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Abstract

This document presents the mathematical structure of the programs written to construct a

nonlinear predictive model to forecast solar flux directly from its time series without refer-

ence to any underlying solar physics. This method and the programs are written so that one

could apply the same technique to forecast other chaotic time series, such as geomagnetic

data, attitude and orbit data, and even financial indexes and stock market data.

Perhaps the most important application of this technique to flight dynamics is to model God-

dard Trajectory Determination System (GTDS) output of residues between observed position

of spacecraft and calculated positon with no drag (Drag Flag = off). This would result in a

new model of drag working directly from observed data.
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Section 1. Introduction

This document presents numerical techniques for constructing nonlinear predictive models

to forecast solar flux directly from its time series. As a continuation of- our previous

research in understanding the dynamics of solar activity (References 1 through 5), we

consider the dynamic evolution of our system (solar activity) in a re-constructed phase

space that captures the (strange) attractor,* and we give a procedure for constructing

parameterized maps that describe the evolution of points in the phase space into the

future. The predictor would necessarily depend on past data points and different itera-

tions of the map. Thus the map is regarded as a dynamical system and not just a fit to

the data. The invariams of our dynamical system, the Lyapunov exponents and the

invariant density on the attractor, are used as constraints on the choice of mapping

parameters. We give a detailed analysis of methods to extract the Lyapunov exponents

and show how to equate them to the values for the parametric map in the constraint

optimization.

"If the data points are uniformly distributed in embedding space, our data are truly

stochastic. But if the data points are distributed in a bounded region (attractor), then

the data are not stochastic, and order can be extracted from data.
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If the evolution of our dynamical system is on such an attractor, then the d-dimensional embed-

ding space enclosing the attractor should be sufficiently larger than dA that all the geometric

information about the attractor will be exposed in the embedding space. In the next section we

present the methods of forming this phase-space reconstruction.

2.1 Takens-Packard Phase-Space Reconstruction

Using this method, we construct from the solar flux time series x(t)'s d-dimensional vectors

which, when embedded in R d, describe the full dynamical evolution of the system. Section 3.1

is devoted to the techniques used to identify the correct value of d directly from the time series.

Suppose we have the correct value of d. We consider measuring a single scalar variable x at

discrete time points x(n) for n= 1,2, . . . ,Nt_. In our case, x is the solar flux and the observa-

tions axe daily.

To illustrate the technique, we have exaggerated the sampling intervals and magnified a small

portion of our time series in Figures 2-2 and 2-3. Here tl and h should be extremely close to

one another and r should be chosen so that no information is lost. The choice of r will be dis-

cussed later. It cannot be too big or too small. For right now, suppose we have the correct value

of r.

Figure 2-2 shows how^can construct vector kets lyl), [y2), ... lYN}-

The set of Iy(n)), of which we have N = ND - d, captures the evolution of our nonlinear dynam-

ical system as it moves through the d-dimensionalphase space. Familiar phase-space coordinates

are time derivatives x(n), R(n), i(n),..., evaluated at discrete times. The times, lagged x(n), are

nonlinear combinations of the local time derivatives and are fully acceptable substitutes for the

usual phase-space coordinates, as Eckmann and Ruelle have emphasized (Reference 7).

7
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Having the y(n) and the embedding space, we ask how we can use the series of y(n) to predict

[y(N+ i)), [y(N+2)), etc. That is, given a data set l y(1)), [y(2)), ... IyfN)), is there a mapping

F from R a to itself parameterized by [a> = alla2

that takes us from ly(n)) to ly(n+l))?

[y(n+l)> = F(ly(n),la>)

that is [y(2)> = F(Iy(I)>, la>) and lY(3)> = F(IY(2)>, [a>)

(2-1)

For simplicity we write F = F and IY > = Y, Ia > = tt and generate the columns in Figure 2-4.

Therefore, from a time series we can form phase-space reconstruction in embedding space of

dimension d, as shown in Figure 2-5.

Our function F(y,il) comes from parametrically "fitting" the right-hand column in Figure 2-4 of

y(n+l) resulting from the left-hand column of _(n). Fitting the data then suggests making an

estimation of _t so that a cost function _(It) is minimized.

