=114.0 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{26}=0.0 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{28}=1.215 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{21}=K_{20}=158.8 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{23}=158.8 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{27}=0.1362 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& K_{28}=1.215 \mathrm{n} \mathrm{~m}^{-2} \mathrm{~mole}^{-2} \mathrm{sec}^{2} \\
& \text { LAI }=30 \text { (unitless) } \\
& \begin{array}{ll}
\mathrm{L}_{1}=3.85 \mathrm{~m} & \mathrm{~L}_{5}=.2544 \mathrm{~m} \\
\left(\mathrm{MW}_{1}\right)_{\text {nom }}=\left(\mathrm{MW}_{35}\right)_{\text {nom }}=28.9700 \mathrm{~g} / \mathrm{mol}, & \left(\mathrm{MW}_{3}\right)_{\text {nom }}=28.8277 \mathrm{~g} / \mathrm{mol},
\end{array} \\
& \left(\mathrm{MW}_{8}\right)_{\text {nom }}=28.8277 \mathrm{gm} \mathrm{~mole}^{-1} \quad\left(\mathrm{MW}_{9}\right)_{\text {nom }}=\left(\mathrm{MW}_{8}\right)_{\text {nom }}=28.8277 \mathrm{gm} \mathrm{~mole}{ }^{-1} \\
& \left(\mathrm{MW}_{1}\right)_{\text {nom }}=28.8277 \mathrm{gm} \mathrm{~mole}{ }^{-1} \quad\left(\mathrm{MW}_{5}\right)_{\text {nom }}=28.8277 \mathrm{gm} \mathrm{~mole}^{-1} \\
& \left(\mathrm{n}_{1} \mathrm{c}_{\mathrm{P}_{35}}\right)_{\text {nom }}=\left(\mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}}\right)_{\text {nom }}=(102.26)(29.67)=3034.448 \text { Watts } \mathrm{K}^{-1} \\
& \left(\mathrm{n}_{1}\right)_{\text {nom }}=102.2369 \text { moles sec }^{-1} \text {, } \\
& \left(\mathrm{n}_{1,1}\right)_{\text {nom }}=75.944{\mathrm{moles} \mathrm{sec}^{-1}}^{-1} \\
& \left(\mathrm{n}_{1,2}\right)_{\text {nom }}=24.54225 \text { moles sec }^{-1} \text {, } \\
& \left(\mathrm{n}_{1,3}\right)_{\text {nom }}=0.122844 \mathrm{moles} \mathrm{sec}^{-1} \\
& \left(\mathrm{n}_{1,4}\right)_{\text {nom }}=1.6278 \text { moles sec }^{-1} \text {, } \\
& \left(\mathrm{n}_{2,2}[\text { resp] })_{\text {nom }}=0.0 \mathrm{moles} \mathrm{sec}^{-1}\right. \text {, } \\
& \left(\mathrm{n}_{2,2}\right)_{\text {nom }}=\left(\mathrm{n}_{2,2}[\hbar \nu]\right)_{\text {nom }}=-0.00014699 \mathrm{moles} \mathrm{sec}^{-1} \text {, }
\end{aligned}
$$

$\left(n_{2,3}[\hbar \nu]\right)_{\text {nom }}=0.0 \mathrm{moles} \mathrm{sec}^{-1}$,
$\left(n_{2,3}(\text { reap } 1)_{\text {nom }}=\left(n_{2,3}\right)_{\text {nom }}=0.00013542\right.$ moles sec $^{-1}$,
$\left(\mathrm{n}_{2,4}\right)_{\text {nom }}=-0.022236 \mathrm{moles}^{\mathrm{sec}}{ }^{-1}$
$\left(n_{3}\right)_{\text {nom }}=102.1592 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(\mathrm{n}_{3} \mathrm{c}_{\mathrm{p}_{1}}\right)_{\text {nom }}=(102.26)(29.67)=3034.448 \mathrm{Watts} \mathrm{K}^{-1}$
$\left(\mathrm{n}_{3,1}\right)_{\text {nom }}=\left(\mathrm{n}_{1,1}\right)_{\text {nom }}=75.944$ moles sec ${ }^{-1}, \quad\left(\mathrm{n}_{3,2}\right)_{\text {nom }}=24.5420 \mathrm{moles} \mathrm{sec}^{-1}$,
$\left(n_{3,3}\right)_{\text {nom }}=0.122712$ moles sec $^{-1}, \quad\left(n_{3,4}\right)_{\text {nom }}=1.6505$ moles sec $^{-1}$
$\left(n_{5}\right)_{\text {nom }}=\left(n_{3}\right)_{\text {nom }}=102.1592$ moles sec $^{-1}, \quad\left(n_{6}\right)_{\text {nom }}=\left(n_{3}\right)_{\text {nom }}=102.1592 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(\mathrm{n}_{8}\right)_{\text {nom }}=102.1591$ moles sec $^{-1} \quad\left(\mathrm{n}_{9}\right)_{\text {nom }}=102.1591 \mathrm{moles}^{\text {sec }}{ }^{-1}$
$\left(\mathrm{n}_{10,2}\right)_{\text {nom }}=0.00014699 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(\mathrm{n}_{14}\right)_{\text {nom }}=\left(\mathrm{n}_{1}+\mathrm{n}_{18}\right)_{\text {nom }}=102.2595 \mathrm{moles}^{\text {sec }}{ }^{-1} \quad\left(\mathrm{n}_{15}\right)_{\text {nom }}=2.0861 \mathrm{moles}^{\mathrm{sec}^{-1}}$
$\left(\mathrm{n}_{16}\right)_{\text {nom }}=\left(\mathrm{n}_{20}\right)_{\text {nom }}=\left(\mathrm{n}_{21}\right)_{\text {nom }}=100.195636 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(n_{17,1}\right)_{\text {nom }}=0.0$ moles sec $^{-1} \quad\left(n_{17,2}\right)_{\text {nom }}=0.0$ moles sec $^{-1}$
$\left(n_{17,3}\right)_{\text {nom }}=0.00013542 \mathrm{moles} \mathrm{sec}^{-1} \quad\left(n_{17,4}\right)_{\text {nom }}=0.0 \mathrm{moles}^{-1}$
$\left(\mathrm{n}_{19}\right)_{\text {nom }}=\left(\mathrm{n}_{15}\right)_{\text {nom }}=2.0861 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(n_{18}\right)_{\text {nom }}=-\left(n_{2,4}\right)_{\text {nom }}=0.022236$ moles sec $^{-1}$
$\left(\mathrm{n}_{21}\right)_{\text {nom }}=\left(\mathrm{n}_{14}\right)_{\text {nom }}-\left(\mathrm{n}_{22}\right)_{\text {nom }}=100.195636 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(\mathrm{n}_{22}\right)_{\text {nom }}=\left(\mathrm{n}_{15}\right)_{\text {nom }}-\left(\mathrm{n}_{18}\right)_{\text {nom }}=2.063864 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(\mathrm{n}_{26}\right)_{\text {nom }}=\left(\mathrm{n}_{27}\right)_{\text {nom }}=76.64 \mathrm{moles} \mathrm{sec}^{-1} \quad\left(\mathrm{n}_{28}\right)_{\text {nom }}=25.5969 \mathrm{moles}^{-1}$
$\left(\mathrm{n}_{22}\right)_{\text {nom }}=\left(\mathrm{n}_{15}\right)_{\text {nom }}-\left(\mathrm{n}_{18}\right)_{\text {nom }}=2.063864 \mathrm{moles} \mathrm{sec}^{-1}$
$\left(N_{1,1} c_{v_{1,1}}+N_{1,2} c_{v_{1,2}}+N_{1,3} c_{v_{1,3}}+N_{1,4} c_{v_{1,4}}\right)_{\text {nom }}=1778.2525{\mathrm{Joules} \mathrm{sec}^{-1}}^{-1}$
$\left(\mathrm{N}_{1}\right)_{\text {nom }}=83.2528$ moles,
$\begin{array}{ll}\left(\frac{N_{1,1}}{N_{1}}\right)_{\text {nom }}=.74266 \text { unitless, } & \left(\frac{N_{1,2}}{N_{1}}\right)_{\text {nom }}=.24 \text { unitless, } \\ \left(\frac{N_{1,3}}{N_{1}}\right)_{\text {nom }}=.001200 \text { unitless, } & \left(\frac{\mathrm{N}_{1,4}}{N_{1}}\right)_{\text {nom }}=.01614 \text { unitless, }\end{array}$
$\left(\mathrm{N}_{5}\right)_{\text {nom }}=28.3055$ moles,
$\left(\frac{N_{5,1}}{N_{5}}\right)_{\text {nom }}=\left(\frac{n_{5,1}}{n_{5}}\right)_{\text {nom }}=\left(\frac{n_{3,1}}{n_{3}}\right)_{\text {nom }}=0.74266$ unitless,
$\left(\frac{N_{5,2}}{N_{5}}\right)_{\text {nom }}=\left(\frac{n_{5,2}}{n_{5}}\right)_{n o m}=\left(\frac{n_{3,2}}{n_{3}}\right)_{\text {nom }}=0.239936$ unitless,
$\left(\frac{N_{5,3}}{N_{5}}\right)_{\text {nom }}=\left(\frac{n_{5,3}}{n_{5}}\right)_{\text {nom }}=\left(\frac{n_{3,3}}{n_{3}}\right)_{\text {nom }}=0.0012$ unitless,
$\left(\frac{N_{5,4}}{N_{5}}\right)_{\text {nom }}=\left(\frac{n_{5,4}}{n_{5}}\right)_{\text {nom }}=\left(\frac{n_{3,4}}{n_{3}}\right)_{\text {nom }}=0.01614$ unitless,
$\left(\mathrm{N}_{36}\right)_{\text {nom }}=41.622$ moles,
$\left(\frac{N_{36,1}}{N_{36}}\right)_{\text {nom }}=.742663$ unitless,
$\left(\frac{\mathrm{N}_{36,2}}{\mathrm{~N}_{36}}\right)_{\text {nom }}=.239987$ unitless,
$\left(\frac{\mathrm{N}_{36,3}}{\mathrm{~N}_{36}}\right)_{\text {nom }}=.0012013$ unitless,
$\left(\frac{N_{36,4}}{N_{36}}\right)_{\text {nom }}=.0161401$ unitless,
$\mathrm{Nu}_{x=\mathrm{L}_{5}}=35.4046$ unitless,
$\left(\mathrm{P}_{1}\right)_{\text {nom }}=101,458 \mathrm{~Pa}$,

$$
\left(\mathrm{P}_{3}\right)_{n o m}=101,458 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{1}-\mathrm{P}_{5}\right)_{\text {nom }}=8.84 \mathrm{~Pa}$,

$$
\left(\mathrm{P}_{5}\right)_{\text {nom }}=101,449 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{5}-\mathrm{P}_{6}\right)_{\text {nom }}=214.765 \mathrm{~Pa}$

$$
\left(\mathrm{P}_{6}\right)_{n o m}=101,234 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{9}\right)_{\text {nom }}=101,234 \mathrm{~Pa}$,

$$
\left(\mathrm{P}_{9}-\mathrm{P}_{10}\right)_{n o m}=999.2 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{10}\right)_{\text {nom }}=100,235 \mathrm{~Pa}$,

$$
\left(\mathrm{P}_{11}\right)_{n o m}=100,235 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{11}-\mathrm{P}_{12}\right)_{\text {nom }}=599.5 \mathrm{~Pa}$,

$$
\left(\mathrm{P}_{12}\right)_{\text {nom }}=99635 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{12}-\mathrm{P}_{13}\right)_{\text {nom }}=212 \mathrm{~Pa}$

$$
\left(\mathrm{P}_{13}\right)_{n o m}=99,423 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{13}-\mathrm{P}_{14}\right)_{\text {nom }}=0$

$$
\left(\mathrm{P}_{14}\right)_{\text {nom }}=99,423 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{14}-\mathrm{P}_{16}\right)_{\text {nom }}=-3850 \mathrm{~Pa}$

$$
\left(\mathrm{P}_{36}\right)_{\text {nom }}=103,272 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{17}\right)_{\text {nom }}=103,272 \mathrm{~Pa}$

$$
\left(\mathrm{P}_{24}\right)_{\text {nom }}=102,472 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{25}\right)_{\text {nom }}=102,260 \mathrm{~Pa}$

$$
\left(\mathrm{P}_{35}\right)_{\text {nom }}=101,458 \mathrm{~Pa}
$$

$\left(\mathrm{P}_{36}\right)_{\text {nom }}=\left(\mathrm{P}_{17}\right)_{\text {nom }}=103,272.1 \mathrm{~Pa}$
$\left(\operatorname{Pr}_{1}\right)_{\text {nam }}=0.707$ unitless,

$$
\left(\operatorname{Pr}_{5}\right)_{\text {nom }}=0.707 \text { unitless }
$$

$\left(\operatorname{Re}_{L_{1}}\right)_{\text {nom }}=42,600$ unitless

$$
\left(\operatorname{Re}_{\mathrm{L}_{5}}\right)_{n o m}=14,329 \text { unitless }
$$

$\left(\operatorname{Re}_{L_{8}}\right)_{\text {nom }}=4.413 \times 10^{6}$ unitless
$\mathrm{SH}_{21}=0.008595$,

$$
\mathrm{SH}_{36}=0.016405
$$

$$
\begin{aligned}
\left(\mathrm{T}_{1}\right)_{\text {nom }} & =293.15 \mathrm{~K} \\
\left(\mathrm{~T}_{3}\right)_{\text {nom }} & =291.4179 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{R}=8.31441 \text { Joules mole }{ }^{-1} \mathrm{~K}^{-1}
$$

$$
\mathrm{SH}_{21}=0.008590
$$

$$
\begin{aligned}
& \left(\mathrm{T}_{2}\right)_{\text {nom }}=295.15 \mathrm{~K} \\
& \left(\mathrm{~T}_{5}\right)_{\text {nom }}=293.173 \mathrm{~K}
\end{aligned}
$$

5.7-THE CONDENSED PRIMITIVE EQUATIONS

To express the system of equations in the format of Equations (1) and (2), we assign η, σ, u, d elements to the perturbed variables, $\delta(\cdot)$ as is shown in Table 1 ;

As an aid to the reader, the inverse assignments are listed in Table 2.
The result of using these assignments and inserting the nominal numerical values into the linearized equations is:

$$
\begin{equation*}
\dot{\eta}_{1}=1.279 \sigma_{1}-1.279 \sigma_{2} \tag{5.7.1}
\end{equation*}
$$

$$
\begin{align*}
& \dot{\eta}_{2}=0.7427 \eta_{1}-0.3163 \eta_{2}+0.9127 \eta_{3}+0.9127 \eta_{4}+0.9127 \eta_{5}+0.6330 \eta_{13}-1.826 \eta_{14}-1.826 \eta_{15}-1 . \\
& 826 \eta_{16}-0.7427 \sigma_{3}+0.7427 \sigma_{4} \tag{5.7.2}
\end{align*}
$$

$$
\begin{align*}
& \dot{\eta}_{3}=0.24 \eta_{1}+0.2949 \eta_{2}-0.9341 \eta_{3}+0.2949 \eta_{4}+0.2949 \eta_{5}-0.5901 \eta_{13}+1.896 \eta_{14}-0.5901 \eta_{15} \\
& -0.5901 \eta_{16}-0.24 \sigma_{3}+0.24 \sigma_{4}-d_{1} \tag{5.7.3}
\end{align*}
$$

$$
\dot{\eta}_{4}=0.001201 \eta_{1}+0.001475 \eta_{2}+0.001475 \eta_{3}-1.228 \eta_{4}+0.001475 \eta_{5}-0.002953 \eta_{13}+0.002953 \eta_{14}
$$

$$
\begin{equation*}
+2.456 \eta_{15}-0.5901 \eta_{16}-0.0012 \sigma_{3}+0.0012 \sigma_{4}+\mathrm{d}_{2} \tag{5.7.4}
\end{equation*}
$$

$$
\begin{aligned}
& \left(\mathrm{T}_{17}\right)_{\text {nom }}=\left(\mathrm{T}_{36}\right)_{\text {nom }}=\left(\mathrm{T}_{16}\right)_{\text {nom }}=298.1 \mathrm{~K} \quad\left(\mathrm{~T}_{21}\right)_{\text {nom }}=278.2 \mathrm{~K} \\
& \left(\mathrm{~T}_{24}\right)_{\text {nom }}=294.8 \mathrm{~K} \\
& \left(\mathrm{~T}_{27}\right)_{\text {nom }}=\left(\mathrm{T}_{28}\right)_{\text {nom }}=294.8 \mathrm{~K} \quad\left(\mathrm{~T}_{29}\right)_{\text {nom }}=288.85 \mathrm{~K} \\
& \left(\mathrm{~T}_{30}\right)_{\text {nom }}=294.9 \mathrm{~K} \\
& \left(\mathrm{~T}_{36}\right)_{\text {nom }}=298.1 \mathrm{~K} \\
& (\mathrm{UA})_{4} \text { nom }=33.03 \text { watts } \mathrm{K}^{-1} \\
& (\mathrm{UA})_{7 \text { nom }}=45.676 \text { watts } \mathrm{K}^{-1} \\
& \mathrm{~V}_{1}=2.0 \mathrm{~m}^{3} \\
& \mathrm{~V}_{5}=0.68 \mathrm{~m}^{3} \\
& \left(\mu_{1}\right)_{\text {nom }}=0.00001983 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{sec}^{-1} \\
& \eta_{p}=.6 \\
& \left(\rho_{5}\right)_{\text {nom }}=41.62 \text { moles } \mathrm{m}^{-3} \\
& \left(\chi_{14}\right)_{\text {nam }}=0.0204 \text { (unitless) } \\
& \left(\mathrm{T}_{25}\right)_{\text {nom }}=\left(\mathrm{T}_{24}\right)_{\text {nom }}=294.8 \mathrm{~K} \\
& \left(\mathrm{~T}_{35}\right)_{\text {nom }}=291.4179 \mathrm{~K} \\
& (\mathrm{UA})_{2 \text { nom }}=4149.24 \text { watts }^{-1} \\
& \mathrm{~V}_{36}=2 \mathrm{~A}_{1} \mathrm{~L}_{23}=.99869 \mathrm{~m}^{3} \\
& \left(\mu_{5}\right)_{\text {nom }}=0.00001983 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{sec}^{-1} \\
& \left(\rho_{1}\right)_{\text {nom }}=41.63 \mathrm{~mol} \mathrm{~m}^{-3} \\
& \left(\omega_{37}\right)_{\text {nom }}=189 \mathrm{rad} \mathrm{sec}^{-1} \\
& \left(\chi_{23}\right)_{\text {nom }}=.6134 \text { (unitless) }
\end{aligned}
$$

Table 1. Assignment of the Primitive (Perturbation) Variables to the Fundamental Variables

$$
\begin{align*}
& \dot{\eta}_{5}=0.0161 \eta_{1}+0.01978 \eta_{2}+0.01978 \eta_{3}+0.1978 \eta_{4}-1.209 \eta_{5}-0.03958 \eta_{13}-0.03958 \eta_{14} \\
& -0.03958 \eta_{15}+2.509 \eta_{16}-0.0161 \sigma_{3}-0.9839 \sigma_{4}+\mathrm{d}_{3} \tag{5.7.5}\\
& 1731.0 \dot{\eta}_{6}=540.12 \eta_{1}-7121.0 \eta_{6}-583.4 \sigma_{3}+2981 \sigma_{6}-648.8 \mathrm{~d}_{1}-741 \mathrm{~d}_{2}-742.4 \mathrm{~d}_{3}+4080.0 \mathrm{~d}_{4} \\
& +60.0 \mathrm{~d}_{5}-133.3 \mathrm{~d}_{6} \tag{5.7.6}
\end{align*}
$$

$$
\begin{equation*}
2.0 \sigma_{2}=2437.0 \eta_{2}+2437.0 \eta_{3}+2437.0 \eta_{4}+2437.0 \eta_{5}+692.1 .0 \eta_{6}-101,460.08 \eta_{19} \tag{5.7.7}
\end{equation*}
$$

$\sigma_{2}-.08688 \sigma_{3}-\sigma_{5}=0$

$$
\dot{\eta}_{7}=0.3163 \eta_{2}-0.9127 \eta_{3}-0.9127 \eta_{4}-0.9127 \eta_{5}-0.93 \eta_{7}+2.684 \eta_{8}+2.684 \eta_{9}+2.684 \eta_{10}
$$

$$
\begin{equation*}
-0.7427 \eta_{12}+0.7427 \sigma_{3}-0.7427 u_{2} \tag{5.7.9}
\end{equation*}
$$

