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Low Re multiple.time-scale turbulence model and

calculations of steady and pulsating shear layers

Sang-Wook Kim*

University of Toledo

Toledo, Ohio 43606

ABSTRACT

A low Reynolds number multiple-time-scale turbulence model (LMS)

and its application to fully developed turbulent channel flows and

pulsating pipe flows are presented. The LMS can describe the inequilibrium

turbulence phenomena down to the viscous sublayer. The calculated fluid

flow and turbulence fields for the channel flows are in better agreement

with the direct numerical simulation (DNS) results than those obtained

using a Reynolds stress turbulence model, and the calculated near-wall

dissipation rates are in qualitatively correct agreement with the DNS

results. The LMS also successfully predicts the rapidly varying phase-lead

of the wall shearing stress that occurs in a narrow range of the

dimensionless frequency (co + = a_v/ux 2) for the pulsating pipe flows while

various other turbulence models fail to predict this phenomenon, and the

LMS yields significantly improved numerical results for a wide range of the

dimensionless frequency compared with those obtained using a rapid

distortion theory (RDT).

*NASA Resident Research Associate at Lewis Research Center.
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NOMENCLATURE

model constants for ep equation (i=1,3)

model constants for e t equation (i=1,3)

eddy viscosity coefficient

constant coefficient (=0.09)

frequency

wall damping function for eddy viscosity equation

turbulent kinetic energy (k=kp+k t)

normalized turbulent kinetic energy (=k/u,c 2)

turbulent kinetic energy in production range

normalized kp (=kp/uz 2)

turbulent kinetic energy in dissipation range

normalized k t (=kt/ux 2)

pressure

production rate

Reynolds number

turbulent Reynolds number (=l_-y/v)

period of oscillation

bulk velocity

time averaged velocity

non-dimensional velocity (=u/u x)

friction velocity (---_-Zw/p)

Reynolds stress

'+ normalized Reynolds stress (=u'v'/ux2)

spatial coordinates (--{x,y,z})

wall coordinate (=yux/v)

Stokes layer thickness (= 2v_r_-_)

energy transfer rate
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nomalized energy transfer rate (=Vep/Ux 4)

dissipation rate

nomalized dissipation rate (=vet/ux4)

molecular viscosity

kinematic viscosity

wall shearing stress

turbulent viscosity

density

turbulent Prandtl number for i-equation, i={kp,ep,kt,e t}

angular velocity (=2_f)

dimensionless frequency (=tov/ux 2)

Superscripts

' fluctuating velocity component

( ) time-averaged value

( ) ensemble-averaged value

[_] amplitude of oscillation

Subscripts

j denotes spatial coordinates (={x,y,z})



1. Introduction

Either the development of a new near-wall turbulence model or the

improvement of various near-wall turbulence models are hindered due to

the lack of detailed knowledge on the near-wall turbulence structure

especially that for the near-wall dissipation rate. Recently, Kim et al.

(1987) provided detailed near-wail turbulence data for fully developed

channel flows obtained from direct numerical simulations. The validity of

the DNS results is established by comparing them with measurable

turbulence quantity. A near-wall dissipation rate obtained from the DNS

results and that proposed by Patel et al. (1985) are shown in figure 1. The

dissipation rate obtained from the DNS results show that the peak value is

located at the wall while the dissipation rate model proposed by Patel et al.

(1985) shows that the dissipation rate attains its peak value at y+~12.

Numerical calculations using various turbulence models yield near-wall

dissipation rates similar to the one proposed by Patel et al. (1985). It is not

clear if there exist any turbulence model that can yield a near-wall

dissipation rate that is in qualitatively correct agreement with the DNS

result and that can also yield accurate numerical results for a few different

classes of turbulent flows. Consequently, the influence that the two

distinctly different near-wall dissipation rates can cause on numerical

calculations of turbulent flows is not known yet. The discrepancy that can

be caused by the different near-wail dissipation rates are discussed in this

paper.