/2
n-I =l

(2-2)

Here we are not just making a fit to data with a set of functions F(y,tt). Rather, these functions

evaluated along the orbit are to be related to each other in the manner of a dynamical system.

That means the function F(.VjI) evaluated on the data vector y(n) is required to do more than

reproduce y(n+l). E(YjI) must also be a function that, when iterated, will reproduce y(n+2)

after two applications to y(n), y(n+3) after three, and so on. That is, the geometrical properties

of our dynamical system given by E(y,_t) are used to determine the success of the fit.

The data contain invariant dynamical information that is essential for a full description of the

structure of the attractor that they evolve on. We would try to impose these invariants as con-

straints on the fit. This emphasizes that we are creating a dynamic and not just a fit to data.
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Many invariant dynamical quantities remain constant as the system evolves in time. We will

concentrate on two kinds that allow us to construct a reasonable predictor. One "kind of invariant,

the Lyapunov exponents Xl, X2, ... Xa, describes the expansion or contraction of phase-space

volumes under the iteration of F(y,_l). The second kind of invariant is the density of points on

the attractor p(Y). It captures global features of the frequency with which orbits visit various

portions of the attractor. It is a different kind of invariant from Lyapunov exponents. Its in-

tegrals with smooth functions G(y) are unchanged under operation with the mapping function that

underlies the dynamics _(n) _ y(n+ 1).

Both the Lyapunov exponents and invariant density are independent of the initial conditions on

the orbit.

Here we find the parameters iI in F(_,_t) minimizing a cost function subject to certain constraints.

The constraints are chosen so that iterations of the mapping function F(y,_t) give rise to values

of dynamical invariants that are the same as those indicated by the experimentally measured data

set _'(n). In this way essential geometric information about the particular attractor on which the

data are found will be built into the parametric mapping. In the next section we discuss the

structure of the predictor.

2.2 The Structure of the Predictor

Now that we have successfully embedded the data x(n) in llia by creating d-dimensional vectors

y(n), n=l, ..., N, we need to choose a class of parameterized mappings, a cost function to

minlm_ze, and a means to impose the constraints on our miaimization. Our maps are required

to look around at the behavior of the phase-space neighbors of the point y(n) and predict forward

according to how a cluster of phase-space neighbors, regardless of its temporal sequence, is

moved forward in time. The map will then map forward any new point y to some weighted

average of its neighbors' forward evolution.

10000078 2-9



We take our mappings to be of the form

N-1

F(y.a-)-- _ y(n+l) g [:j(n);S ]
" tl-I

(2 -4)

where g[.7,y(n); y] is near 1 for y = y(n) and vanishes rapidly for nonzero [y - y(n) 1. This type

of mapping is very similar to the form used in communications engineering under the name

"kernel density estimation."

There are a few general requirements that g[_, y(n); rq has to satisfy. These requirements axe

common in estimation theory (e.g., as #--, 0, g[,7,]7(n);_t]---delta function). The value of

g[y,y(n);_] should be numerically stable and computationaUy efficient. These requirements are

all satisfied by the following choice.

g_,y(n);a-3=

-f_- _"_l_ p _2
e " a 1 + a:ff(n)(_- _(n)) + ___ a k

k-3 0

E, ° al ÷
k-3

(2-5)

The parameter rr is P-dimensional, _t = [at,a2,a3 .... a_]*, and o" is a fixed parameter for scaling.

The variable mj: is also fixed at various values. We can treat o and mt as parameters to be

optimized in the same sense as the _t.