$\dot{\eta}_{8}=-0.2949 \eta_{2}+0.9341 \eta_{3}-0.2949 \eta_{4}-0.2949 \eta_{5}+0.8673 \eta_{7}-2.747 \eta_{8}+0.8673 \eta_{9}+0.8673 \eta_{10}$

$$
\begin{equation*}
-0.24 \eta_{12}+0.24 \sigma_{3}-0.24 \mathrm{u}_{2} \tag{5.7.10}
\end{equation*}
$$

$\dot{\eta}_{9}=-0.001475 \eta_{2}-0.001475 \eta_{3}+1.228 \eta_{4}-0.001475 \eta_{5}+0.004324 \eta_{7}+0.004324 \eta_{8}-3.610 \eta_{9}$
$+0.004324 \eta_{10}-0.0012 \eta_{12}+0.0012 \sigma_{3}-0.0012 \mathrm{u}_{2}$

$$
\begin{aligned}
& \delta K_{7} \doteq \mathrm{u}_{1}, \quad \delta K_{21} \doteq \mathrm{u}_{8}, \quad \delta K_{22} \doteq \mathrm{u}_{9}, \quad \delta K_{27} \doteq \mathrm{u}_{10}, \quad \delta K_{28} \doteq \mathrm{u}_{11}, \quad \delta \mathrm{n}_{1} \doteq \eta_{1}, \\
& \delta \mathrm{n}_{2,2} \doteq \mathrm{~d}_{1}, \quad \delta \mathrm{n}_{2,3} \doteq \mathrm{~d}_{2}, \quad \delta \mathrm{n}_{2,4} \doteq \mathrm{~d}_{3}, \quad \delta \mathrm{n}_{3} \doteq \sigma_{3}, \quad \delta \mathrm{n}_{9} \doteq \eta_{12}, \quad \delta \mathrm{n}_{10,2} \doteq \mathrm{u}_{2}, \\
& \delta \mathrm{n}_{15} \doteq \sigma_{13}, \quad \delta \mathrm{n}_{17,1} \doteq \mathrm{u}_{4}, \quad \delta \mathrm{n}_{17,2} \doteq \mathrm{u}_{5}, \quad \delta \mathrm{n}_{17,3} \doteq \mathrm{u}_{6}, \quad \delta \mathrm{n}_{17,4} \doteq \mathrm{u}_{7}, \quad \delta \mathrm{n}_{18} \doteq \sigma_{4}, \\
& \delta \mathrm{n}_{27} \doteq \sigma_{17}, \quad \delta \mathrm{~N}_{1,1} \doteq \eta_{2}, \quad \delta \mathrm{~N}_{1,2} \doteq \eta_{3}, \quad \delta \mathrm{~N}_{1,3} \doteq \eta_{4}, \quad \delta \mathrm{~N}_{1,4} \doteq \eta_{5}, \quad \delta \mathrm{~N}_{5,1} \doteq \eta_{7}, \\
& \delta \mathrm{~N}_{5,2} \doteq \eta_{8}, \quad \delta \mathrm{~N}_{5,3} \doteq \eta_{9}, \quad \delta \mathrm{~N}_{5,4} \doteq \eta_{10}, \quad \delta \mathrm{~N}_{36,1} \doteq \eta_{13}, \delta \mathrm{~N}_{36,2} \doteq \eta_{14}, \delta \mathrm{~N}_{36,3} \doteq \eta_{15}, \\
& \delta \mathrm{~N}_{36,4} \doteq \eta_{16}, \delta \mathrm{P}_{1} \doteq \sigma_{2}, \quad \delta \mathrm{P}_{5} \doteq \sigma_{5}, \quad \delta \mathrm{P}_{12} \doteq \sigma_{7}, \quad \delta \mathrm{P}_{13} \doteq \sigma_{8}, \quad \delta \mathrm{P}_{14} \doteq \sigma_{9}, \\
& \delta \mathrm{P}_{24} \doteq \sigma_{14}, \quad \delta \mathrm{P}_{25} \doteq \sigma_{16}, \quad \delta \mathrm{P}_{35} \doteq \sigma_{1}, \quad \delta \mathrm{P}_{36} \doteq \sigma_{11}, \quad \delta \mathrm{~T}_{1} \doteq \eta_{6}, \quad \delta \mathrm{~T}_{2} \doteq \mathrm{~d}_{4}, \\
& \delta \mathrm{~T}_{4} \doteq \mathrm{~d}_{5}, \quad \delta \mathrm{~T}_{5} \doteq \eta_{11}, \quad \delta \mathrm{~T}_{7} \doteq \mathrm{~d}_{6}, \quad \delta \mathrm{~T}_{16} \doteq \sigma_{10}, \quad \delta \mathrm{~T}_{24} \doteq \sigma_{15}, \quad \delta \mathrm{~T}_{35} \doteq \sigma_{6}, \\
& \delta \mathrm{~T}_{36} \doteq \eta_{17}, \quad \delta \mathrm{~T}_{38} \doteq \mathrm{~d}_{8}, \quad \delta \tau_{36} \doteq \sigma_{12}, \quad \delta \tau_{37} \doteq \mathrm{u}_{3}, \quad \dot{\mathrm{~V}}_{g} \doteq \mathrm{~d}_{7}, \quad \delta \mathrm{~V}_{1} \doteq \eta_{19}, \\
& \delta \omega_{37} \doteq \eta_{18},
\end{aligned}
$$

$$
\begin{align*}
& \dot{\eta}_{10}=-0.01978 \eta_{2}-0.01978 \eta_{3}-0.01978 \eta_{4}+3.556 \eta_{5}+0.05818 \eta_{7}+0.05818 \eta_{8}+0.05818 \eta_{9} \\
& -3.556 \eta_{10}-0.0161 \eta_{12}+0.0161 \sigma_{3}-0.0161 u_{2} \tag{5.7.12}
\end{align*}
$$

Table 2. Assignment of the Fundamental Variables to the Primitive (Perturbation) Variables.

$$
\begin{array}{llllll}
\mathrm{d}_{1} \doteq \delta \mathrm{n}_{2,2}, & \mathrm{~d}_{2} \doteq \delta \mathrm{n}_{2,3}, & \mathrm{~d}_{3} \doteq \delta \mathrm{n}_{2,4}, & \mathrm{~d}_{4} \doteq \delta \mathrm{~T}_{2}, & \mathrm{~d}_{5} \doteq \delta \mathrm{~T}_{4}, & \mathrm{~d}_{6} \doteq \delta \mathrm{~T}_{7} \\
\mathrm{~d}_{7} \doteq \dot{\mathrm{~V}}_{g}, & \mathrm{~d}_{8} \doteq \delta \mathrm{~T}_{38}, & \eta_{1} \doteq \delta \mathrm{n}_{1}, & \eta_{2} \doteq \delta \mathrm{~N}_{1,1}, & \eta_{3} \doteq \delta \mathrm{~N}_{1,2}, & \eta_{4} \doteq \delta \mathrm{~N}_{1,3} \\
\eta_{5} \doteq \delta \mathrm{~N}_{1,4}, & \eta_{6} \doteq \delta \mathrm{~T}_{1}, & \eta_{7} \doteq \delta \mathrm{~N}_{5,1}, & \eta_{8} \doteq \delta \mathrm{~N}_{5,2}, & \eta_{9} \doteq \delta \mathrm{~N}_{5,3}, & \eta_{10} \doteq \delta \mathrm{~N}_{5,4} \\
\eta_{11} \doteq \delta \mathrm{~T}_{5}, & \eta_{12} \doteq \delta \mathrm{n}_{9}, & \eta_{13} \doteq \delta \mathrm{~N}_{36,1}, & \eta_{14} \doteq \delta \mathrm{~N}_{36,2}, & \eta_{15} \doteq \delta \mathrm{~N}_{36,3}, & \eta_{16} \doteq \delta \mathrm{~N}_{36,4} \\
\eta_{17} \doteq \delta \mathrm{~T}_{36}, & \eta_{18} \doteq \delta \omega_{37}, & \eta_{19} \doteq \delta \mathrm{~V}_{1}, & \sigma_{1} \doteq \delta \mathrm{P}_{35}, & \sigma_{2} \doteq \delta \mathrm{P}_{1}, & \sigma_{3} \doteq \delta \mathrm{n}_{3} \\
\sigma_{16} \doteq \delta \mathrm{P}_{25}, & \sigma_{4} \doteq \delta \mathrm{n}_{18}, & \sigma_{5} \doteq \delta \mathrm{P}_{5}, & \sigma_{6} \doteq \delta \mathrm{~T}_{35}, & \sigma_{7} \doteq \delta \mathrm{P}_{12}, & \sigma_{8} \doteq \delta \mathrm{P}_{13} \\
\sigma_{9} \doteq \delta \mathrm{P}_{14}, & \sigma_{10} \doteq \delta \mathrm{~T}_{16}, & \sigma_{11} \doteq \delta \mathrm{P}_{36}, & \sigma_{12} \doteq \delta \mathrm{~T}_{36}, & \sigma_{13} \doteq \delta \mathrm{n}_{15}, & \sigma_{14} \doteq \delta \mathrm{P}_{24} \\
\sigma_{15} \doteq \delta \mathrm{~T}_{24}, & \sigma_{17} \doteq \delta \mathrm{n}_{27}, & \mathrm{u}_{1} \doteq \delta K_{7}, & \mathrm{u}_{2} \doteq \delta \mathrm{n}_{10,2}, & \mathrm{u}_{3} \doteq \delta \tau_{37}, & \mathrm{u}_{4} \doteq \delta \mathrm{n}_{17,1} \\
\mathrm{u}_{5} \doteq \delta \mathrm{n}_{17,2}, & \mathrm{u}_{6} \doteq \delta \mathrm{n}_{17,3}, & \mathrm{u}_{7} \doteq \delta \mathrm{n}_{17,4}, & \mathrm{u}_{8} \doteq \delta K_{21}, & \mathrm{u}_{9} \doteq \delta K_{22}, & \mathrm{u}_{10} \doteq \delta K_{27} \\
\mathrm{u}_{11} \doteq \delta K_{28}, & & & & &
\end{array}
$$

$$
\begin{align*}
& 588.6 \dot{\eta}_{11}=-2981 \eta_{6}-3041.0 \eta_{11}-582.4 \eta_{12}+583.4 \sigma_{3}-582.4 \mathrm{u}_{2}+60.0 \mathrm{~d}_{7} \tag{5.7.13}\\
& \dot{\eta}_{12}=1.279 \sigma_{8}-1.279 \sigma_{9} \tag{5.7.14}\\
& \sigma_{5}-\sigma_{7}=35.9 \eta_{12}+10,470 \mathrm{u}_{1}+35.9 \mathrm{u}_{2} \tag{5.7.15}\\
& \sigma_{7}-\sigma_{8}=4.145 \eta_{12} \tag{5.7.16}\\
& 0.68 \sigma_{5}=2437.0 \eta_{7}+2437.0 \eta_{8}+2437.0 \eta_{9}+2437.0 \eta_{10}+235.4 \eta_{11} \tag{5.7.17}\\
& 0.02402 \sigma_{9}+29.14 \sigma_{10}-0.02402 \sigma_{11}=29.14 \eta_{11}+92.48 \eta_{12} \tag{5.7.18}\\
& 2.457 \sigma_{9}-2.457 \sigma_{11}+54.19 \sigma_{12}=92.48 \eta_{12}-62.82 \eta_{18} \tag{5.7.19}\\
& \dot{\eta}_{18}=-0.4051 \eta_{18}-0.1725 \sigma_{12}+0.1725 \mathrm{u}_{3} \tag{5.7.20}\\
& -20.29 \sigma_{4}+20.29 \sigma_{13}+102.3 \sigma_{15}=0.42 \eta_{1}+100.2 \eta_{17} \tag{5.7.21}
\end{align*}
$$

$$
\begin{equation*}
\sigma_{14}-\sigma_{16}=158.8 \eta_{1} \tag{5.7.22}
\end{equation*}
$$

$$
\begin{equation*}
-\sigma_{1}+\sigma_{16}+51.31 \sigma_{17}=51.31 \eta_{1}+658.3 \mathrm{u}_{11} \tag{5.7.23}
\end{equation*}
$$

$$
\begin{equation*}
-\sigma_{1}+\sigma_{16}-20.88 \sigma_{17}=5874.0 u_{10} \tag{5.7.24}
\end{equation*}
$$

$$
\begin{equation*}
102.3 \sigma_{6}-25.66 \sigma_{15}+9.15 \sigma_{17}=6.87 \eta_{1} \tag{5.7.25}
\end{equation*}
$$

$$
\begin{equation*}
-16.26 \sigma_{4}+\sigma_{11}+16.26 \sigma_{13}-\sigma_{14}=16.26 \eta_{1}+839.4 u_{8} \tag{5.7.26}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{11}-763.9 \sigma_{13}-\sigma_{14}=4.385 \mathrm{u}_{9} \tag{5.7.27}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{4}=0.01064 \sigma_{13} \tag{5.7.28}
\end{equation*}
$$

$$
\begin{equation*}
0.9987 \sigma_{11}=2481.0 \eta_{13}+2481.0 \eta_{13}+2481.0 \eta_{14}+2481.0 \eta_{15}+2481.0 \eta_{16}+345.9 \eta_{17} \tag{5.7.29}
\end{equation*}
$$

$$
\begin{align*}
& \dot{\eta}_{13}=-0.7472 \eta_{1}+0.93 \eta_{7}-2.684 \eta_{8}-2.684 \eta_{9}-2.684 \eta_{10}+0.7427 \eta_{12}-0.622 \eta_{13}+1.837 \eta_{14} \\
& +1.837 \eta_{15}+1.837 \eta_{16}-0.7472 \sigma_{4}+0.7427 \mathrm{u}_{2}+\mathrm{u}_{4} \tag{5.7.30}
\end{align*}
$$

$$
\begin{align*}
& \dot{\eta}_{14}=-0.24 \eta_{1}-0.8673 \eta_{7}+2.747 \eta_{8}-0.8673 \eta_{9}-0.8673 \eta_{10}+0.24 \eta_{12}+0.5901 \eta_{13}-1.869 \eta_{14} \\
& +0.5901 \eta_{15}+0.5901 \eta_{16}+0.24 \sigma_{4}-0.76 \mathrm{u}_{2}+\mathrm{u}_{4} \tag{5.7.31}
\end{align*}
$$

$\dot{\eta}_{15}=-0.0012 \eta_{1}-0.004336 \eta_{7}-0.004336 \eta_{8}+3.61 \eta_{9}-0.004336 \eta_{10}+0.0012 \eta_{12}+0.002951 \eta_{13}$

$$
\begin{equation*}
+0.002951 \eta_{14}-2.455 \eta_{15}+0.002951 \eta_{16}-0.0012 \sigma_{4}+0.0012 u_{2}+u_{6} \tag{5.7.32}
\end{equation*}
$$

$$
\begin{align*}
& \dot{\eta}_{16}=-0.0161 \eta_{1}-0.05818 \eta_{7}-0.05818 \eta_{8}-0.05818 \eta_{9}+3.556 \eta_{10}+0.0161 \eta_{12}+0.03958 \eta_{13} \\
& +0.03958 \eta_{14}+0.03958 \eta_{15}-2.418 \eta_{16}-0.0161 \sigma_{4}+0.0161 \mathrm{u}_{2}+\mathrm{u}_{7} \tag{5.7.33}
\end{align*}
$$

$1213.0 \dot{\eta}_{17}=-8696.0 \eta_{1}+8696.0 \eta_{12}-2981.0 \eta_{17}-8696.0 \sigma_{4}+2981.0 \sigma_{10}+8708.0 \mathrm{u}_{4}+8800.0 \mathrm{u}_{5}$
$+11,060.0 \mathrm{u}_{6}+11,070.0 \mathrm{u}_{7}+0.08597 \mathrm{~d}_{8}$

$$
\begin{equation*}
\sigma_{11}-\sigma_{9}=40.6 \eta_{18}+1.792 \eta_{12} \tag{5.7.35}
\end{equation*}
$$

$\dot{\eta}_{19}=\mathrm{d}_{7}$

5.7-THE STATE VARIABLE FORM OF THE LINEARIZED

MATHEMATICAL MODEL

The equations are arranged compatibly with the symbolic form of the primitive equations from section 5.1. To obtain the state variable representation of the model (Equations 5.1 .5 and 5.1.6), one can load the coefficients in the 36 equations from Section 5.7, (which are in the form of Equations 5.1 .1 and 5.1.2) into arrays $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3$, and B 4 in a MATLAB compatible format for reduction to state space format. A compact MATLAB input form for each of the matrices follows:

```
A1
//coefficient of d(eta)/dt for study condition 1.;
//25J189;
a1=eye(19);
al(6,6)=1731;
a1(11,11)=588.6;
al(17,17)=1213.;
```

```
A2
```

A2
//A2 for study condition 1.;
//A2 for study condition 1.;
//24J189;
//24J189;
a2(19,19)=0.;
a2(19,19)=0.;
a2(2,1:5)=<.7427,-.3163,.9127,.9127,.9127>;
a2(2,1:5)=<.7427,-.3163,.9127,.9127,.9127>;
a2(2,13:16)=<.633,-1.826,-1.826,-1.826>;
a2(2,13:16)=<.633,-1.826,-1.826,-1.826>;
a2(3,1:5)=<.24,.2949,-.9341,.2949,.2949>;
a2(3,1:5)=<.24,.2949,-.9341,.2949,.2949>;
a2(3,13:16)=<-.5901,1.869,-.5901,-.5901>;
a2(3,13:16)=<-.5901,1.869,-.5901,-.5901>;
a2(4,1:5)=<.001201,.001475,.001475,-1.228,.001475>;
a2(4,1:5)=<.001201,.001475,.001475,-1.228,.001475>;
a2(4,13:16)=<-.002953,-.002953,2.456,-.002953>;
a2(4,13:16)=<-.002953,-.002953,2.456,-.002953>;
a2(5,1:5)=<.0161,.01978,.01978,.01978,-1.209>;
a2(5,1:5)=<.0161,.01978,.01978,.01978,-1.209>;
a2(5,13:16)=<-.03958,-.03958,-.03958,2.509>;
a2(5,13:16)=<-.03958,-.03958,-.03958,2.509>;
a2(6,1)=540.1;a2(6,6)=-7121.;
a2(6,1)=540.1;a2(6,6)=-7121.;
a2(7,2:12)=<.3163,-.9127,-.9127,-.9127,0.,-.93,2.684,2.684,2.684,..
a2(7,2:12)=<.3163,-.9127,-.9127,-.9127,0.,-.93,2.684,2.684,2.684,..
0,-.7427>;
0,-.7427>;
a2(8,2:12)=<-.2949,.9341,-.2949,-.2949,0.,.8673,-2.747,···.
a2(8,2:12)=<-.2949,.9341,-.2949,-.2949,0.,.8673,-2.747,···.
.8673,.8693,0.,-.24>;
.8673,.8693,0.,-.24>;
a2(9,2:12)=<-.001475,-.001475,1.228,-.001475,0.,.004324,.004324,...
a2(9,2:12)=<-.001475,-.001475,1.228,-.001475,0.,.004324,.004324,...
-3.61,.004324,0.,-.0012>;
-3.61,.004324,0.,-.0012>;
a2(10,2:12)=<-.01978,-.01978,-.01978,1.209,0.,.05818,.05818,.05818,···
a2(10,2:12)=<-.01978,-.01978,-.01978,1.209,0.,.05818,.05818,.05818,···
-3.556,0.,-.0161>;

```
    -3.556,0.,-.0161>;
```

```
    a2(11,6)=2981.;a2(11,11)=-3041.;a2(11,12)=-582.4;
    a2(13,1)=-.7472;a2(13,7:16)=<.93,-2.68,-2.684,-2.684,0.,..
    .7427,-.622,1.837,1.837,1.837>;
    a2(14,1)=-.24;a2(14,7:16)=<-.8673,2.747,-.8673,-.8673,0.,..
        .24,.5901,-1.869,.5901,.5901>;
    a2(15,1)=-.0012;a2(15,7:16)=<-.004336,-.004336,3.61,-.004336,0.,...
    .0012,.002951,.002951,-2.455,.002951>;
    a2(16,1)=-.0161;a2(16,7:16)=<-.05818,-.05818,-.05818,3.556,\ldots
    0.,.0161,.03958,.03958,.03958,-2.418>;
    a2(17,1)=-8696.;a2(17,12)=8676.;a2(17,17)=-2981.;
    a2(18,18)=-.04051;
```