Numerous efforts have been made to develop or to improve turbulence

models to correctly predict steady simple shear layers as well as complex

turbulent flows. However, only a very small amount of efforts has been

made for numerical investigations of unsteady turbulent flows. Calculations
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of a pulsating pipe flow using an algebraic turbulence model, a k-e

turbulence model, and a Reynolds stress turbulence model (RSM) can be

found in Kebede et al. (1985). It can be seen in the reference that the

algebraic turbulence model yields the most accurate numerical results and

the RSM yields the worst numerical results, and the cause for the

deteriorated numerical results obtained using the RSM is not clearly

known. Ma0 & Hanrathy (1986) carried out experimental and numerical

investigations of pulsating pipe flows. Calculations of the pulsating pipe

flows at a wide range of the dimensionless frequency (¢.o+) revealed that an

algebraic turbulence model discussed in the Thorseness et al. (Mao &

Hanrathy, 1986) yields qualitatively inaccurate numerical results while a

pressure-relaxation algebraic turbulence model yields numerical results

that are in good agreement with the measured data. However, it is

admitted in Mao & Hanrathy (1986) that the pressure-relaxation model

lacks a theoretical background. More recently, Mankbadi & Liu (1992)

developed an algebraic turbulence model based on the rapid distortion

theory (RDT) and showed that the turbulence model yields accurate

numerical results for pulsating pipe flows at high dimensionless frequency

while the turbulence model still can not yield accurate numerical results

for the flows at low dimensionless frequency. As is obvious from the above

discussion, numerical investigations of unsteady turbulent flows are mostly

made using algebraic turbulence models since k-e or RSM does not yield

accurate numerical results. However, applicability of algebraic turbulence

models is limited since these turbulence models can not yield accurate

numerical results for various complex turbulent flows.

The multiple-time-scale turbulence model presented in this paper is

based on a simplified split-spectrum method (Hanjelic et al. 1980; Kim &
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Chen 1989). In the high Reynolds number multiple-time-scale turbulence

model presented in Kim & Chen (1989), the near-wall turbulence field is

described using a wall function method. This turbulence model yields

accurate numerical results for complex turbulent flows in case the

turbulence field is not strongly influence by the near-wall turbulence

structure. Such turbulent flow cases can be found in a turbulent flow over

a backward-facing step, a wall-jet flow, and confined coaxial jets with and

without swirling velocity components. Later, the predictive capability of

the turbulence model was improved by incorporating a "partially low

Reynolds number near-wall turbulence model" into the multiple-time-scale

turbulence equations (PLMS). In the PLMS (Kim 1990, 1991; Kim & Benson

1992), the near-wall turbulence field is described by a single time-scale

turbulence model derived from a k-equation turbulence model. The PLMS

yields significantly improved numerical results for the turbulence

structure in the near-wall region. It can be found in Kim (1990) that the

PLMS successfully predicts the extensive growth of the shock-separated

recirculation region in the transonic flow over a curved hill. It can also be

found in Kim & Benson (i992) that the PLMS can accurately resolve the

strong interaction between circular jets and crossflows and successfully

predicts the horse-shoe vortex located along the circumferences of the jet

exits. Unfortunately, the turbulence model still can not yield accurate

numerical results for a class of turbulent flows in which the entire fluid

flow is strongly governed by the near-wall turbulence structure since, in

such cases, a large portion of the turbulence field is described by a single

time-scale k-equation turbulence model. This class of turbulent flows can

be found in fully developed channel flows at very low Reynolds numbers

and unsteady pulsating pipe flows. In this paper, a new improvement is
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incorporated into the multiple-time-scale turbulence model to accurately

resolve this class of turbulent flows and to extend the applicability of the

turbulence model to wider classes of turbulent flows..

The time averaged or the ensemble averaged Navier-Stokes equations

and the turbulence equations are solved by a finite volume method that

incorporates a pressure-staggered mesh and a partial differential equation

for incremental pressure (Kim 1990, 1991; Kim & Benson 1991, 1992).

Various laminar and turbulent flows solved using the numerical method

include: reattaching shear layers in a divergent channel, transonic

turbulent flows with shock wave boundary layer interaction, three-

dimensional turbulent flows of circular jets in crossflows, and self-

sustained unsteady flows over a circular cylinder and a square cylinder.

Details of the numerical method and the independence tests of the

numerical method on the grid size and on the time-step size can be found

in Kim & Benson (1991) and the references cited therein. It can also be

found in these references that the present numerical method yields

accurate numerical results for separated and recirculating flows using

highly graded meshes.

2. Low Re multiple-time-scale turbulence equations

In the multiple-time-scale turbulence models, the turbulent transport of

mass and momentum is described using the time-scale of large eddies and

the dissipation rate is described using the time-scale of fine-scale eddies

(Kim &Chen 1989; Kim & Benson 1992). In this regard, the convection-

diffusion equations of the multiple-time-scale turbulence models describe

the physically observed turbulence phenomena most naturally. The use of

multiple time-scales also enables the turbulence equations to resolve the



"inequilibrium turbulence" phenomena and to model the cascade process of

the turbulent kinetic energy. Here, the "inequilibrium turbulence"

represents the state of a turbulence field in which Pr/Et varies rapidly in

space so that the shape and the frequency domain of the spectral density

varies widely in space. The influence of the inequilibrium turbulence on

turbulent transport of mass and momentum can be observed in a number

of semi-emperical data (theoretically derived data from a set of measured

data). Detailed analyses of these capabilities can be found in Kim & Benson

(1992) and the pertinent results are presented in the "Inherent capability

of LMS equations" sub-section.