The choice of the cost function is also up to us. Since we treat _F_,_) as a dynamical system

evolving points y(n) into y(n+ 1), our map should reproduce from y(n) not only 37(n+ 1) but, via

application of the map, a sequence of y(n+ 1), y(n+2),.., y(n+L) up to some L beyond which

we simply do not trust the accuracy of our algorithm E or of the computer we use to compute

the future ys.
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In electrical engineering it is a common practice to form predictors of linear systems as

L

y(m + 1) = _Xj: _(m - k + 1) (2-6)
k,,l

This suggests that the predictor for future points of a nonlinear system is a linear combination

of iterated powers of the map _.F(y,a') as a generalization to the linear predictor. The nonlinear

generalization is

L

y(m * 1) = _ J_x Fk [ y(m - k + 1),_7 ] (2-7)
/_,1

where F..k is the kth application of F. If F(y,rr) were the exact mapping, we would require

L

X_ = 1. The X k weight the various iterations of F and are used to determine which iterations
k=l

of _(__._webelieve are the most accurate. We should require x_ >_. x_+t to indicate that the lower

iterations of F are believed to be more accurate than higher iterations.

Our predictor combines both past information from times m-k+l and k = 1,2,...L and infor-

mation from all the phase-space neighbors of the orbit points y(m-k+ 1) because of the structure

of E(y,a).

By extracting the phase-space information in F(y,g), we efficiently tap properties of the full data

set. In the next section we study the form of cost function for our predictor.

2.3 Cost Function for Nonlinear Predictor

The cost function is nothing but a normalized rms deviation from our prediction to the actual

data points. Therefore, the cost function associated with our nonlinear predictor is

n.l k=t - (2-8)-
N

lY(,,)• y(n) 
n-I

10000078 2-11



This "kind of cost function will automatically contain information on the Lyapunov exponents,

which themselves are expressions of the dynamics as iterations of the map. Some information

on the invariant density function on the attractor is also contained in this improved cost function.

Different choices for the function g_,y(n); _t] can be taken. The Oaussian we work with could

be replaced by a Lorentzian or other choices that weight neighbors more.
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5/

Section invariants of Dynamical Systems

Having a map and a cost function, we are ready for the constraints. We discuss how to deter-

mine Lyapunov exponents and invariant density from the _F(.V,_). Equating the numerical values

for the Lyapunov exponents _ extracted from data to their expression found from F(_,_) will

give us our f'_rst set of constraints on the minimization of C(X,_r). These constraints produce the

optimum values of parameters _r.

Since we have a finite amount of information, we choose to express this in terms of the projection

of p(y) on a set of dual basis functions that is a complete set in 1_d. By projecting the p(_)

determined from the data onto these basis functions, we can determine the coefficients of the

expansion of p_) in this basis. Similarly, we can project the p(y) determined from the map

F(y,rr) onto these basis functions and determine the expansion coefficient of the map. Equating

the coefficients from the data to the ones determined from the map gives our final constraints

on the minimization of C_.(X,_.

One can test these techniques by numerically generating a data set of x(n) from the known

attractors like Henon or others and treating these data as having come from an unknown source.

As the dimension of the phase space increases, the amount of data necessary for accurate

prediction increases dramatically. Once F(,y,rr) is found, the details of E(y,a') should reflect the

known features of the phenomena giving the signal.

3.1 Choice of the Embedding Dimension d

Here we would like to determine the correct value of the embedding dimension d from the scalar

time series x(n), n=l,2,...,Nr_. We assume that there are enough data that we need not be

concerned with statistical issues about numerical accuracy. We also assume that extrinsic noise

is absent from the x(n) when we receive them. We further assume that by following Taken's

phase-space reconstruction technique we have successfully captured the dynamics and embedded

our time series. This requires a correct choice of 7",which will be discussed in the next section.

10000078 3-I



For now, let's further assume we have a correct r to construct the attractor in the phase space.

To establish dimension d, we need some characteristic of the attractor that becomes unchanging

as d becomes large enough, thus indicating that the attractor can be embedded in R_. This

invadant characteristic of the attractor is the attractor dimension dA. One increases d until dA

remains constant and identifies the minimum d where d_ "saturates" as the embedding dimension.

But computation of dA is difficult, so we use the correlation function D(r) proposed by Takens

(Reference 8).

N N
2

D(r,N,d) = N(N-1) _ _ U(r-llY(/3 -Y(0D i _ j (3-1)
"= 1*1

01z 0where U(z) is just the unit step function U(z) = z<0"

For N large enough, the behavior of D(r,N,d) for r becomes independent of N and D(r,N,d) takes

the form

= ¢(r,d)r *o (3-2)

If we plot D(r,N,d) versus r we can single out the correct value of dimension d as in Figure 3-1.