A3

$/ /$ This is A3 for control study model 1.
$\mathrm{a} 3(19,17)=0$.,
a3(1,1:2)=<1.279,-1.279>;
$\mathrm{a} 3(2,3: 4)=<-.7427, .7427>$;
a3(3,3:4)=<-.24,.24>;
$\mathrm{a} 3(4,3: 4)=<-.0012, .0012>$;
a3(5,3:4)=<-.0161,-.9839>;
$a 3(6,3)=-583.4 ; a 3(6,6)=2981$;
$\mathrm{a} 3(7,3)=.7427$;
a3(8,3)=.24;
$\mathrm{a} 3(9,3)=.0012$;
$\mathrm{a} 3(10,3)=.0161$;
a3(11,3)=-583.4;
$\mathrm{a} 3(12,8: 9)=<1.279,-1.279>$;
a3 $(13,4)=-.7424$;
$\mathrm{a} 3(14,4)=.24$;
$\mathrm{a} 3(15,4)=-.0012$;
a3(16,4)=-.0161;
$\mathrm{a} 3(17,4)=-8696 . ; \mathrm{a} 3(17,10)=2981 . ;$
a3 $(18,12)=-.1725$;

A4

//This is A4 for control study case 1 ;
//24J189;
$\mathrm{a} 4(19,11)=0$;
$\mathrm{a} 4(7,2)=-.7427$;
$\mathrm{a} 4(8,2)=-.24$;
$\mathrm{a} 4(9,2)=-.0012$;
$a 4(10,2)=-.0161$;
$\mathrm{a} 4(11,2)=-582.4$;
$\mathrm{a} 4(13,2: 4)=<.7427,0 ., 1 .>$;
$\mathrm{a} 4(14,2)=-76 ; \mathrm{a} 4(14,5)=1 . ;$
$a 4(15,2)=.0012 ; a 4(15,6)=1$;
$\mathrm{a} 4(16,2)=.0161 ; \mathrm{a} 4(16,7)=1$;
$a 4(17,4: 7)=<8708 ., 8800 ., 11060 ., 10070 .>$;
$a 4(18,3)=.1725$;
A5
//This is A5 for control study system 1.;

```
//24Jl89;
a5(19,8)=0.;
a5(3,1)=-1;
a5(4,2)=-1.;
a5(5,3)=1.;
a5(6,1:6)=<-648.8,-741,-742.1,4080.,60.,-133.3>;
a5(11,7)=60.;
a5(17,8)=.08597;
a5(19,6)=1.;
B1
//this is the B1 matrix for the first control study model;
//24J189;
bl(17,17)=0.;
bl(1,2)=2.;
b1 (2,2)=1.;b1 (2,3)=-8.688e-2;b1 (2,5)=-1;
b1 (3,5)=1.;bl (3,7)=-1;
b1(4,7)=1;b1(4,8)=-1;
b1(5,5)=.68;
bl (6,9)=.02402;bl (6,10)=29.14;bl (6,11)=-.02402;
bl (7,9)=2.457;bl(7,11)=-2.457;bl(7,12)=54.19;
bl(8,11)=.9987;
bl (9,4)=-16.26;b1(9,11)=1.;b1(9,13)=16.26;bl(9,14)=-1.;
bl(10,11)=1.;b1(10,13)=-763.9;b1(10,14)=-1.;
bl(11,4)=-20.29;bl(11,13)=20.29;bl(11,15)=102.3;
bl(12,14)=1.;bl(12,16)=-1.;
b1(13,1)=-1.;b1(13,16)=1.;bl(13,17)=51.31;
b1 (14,6)=102.3;b1(14,15)=-76.64;b1 (14,17)=9.;
b1(15,4)=1.;b1(15,13)=-.01064;
b1(16,9)=-1;;b1(16,11)=1.;
bl (17,1)=-1.;bl (17,16)=1.;b1 (17,17)=-20.88;
```


B2

```
//this is b2 for the first control studies model.;
//24J189;
b2 \((17,19)=0\);
b2(1,2:6)=<2437.,2437.,2437.,2437.,692.1>;b2(1,19)=-101460.;
b2 \((3,12)=35.9\);
b2 \((4,12)=4.145\);
b2 \((5,7: 11)=<2437,2437,2437,2437,235.4>\);
b2 \((6,11)=29.14\),
\(\mathrm{b} 2(7,12)=92.48 ; \mathrm{b} 2(7,18)=-62.82\);
b2(8,13:17) \(=<2481,2481,2481,2481,345.9>\);
b2 \((9,1)=16.26\);
\(\mathrm{b} 2(11,1)=.42 ; \mathrm{b} 2(11,17)=100.2\);
b2 \((12,1)=158.8\);
b2 \((13,1)=51.31\);
b2 \((14,1)=-6.87\);
\(\mathrm{b} 2(16,12)=1.792 ; \mathrm{b} 2(16,18)=40.60\);
B3
\(/ /\) this is b3 for control studies model 1 ;
```

```
//24J189;
b3(17,11)=0.;
b3(3,1:2)=<10470,35.9>;
b3(9,8)=839.4;
b3(10,9)=4.385;
b3(13,11)=658.3;
b3(17,10)=5874.;
B4
//B4 is empty
```


6 - SOME PROPERTIES OF THE LINEARIZED STATE VARIABLE MODEL

With the primitive form matrices available for manipulation via MATLAB, the determination of the linear state variable representation coefficient matrices is quite straightforward. SVD analysis shows both A_{1} and B_{1} to be maximum rank, and the resulting $\mathcal{A}, \mathscr{B}, \mathcal{C}, \mathscr{D}, \mathcal{E}$, and \mathscr{F} matrices in Equations 5.1.5 and 5.1.6 are quickly generated. For a system of this size, the specific numerical values of any element is of tertiary significance, and thus the presentation of these matrices is relegated to Appendix 3. However, an item of great interest is the eigenvalues of the state coefficient matrix, \mathcal{A} :

EVV $=$	
$1.0 \mathrm{D}+04 *$	
-5.266821895634872	0.000000000000000 i
-0.021360198075745	0.000000000000000 i
-0.00397263492918	0.009552095834877 i
-0.003977263492918	-0.009552095834877 i
-0.000459990795721	0.000120566056909 i
-0.000459990795721	-0.00012056005690 i
-0.000093892720314	-0.000000000000000 i
-0.000021248217594	-0.000000000000000 i
-0.000366233205798	0.000176262166536 i
-0.000365106096282	0.000173786717458 i
-0.000365101237584	0.000173829082129 i
-0.000366233205798	-0.000176262166536 i
-0.000365106096282	-0.000173786717458 i
-0.000365101237584	-0.000173829082129 i
0.000002445599342	0.000000000000000 i
0.000000294968294	0.000000000000000 i
-0.000000000002605	0.000000000000000 i
0.000000027480837	0.000000000000000 i

EVV(continued)
0.000000000000000

It is seen that the four left-most eigenvalues are greater than 39.0 in magnitude, suggesting that a representation of 15 th order (a reduced order representation) should be acceptable for control studies. The remainder reflect dynamics which will require at least 2 seconds to play out, and which may be very important to the determination of the feedback control structure. One should be mindful that the very small (but non-zero) eigenvalues might be due to numerical error in the computational finite arithmetic, but a singular value analysis indicates that in this case the small but non-zero eigenvalues are in fact just that, and the plant is very mildly (slow dynamics) unstable about the prescribed experimental operating condition. This conclusion is consistent with the physical nature of the system. To further understand the dynamic behavior of the model, it is important to reformulate the model into smaller individual subsystems, the canonical basis. We employ the Real Jordan canonical decomposition.

6.1-A REAL JORDAN CANONICAL FORM OF THE LINEAR STATE
 VARIABLE REPRESENTATION

For systems of this dimension, the Jordan canonical decomposition is of great value to gain insights into the system behavior (see Brogan, 1985). In the classical Complex Jordan canonical transformation (JCT), one can investigate the system in the canonical state, which is characterized by

$$
\begin{gathered}
\boldsymbol{x}(t)=\mathbf{M J q (t)} \\
\boldsymbol{q}_{C} J(t)=\mathbf{\mathbf { q } _ { C J }}(t)+B J \boldsymbol{u}(t)+C J d(t)
\end{gathered}
$$

where
$M J$ is the Complex Jordan modal matrix (CJMM) (generally complex)
$\mathbf{q}_{C J}(t)$ is the Complex Jordan state vector (generally complex)
Λ is the Complex Jordan eigenvalue matrix (CJEM) (generally complex and sometimes
diagonal but often having some ones in the first superdiagonal)
$B J=M J^{-1} \boldsymbol{B}$ (generally complex), and
$\boldsymbol{C J}=\boldsymbol{M} \boldsymbol{J}^{-1} \mathbf{C}$ (generally complex).
Often the JCT is satisfactory, but in the present case the JCT produces a CJMM requiring thirty-eight (38) columns to present, half of them imaginary. By employing a real Jordan Canonical transformation (RJCT) (see Takahashi, Rabins, and Auslander, 1970), one can obtain a nineteen column Real Jordan Modal Matrix (RJMM) $M R$ and a Real Jordan Eigenvalue Matrix (RJEM) ER. If any entry in Λ is complex, then the Real Jordan canonical state vector differs from the Complex Jordan state vector, although they are related. In the sequel we employ the asymmetric Real Jordan Eigenvalue Matrix (RJEM) form (Takahashi, et al, 1970). To denote this case,
where

$$
\begin{gathered}
x(t)=M \operatorname{Rq}(t) \\
\dot{q}(t)=E R_{q}(t)+B R_{\mathfrak{k}}(t)+C R d(t)
\end{gathered}
$$

$\boldsymbol{M} \boldsymbol{R}$ is the Real Jordan modal matrix (real)
$E R$ is the eigenvalue matrix (real and tri-diagonal possibly with block asymmetry; in some cases having some ones on the superdiagonal just above the diagonal)
$B R=M R^{-1} \boldsymbol{F}_{\boldsymbol{B}}$ (real), and
$C R=M \boldsymbol{R}^{-1} \mathrm{C}$ (real).
Four forms of the Real Jordan Transformation are available (Takahashi, et al, 1970, and Šiljak, 1986. In the version we use here Takahashi, et al, 1970), the resulting Real Jordan Eigenvalue Matrix is tri-diagonal and block asymmetric. The real part of each of the complex Jordan eigenvalues appears on the diagonal, and
the negative imaginary part appears above the diagonal while its negative appears below the diagonal. Here, to save space, we present the blocks concatenated in a two-row, nineteen column matrix;

```
DBER =
    1.0D+04 *
        Columns 1 thru 4
-5.266821895634871 0.000000000000000 -0.003977263492919 0.009552095834876
    0.000000000000000 -0.021360198075745 -0.009552095834876 -0.003977263492918
        Columns 5 thru 8
    -0.000459990795721 -0.000120566056908 -0.000093892720314 0.000000000000000
    0.000120566056908 -0.000459990795721 0.000000000000000 -0.000021248217594
        Columns 9 thru 12
    -0.000366233205798 0.000176262166536
    -0.000176262166536 -0.000366233205798-0.000173786717458 -0.000365106096282
        Columns }13\mathrm{ thru 16
    -0.000365101237584
    0.000173829082129 -0.000365101237584 0.000000000000000 0.000000294968294
        Columns 17 thru 19
    -0.000000000002605 0.000000000000000 0.000000000000000
    0.000000000000000 0.000000027480838 0.000000000000000
```

The associated Real Jordan modal matrix is

$\mathrm{MR}=$			
Columns 1 thru 4			
.021374485835695	0.984576311054076	.	0.322197951244839
0.487360549065908	-0.001955648123576	0.005816754894363	-0.003751480241953
0.157488261878300	-0.000631875128675	0.001879634406395	-0.001212404055158
0.000787441309857	-0.000003163992840	0.000009401663918	-0.000006061316275
0.010564837649393	-0.000041386247457	0.000125394594452	-0.000081420370778
0.221177235667850	0.000096446984620	0.002584220507461	0.00
-0.487360123124829	-0.000868067795239	0.001402104579983	-0.000485856568
-0.157488125006523	-0.000280512407754	0.000453080327699	3
-0.000787440784020	-0.000001402604758	0.000002265548592	-0.000000784867518
-0.010564828397520	-0.000018823588278	0.000030396185574	. 000010523959557
0.650447775541264	0.002825999155352	0.010702876866564	88
0.051688720402714	0.172709078715878	-0.381326891771549	-0.833086493557783
-0.000000412153971	0.002844266330721	-0.007234575766325	0.004234483907949
-0.000000136513800	0.000911896962854	-0.00233232094212	0.001369490254180
-0.000000000675574	0.000004561937004	-0.000011663425357	7
-0.000000009161841	0.000061206155787	-0.000156484554555	0.000091864777795
-0.000034465044499	0.027550330062014	-0.071485556002443	0.039486759722147
0.000000302667457	0.000249544898103	0.001859344897543	-0.002002273880364
0.000000000000000	0.000000000000000	0.000000000000000	0.00000000000
Columns 5 thru 8			
0.023978462944404	0.029493847479883	-0.002568503774483	-0.170333623713372
-0.007084457634296	0.025311329129724	0.016182368235621	0.009271856159084
0.002320135705025	0.0081691611372	0.00516924214	0.00356979147

MR(continued)

	0.000040819503345	0.000025905961077	
-0.000164258756038	0.000533867262298	0.000362212241106	0.000196493162171
0.202604293203552	-0.038048117289116	0.171601361074757	0.040494054146723
025478334763020	-0.049290720473403	0.003741219057719	-0.001732833228306
008215011499415	-0.015943111731417	0.001181558255228	-0.000352542308634
-0.000041406652986	-0.000080134199729	0.000005911968398	-0.000001727130129
-0.000538211083104	-0.001067719061769	0.000086347194217	8
,	0.	0.196136838947666	
43	-0.172002174168538	0.022504076070899	.
20	0.023965232663896	-0.019631368541019	3
86	0.007773824942749	-0.006350693074713	2
0.000053380935448	0	-0.000031773551538	
,	0.000528457533651		
132208556882285	-0.13		
-0.011987363542998	-0.008688571309677		
0.000000000000000	0.0		
Columns 9 thru 12			
000434549338021			
21	0.083748057550945	-0.	
87	0.011827578249793	0.323082733665237	
-0.000539486289905	0.000137051277497		
-	-0.098016095540404		
-	-0.012815136031644		-0.000564650385160
2	0.234874927207185		0.225511990573353
0.011517247536669			-0.224609147353368
	0.000379988557379		
-0.076749231164386	-0.311843457165495		
-0.020268951933378	-0.038544150768501		0.000813576716260
002413053767813	0.013556551929108	0.000966820438091	0.000050523205025
264173290919339	-0.318691699740971	0.141231439230398	-0.477511486074352
. 09	-0.089963600874162	-0.140083367030527	0.476674545754798
000425958175786	-0.000516962540559	-0.001199002422559	0.000753955953713
362464456254652	0.405204053935332	-0.000130725847818	0.000257469144136
.015262522898163	0.006277594254333	0.000560853205478	-0.001209068228379
-0.000309454575899	0.001037430467572	0.000066645761575	0.000037619146834
000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
Columns 13 thru 16			
078989144497	-0.000001534446000	0.002127495073159	
.009929433211928	-0.373765232568121	-0.118764556142297	-0.857448582488209
.014324858119588	-0.064326976103987	-0.013039260699884	-0.001038607482383
-0.024252456132820	0.438160068345558	0.000108773981237	0.000877705234494
000038235837291	0.000031136207611	-0.850335665841901	-0.000277775049492
.000397613710317	-0.000268080980026	-0.004624688434761	0.003685286338719
-0.264356820743857	-0.001438689585612	-0.041878623768547	-0.291430937702131
-0.045696087138582	-0.009178093458171	-0.005138670800554	-0.000385007648221
0.310129833762039	0.010607832143095	0.000035151784017	0.000299289112009
0.000019931422614	-0.000028474169719	-0.287200647192445	-0.000097086177615
-0.001259213077060	0.000467889438399	-0.001593536101620	0.002980417496428
0.000452642963183	0.000012798653809	-0.003764851461600	0.002041513814356
0.254464536530617	0.375231370860600	-0.056307401242189	-0.423848960773323
0.031371215925709	0.073505078970693	-0.005299944868085	0.001312670859152

MR(continued)				
-0.285862028060663	-0.448637501247626	0.000061912601134	0.000448816238949	
-0.000057032339740	-0.000002070183515	-0.418055811773158	-0.000015706546943	
0.000298663976310	-0.000615576198059	-0.018368371512324	0.012426412413986	
0.000031581325941	0.000016846781909	0.006360851231764	-0.003909868113154	
0.00000000000000	0.000000000000000	0.000000000000000	0.000000000000000	
Columns 17 thru	19			
0.000016412362758	0.000023656694458	0.000000051400872		
-0.668318523019703	-0.634070002293218	0.950909182004328		
0.534857523446167	-0.000070529334320	0.307243950675371		
-0.001354064207911	0.574758903861677	0.001536156292617		
-0.000041012067976	-0.000014753075049	0.020611724800414		
-0.000059372032713	-0.000023887458395	0.000036634532086		
-0.227253876620181	-0.215654455358315	0.000000533624518		
0.181877033253038	-0.000038953357662	-0.000000411699438		
-0.000460405901928	0.195499349292086	0.000000001131302		
-0.000013694027642	-0.000006059271029	0.000000000197389		
-0.000060628271828	0.000031561837089	0.000070776809305		
-0.000026516334553	-0.000038039401422	0.000000051505625		
-0.333067189232513	-0.316633187948755	0.000000776667388		
0.267615210333714	0.000074545807038	-0.000000607552454		
-0.000675540588126	0.287443866902551	0.000000001651331		
0.000000040019953	-0.000000005204576	0.000000000125281		
-0.000183998003297	-0.000145735125755	0.000070773448986		
0.000051731173235	0.000074082924124	-0.000000100483148		
0.000000000000000	0.000000000000000	0.030751715660749		

The rows of MR show how the Jordan canonical state variables contribute to the descriptive state variables. As an example, it is clear that Jordan state 19 solely determines descriptive state 19 (the volume of the upper chamber). All the others are not so clear-cut, and this is generally the case. Another item of interest is the influence the individual processes of the primitive form have on the Jordan elements, and how the descriptive state variables contribute to the Jordan canonical states.

The first question is not so easily answered, and strictly involves (1) perturbing the coefficients of the individual process equations one at a time, (2) constructing the A_{1}, A_{2}, \cdots and B_{1}, B_{2}, \cdots, (3) constructing \mathcal{A}, and (4) obtaining the Jordan elements, for each perturbation; a very large task which in some cases may be well worth the effort.

The second question is much more easily addressed; one needs the effective inverse of MR, MRNV.

