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ABSTRACT

If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated,

utilization of the storage capacity is very low compared to the case of uniformly distributed ran-

dom input patterns. Here we consider a variation of SDM that has a better storage capacity utiliza-

tion for correlated input patterns. This approach uses a separate selection threshold for each

physical storage address or hard location. The selection of the hard locations for reading or writ-

ing can be done in parallel of which SDM implementations can benefit.
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1. INTRODUCTION

The original Sparse Distributed Memory developed by Pentti Kanerva [2] is best suited for handling
data with uniform random distribution of bits. Also, its physical storage addresses or hard locations

are distributed in the same fashion. Natural, real-world data patterns are hardly ever like this. Rather,

they come in clusters, which leaves large portions of the memory under-utilized while other parts

are overwhelmed with data. In these overutilized portions the stored patterns interfere with each

other as they share most or all of each other's storage locations. This causes SDM to have a much

lower storage capacity utilization for natural data than uniformly distributed random data. The

purpose of this study is to present and discuss a method that can be used to enhance the utilization

of the capacity.

2. SPARSE DISTRIBUTED MEMORY

Sparse distributed memory can be visualized as a three-layer feed-forward network. Its structure

and operation can, however, be well understood by comparing it with a conventional random-access
memory or RAM system. Whereas a typical RAM system has a small address space (216 or 232),

the address space of SDM can be virtually any size, for instance 210000, which would not be

realizable by any RAM system. In SDM the address space is covered sparsely, unlike in RAM. This

means that only some of the possible address locations are physically present, the so-called hard

locations, and each one of them can be activated by more than one input address during a read or

write operation. SDM is also a distributed memory, as more than one hard location will be activated

by any given input address.

The internal structure of SDM is shown in Figure 1. There are two matrices A and C. The matrix

A is used to store addresses of the hard locations in its rows. The hard locations are initialized to be

uniformly distributed random vectors of 0s and ls. The matrix C is an array of counters initialized

to zeros. They are used to store what is written onto SDM. Whenever the memory is accessed by a

given address (address input vector x), a Hamming distance or the number of differing bits is

computed for each hard location. If the Hamming distance is less than or equal to a predetermined
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threshold, the bit in the activation vector a corresponding to hard location is set to 1 to mark an
activated row. Otherwise it is set to 0 and the row will be inactive.

When writing a data input vector i into the memory, there are three options for each position in

matrix C. If the row is inactive, nothing is done. Otherwise, the counter in this position is

incremented when the bit in i corresponding to the column is 1 and decremented when the bit is 0.

When reading the memory, a sum vector is formed. Each value in the sum vector s is obtained by

adding together all the counters in the corresponding column, provided that the row of the counter

has been activated. The final output for each column is 1 ff the sum is greater than 0. Otherwise,

the output is 0.

Let us now consider how to overcome the problem discussed in the introduction. One possibility is

to modify the address matrix A to fit the training set or data set. Rogers [4] has used genetic

algorithms while experimenting with weather data and Saarinen et al. [5] have used Kohonen's

self-organization algorithm for the modification. Joglekar [1] has taken patterns from the data itself

to be used as hard-location addresses. A different approach is used by Kanerva [3] as he selectively

weights the input bits while computing the Hamming distance. Many other possibilities exist. For

example, Vanhala [6] has studied randomizing input to make it spread more evenly.
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Figure 1. Structure of sparse distributed memory.

-2--



3. NEW TRAINING ALGORITHM FOR SDM

Here we introduce a new training algorithm in which a separate threshold is set for each of the hard

locationsas opposed totheoriginalglobalthresholdthatiscommon toallthehard locations.This

makes traininga two-stepprocessinwhich we startby findingthe thresholdvaluesand,afterthat,

continue by writingtothememory in theway wc would do with the originalSDM algorithm.

IntheRrststagewe need acriterionforchoosing thethresholdvalues.Ifwc used theoriginalSDM,

we would choose some propabilityP fora randomly chosen hard locationtobc activated.A good

ruleof thumb isto choose P equaltotheratioof squarerootof m and m itself,where m isthe total

number of hard locations.The globalthresholdcould be calculatedindependentlyof the training

set.Itwould giveus inaverage atleastttimesP activationsper hard location,where tisthe sizeof

the trainingset.However, when the dataused are highlycorrelated,most hard locationsbecome

activatedeitherveryoftenorveryseldom.Wc would likethem tobe activatedapproximatelyequally

oftenand thereforewe stateour new criterionasfollows:

° The threshold value for each hard location is the smallest value that yields a propability P or

higher of the hard location's being activated.

It should be noted that P has the same value for all the hard locations. Since the criterion is not very

good for hardware implementations, we restate it in terms of a training set of t items.

2_ The threshold value for each hard location is the smallest value that results in at least t times

P activations of that location by the training set.

The second stage is identical to the training of the original SDM, with the exception that we use the

previously determined treshholds for the activation process instead of a global threshold. The same

note on thresholds applies to reading from the memory, as well.