From Figure 3-1 it is concluded that the minimum value of d=3 is the right choice beyond which

attractor dimension dA does not change or the slope of our graph becomes constant.

In the next section we study the correct choice of r to reconstruct the phase-space attractor.

3.2 Choice of the Time Shift r

The choice of time shifts r is not well agreed upon. If the underlying system were a differential

equation and a scalar variable x(t) were measured at discrete times x(n) = X(to + n At), then

we would be, by the choice of logged variables, trying to find a discrete replacement for the usual

phase-space coordinates:

X(/), _(t)_(t), ... dd-tX(t)
dtd-t

10000078 3-2
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The best choice for time shift r is a fraction of the time associated with the first local minimum

of the autocorrelation function

1 fr x(t + _)x(t)d.t (3-3)
¥ Jo

We f'md that this choice, although somewhat arbitrary, works well in practice and Nves a simple

systematic way of determining r. The autocorrelation of more than 4000 data points of solar

flux time series is shown in Figure 3-2. The first local minimum occurs at t= 13 days, so r=3

days is a good choice.
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Section 4. The Most Important lnvariant of a Time
Series

4.1

4.1.1

Extracting the Largest Lyapunov Exponent from a Time Series

!

Description Of Extraction

The sum of the Lyapunov exponents is the time-averaged divergence of the phase space trajec-

tory; hence any dissipative dynamic system will have at least one negative exponent. Any

dynamic system without a fixed point will have at least one zero Lyapunov exponent.

A small positive Lyapunov exponent is an indication of chaos and a very large positive Lyapunov

exponent is an indication of a totally stochastic or random system. Therefore, the sign of the

exponent provides a qualitative picture of a system's dynamics. A positive exponent represents

chaos, a zero exponent represents a marginally stable system, and a negative exponent, a periodic

system.

Figure 4-i shows the actual solar flux data and their largest Lyapunov exponent for more than

4000 points. Here we have used the technique of phase-space reconstruction with delay coor-

dinates shown in Figure 2-2 for a small portion of a time series.

To check whether the program that generates Figure 4-1 is really functioning well, we have

plotted in Figure 4-2 the Lyapunov exponent of a time series that was generated from a sinusoidal

function. Because a sinusoidal function is well behaved and totally deterministic, its Lyapunov

exponent should approach zero. (Remember that we can generate only a truncated sinusoid and

not an infinitely extended sinusoid.)

This technique of extracting the largest Lyapunov exponent was originally developed by Wolf,

Swift, Swinney, and Vastano (Reference 5). The disadvantage of this method is that it gives only

the positive largest Lyapunov exponent. To improve the technique that can enable us to

determine all the Lyapunov exponents, Eckmann, Kamphorst, RueUe, and Ciliberto developed

a QR matrix decomposition method of calculating the exponents. Their method is more

complicated than the Wolf-Swigt-Swinney method and is computationaUy more expensive. For

10000078 4.-1
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this reason we refer the reader to Reference 11 for further investigation of their method.

However, because the Wolf-Swift-Swinney method is very simple, we will use it in our construc-

tion of a predictor and will discuss this method in ten steps.

4.1,2

NPT

DIM

TAU

DT

SC_

SCAI.h_ =

EVOLV =

ANGLMX =

Procedure for Extraction: The Wolf-Swift-Swinney Method

= length of our solar flux time series

= dimension of the phase-space reconstruction

= time delay reconstruction

= time between the data samples --, to normalize the exponent

= length scale we consider to be larger _ no more information is probed e > scalmx

length scale we consider to be small --- noise dominates e < scalmnx

constant propagation time (A=t_._ - tO

maximum angular error (not a free parameter): does not really change the

exponent estimate and is usually between 0.2 and 0.3 radians

(This is not easy.)1) Search data for nearest neighbor to the first essential point.

2) Disregard points closer than SCAI2dN.

3) Propagate current pair of points EVOLV steps through the attractor and compute the final

separation.

4) Find the log of the ratio of final to initial separation of this pair. This updates a running

average rate of orbital divergence.