MRNV =			
1.0D+02 *			
Columns 1 thru 4			
-0.000000079360991	0.004058094461690	0.004058094461691	0.004058094605937
0.011027036117855	0.046300274368076	0.046300258010397	0.046300248492862
0.004303637906307	0.133032132081097	0.133032326987938	0.133032162106799
0.000330492422439	-0.047947626278134	-0.047947545627571	-0.047947473501417
-0.000028472726969	-0.021029860724648	-0.020986976831392	-0.021038110671024
-0.000064132701893	0.003434273108404	0.003446348835286	12
-0.000051803236422	0.017930573774850	29	0.017960546499401
0.000011053728587	0.000799112951901	0.000806778357354	0.000803074701879
-0.000000014223569	-0.000174749685292	-0.000181435760722	-0.000176206203828
-0.000000001495674	-0.000051705146068	-0.00005242080671	-0.000052802519075
-0.000000029038514	-0.003065888425097	0.009491348409376	-0.001254296004910
0.000000062645297	0.000496610685218	-0.001505837137098	-0.000107602331880
-0.000000000083374	0.000009059687593	0.000003534084696	-0.006296304394037
-0.000000000178431	-0.000004170475201	-0.000037576131655	4
0.000000003635636	0.000001036616354	0.000001080948813	0.000001074283795
000000069891068	-0.006362957631631	-0.007960180072798	-0.007016244971145
0.000000002864779	-0.000000794483606	0.010158017373222	-0.000000532029538
-0.000000000084737	0.000009776455899	0.000036147127610	0.009464088565077
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
Columns 5 thru 8			
0.004058094394871	0.001152686400887	-0.011935557140388	-0.011935557208376
0.046300285905894	0.013265246187142	0.057116207072712	.057119033703496
0.133032135860233	0.037911355587235	0.160928666851032	0.160928822588576
-0.047947738407967	-0.014374467244194	-0.061640535666758	-0.061658213660490
-0.020691099176059	0.034921422890468	-0.011098488099617	-0.011227956679605
0.003803974812573	-0.027779428033610	0.007250430113147	52
0.017254737184331	0.008719287158453	0.027215376969202	0.027225627932003
0.000712572446781	0.000002971673030	0.000813120253453	0.000819460384678
0.010710862653134	0.000000005468609	0.000270145171574	. 000282356727909
0.003122887569759	0.000001590921333	0.000349617405094	0.0
-0.000063017657065	0.000003234124340	0.006737159169779	.020841670347579
-0.000314719087115	0.000000103145409	0.003360182233558	-0.010450036641585
-0.000001308118171	-0.000000011508949	-0.000023667284594	-0.000060026655955
-0.000000122913299	0.000000038795494	-0.000004712455155	0.000068936054341
-0.006360029205293	-0.000000008741358	0.000003202670888	0.000003247885522
0.000998588949181	-0.000000040047863	-0.006361272919333	-0.007962328802177
-0.000151815240640	0.000000000005285	-0.000000794104094	0.010158017537432
-0.000000656698796	0.000000000012694	0.000009772131394	0.000036148699686
0.000000000000000	0.000000000000000	0.000000000000000	
Columns 9 thru 12			
-0.011935557213817	-0.011935556727441	-0.001153018373085	-0.000000248506030
0.057116497941355	0.057116149439601	0.005877579478471	0.002019520710580
0.160928817515437	0.160924826314253	0.015481543135955	-0.004711091034897
-0.061642367708082	-0.061639763771372	-0.008191542717668	-0.009418427332986
0.011069980331601	-0.012388839824255	-0.001926214702688	0.000040158286908

MRNV(continued)
0.007268062053405
0.027218872955276
0.000816391908286
0.000271282179571
0.000353721933110
0.002311184512667
0.001988447601716
0.026630590408530
-0.010920585174335 0.000003240250745
-0.007016128237641
-0.000000531650199
0.009466197440280
0.000000000000000
0.006569233515909 0.027057618485695 0.000741546948676 -0.016734526561433 -0.021552321505284 -0.000328079037130 0.000713091713345 0.000002490265615 0.000001975484830 -0.006484464908057 0.001017945335061

-0.000151814857910

$0.013288497480227-0.000100749151063$
$0.006410068997662-0.000068165259628$
$0.000011816052571 \quad 0.000010907601423$
$0.000000402932000-0.000000012114450$
$-0.000000127640973 \quad 0.000000002118973$
$-0.000000279987031-0.000000021340049$
0.0000008188791140 .000000058911711
$0.000000016567716-0.000000000077779$
$-0.000000000840476-0.000000000095633$
$0.000000131861654 \quad 0.000000001504711$
$0.000001063842386 \quad 0.000000054453148$
0.0000000000078510 .000000002793429
$-0.000000000410084-0.000000000055846$
0.0000000000000000 .000000000000000

Columns 13 thru 16
$-0.000000010232328-0.000000010240033-0.000000010228713-0.000000017134799$ $-0.133980202090320-0.133980287282974-0.133979525845905-0.133998944505850$ $-0.382771126779035-0.382771142181409-0.382771042151076-0.382774278702508$

0.140439624292678

0.050451431376845

-0.012030447082541
-0.054798544384965
-0.002087890892367 0.000165692758078
-0.000133847727189
0.001550864973431
-0.003270455776704
-0.000001985481366
0.000011478775925
0.000001608382963
-0.006372995381737
-0.000000373998128
0.000009801360430
0.000000000000000
$0.140435389120294 \quad 0.140557461037831$
$0.050432091026318 \quad 0.051033750070013$
$-0.012023977207041-0.012278165752610$
-0.054788422679860
-0.002084544597349 0.000167688144985 -0.000134412953131 0.000936745540861 -0.001127783648698 -0.005522465530611 $\begin{array}{lll}-0.012696905624139 & -0.000001209177829\end{array}$ $0.000001646354553-0.006529960873376$ -0.000001652255851 $0.010158437949212-0.000000111581489-0.000157015973551$ $\begin{array}{llll}0.000036169084491 & 0.009466914237013 & -0.000000654927085\end{array}$
$\begin{array}{lllll}-0.000000029080641 & 0.000000000245057 & -0.168951276001464\end{array}$
$-0.018977198942561-0.000484003880011-1.927626665785087$
$-0.053399192557579 \quad 0.005275456198033-5.538549285503272$
$0.021447381911251-0.000419192722920 \quad 1.996212015962940$
$-0.008633654390757-0.000567608615953 \quad 0.874873693278677$
$0.003955724022687 \quad 0.000950500410444-0.143355254541355$
$0.012028361877980 \quad 0.003266159255409-\mathbf{- 0 . 7 4 6 5 4 7 2 8 6 5 1 2 7 8 7}$
$0.000030505602496-0.010457639483299-0.033288760591338$
$0.000000086887107 \quad 0.000000133434329 \quad 0.000046090546549$
$-0.000000466753684-0.000000087561853 \quad 0.000032058549404$
$-0.000000879334351-0.000000076367255 \quad 0.000079066352446$
$-0.000000214565499-0.000000832746981-0.000094870844419$
$-0.000000000258151 \quad 0.000000001592361-0.000000055535734$
$-0.000000009969529 \quad 0.000000000864010 \quad 0.000001721555178$ $0.000000375872476 \quad 0.000000597411480 \quad 0.004219980627829$ $0.000002758842500 \quad 0.000018968559298 \quad 0.275968582994403$

```
MRNV(continued)
    \(0.000000012863846 \quad 0.000000924297613-0.101363240880237\)
    \(-0.000000005200491-0.000000021013929-0.001135783570108\)
    \(0.000000000000000 \quad 0.000000000000000 \quad 0.325185108704812\)
```

The rows of MRNV show how the descriptive states map into the canonical states, e.g., a zero element shows that the corresponding descriptive state does not influence the canonical state. Again the graphic example of the present MRNV is that only descriptive state 19 influences canonical state 19.

To a large degree, one can anticipate control problems by surveying the rows of BR.

$\mathrm{BR}=$			
1.0D+04 *			
Columns 1 thru 4			
0.000033277765579	0.000130878405621	0.000000000000423	2
-0.270436643730725	-0.001556613041551	-0.000000834906693	-0.002702155264034
0.630868324901464	0.000400677767752	0.000009100161942	-0.007661183393029
1.261233848115660	0.005022089592311	-0.00000072	335121
-0.005377648405604	0.000112434200427	-0.000000979124863	-0.000115286695586
0.013491449792794	-0.000157447850720	0.000001639613208	0.000163672815156
0.009128098531653	-0.000304870438139	0.000005634124716	0.000315518061785
-0.001460651086450	-0.000013335794888	-0.00	-0.000018688943660
0.000001622261810	-0.000001712921902	0.000000000230174	0.000001663165115
-0.000000283754463	0.000001430941848	-0.000000000151044	-0.000001371985030
0.000002857673731	0.000048166826014	-0.000000000131734	0.000015445523242
-0.000007888943861	-0.000101336533629	-0.00000000143648	-0.000032719961200
010415520	-0.000000338031286	0.000000000002747	-0.000000019873346
0.000000012806328	-0.000000281318062	0.000000000001490	0.000000114072057
-0.000000201497800	-0.000000041532455	0.000000001030535	0.000000043067321
-0.000007291891854	0.000079545751508	0.0000000327	-0.000063531899403
-0.000000374071657	-0.000101582365427	0.000000001594413	-0.000000002816499
0.000000007478451	-0.000000361385178	-0.000000000036249	0.000000097640266
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
Columns 5 thru 8			
-0.000000002212125	-0.000000002753828	-0.000000002585545	-0.000002306030737
-0.002716549374846	-0.003070115293947	-0.002915425499070	-0.115956370297978
-0.007701684171251	-0.008696589808871	-0.008260800240074	-0.045287281245884
0.002960353494491	0.003359902480967	0.003186078615706	-0.003461762875487
-0.000122121126643	-0.000282886159496	-0.000206405283429	0.000208279141379
0.000166365897709	0.000240438774433	0.000205611919625	0.000747435461862
0.000325391392126	0.000548848521515	0.000449299274094	0.000514396152568
-0.000018580617742	-0.000018063978837	-0.000019023159875	-0.000116123010280
0.000001713535522	0.000001684803720	-0.000102886733922	-0.000001067549952
-0.000001431472392	-0.000001386687617	0.000084470164144	-0.000000353921731
-0.000048166767799	0.000009287278674	0.000003546086811	0.000000039440308
0.000101333746768	-0.000011297400332	0.000001581860128	-0.000000066100955

BR(continued)				
0.000000338034779	-0.000055224678844	0.000000009945985	0.000000002912779	
0.000000281312863	-0.000126969965252	-0.000000012919422	0.000000003334174	
0.000000043791131	0.000000050735183	-0.000065268404811	0.000000690081205	
-0.000079482891612	-0.000070032059265	0.000010395552737	-0.000001288497919	
0.000101585312731	0.000000000057096	-0.000001569091814	0.000000545544026	
0.000000361313563	0.000094668668195	-0.000000006981002	0.000000002955551	
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000	
Columns 9 thru	11			
0.000000016497528	0.000146339651628	-0.000015732112866		
-0.000012689405687	-0.587192408382382	-0.027037126660512		
-0.000004786497825	-0.225134351923371	-0.011004316774894		
-0.000000451242909	-0.019419884191736	-0.000606243705685		
0.000000508824808	0.005825476261093	-0.000413131342874		
-0.000000307751985	-0.000000023556181	0.000539977992367		
0.000000218150669	0.003841121645717	0.000005690443116		
-0.000000013315908	-0.000589886727719	-0.000026959915354		
0.000000006374565	0.000000760192096	0.000000034562735		
0.000000001932760	0.000000275993849	-0.000000018337603		
0.000000001422565	0.000001949313747	0.000000026034463		
-0.000000003168099	-0.000003332452360	-0.000000153983516		
-0.000000000010540	0.000000003033222	0.000000000362044		
-0.000000000007410	0.000000014310614	-0.000000000101466		
-0.000000003808865	-0.000000195215325	-0.000000008733001		
0.000000002811293	-0.000003737018697	-0.000000169650612		
-0.000000003010574	-0.000000152974373	-0.000000006976594		
-0.000000000010687	0.000000004526379	0.000000000206182		
0.000000000000000	0.000000000000000	0.000000000000000		

If the entries corresponding to a canonical block are all zero, then that canonical state cannot be influenced by any of the control variables and it is said to be uncontrollable. If, in addition, the uncontrollable block is not stable, then all descriptive states which are influenced by the unstable canonical block cannot be controlled. If all entries in the set are not zero, but all have very small values, then one is faced with a condition of poor control authority, and the hardware realization of an effective controller system is likely to be difficult.

```
CR =
    1.0D+02 *
        Columns 1 thru 4
    -0.004490135441989
```

CR (continued)			
0.053335271998474	0.054100841628481		
.007897999840441	0.0		
76	0.00	0.015713341388969	
-0.021242101359759	-0.021693066305532	0.01351667652	3
000807892176801	-0.000804346804545	0.000711298455703	
81433711021			
	0.000052121483427		
-0.009492560598788	0.001252911553069	-0.0000	
0.001505798476935	. 0001075581	-0.00	
-0.000003529771001	062963	-0.000001303184149	
629	-0.	-0.00	
-0.000001077672445	-0.0000010	-0.00636	-0.000000020603548
8	0.007016262114685	0.00	-0.000000094393576
-0.010158017375203	0.00000053	-0.000151815242906	
-0.0000361471323	-0.	-0.000000656704239	
0.000000000000000	00	0.000000	0.000000000000000
467968	-0.169040041511134	-0.000117535002353	
0.000459800561079	-1.928648		
0.001314085115675	-5.541468744601931	0.001578138953716	
-0.000498248431341	1.997318957894570	-0.	0.000001520058881
01210447933812	. 87218448145	-0.	
-0.000962891786260	-0.14	0.001354586899106	
0.000	-0.747218737106791	0.000653421916173	000000852496513
0.000000103004264	-0.03328898943247	0.0	00000002162050
0.000000000189553	. 00004609012	0.000000041073598	
00055	0.000031936	-0.000000013011312	
000000112101364	. 0000		322
0.000000003575231	-0.000094878	-0.	.000000000015207
-0.000000000398924	-0.000000054649459	0.0000000	
0.000000001344731	0.000001718567633	-0,	
-0.000000000302993	0421998		0000026640
-0.000000001388141	0.275968586078390	0.000000108444688	000000000195530
0.000000000000183	-0.101363240880644	0.000000000000800	
0.000000000000440	-0.001135783571085		
0.000000000000000	0.325185108704812	0.000000000000000	0.00

7 - AN ELEMENTARY CONTROL STUDY

The purpose of this report is to present the details of generating the mathematical model to be used in investigating the control problem of a CGRC. A commensurate presentation of the full investigation of the control problem will require a report of similar magnitude. However, it is desirable to present a sufficiently detailed control study to illustrate the use of the model.

STATEMENT OF THE CONTROL PROBLEM TO BE INVESTIGATED

The positive eigenvalues of the matrix \wedge reflect a clearly defined problem with the model behavior. If intervention via the control variables is not invoked, the eigenstates will tend to go to infinity with time, and thus all descriptive states which are related to the canonical states (via the mapping MR) will tend to go to infinity with time. Thus, it is necessary to manipulate the control variables in such a way that the resulting controlled system will have no eigenvalues with positive real parts. In the following, we demonstrate a procedure for choosing feedback control so that the canonical state having the most positive eigenvalue (eigenstate 15). Left to itself, this eigenstate ($q_{15}(t)$) will tend to infinity according to $\mathrm{e}^{0.0245 t}$ (coefficient of t is rounded). The Science Advisory Working Group did not address the question of dynamic properties requirements, so we have no guidance from that source to help with the choice of parametrization of the dynamic properties of the controlled system. Arbitrarily, we select the criterion that the dynamics of eigenstate 15 should decay according to $e^{-1 t}$ and ask what feedback control $\varepsilon=K x$ will provide the desired behavior. The first question is "does a K exist such that we can obtain this behavior?" If the answer to the first question is "yes," then the second question is "will the gain matrix K have impractically large elements?" (as a rough rule of thumb large gains are difficult to attain and are thus undesirable).

The procedure we will demonstrate is due to C. Blackwell (1991) and distributes the burden of assigning the new eigenvalue among the control variables according to the control authority of each individual control variable. In this way, the wasteful assignment of load to a control variable with little authority is avoided, advantage of a control variable with high authority will be taken, and
those control variables having equal authority will be weighted equally. The fundamentals are relatively straightforward.

For the case when all disturbances are zero, the dynamic equation of canonical state 15 is

$$
\dot{q}_{15}=\lambda_{15} q_{15}+b r_{15} \approx
$$

where $b r_{15}$ is the fifteenth row of $B R$. By using a control law which relates $\boldsymbol{\text { to }} q_{15}$,

$$
\mathbf{u}=k_{15} q_{15}
$$

we make the dynamics of q_{15} dependent on q_{15} only

$$
\dot{q}_{15}=\lambda_{15} q_{15}+b r_{15} k_{15} q_{15}
$$

or

$$
\dot{q}_{15}=\left(\lambda_{15}+b r_{15} k_{15}\right) q_{15}
$$

We now select k_{15} to be related to $b r_{15}$ in a very useful way:

$$
k_{15}=\alpha b r_{15}^{\prime} /\left\|b r_{15}\right\|^{2}
$$

and this choice gives us a very simple expression for the dynamics of q_{15}

$$
\dot{q}_{15}=\left(\lambda_{15}+\alpha\right) q_{15}
$$

Now suppose we would like the controlled system to exhibit dynamics

$$
\dot{q}_{15}=\bar{\lambda}_{15} q_{15}
$$

then we must have

$$
\left(\lambda_{15}+\alpha\right)=\bar{\lambda}_{15}
$$

which tells us that

$$
\alpha=\bar{\lambda}_{15}-\lambda_{15}
$$

Now we know k_{15}. In terms of the entire canonical state, what we have done is represented by

$$
\dot{q}=\left(E R+B R K_{q}\right) q+C R d
$$

where

$$
\mathrm{K}_{q}=\left[0\left|\mathrm{k}_{15}\right| 0\right]
$$

(\mathbf{k}_{15} is in the fifteenth column). K_{q} is the canonical state gain matrix. To find the gains on the descriptive states, one uses the fact that $\boldsymbol{q}=M \boldsymbol{R}^{-1} \boldsymbol{x}$. Thus

$$
K=K_{q} M R^{-1}
$$

NUMERICAL DETAILS

The following is an edited MATLAB dialog transcript of the process of finding K. The sequence of MATLAB transactions follows the sequence which was followed in the preceding explanation. The object is to change an eigenvalue so that it has a desirable value.

```
<>
lm15=er(15,15)//It is also equal to DBER(1,15).
    LM15 =
        0.024455993417775
    <>
    L}15=-1.0//We want to replace LM15 with this value
    L15 =
        -1
    <>
alph=115-lm15
    ALPH =
    -1.024455993417775
    <>
    BR15=BR(15,1:11);K15=ALPH*BR15'/(NORM(BR15)**2)
    K15 =
    0.004845071804937
    0.000998659667081
    -0.0000247779501890
    -0.001035565963037
    -0.001052970165541
    -0.001219941869759
    1.569397322971582
    -0.016593198483799
    0.000091585233884
        0.004694007912200
        0.000209987492911
    <>
    KQ(11,19)=0;KQ(1:11,15)=K15
```

Columns 1 thru 4

| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| :--- | :--- | :--- | :--- | :--- |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |

$0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000$

Columns 5 thru 8
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.00000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

Columns 9 thru 12
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000
$0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000$
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000$
. 0000000000000
0.000000000000000

Columns 13 thru 16
0.000000000000000
0.000000000000000
0.004845071804937
0.000000000000000
$0.000000000000000 \quad 0.000000000000000 \quad 0.000998659667081$
0.000000000000000
$0.000000000000000 \quad 0.000000000000000-0.000024779501890$
0.000000000000000
$0.000000000000000 \quad 0.000000000000000-0.001035565963037$
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
$0.000000000000000-0.001052970165541$
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

Columns 17 thru 19
$0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000$

KQ (continued)

0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000

<>
$K=K Q * M R N V$
$\mathrm{K}=$
Columns 1 thru 4

| 0.000000001761492 | 0.000000502248067 | 0.000000523727462 | 0.000000520498212 |
| ---: | ---: | ---: | ---: | ---: |
| 0.000000000363076 | 0.000000103522694 | 0.000000107949998 | 0.000000107284390 |
| -0.000000000009009 | -0.000000002568684 | -0.000000002678537 | -0.000000002662022 |
| -0.000000000376494 | -0.000000107348461 | -0.000000111939380 | -0.000000111249173 |
| -0.000000000382822 | -0.000000109152609 | -0.000000113820685 | -0.000000113118879 |
| -0.000000000443526 | -0.000000126461169 | -0.000000131869472 | -0.000000131056378 |
| 0.000000570575775 | 0.000162686293142 | 0.000169643817340 | 0.000168597811167 |
| -0.000000006032683 | -0.000001720078092 | -0.000001793639821 | -0.00000178250424 |
| 0.000000000033297 | 0.000000009493875 | 0.000000009899895 | 0.000000009838853 |
| 0.000000001706571 | 0.000000486588537 | 0.000000507398228 | 0.000000504269663 |
| 0.000000000076344 | 0.000000021767647 | 0.000000022698573 | 0.000000022558616 |