It can be seen in Kim & Benson (1992) and the references cited therein

that the numerical results for various complex turbulent flows (e.g.,

turbulent flows subjected to extra strains caused by streamline curvature,

interaction of multiple number of shear layers, and shock wave-boundary

layer interactions) obtained using the multiple-time-scale turbulence

model are in as good agreement with the measured data as those obtained

using an optimized k-E turbulence model, algebraic Reynolds stress

turbulence model (ARSM) or RSM for each flow. Undoubtedly, the

anisotropy of the turbulence is the most easily detectable phenomenon in a

measurement of a turbulent flow and hence, in theoretical investigations of

_, 11. I _^
,urou,e.,.e, the emphasis was laid upon improving the ARSM and the RSM.

However, numerous numerical investigations carried out during the last

decades show that the ARSM and RSM still can not accurately predict the

turbulence phenomena occurring in various flows unless the pressure-

strain rate correlation is optimized for each flow. The capability of the

multiple-time-scale turbulence model to solve widely different complex

turbulent flows is attributed to its capability to resolve the inequilibrium
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turbulence and .to model the cascade of the turbulent kinetic energy. A low

Reynolds number multiple-time-scale turbulence model that can resolve

the inequilibrium turbulence phenomena down to the viscous sublayer and

calculations of turbulent flows that are highly sensitive to the near-wall

turbulence structure are presented in this paper.

2.1. LMS equations

The multiple-time-scale turbulence equations that include the near-wall

modifications are described below. The turbulent kinetic energy (kp)and

the energy transfer rate (ep) equations for energy containing large eddies

are given as;

_xj_ _-_--{(_xj+ Bt t_k_16kp]_xj PPr (1)pkp) + (pujkp) - I.t t = - pep

L (pep>+! ! =(pUjep) - I.t + _ (CplP r + cp2Prgp - Cp3fepep) (2)
Ot axj axj

where p is the density, uj (={u,v}) is the ensemble-averaged velocity, _t is

the molecular viscosity, _t t is the turbulent viscosity, Okp and Oep are the

turbulent Prandtl numbers for the kp-and ep-equation, respectively, Cpi

(i=1,3) are model constants, and the production rate (Pr)is given as

The turbulent kinetic energy (k t) and the dissipation rate (e t) equations for

fine scale eddies are given as:

_ta (Pkt) + 3--_-axj _--_- {{_x i -K_, o_,j,Ixt t _kt/=
(pujkt) - }.t+ o--__.l_S-_, pep- pe t (3)
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(P£t) + _ (pUj£t) - _t + =
0t Oxj _jxj o_t Oxj j

9 ct3fetE2)
_t-t (Ctle_ + Ct2Epe t -

(4)

where Okt and Get are the turbulent Prandtl numbers for the kt-and e t-

equation, respectively, and cti (i=1,3) are model constants. The turbulent

eddy viscosity is given as;

(5)

The turbulence model constants for the LMS equations are given as;

Cpi(i=l,3) = {0.21, 1.32, 1.84}, cti(i=l,3 ) = {0.32, 1.21, 1.65}, 6kp = 6kt = 0.75,

_ep = t_et = 1.15, and cgf = 0.09. A few model constants in Cpi and cti are

slightly different from those used in the PLMS. Calculations of free shear

layers and complex turbulent flows using the LMS show that the

inequilibrium turbulence structure in the external region is not influenced

significantly by the slightly re-distributed model constants. Furthermore,

many complex turbulent flows are not strongly influenced by the near-wall

turbulence structure so that the numerical results for complex turbulent

flows obtained using the LMS are only slightly better than or almost the

same as those obtained using the PLMS.

The high Reynolds number ep- and et-eauation can not correctly

describe the inequilibrium turbulence phenomena in the near-wall region

since the wall proximity and the molecular viscosity dominate the

development of the turbulence field in the region. The wall damping

functions feP and fet are constructed in such a way that the functions

reproduce physically consistent near-wall distributions of ep and etand

render the partial differential equations well posed at y~0. The wall

10



damping functions f_t, f(zp and let are described later in the "Near-wall

turbulence" sub-section.