5) Attempt a replacement step.

6) Calculate the distance of each delay coordinate point to the evolved essential point.

10000078 4-4



7) Check whether or not the ang-ular orientation is less than .-L.',_GI_.MX radians for points

closer than SCALMX but farther away than SCAI.2vIN.

8) If more than one point is found, use the point def'ming the smallest angular change for

replacement.

9) If no points are found, take replacement points as far as 2 x SCALMX away.

10) Repeat this process until the essential trajectory gets to the end of the data file, by which

time we hope to see stationary behavior in the Lyapunov exponent.

_. _ 1 _ L/(tk) (4-1)

where M is the total number of replacement steps.

As Figure 4-I shows, we have a good convergence of the largest Lyapunov exponent for

parameter values of N=4090 data points, d=3 three-dimensional embedding space, r=3 three

day time shift, DT= 1 one day time difference between the samples, SCALaMX = 0.05 maximum

length scale, SCALMN=0.00001 minimum length scale, EVOLV=4,5,10,15. As we increase

the EVOLV, we reach a point where the exponent does not change its convergence behavior.

The first value of EVOLV that makes a satisfactory convergence is the optimum EVOLV. In

our case, this value is EVOLV=4 and the Lyapunov exponent is about k== = 0.01. Now that

we have the Lyapunov exponent directly from our time series, we are ready to calculate it from

the map. Setting equal X calculated from the map and X calculated from the time series would

give us a set of constraint equations to calculate parameters _I to minimize the cost function

C__(_,ag.

4.2 Determining the Lyapunov Exponents from the Map F(_/,_)

Whatever method we use (the Wolf-Swift-Swinney method or the Eckmann-Kamphorst-Ruelle

method) to determine the Lyapunov exponents from the time series, we must now establish a way

to express these same quantities in terms of our map F(y,l). This was originally done by

Shimada and Nagashima (Reference 12). But to easily use the results in our optimizations, we
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_/(A point on the attractor is given by

Figure 4-3. Evolution and Replacement Procedures Used to Estimate L yapunov
Exponent Directly From a Time Series
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can use the slightly different approach presented by Abarbanel et al. (Reference 13).

Lyapunov exponents characterize the way neighboring points, small areas, or smaU volumes near

the orbit of interest evolve under the mapping. To find them one Linearizes the mapping

y(n+ 1) = F[y(n):t] around a given orbit y(1), y(2), _, . . . _(n). Small deviations from this

orbit, called By(n), evolve as

8y(n+l)= M [y(n)lSY(n)

where

a
- Fj(y,a-O (4-3)

[M(Y-')]i, _y_

is evaluated along the orbit of interest. The Lyapunov exponents are found from the eigenvalues

of matrix M k[y(1)]

Mk[y(1)] = M.[y-'(k)]M_[y(k-1)]M[y-"(k-2)]...M.[y(1)] (4-4)

Now, to find the largest Lyapunov exponent, we apply the Matrix M k to an arbitrary vector _k.

Then, forming

UM II
1 - (4-5)

ii = _.,.,= .-.--_Ln I1_1

from the trace of the Matrix M k we can write

u_._..__Ln [tr(n k).

(for large k) (4-6)
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Remember that 5..I is a function of _f. To f'md the next largest exponent ),_ we can use

_ ! z.n ([tr(M_312- tr(M_

--r---

(4-7)
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Section 5. Invariant Measure On The Attractor

The frequency with which orbits y(n) visit regions of the phase space R d defines an invadant

distribution function p(y), which is formally def'med for the mapping y(n+l) = F[y(n)] as

v

N

o(r_=,.. _ _ (y-F'Ir(t)]} : ,,.. o_)
k=l

(for maps) (5-1)

In similar fashion, the invariant distribution for a numerical data set y(n), n= 1,2,...,N is given

by

N

lira_1 _ 8d[y_y(_)]
P(Y-)= _¢'" N _=1

(for time series) (5-2)

Any f'mite sequence of N points has a finite resolution on the attractor. That resolution is

approximately N _/_, which is the order of the mean distance of N points on a dA-dimensional

set. To handle this matter of t-mite resolution, we introduce a complete orthonormal set of

functions ft,(y) defmext on R", which can serve as a basis set. Truncating this expansion at some

finite order _ =G provides a finite-resolution representation corresponding to whatever infor-

marion we have on p(y). We then expand

0(y3 = _ B. _.(y3 (5-3)

_=1

The coefficients B, will be the invadants of the dynamic process that characterizes p(y) within

a given basis ft,(y).