Columns 5 thru 8
$-0.003081479818114-\mathbf{- 0 . 0 0 0 0 0 0 0 0 4 2 3 5 2 5 1} \mathbf{0 . 0 0 0 0 0 1 5 5 1 7 1 7 0 4 2} \mathbf{0 . 0 0 0 0 0 1 5 7 3 6 2 3 8 5 7}$
$-0.000635150464878-0.000000000872964 \quad 0.000000319837824 \quad 0.000000324353227$
$0.000015759835571 \quad 0.000000000021661-0.000000007936059-0.000000008048099$
$0.000658622976893 \quad 0.000000000905225-0.000000331657696-0.000000336339970$
$0.000669692100514 \quad 0.000000000920439-0.000000337231689-0.000000341992656$
$0.000775886592043 \quad 0.000000001066395-0.000000390707231-0.000000396223154$
$-0.998141280880727-0.000001371866426 \quad 0.000502626311729 \quad 0.000509722284378$ $0.010553322696618 \quad 0.000000014504709-0.000005314255372-0.000005389280912$
$-0.000058248476228-0.000000000080058$ $-0.002985402741147-0.000000004103200$ $-0.000133552658766-0.000000000183558$ 0001503336249
0.000000067252083 0.000001524560034 0.000000068201534 Columns 9 thru 12
$0.000001569924753-0.003141769809613$ $0.000000323590773-0.000647577356628$ $-0.000000008029180 \quad 0.000016068181044$ $-0.000000335549338 \quad 0.000671509114729$ $-0.000000341188736 \quad 0.000682794808768$ -0.000000395291755 0.000791067024432 $0.000508524084486-1.017670186760809$ $-0.000005376612375 \quad 0.010759801328062$ $0.000000029675912-0.000059388123522$ $0.000001520976263-0.003043812958480$ $0.000000068041213-0.000136165652891$ Columns 13 thru 16
$0.000000779273095 \quad 0.000000800529824 \quad 0.000000797670602-0.003163812931494$
$0.000000160622719 \quad 0.000000165004128 \quad 0.000000164414789-0.000652120855186$

```
        K(continued)
\begin{tabular}{rrrrr}
-0.000000003985493 & -0.000000004094208 & -0.000000004079585 & 0.000016180917780 \\
-0.000000166558655 & -0.000000171101992 & -0.000000170490874 & 0.00067622052043 \\
-0.000000169357928 & -0.000000173977612 & -0.000000173356223 & 0.000687585398181 \\
-0.000000196213372 & -0.000000201565609 & -0.000000200845685 & 0.000796617267732 \\
0.000252419191705 & 0.000259304590911 & 0.000258378442745 & -1.024810311378582 \\
-0.000002668821775 & -0.000002741620928 & -0.000002731828787 & 0.010835293686337 \\
0.000000014730413 & 0.000000015132224 & 0.000000015078177 & -0.000059804799384 \\
0.000000754976236 & 0.000000775570204 & 0.000000772800130 & -0.003065168800599 \\
0.000000033774031 & 0.000000034695306 & 0.000000034571386 & -0.000137121011261 \\
Columns 17 thru & 19 & & & \\
0.000000182112913 & 0.000000289450152 & 0.002044610915727 & \\
0.000000037536868 & 0.000000059661075 & 0.000421432444888 & \\
-0.000000000931393 & -0.000000001480356 & -0.000010456901794 & \\
-0.000000038924074 & -0.000000061865899 & -0.000437006830286 & \\
-0.000000039578250 & -0.000000062905646 & -0.000444351370026 & \\
-0.000000045854257 & -0.000000072880728 & -0.000514813105746 & \\
0.000058989325709 & 0.000093757597701 & 0.662282630030616 & \\
-0.000000623692659 & -0.000000991296726 & -0.007002297615535 & \\
0.000000003442437 & 0.000000005471407 & 0.000038648791279 & \\
0.000000176434837 & 0.000000280425421 & 0.00198086245636 & \\
0.000000007892852 & 0.000000012544894 & 0.000088614315217 & \\
\(<>\) & & & &
\end{tabular}
//Check to see that the K just computed does generate the desired eigenvalue
    AC=A+B*K;EIG(AC)//AC is the state coefficient matrix of the controlled system
    ANS =
        1.0D+04 *
    -5.266821895634869 0.000000000000000i
    -0.021360198075745 0.000000000000000i
    -0.003977263492918 0.009552095834876i
    -0.003977263492918 - 0.009552095834876i
    -0.000459990795721 - 0.000120566056908i
    -0.000459990795721 0.000120566056908i
    -0.000021248217594 0.000000000000000i
    -0.000093892720314 0.000000000000000i
    -0.000100000000000 - 0.000000000000000i
    -0.000366233205798 0.000176262166536i
    -0.000365106096282 0.000173786717458i
    -0.000365101237584 0.000173829082129i
    -0.000366233205798 - 0.000176262166536i
    -0.000365106096282 - 0.000173786717458i
    -0.000365101237584 - 0.000173829082129i
    0.000000294968295 0.000000000000000i
-0.000000000002605 0.000000000000000i
    0.000000027480838 0.000000000000000i
    0.000000000000000 0.000000000000000i
<>
//The result confirms the correct execution of the procedure.
<>
exit
(END OF MATLAB SESSION)
```

One can easily confirm that the eigenvalue .000002445599342 does not appear in the list of eigenvalues of the controlled system, and that an eigenvalue with value -1.0, the value which was desired, has appeared. All the other eigenvalues are unchanged. No element of the gain matrix is appreciably greater than 1.0 which implies, as a course rule of thumb, that one may expect to encounter no difficulty in accomplishing the eigenvalue change. The basic procedure is seen to be simple, but a negative side is that to change other eigenvalues by this method will require successively obtaining the RJCT after each reassignment and repeating the process we have demonstrated.

Several matters of interest are spawned by this demonstration. One is that literally all 19 states must be known and 165 gain elements are required to set this eigenvalue. However, good results can often be obtained by setting relatively small gains to zero, thus not requiring full state feedback. In the present example, it was found that setting all gains to zero except those having order of magnitude one reassigned the target eigenvalue to a stable value, but it was not -1.0 . Also, many other eigenvalues were changed, but none changed to unstable values (compare to root locus principles). Another matter of interest is the behavior of the volume change descriptive state (the nineteenth state). This state is not controllable since its only influence is the glove manipulation disturbance (note that this state is connected only to the nineteenth canonical state and that the last row of BR is zero). This might appear to be a problem for system control, but it is not in fact. If, for example we replace V with P as a state, we find that all nineteen states are controllable.

8 - CONCLUDING REMARKS

The principal thrust of this study was to begin familiarization with the control problem specific to a CGRC system. It was brought to the point of displaying the system characteristics which are relevant to the control problem. A number of processes to make the control problem study meaningful are illustrated, but not all the actions which should be taken were done in this study. An important example is that the system linearized state variable format model matrices should be balanced to maximize numerical effectiveness and to make physical judgment as effective as possible. The modal matrix is normalized, however. A serious study should include both these important enhancements in preparation for the control law synthesis.

The control synthesis demonstration is very elementary, but it suffices to demonstrate that the local stability problem is resolvable via straightforward multivariate means. Although canonical space eigenvalue placement was used in the demonstration, alternate choices such as linear quadratic regulator synthesis or minimum norm gain matrix synthesis could have been used. To describe the full control study will require an additional report which is based on the contents of this report but which is dedicated to the synthesis activity. The uncertainties in the model are yet to be characterized, and as a consequence, robustness considerations cannot be brought into the control design process at this stage. Because of the dynamic dimensionality and the hypothetical nature of the object of the study, it is not certain that any significant constructive purpose can be served by further addressing the control problem via this model. Stated differently, the resource might be better expended in the design of the control system for a model which is generated from a more completely defined physical system.

ACKNOWLEDGEMENTS

This work was partially supported by NASA - ASEE (Stanford University NASA Ames Research Center) Summer Faculty Fellowships awarded to A. L. Blackwell (1988-1989) and C. C. Blackwell (1989-1990), and by NASA Ames Research Center - University of Texas at Arlington Joint Research Interchange No. NCA 2-484: "Development of a Plan for Conducting the Activities Required in Modeling, Analysis, and Control Synthesis for the CELSS Program."

REFERENCES

Blackwell, A. L., and C. C. Blackwell. 1990. A modeling system for control of the thermal and fluid dynamics of the NASA CELSS crop growth research chamber. Proc. 1990 American Control Conference, San Diego, California, May 23-25, 1:2113-2114.

Blackwell, A. L., and C. C. Blackwell. 1989. A modeling system for control of the thermal and fluid dynamics of the NASA CELSS crop growth research chamber. Trans. SAE, J. Aerospace, 98(1):1079-1089.

Blackwell, C. C. 1991. Eigenvalue assignment in canonical state space according to control authority. (in preparation)

Brogan, W. R. 1985. Modern Control Theory. Prentice-Hall Publishing Company, New York.

MacElroy, R. D., and D. T. Smernoff, eds. 1987. Controlled ecological life support system: regenerative life support systems in space. NASA CP 2480.

MacElroy, R. D., D. T. Smernoff, and J. D. Rummel, eds. 1987. Controlled ecological life support system: design, development, and use of a ground-based plant growth module. NASA CP 2479.

Siljak, D. D., 1986. Stability of reduced-order models via vector Liapunov functions. Proc. 1987American Control Conference, Minneapolis, Minnesota. June 10-12, vol. 1, 428-489.

Takahashi, Y., M. J. Rabins, D. M. Auslander. 1970. Control and dynamic systems. Addison-Wesley, Reading, MA.

APPENDICES

Appendix A1. A formal symbology and structure for generating the mathematical model of mixed energy systems; A. L. Blackwell and C. C. Blackwell. 1989. A modeling system for control of the thermal and fluid dynamics of the NASA CELSS Crop Growth Research Chamber, SAE Transactions: J. Aerospace, 90(1):1073-1089.

A Modeling System for Control of the Thermal and Fluid Dynamics of the NASA CELSS Crop Crowth Research Chamber

Ann L. Blackwell and C. C. Blackwell
Docetiment of Merimicy Enqneming
The Urmarity of Teces an annoion

Abstract

The Crop Growth Research Chamber (CGRC), which is beiag devetoped under the Controlled Ecological Life Support Syatem program at NASA Amee Research Cencer. will be operated to support research on the growth dynamics of crops of higher planta within a cloeed. precisely coatrolled environment. The CGRC is the firat in a senes of instruments which will be incorporsted into bioregenerative life support systerns for space habitase. The dynamic proceses of the thermai and nuid portione of the CGRC are proioundiy coupled wish thowe of the pinats and there is strong reasoa to believe that consideration of these interactrons is aecemary in oncier to deaign a CCRC which will support sound research.

In this paper we deacribe the modeling syasem which we have developea for the therma and flujd dynamics of the CGRC. The baces of the modeliag syatem are symbolic representations of the individual procesem which are inciuded in the representation. The ayatem includen the pians growth chamber. the asoociated control syatem components and the control devices. An example of the derivation oi the dynamic equations of the system from the symbolic mocieling system is prenented.

AN IMPORTANT ELEMENT of the Controiled Ecological Life Suppors System (CELSS) Program at VASA Ames Researco Center is the development of a crop growih reseerch chamoer (CGRC). This CGRC coatana a plant growth chamber (PGC) requiring a preensely controlled internai environment. The CELSS program and its recens status are described in ill.

The CGRC is one oi a sequence of physical devicen which are to be deveioped under the CELSS program. leading eventually to fully cyciing bioregenerative tife support systems ior space or planetary habilats i2|. It will be usea to concuct researen on the growth oi cropa of nigher diants irom seed to maturation employing stringent control oi all environmental paramerers le.g., lighting, temperature. atmoanneric oxygen. carbon dioxide concentrations. humaity, and presiure, nutrient soiution :emperature. ion ana dissoived oxygen concenirations. ano
preature) which alfoet the production of biomam. oxygen. and transpired water vapor, and the conaumption of carboa dioxide, liquid water, and nutrients by the plants. Knowiedge of the autecology of the crop plant populasions to be used in a CELSS will permat utilisation of the CELSS plant growth uait an a melsiple input-multiple ourput (MIMO) life support syatem compoaent whose funcrion and performance can be varied as aended by application of the appropriate control aspategy.

The prototype chamber unit curtently under developmeat in a precursor to a apace-baced unit (CROP) that will be eapeble of conductiag experiments on the effect of the space environment on the growth of plant cropa. It is deairable to reguiate eavironmental conditions withia the space-based uait to the same degree oi accuracy as thoee within the ground-baed unit in order to separate the effecta of flight misaion vanabies. principaily gravity, from the effects of consroilable environmental parametern on plasi growth reppoase. Suggented ancilary uses of the chamberi are to "devetop" control syatems. to validate modela of plat growsh and aystem operasion. to expiore the development of expert systems for operation of plant growth devices, and to expiore the use of automation ano robotics and other devices to save human laborn [3].

Boti the ground-baed and the spacp-baced units will be deaigaed to provide environmeneal conditioas that are independent of thoee of the ambient environment. While the space-based unit and follow-on veraioas of the prototype grovad-based uait will be ciosea with reapect to the exctange of materials. the initial ground based unit will emulate cionure by including suificiently large storages and sinks of maserials which require remova or replenishmeat during particular pnases of plant growth.

Tolerance specificationa for environmental variablea for the ground-baned and space-based unite were developed and modified at workshops held in September 1984. April 1988 and June 1988 (4. 5). The tolerances on environmental variabiea are described in i6] and are given in Table 1. The CGRC differs irom other piant growin chambers described in the literasure ii . 12! in size. degree of material closure. tightness of control. and number oi controlled environmental variabies.

TABLE 1. Tolerance requiremeats for the atmospheric variablet in the shoot zone of the plant growth chamber of the NASA CELSS Crop Growth Recearch Chamber.

Air temperature Relative humidity	$\begin{array}{r} 5-40^{\circ} \mathrm{C} \pm 1^{*} \mathrm{C} \\ 35-00 \% \pm 2 \% \end{array}$
Carbon dioxide	$25-5000 \mathrm{ppm} \pm 0.27$
Oxysep	5-25\% $\pm 5 \%$
Nhtrogen	78-95\% \pm 5\%
Gage premure	$0.8^{\prime \prime} \mathrm{H}_{9} \mathrm{O} \pm 0.25^{\text { }}$
Air valocity	$0.5 \mathrm{msse}{ }^{-1} \pm$ (${ }^{(1)}$
Photonynthetic photon Aux	$\begin{aligned} & 0-3000 \mu \text { moine } m^{-2} s^{-1} \\ & \pm 10 \mu \text { moies } m^{-2} m^{-1} \end{aligned}$
Surfeen temperaturee	Air temperature +2 C - not metablished

The dyamic procemen of the thermal and flaid espette of the CGRC are profouadly coupled with thow of the plante and there is atrong reecon to belleve that consideration of theme isternetion is memeaty in onder to design a CGRC which will support somed rmeareh. For the ease of complex systeme, prectical mecmetty prodication the syotematic examination of coatrol iseren on the eve of adequately securate mathematieal modele of the ayatem being exemined.

Many very important quentions roleted to the scomptability of performance of a pasively controlled synten with clours can be ovaluated by aalyaing a mathematical model of the dyacmic behavior of the aystem. Des to diaturbances, uncertiaintien, or variational is phymieal or, blological characteristies of the syatem compoenatt, passive coatrol may fail to provide acceptable performance. In that case, reconrse to the mee of setive coatrol is a compelling alternative since setive control is well eatablimbed to have highly reduced suasitivity to macertainty. The aame mathematieal modals unad to determise the edequacy of paoive coatrol can and should be used to etudy the requiremante for active control lawe which will provide stable, dacirable aystem performance in which compeasation is provided for disturbences and for uncertnin or variable characteriatics of slemeats of the controlled ayetem.

Unesptaiation in the CGRC system are most manifest in the livins componenk. The inberat veriability of biological syatems [13] mates the task of preciex mathematieal deeription of their behavior difficalt.

The term "atable" is used here is the semes of atability to a region, i.e. the state of the sytem remain withia an aceeprable tolerance of the dewired aystem stata. The najon of tolerance is deecribed by the apecifications on the environmental variables giver in Table 1.

For a plant growth uait operating as a ragulating syatem, this impliee prescribed bouads on the deviation of
the actual aymem variablen from deaired fixed valuee. For a plant growth unit operating as the MIMO trecking symem deacribed carlier, ie., one which is tranaitioning from an initial to a fial state slong a preacribed performance path, this impliee proecribed bounds on the deviation of the actual system variablen from the deaired trajectory between initial and fias atases. A control which providen etability as defined is axid to be a robunt control for the system evbject to the apecified uncertainties.

Control strategien, propoeed or implemented, have been raported for growth chambers, greenbousen, and liventock buildiag $[0,11,12,14-23]$. Theen control stratecien have bean doveloped uning od hoe methods of, to varying dagreen, utilining coarrol theory formaliam. Moat depend upon some form of epioodic mannal turing to retein devirable performance. It is powible that a robust control may sehieved by mansal traing, but it is dificult so know whether robuataces hes been achieved or whother fature aymom perturbations will require retening. If it demirable to devalop a control system that requires little or no hmman intervention, as will be the cace for the apace boree symern, a formal procedure for the synthesis of a control ntretegy is required.

The robuation objective are mont readily achierved chrough the developmeat and ntilization of mathemation models of the componente of the CGRC, ite the PGC and the mociated claments of the coatiol oyntem. The mathemation model which will be doveloped for the CGRC is beoed upen the philooophy that a moded which is dovaloped for control syotem denigs in one in which biophyrieal and phyvieal phesomena are reproented in the mocet parthmotions format which in adoquate for the conelytical and computational naedo of control devisa in contratet to the reprosentention of microseopic detail. The inowe of control modeling and scientific rmenarch modeling is dincused in [2].

Approechee to robust control thoory under carreat dovelopment fill in five major categorion which an be briesty described aat (1) How mathode [24]. (2) limear optinal quadretic Gamaiaa with loop trangier rwoovery (LQG/LTR) [25], (3) quantitative faedbeck theory (QFT) [20]. (4) variable structure with aliding moden (VS/SM) [27), and (5) Lyapurov theory baeed methode [28]. The mathemation modeliag atructure developed in this paper is orieated toward the utilization of (5), a methodoloty which appears to be moet promisias for the typen of syateme, uncertaintion, asd performanee mearuses encountered in CGRC rmaneh and CELSS applications. Innatrations of CFLSS related applications of Lyapumow theory beeed methods of robust control deaiga cas be found in (20] and [30].

The purpose of this paper is to illuatrate the approech to the darivation of a continuons time state veriable format mathematical moded for uce in developing a robuct control law for the CGRC.

SYSTEM DESCRIPTION

The development of a system to control the environmental conditions within the PGC of the CGRC invoive (1) the ealection of componeat devios (i.e.

Fig. 1. Conceptual model of the Plant Growth Chamber and atmospheric control syatern of the NASA CELSS Crop Growth Research Chamber.
actuators) which will affect the exvironmental variables that are to be controlled. (2) the salection of component devices which will provide suitable meesure of the environmental variablen (i.e. meanurement instruments), and (3) the development of control alsorithme which utilize the outputs of the meanuremest instraments to provide the necessary combinationa and time sequencing of iaputs to the actuatore so that the required performance characteristics of the environmental variable within the CGRC are met.

Fig. 1 is a representation of the arrangement of the componenta hypothesized for control of the atmoaphere of the plant growth chamber. The plante receive radiant energy from a light cource above the chamber (not shown). Water and nutrients are supplied to the roots by means of a nutrient delivery system that is materially isolated from the chamber atmosphere. Air flow into the chamber is asaumed to be sufficient to aseure that uniform conditions exist in the atmospheric control volume within
the chamber and aurrounding the plant canopy control volume. Greove exchange of carbon diavide, water vapor and oxygen occura between the canopy and the atmosphere.

Air eatern neas the top of the upper chamber and is thoroughly mixed with the air in the upper portion of the chamber. The resultiag mixture flow between the walls and the bafile formed by the plant support anfince into the lower portion of the chamber and then into the ducting located near the bottom. A HEPA filter is provided to remove particulates from the air as it leeven the chamber. Air flow out of the filter is affeeted by the controllable orifice flow area of a valve. A portion of the air flow is diverted, by means of a controllable dapper valve and fan, into a gas aeparator which removes exceas oxygen or carbon dioxide. A centrifugal pump (blower) serves to compensate for pressure loseas within the syatem and provide the required air movement within the syatem. Makeup gases are injected into the flow arream to
maiatain the required atmoapheric componition. A portion of the flow is diverted through a dehumidifyias heat exchanger, where the condengate is removed from the system. Two variable flow ares orifice are present, one each in the flow path through the dehumidifier and in the parallel bypass. The orifice flow areas are variable in order to regulate the mass flow ratio of the pating. The air in the two flow patha in mixed and nlow through a mection of ducting. A portion of the flow is diverted through eitber a beater or a cooling heat exchanger. Three variable flow area orifices are preseat one each in the flow path through the cooling heat exchanger, the beater and the paralial bypass. The orifice flow areas are variable in order to reguiate the mase flow ratio of the patha. Sisce menting performasce apecification is considered paramount to economic constraints in this deaign concept, two independently controlied heat exchangers are utilized in humidity control and temperature regulation. The flow are mixed and now through the ducting to the chamber iniat.

The tank of modeliag the processes which affect the dyammies of the thermal enviromment of greenhousea, plant crowth chambera, liveatock housas and confined spaces has been addreseed $[9,11,12,14,18,19,31-37$). The procenes included in the modal depend upon the anaumptions of importance of each procas in determiniag the dyaamics of intereat for the particular syatem being modeled. While the physics of the procmen which bave beap included in thene modela are applieable to the dynamie: of the CGRC. they do not include all the procemen neceseary to necount for the dyammies of the variables of intersat in the CGRC.

In the following sections, we deacribe the asamptions which we have made concerniag the function of aach compoanant of the CGRC and the phyaical and biophysical proceses which we hyposheaise to contribute significantly to the thermal and fluid dynamica within them. In this formulation, we conaider the scenario in which the PGC contains a crop of plasts forming a clowed canopy and the system goal is to maintain temperature, relative humidity, presure, carboa dioxide concentration, oxygen concentration, and mean air velocity in the chamber within aet toierances about constant operating points.