4. DISCUSSION ON ALGORITHM

As we compare this algorithm with the so-called area-based selection, which is used in some of the

methods that modify the hard-location addresses, we get a better understanding of the way the new

algorithm works. The area-based selection method tells us to f'md the k closest matches or the k rows
with the smallest Hamming distances to the input address. The final activation threshold is the largest

Hamming distance within the found group. Finally, all the rows with Hamming distance smaller

than or equal to the threshold are activated or selected. This yields k+ activated rows, where k+ is

greater than or equal to k.

First, the influence of the hard-location modification is to make the distribution of the hard locations

to resemble very closely that of the training set. As the area-based selection is used after the

modification, the final activation threshold is the smaller the denser the hard-location distribution

in the neighbourhood of the activation address. Therefore the threshold is the smaller the denser the

distribution of the training set, too. Similar to this activation threshold, the multiple thresholds in

the new algorithm are the smaller the denser the distribution of the training set. However, the

distribution of the hard-locations does not play a role in the process of finding the thresholds.
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Therefore using the new algorithm with the present hard-location modification methods is not

necessarily an overly fi'ui_uU idea, and further work needs to be done to determine which factors

should govern the choise of the hard location distribution when the new algorithm is used.

In hardware realizations,the new algorithmcan be made more parallelthan area-basedselection

since the activation process happens in each row independently of the other rows. Also, the first

stage can be done in parallel.

From the biological point of view, a two-stage training algorithm does not sound very plausible.

However, the idea of the stages happening simultaneously during the growth of a creature sounds

more appealing. In this case the first stage would dominate the beginning of the life cycle and would

diminish in influence very rapidly. The second stage of the new algorithm, on the other hand, sounds

plausible ff the first stage has already happened either during the evolution of the species or in the

past of the biological creature.

Even though not explored further,the ideaof using multiplethresholdsin thisway for address

decoding was originallyintroducedby Kanerva [2].

5. EXPERIMENTAL RESULTS

In these experiments we used a set of 26 5-by-7-bit patterns representing the English capital letters.

It is the same set used by Kanerva [3]. In addition, we used uniformly distributed 35-bit random

sets of the same size for comparison. The training was done autoassociatively and therefore the

addressand datapartsof a trainingpairwere identical.Thememory had 300 hard locations.

We alsotesteda furthervariationof thenew algorithna.For thefirsttrainingstage,we creatednew

data.This new data setincluded ten copiesof each of theoriginalpatterns.However, some noise

was added tothe new set.Each bithad a fiveper centchange of gettingflipped.This way thenew

setwas ten times largerthan the originalone and had a very similarbut,in a sense,smoother

distributionthan the smallerset.For thesecond stage,the originalsetwas used.

There were fourtestsrun ten times:(I)Unmodified SDM was trainedwith the dataset;(2)SDM

was trainedwith the datasetusing thenew algorithm;(3)SDM was trainedwith thedatasetusing

the variationof the new algorithm;(4)Unmodified SDM was trainedwith uniformly distributed

random set.

The results are summarized in Table 1. Entries of the form x(y)z give the smallest, the mean, and

the largest of the ten values obtained.

The row labeled Empty cells gives the number of hard locations that were not activated at all. Mean

pats./cell tells how many times the cells were activated in average and Max. pats./cell gives the

number of activations of the most active cell. Var. pats./ceU is the variance of the number of

activations per hard location. Mean % overlap is the average overlap over all ordered pairs of

addresses in the training set and Max. % overlap is the largest of them. The overlap tells how large

portion of the hard locations activated by the first address are activated also by the second one.
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Figure 2 shows how many per cent of the trained figures were retrieved correctly as a function of

the number of trained patterns in each test. The percentage shown is the mean of the results of the

ten runs. The patterns were used in alphabetical order for training.

6. SUMMARY

In this paper we have introduced a new algorithm for SDM training. It requires an additional element

to the SDM realizations for storing thresholds, but it does not reduce the parallelism of these

realizations. Our experiments support the suggestion that this algorithm improves SDM's ability
to store correlated data.
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Figure 2. The minimum, maximum, and mean capacity. (a) basic SDM, (b) SDM with the new

algorithm, and (c)SDM with a variation of the new algorithm, (d) SDM; random data.
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Table 1

Summarized Results

SDM New algorithm Variauon of new SDM - Random data
algorithm

Empty cells 73 (85) 95 0 (0) 0 2 (6.7) 12 16 (26.1) 35

_ean patsJceU 2.14 (2.29) 2.55 2.71 (2.83) 2.94 2.10 (2.20) 2.28 2.18 (2.29) 2.40

Vlax.pats/ceU 11 (13.8) 16 7 (7.7) 9 5 ($.9) 7 6 (7.7) 9

Vat. pats/cell 5.91 (6.64) 7.88 1.08 (1.28) 1.60 0.86 (1.04) 1.23 1.63 (2.06) 2.48

_ean % overlap 15.5 (16.7) 18.5 8.58 (9.20) 9.86 6.43 (6.86) 7.40 7.91 (8.74) 9.61

Vlax.% overlap 68.0 (74.0) 87.1 51.4 (62.89) 81.6 50.0 (59.5) 73.3 34.6 (44.9) 62.5
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