Now, the challenge is to extract B, from the data vectors y(n) and from the parameterized map

Ff_,_I). Equating the B_ from the data to those from the map will produce our final constraints

on the cost function C(_,rt).
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5.1 Coefficients B, Of The Invariant Measure From The Time Series

Any choice of basis ff_(y) would do the job, such as the complete orthogonal (or orthonormal)

set used in the Fourier Series _b_(y) = e 're'y, where nqt = [ml, m2, m3, ... m_*. But since our

attractor is bounded, most of the work performed by the Fourier representation of o(.7) will be

expended in making 0(27) vanish from the attractor. Thus, what we need is orthonormal functions

concentrated on the attractor. Now we construct an optimal choice for _b_(.7). Take the total data

set y(n), n = 1,2, .... and divide it into two portions as in Figure 5-1.

Figure 5-1. Breaking the Time Series Into Small Sections for Proper Treatment

Now take the second portion of length Q and further divide it into G subsections, each L long

(Q=GL). Each group is a sample of the invariant attractor. Treat each of the G data sets as

an independent sample of p(7) and form the invariant distribution for the ath sample (see Figure

5-2).

Figure 5-2. One Portion of the Time Series
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L

I U " (5-4)

k',I

with c_ = 1, 2, ... G. The data point y(k,_,) is the kth member of the _th sample. Of course,

the mean density of the G samples is just the total invariant density of the data set of length Q.

£

= 2 _ p,(yo (5-5)

Now, from G samples 0a(Y) we form the following phase-space correlation function:

R(_,w-') = 1 _.
_ p_(z-) p_(w-3 (Every iteration is within a _ven sample.

(5-6)

It can be shown that the normalized eigenfunctions of this correlation function are the optimal

_b_(y) for expansion of functions localized on the attractor.

The requirement that _k_(y) be an eigetff-unction of R(Z,_) leads to

fd a"g(_,z3 _(z) = _(w-3 (5-7)

The @.(y)'s are normalizedasfollows

f dn" ,,(w-3,...(w-) = _,,.

For an infimte G, the set of eigenfunctions becomes complete.

a f'mite sum of separable kernels. Thus

G

w-I

(5-8)

For f'mite G, R(W,_) becomes

(5-9)

Now they are localized near the attractor, because o,,(y)'s vanish beyond the attractor. Simple

substitutions reduce the problem to a finite matrix problem.
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I
a.l

(5-10)

G

,, _ I/'d,,z
A. C_ = _C 2 where A_, _ p,.(z)p_(z)

(5-11)

using the normalization condition we have

G

E ctc:'= ! 8_'
=1 _G

(5-12)

This shows that all the eigenvalues/_ are positive. _.

For all the calculations and computations of,o,,,(y) we use the Gaussian representation of Afunction

6a(__ x ,,-I,,l'a..f_(ixl) (5-13)

therefore

1
p.fy'3 = -

L

L L

1 _ 1 e-lY'-,._") 12_E S_(lY - y(_,x))l: -
1¢=1 /" _= i (_V/_)d

(5-14)

thus

L

A,,# - I i ]E] e -LKk,,,)-y'V.l_)l'/a

_rC_)d GL 2 *q-1

(5-15)

m

when ¢_ is small, we have only a small loss of resolution in calculating p,,(3_). Now we are ready

to f'md our optimal _j,(.7) from the G data sets. First we calculate the G x G matrix A_. Next

we calculate the eigenvalues/_ and eigenvectors CI of this matrix, being sure to normalize them

according to Equation (5-12). Now we can calculate _(y) by using the normalized C: and the
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p(y) from Equations (5-9 and 5-14). A typicai value for L is 750 y points and for G is 5

samples. These are good values for N=4500 _points of our time series. We now have G

orthonormal functions _,(y) extracted from G samples o(37) of the invariant distribution. We can

use Equation (5-8) to project a particular B_ out of Equation (5-3),

a, = fd_ p(y') ,_(y-') (5-16)

This showsthatB,

p(Y).