MODELING PROCEDURE

The procese of mathematical model development is enhamed by the prelimiasry formulation of a symbolic model of the aystem. The symbolic moded is a sebematic representation of aech of the gemeric etemental phyaical and biological procesen which are to be inciuded in the machematical model and the manaer in which these processes inseract in the particular aystean being analysed. The mathematical equations deacribing these elemental proceases and the atructure of their interactiona combine to become the mathematieal model of the dynamic behavior of the syatem. Other symbologias have been uned for developing models of eaginecriag aystems for control system atudies. Thase include linear graphs and circuit diagrems $\{38,39\}$ and bond graphs $\{40,41)$. In this paper we present the symbology of the modeling system which we have developed for the thermal and nuid dyammica of
the atmospheric control syatem of the CGRC.
ASSUMPTIONS - Some anumptions are made in order to achieve the minimum complexity model for the curreat analysis. These assumptions may be modified as more specific details of the system become available.
(1) Leakage from the syatem is aegigible.
(2) The air in the system conaiste solely of nitrogen, oxygen, water vapor and carbon dioxide and behaves an as ideal gee.
(3) The boundary of the syatem includes the PGC and the elements of the enviroamental control syatem.
(4) The air ducts of the syatem are perfectly insulated. Thermal eapacitance of the air duct wall is negigible.
(5) Distributed phenomeas are adequately represented by lumped modele.
(6) The radiant eaergy souree consiata of lampe (and their maciated reflectors) which produce photonynthetically active radiation (PAR) as well as long wave radiant energy. Control of the radiant energy inteasity at the eanopy level. frequency content, and sequenciag (ice. effective photoperiod) is unaffected by PGC procmes. A aubatantial portion of the loag wave radiant energy produced by the radiant enercy source in the 2800 nm to $100,000 \mathrm{~nm}$ range ia abeorbed by a liquid water/giags filter [42]. The water in the filter is cooled by a eeparate control ayatem which maintains the water at a prescribed temperstura.
(7) The control aystem for the nitrogen gas blanket which eeparates the inner walla from the exterior wall of the PGC is able to maintain the temperature of the inser wall at a pracribed temperature above the dewpoint of the chamber air.
(8) The casopy proceses of transpiration, photosyathesis, photorespiration and maintenance respiration are the only canopy procesce of aignificance for the time scale considered is this model. (See Fig. 3.3 in \{43].) Growth is negaigible, i.e. the leaf carbohydrate pool an defined in [44] is an infinite source/aink. Similarly, there is an infinite water source for internal water ancociated with the plant.
(9) The plast population can be modeled by aggregating the sum of individual piant processes and their interactions into a single canopy proceas. The canopy biomaen is sufficiently large to affect the fluid and thermal dynamice of chamber. The conditione within the chamber affect the phyaiologicel dynamics of the canopy.
(10) A nutrieat dedivery system in the lower chamber is maintainad at fixed temperature above the dew poiat of the chamber air. There is mo material interchange between the autrient delivery syatem and the chamber air. Water and nutriants are delivered to the piante at the ideal conctatration, pH and preasure. Dyammica of nutrient delivery and plaat uptake and tranalocation are negligible.
(11) The flow rates and entrance temperatures of the working fuid in the hast exchanger are maintained by separate control syatems whoee dynamice are negligible.
(12) An infiaite sink exists for the removal of gasa and condenaate.
(13) An infinite source exiats for the addition of gasea and water vapor.
(14) The dynamics of air diversion from the main flow

path. gat eeparation, component gas removal, and reintroduction of the diverted gas into the main flow path caa be neglected. The procesa caa be represented by instantancous removal of the gen component from the main flow atream.
(15) The dynamics of source gas or water vapor injection are negligible. The proceas can be represented by instanianeous addition of the gar or vepor to the main flow atream at a prescribed temperature.
(16) Flows are surbuleat but fully developed.
(17) Other than in the blower. incomprenible flow relationabips are adequate to deacribe aystem proceases.

ASSIGNMENT OF POINTS AND FLOW PATHS -
Fig. 2 represents the conceptual model of the CGRC with the points and now paths needed for the modeling symbology anigned to the syatem. A point is the location at which all the variables reprementing potentiala with respect to a fixed reference within a deaignated volume may be aanmed to be concentrated. Point numbert are
shown encircled. Flow paths represent the coastitutive relationshipa (procensea) which occur between points. Flow paths are shown which arrows indieating the fow direction which is asaigned a ponitive value. Path numbers are not circled.

CONSTITUTIVE RELATIONSHIPS - The gmbology for the conatitutive relationshipa is representative of procesces between and at prints. In many cases, the symbol representa aggregated phenomena, i.e. total molar flow rates.
Storagen - We account for moiar atorages and energy atorages in the aystem. Fig. 3 illustrate the moiar atorage at point 1. The aymbol illustrates the rate of change of upper chamber atmospheric mase as a function of molar flow rate into the chamber through now path 1 (from the atmospheric control syatem) (n_{1}) and flow path 2 (from the plant canopy, through gaseous exchange of the products of tranapiration. photosynthesia. photorespiration and mantenance respiration) (n_{2}) and molar flow rate ous
of the upper chamber through flow pach 3 (to the atmospheric coatrod syatem) (n_{3}) and flow path 2 (to the plani caropy, through gaceons exchange of the reacuant for photosybthesia, photorespiration and maintemance rapiration) (a_{2}). Sigaificant molar storages in the system are bocated at poists 1 (upper chamber atmoaphere), 2 (plant ensopy), 5 (lower chamber atmonphere), 15 (blower entrance), and 36 (gas repupply chamber). Within the plant canopy, molar storage is componed of throe subatorages: substomatal cevity (gaveons products) (point 2), leaf carbohydrate pool (point 46), and internal plant water pool (point 44). (Points 46 and 44 are not shown on Fig. 2.) The remaining small emounte of molar storage in the aystem are lumped into these atorages.

Fig. 3. Symbology and sample equation for molar storage procesens. The process in illustrated for the molar storage at point 1 on Fig. 2. Molar flow rate n_{i} represents the um of all atmoepheric species in that flow. Flow path arrowe indicate the direction of acoigned positive flow.

Fis. 4 illustrates the energy atorage at point 1 . The symbol illustrates the rase of change of upper chamber atmosphere energy as a function of enthalpy flow rate into the upper chamber atmonphere through flow path 1 (from the atmonpharic coatrol system) (方i) and Blow path 2 (from the plant eanopy, through gacoons exchange of the producte of trasepiratioa, photoryltheris, photoreapiration and maintenasce reapiration) (it?), enthaipy fiow rate ont of the upper chamber atmoephere through now path 3 (to the atmoupheric control nyatem) ($\dot{\mathrm{H}}{ }^{\circ}$) and slow pach 2 (to the plant caropy, through gaeoous exchange of the reactasts for photonyatheis, photoreapiration and mantepance reapiration) (\dot{H}_{2}^{9}), heat trancier into the upper chamber atmosphere from the plat canopy (\dot{Q}_{2}) and from the walls and lighte ($\left.\dot{Q}_{41}\right)$, and work $\left(P_{1} \dot{V}_{1}\right)$ done at the moving boundary (clove porta). Thene storages are located at points 1 (upper chamber atmoephere). 2 (plast canopy), 5 (lower chamber atmoaphere). 15 (blower entrapee), and 36 (gao reaupply chamber). An additional energy storage within the plast canopy represeats energy atorage ascociated with the
chemical bonds in the leaf carbohydrate (point 46). Mechanical energy storage occurs at point 37, is illuntrated in Fig. 14, and is discuased in conjunction with blower processes.

Fig. 4. Symbology and sample equation for energy storage processes. The process is illustrated for the energy ntorage at point 1 on Fig. 2. Fiow path arrows indicate the direction of asigned positive flow.

Inertance - We account for total fluid inertia within the syatem by lumping all inertance effects into two nuid inertences, one in each section of the control syatem between the blower and the PGC. Fig. 5 illustrates fluid inertance located between points 13 and 14. The rate of change of the molar flow rate between pointa 13 and 14 (n_{9}) is proportional to the total pressure difference between points 13 and 14. A similar process is bocated between pointa 35 and 3.

Fig. 5. Symbology and semple equation for fluid inertance processea. The process is illustrated for ीluid inertance between point: 13 and 14 on Fig. 2. Arrows indicate the direction of asigned positive flow.

Pipe Eriction - We account for total pressure losses due to friction in the ductwork (constant area) within the system by lumping all conatant area friction effects into two friction loss processes, one in each rection of the control syatem between the blower and the PGC. Fig. 6 illuatratea pipe friction located between pointa 12 and 13. The total presure difference between points 13 and 14 is proportional to the equare of the molar flow rate between points 13 and $14\left(\mathrm{n}_{\mathrm{g}}\right)$. The friction factor is determined by the duct surface and the Reynoids number. Effects of fittiags and beads are included in equivalent length. A similar procens is located between points 24 and 25.

Fig. 6. Symbology and sample equation for pressure changea due to pipe friction for conatant area, aingie phase flow. The process is illustrated for friction between point 12 and 13 on Fig. 2. Arrowa indicate the direction of assigned positive flow.

Flow Solitting and Joining - We account for total pressure changen due to flow division and flow merging. These processes occur in the section of the control system involving dehumidification and temperature balancing. Fig. 7 illuatrates flow diviaion between points 17 and pointa 18 and 19. The total pressure difference between point 17 and point 18 (or between point 17 and point 19) is a bilinear function of the molar flow rates (n_{14}) and $\left(n_{16}\right)$ (or $\left(n_{14}\right)$ and $\left(n_{15}\right)$). The weighting of each term ($\mathrm{a}_{1,2.3}$) is a function of the splitter geometry. A similar process is located between points 25 and points $26,27$. and 28.

Fig. 8 illustrates fow mergiag among from pointa 22 and 23 to point 24. The total preasure difference between point 22 and 24 (or 23 and 24) is a bilinear function of the molar flow ratea $\left(n_{21}\right),\left(n_{22}\right)$, and $\left(n_{23}\right)$. A correaponding process relates the flows through points $32,33,34$, and 35.

Sudden Expansion - We account for total preasure changes due to sudden increaces in crose sectional flow area. Fig. 9 illustrates sudden expansion from point 3 to point 1. Pressure change varien as a function of the square of the molar flow rate between points 3 and $1\left(n_{1}\right)$. Similar processes are located between pointa 8 and 9,14 and 13 , and 16 and 36.
Sudden Contraction - We account for total preasure changes due to sudden decreases in cross sectional how area. Fig. 10 illustrates sudden concraction from point 5
to point 6. Pressure change varies as a function of the square of the moiar flow rate between points 5 and 6 (o_{5}) and as a function of the upstream and downesream duct diameters. Similar processes are located between pointa 10 and 11 . and 13 and 17.

Fig. 7. Symbology and sample equations for flow splitting process. The process is illustrated for flow splitting between point 17 and points 18 and 19 on Fig. 2. Pressure relationship from [45]. Arrows indicate the direction of asigned positive flow.

Flow shrough an Orifice - We account for cotal pressure changes due to flow: through orifices. Fig. 11 illustraten flow through an orifice between points 11 and 12. Preanure drop across the orifice varies as a function of the square of molar flow rate between pointa 11 and 12 (a_{7}). For a circular variable diameter thin plate orifice K_{i} can be approximated as a quadratic function of the orifice to duct diameter. Similar processes are located between points 21 and 22, 20 and 23, 31 and 32, 30 and 33, and 29 and 34. All of these orifice areas are shown as variable. These orifice areas are available as system control inpute. A similar process occurs between points 1 and 5 around the plant growth platform which forms a baffe between the upper and lower regions of the PGC. In that case. the orifice area is fixed.
Flow hroush a Porous Medie - We account for total pressure changea through the particulate filter. Fig. 12 illustrates flow through a filter between points 9 and 10. The preasure difference between points 9 and 10 is proportional to the square of the molar flow rate between points 9 and $10\left(n_{6}\right)$. Filter porosity may decrease as material accumulates within the filter.

Fig. 8. Symbolory and sample equations for flow merging process. The procese is illustrated for flow merging from points 22 and 23 to poiat 24 on Fig. 2. Preasure relationahip from [45]. Arrows indicate the direction of asagued positive now.

Fig. 9. Symboloty and ampie equation for sudden expansion process. The procesa is illustrated for audden croes sectional flow aree expenaion from point 3 to point 1 on Fig. 2. Arrows indicale the direction of asaigaed positive flow.

GM Remoyal - We account for the removal of excees atmospheric gases from the ayatem. Fig. 13 illustratea selective removal of gasea from the ayatem at point 12. The molar and entropy flow rate downstream of the extraction point are equal to the upatream ratea leas the rate of gas removal.

Fig. 10. Symbology and ample equation for andden contraction process. The proceses is illustrated for sudden croes sectional fiow area contraction from point 5 to point 6 on Fig. 2. The formulation of K_{i} is specific to the audden contraction flow process and may be approximated as proportional to the ratio of dowastream to upatream duct diameters. Arrows indicate the direction of angened ponitive flow.

Fig. 11. Symbology and ample equation for fiow through an orifice. The procesa is illuatrated for flow through the orifice from point 11 to point 12 on Fig. 2. The formulation of \mathbf{K}_{i} is apecific to the orifice fow procesa and may be approximated as quadratic function of the duct to orifice diameler. Arrows indicate the direction of asagned poaitive flow.

Gen lniaction - We account for the addition of atmenpheric gaen. This procem is illustrated in Fige. 3 and 4. In that case, the gapes which are added to molar storage originate from another syatem component (the plant canopy). A molar flow rate of additional gaces (m_{17}) from an exteralal source is indicated at point 13. Molar and energy influx raven from the external sources are modeled in a farhion similar to that shown in Figa. 3 and 4. respectively.

Blower - We account for thermal, mechanical and nuid processes associated with the blower. The processes involved with the blower are illustrated in Fig. 14. These
processen occur between points 15. 37 and 16. Motor torque is avaiable as a control input. A mechanical energy atorage (due to the rotational inertia of the motor and impeller) occurs at point 37. Mechanical power is added to the system by the pump motor. Pump efficiency is accounted for in the mechanical to nuid power converaion process equation. An isentropic compression procent is modeled in the blower.

Fig. 12. Symbology and sample equation for flow through a porous media. The process in illustrated for fow through the porous filter from point 9 to point 10 on Fig. 2. The formulation of K_{i} is apecinic to the porous flow proceas. Arrows indicate the direction of asoigned ponitive fow.

Fig. 13. Symbology and sample equations for gas removal. The process is illustrated for gas removal at point 12 on Fig. 2. Arrows indicate the direction of astigned positive flow.

Heat Exchangers - The three heat exchangers (dehumidifying. cooling, and heating) are represented by a generic counterflow model. The processes involved in the heat exchanger model are illustraced in Fig. 15 for the dehumidifier between points 19 and 21 and 18 . The
procease in the working fluid, whoee dynamies are seperately controlied, occur between points 38 and 39. The logerithm meas temperature difference method it used. Since condensate is removed in the dehumidifier, a flow path (18) is shown for moisr and enthalpy flow. The condensate flow path will not appear for the other two heat exchanger syatems. For the dehumidifier the moler flow rates for water vapor and other atmoapheric component gace are considered separately. Thit procens is not required for the other heat exchanger aystems.

Fig. 14. Symbology and sampie equations for the blower. The processes occur between points 15. 37 and 16 on Fig. 2. K, is the pump preasure reaction coefficient. Arrow indicate the direction of asoigned positive flow.

Molecular Diffurion - We eccount for molecular diffusion of gases between the canopy and the ebamber air. Fig. 16 illuntrates diffusion of water vapor between poiata 1 and 2 (the substomatal cavity). The diffusion renistance represents the sum of boundary layer and stomasal resiatance. Boundary layer ressatance varioua with wind speed [46]. The stomatal resistance is differens for the different molecules in the armosphere [47] and varies an a function of canopy temperature, ambient relative humidity, canopy carbon dioxide concensration. and canopy water potential [48]. Stomatal and boundary layer resiatances are defined as overall canopy level resistancea. The molar flow rate (n_{2}) is proportional to the difference between specific humidity at point 2 and at point 1.

We account for resiatance to diffusion through the mesophyll cells for gases and. for carion dioxide. the resiatance ascociated with the carboxylation reaction [47,

49, 50). The procens is illustrated in Fig. 17 for carbon dioxide. The molar flow rate $\left(\mathrm{a}_{30}\right)$ in proportional to the difierence between earbon dioxide concentration at point 2 and point 46.

Fig. 15. Symbology and sample equations for the heat exchanger. The procesen are illustrated for the heat exchanger between point 19 and 21 on Fig. 2. Arrows indicate the direction of asagned positive flow.

Fig. 16. Symboiogy and ample equation for molecular diffusion of gases between the plant canopy and the chamber ais. The proceas is illustrated for water vapor diffusion between point 1 and point 2 on Fig. 2. Arrows indicate the direction of asaigned positive flow.

Fig. 17. Symbology and sample equation for diffusion through the meaophyll and reastance asacciated with the carboxylation reaction. The process is illustrated for carbon dioxide between point 2 and point 46. Arrowa indicate the direction of asaigned poaitive flow.

Whter Transpori - We account for water traasport through the plant from the point deaignated ao an internal water pool (source) to water vapor in the substomatal cavity. The proceas is illustrated in Fig. 18. The molar flow rate (n_{3}) is proportional to the water potential difference between pointe 2 and 44.

Fig. 18. Symboiogy and sample equation for water trasport through the plant. The process is illuatrated for tranaport from point 44 to point 2 . Arrowa indicate the direction of asoigned ponitive flow.

Conyective Heat Tranifer - We account for convective beat tranafer between urfaces in the chamber and the chamber air. Fig. 19 illustrate convective heal tranfer between the plant canopy and the upper chamber air. The convective beat transfer rate $\left(\mathbf{Q}_{2}\right)$ is proportional to the temperature difference between point 1 and poiat 2. A similar process occurs between points 1 and $4 i$ and pointe 5 and 7 .
Badiative Heat Tranafer - We account for radiative heat trasafer between surfaces in the chamber. Fig. 20 illustrates radiative heat tranafer between the plant canopy and the upper chamber walls. The radiative beat
tranger rate $\left(\dot{Q}_{40}\right)$ is proportionel to the difference between the fourth power of temperature at point 2 and the fourth power of temperature et point 4 i .

Fig. 19. Symbology and sample equation for convective heat transfer. The procese is illuntrated for convective heat tranaier between the plant canopy, point 2, and the upper chamber air, point 1. Arrows indicate the direction of asgigned poaitive fow.

Fig. 20: Symbology and sample equation for radiative heat tranaier. The proceas is illustrated for radiative heat transier between the plant canopy, point 2 , and the upper chamber surfaces, point 4. Arrow indicate the direetion of asigned positive flow.

Abrorption of PAB - We eccount for absorption of photo syathetically active radiation (PAR) by the plant canopy. Fig. 21 illustratea absorption by the plant canopy (point 2) of PAR from the visibie light energy at point 45.

Bound Enerry - We account for PAR energy abeorbed but not used in photosyatheais, energy present in chemieal bonds as a reault of photosynshenia and the energy released as a reautt of reapirasion. The energy asociased with the inorganic materials at point 2 are related to the energy associated with the organic materials at point 46 through the photonynthetic and reapiration processea. Some of the PAR absorbed is not used for photosynthesis and becomen part of the energy storage at point 2. The energy released as a function of photorespiration and maintenance respiration becomes part of the energy storage at point 2. Canopy data for wheat in a CELSS can be found in [13]. The process for groas photosynthesis
(without photorespiration) is illustrated in Fig. 22.

$$
f_{11}=\dot{\alpha} A_{2}, \dot{K}, I_{45}
$$

Fig. 21. Symbology and ample equation for abeorption rate of photonynthetically setive radiation (PAR). Effective canopy aran is used since all leavee are not equaily illuminated. Average energy content of photosynthetic photons from $\{13,42.51\}$. Incident PAR above the canopy includea PAR emitted from all sources as well as direct and indirect sources and seattered PAR (44). Arrow: indieate the direction of assigned positive flow.

Fig. 22. Symbology and sample equations for rate of tranaformation of enersy to/from organic chemical bonds. The process is illuatrated for photonyathesis. Average energy content of photonynthetic photoas from [13, 42. 51]. Incident PAR above the canopy includea PAR emitted from all sources at well at direct and indirect sources and scattered PAR [44]. Maximum rate and half aturation conatante are functions of carbon dioxide concentration [44]. Arrowe indicate the direction of assigned positive flow.

Modulated Sources - We account for modulated sources. Sourcea are devices which are capable of delivering energy to a system from a location external to it. Sources are conaidered to deliver a variable to the system in a prencribed manner. A dependent cource is one in which that source variable is a function of another independent
variable. The socond independent variable is termed the modulating variable [38]. No eacry is drawn from the port of the modulating variable. A modulated cource in illestrated in Fig. 23. An enthalpy flow rate. Hís, occurs betwean poiat 1 and 2 . The entbalpy flow rave is a fuaction of the modulating variablee a_{2}, the molar flow rate in path 2, and h_{2}, the apacific eathalpy at poiat 2.

$$
\dot{H}_{2}=d_{2} b_{2}
$$

Fig. 23. Symbology and rampie equation for a modulated source. The process is illuatrated for a modvlated enthalpy now rate souree between pointe 1 and 2. The enthalpy fow rate is pach 2 is a flow souree which depeads upan molar now rate in path 2 and the apecific enthalpy at point 2. Arrow indicate the direction of maigned positive fow.

STRUCTURAL RELATIONSHIPS - The symbols for each of the procesen which were developed in the previous section are used in the formulation of the modeling diagram for the system. The modeling diagram describen the mannar in which thow procemee which were previounly deacribed interact. Wherane the eame procest may ocevr at many points and in gemeric to many physieal systema, the structure of the modeling diagram represents a procses isteraction which is unigue to the syatem beiag modeled. When the procens symbole are linked at the appropriate structural points, two modeliag diagrams are produced: one which reprenancs the moiar component and oet which repreents the enery composeas of the sytum.

The moler componeat modeliag diagram is shown in Fig. 24. The contiacity priaciple it uasd to write the equations at each point, i.e. the num of the molar flow rate into a poiat is equal to the sum of the molar flow reten out of a point. Examplea are:

At point 35.
At point 3.

$$
n_{3}+n_{31}+n_{32}=a_{1}
$$

and
At poiat 1.

$$
n_{1}+n_{2}=n_{3}+\dot{n}_{C_{n 1}} .
$$

The energy component modeling diagram is shown in Fig. 25. The energy conservation principle is used to write the equations at each point, i.e. the sum of the energy
nows into a point is equal to the sum of the energy flows out of a point. Examples are:

At point 35,
At point 3,

$$
\dot{H}_{30}^{\circ}+\dot{H}_{31}^{\circ}+\dot{H}_{32}^{O}=\dot{H}_{i}^{\circ}
$$

and

$$
\dot{H}_{I}^{\circ}=\dot{H}_{i}^{\circ}
$$

At poins 1:

$$
\dot{H}_{1}^{\circ}+\dot{\mathbf{H}}_{22}^{\circ}+\dot{Q}_{2}+\dot{Q}_{4}-P_{1} \dot{\mathrm{~V}}_{1}=\dot{H}_{3}^{0}+\dot{E}_{\mathrm{Ca} 1}
$$

Since we asume that there is mo heat tranafor, no eacrgy atorage, and no work doae in the ducts, there in ao change in eathalpy through flow paths 5,6 , and 7 . Consequeatly, enthalpy flow rate between points 5 and 12 is deaigraced as Hंg. Similarly now path 1 , now patha 16 and 12, path 23, and pashs 25 and 31 represent constant eathelpy processes.

CONTROL INPUTS - The variables which are ibdepeadent of the syatem and are available to be arbitrarily determined as a function of time or as function of the aytem variables are deagaated control variables. - They are chamber lighting, chamber wall temperatures, valve orifice flow areas, gas llow rates out, gan how ratea in, and blower motor torque.

DISTUREANCES - Disturbancen may take the form of variablea which are independent of the system internal variablea but may not be arbitrasily determined (such as chamber volume changet due to glove port use) or changem in aystem paramoters due to aging, etc.

SYSTEM EQUATIONS - The constitutive relationshipe (procseses) and structural equations form the set of agebraic and dysamic primitive equations which rogesher deacribe the linked thermal and Iluid dynamic behavior of the plant growth chamber and the atmospheric control gystem of the Crop Growth Researeh Chamber. Preasures and temperatures can be related to the poteatials at each point on the molar component and enerty component diagrams, reapectively. The molar and energy now and storage process representations shown in the proceeding are symbolic in that in the actual reprenentation ccoonatiog for molar flow and storage by apecies is necesary. The equations can be written in terma of the partial preasures of each atmospheric component, total pressures, mase or molar now rates (hence velocities, tramapiration rates, etc.), air temperatures, plast canopy temperatire, ete.

The equationa, in state variable form. can be used to analyse syotem properties such at: (1) location of equilibrium pointa, (2) stability at equilibrium points, (3) stability robustacen at atable equilibrium points, (4) coatrollability, and (5) obeorvability. The atace variable form of the equationa, formatsed to include syatem uncertainkies and distorbances, can be used to seek robust control algorithms. If analytis of the syatem model indicates that the properties of the system are unastiafactory auch that robuatneas cannot be achieved or ean oaly be achioved at uasceeptable coat of some other performance meanure, a proposed alteration to the syatem structure may be required. The model of a proposed reconfiguration can developed by reformulating the struetural reintionships of the proceas models to conform to structure implied by the altered configuration.

Fig. 24. Molar componens of the modeling diagram of the Plant Growth Chamber and atmospheric control syatem of the Crop Growth Research Chamber. Points and flow patha correspond to those indicated on Fig. 2. Modeling symbols are defined in Figs. 3 through 23.

Additional proces models can be added if required by the altered configuration.

CONCLUDING REMARKS

We have preseated a mmbology for an organized approseh to the derivation of the equation which deacribe the dynamic behavior of a plant growth chamber with ciosure. We have illustrated the linkage between the model of the physical syatem componeats ad the model of the biological component. As previoualy noted, aeveral ssumptiona were made to reduce the complexity of the syatem for the purpose of demonatratiag the modeling procedure. Additional processen, such at those affecting crop shoot-root interactions, would be edded in order to model the behavior of the syatem in reaponse to root zone environment disturbancea and control inputs. Proceasen which affect longer term pheaomean such a biomat production, would be added to model syatem behavior
over a growth cycie.
It is characteristic of the syatem control problem to employ simplified models for the purpoee of controlier ayntheais. Theer models typically (a) empioy functionally more simple (linear, usually) representations of procms behavior and (b) do not deacribe all atable dyammics. Historically, this strategy hes been remarkably iuceastul because implementation of feedback controi cas reader a syatem robutt to a variety of perturbations. Computer simulations, baed on more comprehensive and mearly complete modela which at least include the mons signifiena noalinearitien, are mont useful to demonatrate controlied syatem performance. Simulations and the newly emerging perspectives of robust contral are crucial for the purpoce of acuring performance.

Fig. 25. Energy component of the modeling diagram of the Plant Growth Chamber and atmospheric control syatem of the Crop Growth Research Chamber. Points and flow paths correspond to those indicated on Fig. 2. Modeling symbols are defined in Figs. 3 through 23.

NOMENCLATURE

As	cersopy aren (m^{2})
A.	effective eroes mectional aree of the ductwork (m^{2})
A_{1}	duct croes oectional area in flow path i(m^{2})
$\mathbf{A}_{\mathbf{i}}$	aree of surface $i\left(\mathrm{~m}^{2}\right)$
A:	beat transfer area (m^{2})
$\mathbf{A}_{\mathbf{1}}$	total effective canopy area for short wave abeorption (m^{-2})
air	dry air
c_{j}	mole fraction of carbon dioxide at point j
$\dot{c}_{p_{i}}$	molar apecific heat in path i (Joulea mol ${ }^{-1} \mathrm{~K}^{-1}$)
	bon dioxide

D	duct diameter (m)
E_{i}	rate of energy accumulation at point i (wetta)
$F_{i j}$	radialive shape factor between surfacese i and j
f	friction factor
f_{3}	photosyathetic rate (watts)
8_{41}	PAR aboorption rate (watte)
$\dot{B}_{4}{ }^{\text {- }}$	total enthalpy flow rate in path i (watts)
$\dot{b}_{\text {c }}$	canopy convective heat tranaier coefficient (wate $m \boldsymbol{m}^{-2} K^{-1}$)
h_{j}	apecific enthalpy at point j (Joulea mol ${ }^{-1}$)
bso	water - liquid or vapor (in context)

1	moment of inerta of motor and impelier ($\mathrm{kg} \mathrm{m}^{\mathbf{2}}$)
I_{45}	incident PAR above canopy ($\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{sec}{ }^{-1}$)
KA.	effective ares for diffusion in the casopy (m^{2})
K.	average energy content of photonynthesic photons ($\mathrm{J} \mu \mathrm{mol}^{-1}$)
K	pump presaure reaction coefficieas
$K_{r i, j}$	radiative heas transier coefficient (m^{-3})
L	$K_{r i, j}=K_{r i j}\left(F_{i, j}, c_{j}, c_{j}, A_{i}, A_{j}\right)$ effeetive duct length (m)
MW ${ }_{\text {air }}$	1 molecuiar weight of dry air in chamber (mmol^{-1})
MW ${ }_{\text {d }}$	molecuiar weight of air in the ductworts ($\mathrm{g} \mathrm{mol}^{-i}$)
n_{i}	molar flow rate in path i (molea eec ${ }^{-1}$)
n_{2}	nitrogen
O_{3}	oxygen
$\mathrm{P}_{1} \dot{\mathrm{~V}}_{1}$	work done by the system (watts)
P_{j}	preasure at point ${ }^{\text {(}} \mathrm{Pa}$)
$P_{j}{ }^{\text {® }}$	total presaure at point $j(P a)$
PPF	photosynthetic photon fux ($\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{sec}^{-1}$)
Q	heat tranaier rate in path \mathbf{i} (watts)
q_{j}	humidity ratio at point j
R	universal gas constent (Joules mol ${ }^{-1} \mathrm{~K}^{-1}$)
R	internal duid resistance ($\mathrm{n} \mathrm{m} \mathrm{sec}^{-1}$)
re ${ }^{\text { }}$	water vapor boundary layer resiatance (sec m^{-1})

ACKNOWLEDGEMENT

Thia work was partially supported by a NASA - ASEE Summer Faculty Fellowship at Stanford Univeraity NASA Ames Research Center awarded to A. L. Blackweil.

REFERENCES

[1] MecElroy. R. D., and D. T. Smernoff. eds. 1987. Controlied ecoiogical life support syatem: regenerative life support syaterns in space. NASA CP 2480.
[2] Blackwell. A. L. 1989. A perspective on CELSS control issues. In Proceedings of the CELSS ' 89 Workshop. In press.
[3] CELSS Research Program. (No date). Crop growth research chamber: plan for the development of equipment for researeh on higher plant growth for the CELSS program: rationaie. design, fabrication, teating and utilization. NASA document.
[4] MacElroy, R. D.. D. T. Smernoff, and J. D. Rummel. eds. 1987. Controlled ecological life support system: deaign, development. and use of a ground-based plant growth module. NASA CP 2479.
[5] Tremor. J., and D. L. Bubenheim. In prep. CELSS laboratory scale plant growth equipment design workshop. Tiburon. CA. 14-16 June 1988.

$\mathrm{r}_{\boldsymbol{i}}$	mesophyll resistance (sec m^{-1})
r°	water vapor stomacal reaistance (sec m^{-1})
T	temperature at point j (K)
U	overall heat tranoier coefficient (Jouiea $\mathrm{m}^{-2} \mathrm{~K}^{-1}$)
v_{1}	volume of the upper chamber (m^{3})
$\dot{\text { a }}$	canopy average short wave absorption coefinient
β	PPF helf anturation conatant (wate m^{-2})
θ_{0}	maximum photonynthetic rete as PPF $\Rightarrow \infty$ for given carbon dioxide concentration (watto m^{-2})
β_{1}	constant (wetts m^{-2})
β_{3}	congtast (K)
\boldsymbol{T}	ratio of moiar apecific beats
${ }^{6}$	emissivity for surface j
7	pump efriciency
ψ_{j}	water potential at point j (Pa)
Paur, 1	deasity of dry air in the chamber (Em^{-3})
Peer ${ }^{1}$	chamber carbon dioxide molar deasity ($\mathrm{mol} \mathrm{m}^{-2}$)
P_{j}	air denaity at point j ($\mathrm{kg} \mathrm{m}^{-3}$)
ρ	molar denaity of waser
σ	Stephen-Boltzmean constant (watts $\mathrm{m}^{-3} \mathrm{~K}^{-4}$)
$\mathrm{T}_{\text {e }}$	mocor torque input (n m)
	blower mocor apeed (rad sec${ }^{-1}$)

[6] Bubenheim, D. L. 1989. The Crop Growsh Researeb Chamber: a ground bamed facility for CELSS research. In Proceediags of the CELSS ' 89 Workshop. In press.
[7] Prince. R. P., W. M. Knatt. J. C. Sager, and S. E. Hilding. 1987. Deaign and performance of the KSC biomars production chamber. Seventeenth Internociety Conference on Environmental Syatems. 13-15 July 1987. Seattle. WA. SAE Paper No. 87-1437.
[8] Prince. R. P., W. M. Knott. J. C. Sager, and J. D. Jones. 1988. Engineeriag verification of the KSC biomas production chamber. Paper No. LBS-88-096 in Symposium on Lunar Bases and Space Activities in the 2lst Century. Houston, TX. 5-7 April 1988.
(9) Jones. P., J. W. Jonen, L. H. Allen. Jr., and J. W. Mishoe. 1984. Dyaamic computer control of cloeed environmental plant growth chambera. Deaign and verification. Transactions of the ASAE 27(3):879-888.
[10] Meyer, G. E., J. A. Lamb, and W. E. Splinter. 1984. Crop moisture atreas analysis using computer-controlied environmental chambers and simulated weather sequencea. Transactions of the ASAE 27:1862-1870.
[11] Parions, J. E., J. L. Dunlap, J. M. McKinion. C. J. Phene. and D. N. Baker. 1980. Microproceasor-based data acquisition and control software for plant growth chambers (SPAR syatem). Tranaactions of the ASAE 23:589-595.
(12) Phene. C. J., D. N. Baker, J. R. Lambert, J. E. Partone, J. M. McKinion. 1978. SPAR - a moil-plantatmosphere rewareh syotim. Traosactioss of the ASAE 21(5):924-930.
[13] Bugbee, B. G. 1989. Exploring the limits of crop productivity: a model to evaluate progreas. In Proceeding: of the CELSS '89 Workehep. In prese.
[14] Cole, G. W. 1980. The application of control syatema theory to the analyia of ventilated animal houging enviromments. Transections of the ASAE 23:431436.
[15] Cole, G. W. 19:2. A method to predict the performance of mechanically ventilated aysteme. Tranaction of the ASAE 25:110-424.
[16] Hahimoto, Y. 1980. Computer control of ahort term plant growth by monitoriag leaf temperature. Acte Horticulturae 106:139-146.
[17] Wiltits, D. H., T. K. Karnoaki, E. H. Wieer. 1980. A mieroprocessor-based control syatem for greenhouse reparch: Part II-software. Trasactions of the ASAE 23:693-698.
[18] Midweat Recearch Inatitute. 1981. Solar controlled eavironmast agriculture projoct. Final report. Volume 2. Battelle Colnmbus Laboratories Syatem Requiremente Definition and System Analyais. MRI/SOL-0800-02. DE86 001286.
[19] Cole, G. W., P. W. McClellan, and J. G. Mannix. 1981. A linear ventilation rate temperature controller for a conined animal houning ayntem. Tramactions of the ASAE 23:700-710.
(20) Moateith, J. L., B. Marshall, R. S. Salall, D. Clarke, J. N. Gallagher, P. J. Gregory, C. K. Ong, G. R. Squire, and A. Terry. 1983. Enviroamental control of a glanhouse suite for crop phytioloty. J. Exp. Botany 34:309-321.
[21] Mitehell, B. 1986e. Integrated mierocomputer-baeed control system for multiple enviroamental cabinets. Tranactions of the ASAE 29(3):820-823.
[22] Mitcheil, B. 1986b. Microcompater baced environmental control aystem for a diveace-free poultry houce. Traneactions of the ASAE 20(4):1136-1140.
[23] Sager, J. C., C. R. Hargrove, R. P. Priace, and W. M. Kaott. 1988. CELSS atmonpheric contral ayutem. ASAE aummer meeting, 26-29 June 1988. Rapid City, SD. Paper No. 88-4018.
[24] Doyle, J. C. 1082. Analyais of feedback syatems with streetured uncertaiaty. IEE Proceediag. D-129(6):242250.
[25] Athass, M. 1986. A tutorial on the LQG/LTR method. Proceedinge of the Ameriean Control Conference (2):1289-1298. Seattle, WA.
[26] Horowits, 1. 1982. Quaatitative feedbeck theory. IEE Procending. D-129(6).
[27] Utkin, V. I. 1984. Variable structure syatems: prement and future. Automation and Remote Control 44:1105-1120.
(28) Corleas, M., and G. Leitmann. 1988. Controller deaign for uncertain syatems via Lyapunov functions. Proceedings of the Automatic Consrol Conference (4):2019-2024, Atiante.
[29] Blackwell, A. L., C. C. Blackwell, R. H. Kila, and T. Vecera. 1987. Magagement strategiea uader uncertainty: - demonstration of LFGG robust control in a CELSS scemario. pp 8-9 in Space Life Sciences Sympoaium: Three Deeadee of Life Science Research in Spece. Wenhington, DC. Office of Space Science and Applieationa, National Aeronautics and Space Administration. 400 pp.
[30] Blactwell, A. L., and C. C. Blackwell. 1988. A robust coasrol atrategy for uncertain plant growth in a CELSS. Abatracta of the Consrolled Environmental Life Support Syatems Research Conference. College Station, TX.
[31] Fan, L. T., Y. S. Hwang, and C. L. Hwang. 1970. Applications of modern optimal control theory to environmental control of confined spaces and life apport syatern. Part 1 - Modaling and aimalation. Building Science 5:57-71.
[32] Nakariahi, E., N. C. Pereira, L. T. Faa, and C. L. Hwang. 1973. Simultancous control of temparature and humidity in a confined space. Part 1 - Mathematical modeliag of the dynamic behavior of temperature and hnmidity in a confined space. Building Scienes 8:39-40.
[33] Bot, G. P. A. 1980. Validation of a dyaamieal model of greenhonse elimate. Acta Horticulturae 106:140-155.
[34] Kindelan, M. 1980. Dynamic modeling of greentouce enviroamens. Transections of the ASAE 23:1232-1239.
[35] Cole, G. W. 1980b. The derivation and analyais of the differential equations for the air temperature of the confiaed animal housiag system. Traasactions of the ASAE 23:712-720.
[36] Chandre, P.. L. D. Albright, and N. R. Scott. 1981. A time dependent analyais of greenhouse thermal eaviroament. Transactions of the ASAE 24:442-449.
[37) Aringe, E. A., G. J. Schoemau, and R. W. Beant. 1984. A dynamic thermal performance simulation model of an energy concorviag greenhouse with thermal stornge. Transactions of the ASAE 26:508-519.
[38] Shearer, J. L., A. T. Murphy, and F. H. Richardzon. 1967. Introduction to system dynamics. Addison-Wesley, Readiag, MA. 420 pp.
[39] Dorf, R. C. 1989. Modern control systems. AddisonWealey, Reading, MA. 603 pp.
[40] Takahenhi, Y., M. J. Rabins, D. M. Auslander. 1970. Control and dynamic aystems. Addison-Wealey, Reading, MA. 800 pp.
[41] Beaman, J. J., and P. C. Breedveld. 1988. Phynical modeliag with Eulerian frame and bond grapha. Trasactions of the ASME Joural of Dyammic Syatema, Measurements, and Control 110:182-188.
[42] Bubenbeim, D. L., B. Bugbee, and F. B. Salisbury. 1988. Radiation in coatrolled environmente: influence of lamp type and filter material. J. Amer. Soc. Hort. Sci. 113:468-474.
[43] Reynolds, J. F., and B. Acock. 1985. Modeling approaches for evaluatiag vegetation responses to carbon dioxide concentration. Pp 34.51 in B. R. Strain and J. D. Cure, eds. Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238. United Statea Department of Energy, Washington, D. C.
[44] Wana. M., C. D. Raper, Jr., and H. L. Lucas, dr. 1978. A dynamic moded for plant growth: a simulation of dry master accemulation for tobacoo. Photonynthetica 12:121-136.
[45] Cheremieisoff. N. P. 1982. Fluid flow: pumpe, pipes, and chanaels. Aan Arbor Science, Aan Arbor, MI. 702 pp.
[46] Gates. D. M., and L. E. Papian. 1971. Atles of energy budgets of plant leaven. Academic Prem, New York.
[47] Bradley, E. F., and J. J. Finaigan. 1973. Heat and mase irasefer in the pianinair contiauum. Proceedinge of the first Australasian conference on heat and mana tranafer. Monath University, Melbourde, Australia
[48] Jones, H. G. 1983. Planta and microclimate: a quastitative approech to enviroamental plant physiology. Cambridge Univ. Press, London. 323 pp.
[49] Nobel, P. S. 1983. Biophysical platat physiology and ecology. W. H. Freemer. San Francisco. 608 p.
[50] Charleo-Edwards, D. A., D. Doley, and G. M. himmington, 1986. Modelling plant growth and developmeat. Academic Preas. Sydney.
[51] Bugbee. B. G., and F. B. Salisbury. 1988. Exploriag the limite of crop productivity: I. Photorymthetic efficiency of wheat in high irradiacce enviroaments. Plant Phyaiology 88: 869-878.