Therefore,

are invariants of the dynamics since they are integrals of _, with the density

1 a ,v 1 _, I L C2 _b_..)__.:)l_/_ 1
,_- 1 ,,- t i" t qr(-_ a (from data)

because from Equation (5-2, 5-9, and 5-16) we have

f / ]_: d%Cv'),_(y-)= d_y- ®_ _ 8,(f-y-(k))c:p.ry3

lima _' /' . 1 e N
=_v-o,E E c:/d_y_Cy-y(k))o.C_O=_,E E c: o.(r'_,,))

tt=l t:=l J _v a=l ,:=1

(5-18)

p,(y-(z))

Thus, Equation (5-17) is used to calculate Bj. from the data, where B_, are the G numbers

characterizing the invariant density p(y) by its projection on the optimum basis vectors _.(y).

In the next section we discuss how one can fred B_ from the map. The G equalities between

these two evaluations of B_. form our final constraints on the minlmiT_tion of the cost function

cCX._).
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5.2 Coefficients Bu Of The Invariant Measure From The Map

To determine Bt_ from the map F(y), we look at the def'mition of invariant density as expressed

by Equation (5-1) and Equation (5-2). Define AK the projection on ¢_(_)

This is the projection of Gd(y-.F'QV(1))) onto the orthonormal ¢.(y).

8 function in terms of ¢_(y) to get

(5-19)

That is, we can expand the

G

a'(y-F'(y(x)))=E A,(_),.tr-) (5-2o)
I.t-I

Therefore Equation (5-1) can be written as:

P(Y-')=N-.®_..,=.,_.,_a,:(_.),_(y-')=_,., _ a.(_) ,,(y)
(5-21)

(for large NO

Comparing this with Equation (5-3), we have

a.= _ a.(_)= _ ,.(F'(r(1)))
It=l l'I

(5-22)

From Equation (5-9) and the definition of P(Y) we can write this as

E c; 8'(y_,=)-_-_o,(I))
B_- /_ _-1 j-1 ==t

(5-23)
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We can replace F_(y(1)) by F(y(x)) and therefore

- NL_,_II'Y[_t'- -1 j..1._C,,(_,)d_' *f '>_")-Ft'_')] I"'l"

(5-243

(from a map)

We also observe that

adw_d(y- r(w-))_"(_ - _'"<y(_))) (5-25)

thus

where

a,,.._(_)= _ r.., a,,(_5
p/

(5-26)

and

(5-27)

fddypL(,y--)*,(y') = pL(I.I,) = "_ A,:(p)
(5-28)

which is

(1 -T) 9z.(p)=1(I - TL)Ax
(5-29)

looooo7s 5-7



since

L-- PL(P') = f dd'yP(Y-')¢I_(Y-') = B_

(5-3o)

This shows that the B, are the components of the eigenvector of T with eigenvalue unity, if

Equation (5-1) for p(y)converges.
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Section 6. Conclusion
In this document we developed a set of procedures tor forecasting solar tlux without reference

to any underlying solar physics. These procedures are applicable to any time series with a

broadband power spectrum. We introduced techniques of extracting dynamical invariant directly

from solar flux time series. The existence of positive, small Lyapunov exponents supports our

hypothesis that solar dynamics is not a stochastic process; it is indeed chaotic.

A FORTRAN computer program for procedures outlined in this document is under development,

and forecasting results will appear in future documents or technical papers.

When we have perfected these pro_atns, we will be able to apply these techniques to any time-

series predictions (orbit, attitude, atmospheric density, geomagnetic index, ... stock market).

Perhaps the most important application will be to a time series generated by subtracting the

predicted positon of a spacecraft using GTDS (with density flag = off) from the observed

position of a spacecraft from telemetry or ground track data. This allows us to model all

perturbations on the trajectory of the spacecraft directly from data.
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