A2. A brief summary of some of the results obtained in the study; A. L. Blackwell and C. C. Blackwell. 1990. Development of a model for control of the NASA CELSS Crop Growth Research Chamber. Proceedings of the 1990 American Control Conference. San Diego, California, USA 23-25 May, 3:2113-2114.

DEVELOPMENT OF A MODEL FOR CONTROL OF THE NASA CELSS CROP GROWTH RESEARCH CHAMBER

A. L. Blackwell and C. C. Blackwell

The Center for Dyamac Syatema Coatrol Studies. Departmeat of Mechanical Eagineeriag The Univernty of Texm at Arliggton, Arlington TX 76019.

Abstract

In aupport of deveiopment of bioregenersuve life support systeme for space habitate. a chamber for conducting te mearch on the biophysical reaponse of erop piants in controlled eavironments is being designed by the National Aeronautica and Space Adminiatration. The impreciana of matbematical deacriptions of the behavior of biological syatems led to the development of a mooel which can de uned to derive a atrategy for control of the chamber eavronmeat which is robuat to the syatem uncertaintien. The modeling approach and observations of the characternatic of the model are deacribed.

INTRODUCTION

Regenerative life auppori syatema are judged to be easeatial to succese of mistion scenarion contemplated by the Office of Exploration of the Natioal Aeronatict and Space Administration (NASA). A higher degree of material clonere that that provided by phyorochemical life support technoiogy in considered necemary for some scenanoa. (1) A meaas of providiag greater clonure it through use of a bioregenerative life support syatem. t.e. one in which the production of food, the replemianment of oxygen and removal of carton diaxide from the atmonphere and the production of fresb water is provided by higher plants and/or algae in conjuaction with physiochemien syetems.

To conduct experiments on the biopbysical reaponsea of higher plants from eeed to maturatioa in ciomed environmeate. a crop growth researeh chamber (CGRC) [2] is being developed at the NASA Amee Remearch Center under the Coatrolied Ecological Life Support Syatem (CELSS) program. [3] Stringent coatrol of all envirasmental variablee (e.g. lighting, temperature, atmonpberic oxygen, carbon dioxide concentratione, bumidity and preseure, autrient solution temperature, ion and diseolved oxygen conceacrations and preseure) which affect the production of biomas. oxygen, and tranapired water vapor, and the coasumption of carboa dioxide. liquid water. and nutrieats by the planta will be requred. Knowledge of the autecology of crop plant populationa derived from CGRC researen will permit utilizetion of the CELSS plaas growth unit as multiple input-multiple output life tupport oyatem componest whone fuectioa and performance can be varied at required through application of appropnave controi atrategrea.

SYSTEM DESCRIPTION

The CGRC differs from other plant growth chambers (references in (4]) in size, degree of material ciosure. performance requirements, and number of controlled environmental variables (Table 1). Uncertaintiea in the CGRC syatem are moat manifest in the living component. The inherent variability of biological aystems makea the task of precice mashematical description of their behavor difficult. The bounds set on the required performance of
the ayatem. coupled with the ancertintiea ansing from the imprectaion in kaowiedge of functional forme and paramecers deseribiag plazt biophyaical ecology, have led us to menk atratesy for control of the chamber eavirommeat which is robuat to the aystem uncertaintim usiag Lyepunov theory beesd methode (5). In this paper we dencribe the developmeas of a modeliag atructure cosniatent with the derivation of auch controilera.

MODELING APPROACH

The model inciuden the liakages betwees the plyyical syotem componeats and the biological componeats. Tentative phyaical component nizen wers baned upon lightiag, presure, pham and temperature rive constrainte and the proposed phyvical coafiguration of the chamber (Fig. 1). Amumiag that the chamber contained a full canopy of a nearly mature crop of whent (Yecors Rojo) under fully lighted conditions. enentially all the photoaynthatieally setive rediant energy from the lighte wae comaidered abeorbed by the piante. A large fraction (5/6) wes amamed coaverted into sensible heat, raisiag the cer nopy temperature olightly sbove that of the nomial ambieat chamber air, the remauder uned in evaporating water intersal to the plant camopy and aubnoquently tramopired. The fraction of esergy fixed in photonyntheain or released in metabolinm wes considered aufficiently omall to negiect in the eaerg balance for sbont term dynamics. The plant canopy wes modeled an cemperature and vapor and gan exchange disturbesces. A desenption of the phyaical syatem and the modeliag ayatem used to derive the conatitutive and atructural relatooshipa deacribiag sthe procescen occurring in the shoot zone of the plact growth chamber in deveioped in (4].

The primitive ayarem equations for the nominal model (i.e. withous uncertaintiea)

$$
\begin{gather*}
A_{1}=A_{1} 9+A_{3} \sigma+A_{1} u+A_{3} d \\
B_{1} \sigma+B_{2} 9+B_{3} c+B_{1} d=0 \tag{1}
\end{gather*}
$$

were derived by lisearisiag the procme equationa about an equilibrium poiat calcuiaced by settiag conditions in the chamber at valuen within the required operatiog envelope. The nominal linear uma invariant atate variable form

$$
\begin{align*}
& \dot{x}=F x+G u+E d \\
& y=C x+D u+H d \tag{2}
\end{align*}
$$

was derived from (1) eccording to [6]. The 19 natural variable system staten consitt of the molar compoaitiona and temperatures of the air in the upper and lower sections of the chamber and in the ducts, blower motar speed. molar flow rate is the ducte and upper chamber volume. The 11 control variablea are described in termas of valve loes coefficients. blower motor controt torque, and gas injection and extraction rates. The 8 disturbance variablea are plant camopy temperature and gas exchange ratea. chamber wall temperatures. gat injection temperature and chamber volume changea due to glove port utilization.

OBSERVATIONS

Some initial obeerrations of the properties of the nominal linear moded relevant to control desige are discusced below.
2. Utilization of the SVD in MATLAB indicated that, for the scemario modaled, B_{1} is poorly coaditioned. The velses of come cigenveluce of F are quite cemaitive to the method uad for matrix invertion in the equation reduction procedure. Equation reduction from primitive to state variable form was performed uniag MATLAB.
b. Of the 19 aiguavalues, 3 are positive real, 5 are negative real, one in saso, the othere ere complex with negative real parts. All pairs excapt one have dempiag ration (C) greater thas 0.7 .
c. The ofutem was tranoformed to model form. Examination of the real Jordan matrix inverse revealed that most modee are primarily indwasced by rational groupe of atural variebles. For example, the molar quagtity of water rapor throughout the syatem (i.e. in the upper chamber, lown chamber, and is the ducte) predominantly inauencu the most unoteble mode and one complax mode; chatobar volume prodomianally infuencem the woond mont uantable mode and a ecoond complex mode; molar quantity of earbon dioxide throughout the syatem prodominasth influences the lanat unatable mode and a third complex mode. The magaitudet of the shree complax modeo difier by loen than 1%.
d. All modee other thas that maociated with chamber volume are controllable. All modes are vulperable to the disturbeacer.
e. Plactameat of the larget oteble cigeavalue (domimated by oyatem orygea concerstration) from the open boop value of $-0.257 \mathrm{E}-6$ to -1.0 wat echieved by linear feedbeck of only the etete variabion repromeatiag oxygen and aystem volume without aftectiag more than the fifth sigaificant figure of asy of the other eigeaveluen.

CONTINUING DEVELOPMENT

A parameterined hisear model is bring developed to accommodate potential varistioes is proposed CGRC deaiga coafiguratios. Bounds on the valuee for the uncertaintion apocisted with the crop dyaamice will be

obtained from CELSS crop phyoiologits. Bounde on the values for the nacerteintien acoocialed with the phymied ayatem will be obtained from the NASA Amen Romearch Ceater CGRC eagineriag team. Computer simulations of the soaliaear aystem equations are being developed. The the aontiaear syitem equations are being developed. The evaluate oystem performance with various candidate control sirntagien.

ACKNOWLEDGEMENT

This research wes supported by NASA-ASEE Summer Faculty Fellowahipe at Stanford Univeraity - NASA Ames Rescarch Center awarded to ALB and CCB.

REFERENCES

[1] D. A. O'Geadley, "Humas pathway to the colar ayotem in the 21st ceatury," SAE Technieal Paper 891430. 19ih Intersociety Conference on Envirommental Syotems, Sae Diego, CA, 1089.
[2] D. L. Bubeabeim, P. M. Luna, M. Hankrud, K. M. Wagenbech, and C. L. Straight, "The Crop Growth Repearch Chamber: a grouad beed fecility for CELSS repeareh," SAE Technieal Paper 891588. 19/h Intersociety Conference on Envirenmental Systems, San Dingo, CA, 1989.
[3] R. D. MacElroy and D. T. Smernoff, eds., "Coatrolied coological life aupport myatem: regeaerative life-support aysterns is spece," NASA CP 2480, 1987.
(4) A. L. Biackwell and C. C. Blackwell, "A modeliag ayotem for control of the shermal and fluid dyanmice of the NASA CELSS Crop Growth Remearck Chamber," SAE Techaical Paper 891570. 194h Interwactety SAE Techaica Paper Ental Syatems, San Diego, CA. 1989.
[5] M. Corters and G. Leitmean, "Controller devign for uncertain oyotems vie Lyapuzov fuactions." Procsedinga of the Automatic Control Conference, pp. 2019-2024, Atlanta. GA. 1088.
[6] C. C. Blackwell, ${ }^{\circ} \mathrm{On}$ generating otate apece equations of a limear conationt confliciest system." Journel of Optimuzetion Theory and Applications, pp. 65-79, 1986.

Fig. 1. Plant growth chamber and candidate atmoeFig. 1. Plant growth chamber asi CELSS CGRC.
pheric control gytem for the NASA

APPENDIX A.3:

THE LINEAR STATE VARIABLE REPRESENTATION COEFFICIENT MATRICES
$\mathrm{APL}=$
$1.0 \mathrm{D}+05$ *

Columns 1 thru 4
-0.002424541202636
0.000007428647359
0.000002400532336
0.000000012012662
0.000000158817643
0.000000886999249
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
-0.000007473646694
-0.000002399467664
-0.000000012002662
-0.000000161035711

- 0.000071705926065
0.000000000000000
0.000000000000000
-0.015584615000000
-0.104155231885820
-0.033657271994475
-0.000168286354972
-0.002270129825046
-0.047268854535376
0.104155231885820
0.033657271994475
0.000168286354972
0.002270129825046
-0.139011870881306
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

Columns 9 thru 12
0.000000000000000
0.306365761428881
0.099000649983750
0.000495003249919
0.006641293603077
0.139026042751107
-0.306338921428881
-0.098991976983750
$-0.000531103249919-0.000494960009919$
-0.015584615000000 -0.104167521885820 -0.033657271994475 - 0.000168286354972 - 0.002257842025046 -0.047268854535376 0.104167521885820 0.033657271994475 0.000168286354972 0.002257842025046 -0.139011870881306 0.000000000000000 0.000000000000000 0.0000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
-0.015584615000000
-0.104155231885820
-0.033669561994475
-0.000168286354972
-0.002257842025046
-0.047268854535376
0.104155231885820
0.033669561994475
0.000168286354972
0.002257842025046
-0.139011870881306
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.306365761428881
0.099000649983750
0.000495003249919
$0.006641293603077 \quad 0.006641293603077$
$0.139026042751107 \quad 0.139026042751107$
$-0.306375061428881-0.306338921428881$
$-0.098991976983750-0.099028119983750$
$-0.000494960009919-0.000494960009919$
$-0.006640711803077-0.006640711803077$
$0.408858443768547 \quad 0.408858443768547$
$0.045837102941176 \quad 0.045837102941176$
$0.000009300000000 \quad-0.000026800000000$
$\begin{array}{rrr}-0.000008673000000 & 0.000027470000000 \\ -0.000000043360000 & -0.000000043360000\end{array}$
$-0.000000581800000-0.000000581800000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.029593147410898 \quad 0.000000000000000$
$0.009562885927852 \quad 0.000000000000000$
$0.000047814429639 \quad 0.000000000000000$
$0.000641510264327 \quad 0.000000000000000$
$0.013429105647768 \quad 0.000000000000000$
$-0.029593147410898-0.000007427000000$
$-0.009562885927852-0.000002400000000$
$-0.000047814429639-0.000000012000000$

A3.2

APL(continued)			
-0.006640711803077	-0.006676853603077	-0.000641510264327	-0.000000161000000
0.408858443768547	0.408858443768547	0.039441678349110	-0.000009894665308
0.045837102941176	0.045837102941176	0.004427597058824	-0.000489255870000
-0.000026840000000	-0.000026840000000	0.000000000000000	0.000007427000000
-0.000008673000000	-0.000008673000000	0.000000000000000	0.000002400000000
0.000036100000000	-0.000000043360000	0.000000000000000	0.000000012000000
-0.000000581800000	0.000035560000000	0.000000000000000	0.000000161000000
0.000000000000000	0.0000000000000000	0.000024575432811	0.000071561445609
0.000000000000000	0.000000000000000	0.000000000000000	-0.000003084020638
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
Columns 13 thru 16			
0.031773295283869	0.031773295283869	0.031773295283869	0.031773295283869
0.000006330000000	-0.000018260000000	-0.000018260000000	-0.000018260000000
-0.000005901000000	0.000018690000000	-0.000005901000000	-0.000005901000000
-0.000000029530000	-0.000000029530000	0.000024560000000	-0.000000029530000
-0.000000395800000	-0.000000395800000	-0.000000395800000	0.000025090000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
-0.031773295283869	-0.031773295283869	-0.031773295283869	-0.031773295283869
-0.000006220000000	0.000018370000000	0.000018370000000	0.000018370000000
0.000005901000000	-0.000018690000000	0.000005901000000	0.000005901000000
0.000000029510000	0.000000029510000	-0.000024550000000	0.000000029510000
0.000000395800000	0.000000395800000	0.000000395800000	-0.000024180000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000
Columns 17 thru 19			
0.004429819765695	0.000000000000000	0.648836700000000	
0.000000000000000	0.000000000000000	4.336690953038673	
0.000000000000000	0.000000000000000	1.401381215469613	
0.000000000000000	0.000000000000000	0.007006906077348	
0.000000000000000	0.000000000000000	0.094009323204420	
0.000012636792617	0.000000000000000	1.967951572080137	
0.000000000000000	0.000000000000000	-4.336690953038673	
0.000000000000000	0.000000000000000	-1.401381215469613	
0.000000000000000	0.000000000000000	-0.007006906077348	
0.000000000000000	0.000000000000000	-0.094009323204420	
0.000000000000000	0.000000000000000	5.787502839399791	
-0.004429819765695	0.000519274000000	$\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~}$	
0.000000000000000	0.000000000000000	0.000000000000000	
0.000000000000000	0.000000000000000	0.000000000000000	
0.000000000000000	0.000000000000000	0.000000000000000	
0.000000000000000	0.000000000000000	0.000000000000000	
-0.000024575432811	0.000000822452196	0.000000000000000	
0.000000000000000	-0.000001580805758	0.000000000000000	
0.000000000000000	0.000000000000000	0.000000000000000	

A3. 3

BPL $=$
1.0D+04 *

Columns 1 thru 4
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
-1.339113000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

Columns 5 thru 8
0.0000000000000000 .000000000000000
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000
0.000100000000000
0.000000000000000
0.000000000000000 0.000725474031327
0.000000000000000
0.000000000000000
0.000100000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$-0.000011567184703-0.533985494195872$
$-0.0000000044426010 .000000000000000$
$-0.000000001435605 \quad 0.000000000000000$
$-0.000000000007178 \quad 0.000000000000000$
$0.000000005885384 \quad 0.000000000000000$
0.000000142327155
0.000000000000000
0.000000000000000
0.000000000000000
0.001232788811738
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000 0.000000000000000
0.000000000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000100000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000717889530091$
$0.000017250000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000-0.105145008041067$
$0.000000000000000 \quad 0.000000850426248$
$0.000000000000000 \quad 0.000000274811229$
$0.000000000000000 \quad 0.000000001374056$
$0.000000000000000-\mathbf{- 0 . 0 0 0 0 0 1 1 2 6 6 1 1 5 3 3}$
$0.000000000000000-0.000027245020290$
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.0000000000000000
. 000000000000000
$0.000000000000000 \quad 0.000000274811229$
$0.000000000000000-0.000000001374056$
$0.000100000000000-0.000000018435253$
$0.000830173124485-0.000008208843239$
$0.000000000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
-0.024352741122039
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
-0.000138158814227
0.000000000000000
0.000000000000000
0.000000000000000

| BPL(continued) | | |
| ---: | :--- | :--- | :--- |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000004440806 | 0.000000000000000 | 0.000000000000000 |
| -0.000000001435605 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000007178 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000096305 | 0.000000000000000 | 0.000000000000000 |
| 0.000000042882747 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |

$\mathrm{CPL}=$
Columns 1 thru 4

| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| ---: | ---: | ---: | ---: | ---: |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| -1.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | -1.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 1.000000000000000 | 0.000000000000000 |
| -0.374812247255921 | -0.428076256499133 | -0.428711727325246 | 2.357019064124783 |
| 0.00000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.00000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.000000000000000 | 0.000000000000000 |
| 0.000000000000000 | 0.000000000000000 | 0.00000000000000 | 0.00000 |

Columns 5 thru 8
0.000000000000000
$000000000 \quad 0.000000000000000$
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000 0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.034662045060659

00
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.101936799184506
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000$
0.000000000000000
0.000000000000000
0.000000000000000
$0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000$
0.000000000000000
$0.000000000000000 \quad 0.000000000000000 \quad 0.000000000000000 \quad 0.000070873866447$

A3.5

A Study of the Control Problem of the Shoot Side Environment Delivery System of a Closed Crop Growth Research Chamber

C. C. Blackwell and A. L. Blackwell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
8. PERFORMING ORGANIZATION REPORT NUMBER

Department of Mechanical Engineering
The University of Texas at Arlington Arlington, Texas
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDAESS(ES)

A-92138

Ames Research Center
Moffett Field, CA 94035-1000
NASA CR-177597
11. SUPPLEMENTARY NOTES

Point of Contact: R. D. MacElroy, Ames Research Center, MS 239-15, Moffett Field, CA 94035-1000 (415) 604-5573 or FTS 464-5573

12a. DISTRIBUTION/AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE

Unclassified-Unlimited
 Subject Category - 54

13. ABSTRACT (Maximum 200 words)

The details of our initial study of the control problem of the crop shoot environment of a hypothetical closed crop growth research chamber (CGRC) are presented in this report. The configuration of the CGRC is hypothetical becauseneither a physical subject nor a design existed at the time the study began, a circumstance which is typical of large scale systems control studies. The basis of the control sudy is a mathematical model which was judged to adequately mimic the relevant dynamics of the system. The CGRC system hardware which is represented in the model includes a plant growth chamber and those control system components considered necessary wo provide acceptable realism in the representation. Control of pressure, temperature, and flow rate of the crop shoot environment, along with its oxygen, carbon dioxide, and water concentration is addressed. To account for mass exchange, the group of plants is represented in the model by a source of oxygen, a source of water vapor, and a sink for carbon dioxide. In terms of thermal energy exchange, the group of plants is represented by a surface with an appropriate temperature. Most of the primitive equations which result from the modeling process are nonlinear. The results of a linearization of the primitive equations about an experimental operating condition and a state variable representation which was extracted from the linearized equations are presented. Next, we present the results of a real Jordan decomposition and the repositioning of an undesirable eigenvalue via full staxe feedback. The state variable representation of the modeling system is of nineteenth order and reflects the eleven control variables and eight system disturbances. Five real eigenvalues are very near zero, with one at zero, three having small magniunde positive values and one having a small magnitude negative value. A Singular Value Decomposition analysis indicates that these non-zero eigenvalues are not the results of numerical error.

14. SUBJECT TERMS		15. NUMBER OF PAGES 105
17.SECURITY CLASSIFICATION OF REPORT Unclassified18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECUAITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OFABSTRACT