2.2. Near-wall ep and et

The near-wall ep and e t are obtained from analytical solutions of the kp-

and kt- equation. Adding up equations (1) and (3) yields

0 (pk)+____. 3___{( +l.tttot (pujk)- Oxj
(6)

where k (=kp+k t) is the turbulent kinetic energy. At very close to the wail

(y-0), the molecular diffusion term and the dissipation rate dominate over

the other terms in equation (6) since k---0, Pr=0 and _tt=0. Formally

integrating-O{_0k/0xj)}/_xj=-pe t yields

et = 2vk/y2 (7)

where v=_t/p is the kinematic viscosity. The dissipation rate obtained using

equation (7) and the turbulent kinetic energy of DNS results for Re(u x) =

180 are compared with that of DNS result in figure 1, where u x (--'_w/P) is

the friction velocity and Xw is the wall shearing stress. The near-wall

dissipation rate obtained using et= 2v(0_k/Oy) 2 is also shown in the figure.

The latter expression is used in a number of low Reynolds number

turbulence models cited in Patel et al. (1985) and in the RSM proposed by

Lai & So (1990). It can be seen in the figure that the near-wail dissipation

rate obtained using equation (7) compares more favorably with the DNS

result for a wider range of y+ than that obtained using et = 2v(O_f-k-/DY) 2,

where y+=yux/v is the normalized distance from the wall. It can also be

seen in the figure that the slope of the dissipation rate obtained using
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equation (7) is less steeper than that of the DNS result. The less steeper

slope is caused by neglecting the turbulent diffusion term in deriving

equation (7). Similarly, the energy transfer rate for y-0 is obtained by

formally integrating equation (2) and is given as

ep = 2vkp/y 2 (8)

In the present calculations, the near-wall ep and e t for Ry<5 (which

corresponds to y+<2-3) are obtained using equations (7) and (8), where

Ry= _-y/v is the turbulent Reynolds number based on the distance from

the wall.

2.3. Near-wall turbulence

The instantaneous velocities in the viscous sublayer can be written as

(Patel et al. 1985)

u' = alY + a2Y 2 + ......

v' = b2Y 2 + ......

w' = clY+C2Y 2 + ......
J

(9)

where a i, bi, and c i are functions of time, _ii = _i = _ii = 0, and the over-bar

denotes a time-averaged value. The fluctuating normal velocity grows in

proportion to the square of the distance from the wall due to the wall

proximity. Thus the turbulent kinetic energy and the Reynolds stress in the

region very close to the wall (y-0) can be written as;

k=2-(u '2+v '2+w '2)=I (a 2+c 2) y2
2 2"

-u-_v' = - alb 2 y3
} (10)
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Equation (10) indicate that the growth rates of the turbulent kinetic energy

and the Reynolds stress are proportional to the second and the third power

of the distance from the wall, respectively.

In the Boussinesq eddy viscosity assumption, the Reynolds stress is

given as;

3u (11)
-U'V' = V t

8y

Solving equations (5) and (11) for f_t yields

; !

fl_= -U v

C_tf (k2/_p)(_u/_Y)

(12)

Consider ep = 2vkp/y 2 _- constant and u+_-y + for y-0, where u+=u/ux. Hence,

f_t _L_** for y_ 0 (13)
Y

Inside the viscous sublayer (0<y+<5), the molecular viscosity dominates

over the turbulent viscosity; and in the fully turbulent region (y+>30-40),

the turbulent viscosity dominates over the molecular viscosity. Therefore,

the wall damping function needs to satisfy the following constraints to

correctly describe the physically observed near-wall turbulence field, that

is

f_t(( 1 for y+_*5

f_t -_1 for y+_ 100 J
(14)

The wall damping function in the LMS is given as
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= 1
(15)

and is shown in figure 2. The Taylor series expansion of equation (15) for

y~0 clearly shows that f_t=131/(134"Cr-_) = l/y lorRy~0. The coefficients

13i(i=1,4 ) = {0.005, 0.001, 0.00011, 0.14} are obtained by optimizing the

constants to yield the best numerical results for the fully developed

channel flow at Re(ux)= 180.

For y--0, all the terms except the one containing the ep in equation (2)

vanish. For the partial differential equation to be well posed at y-0, fep

should vanish at y-0. Thus the wall damping function for the Ep-equation is

given as;

fep = 1 - _pexp(-Ry) (16)

where etep = 1.0. For the et-equation, equation (4), all the terms except the

load functions become negligible at y-0. Thus equation (4) becomes an

algebraic equation governing the ratio of etlep at y-0. Since the production

rate vanishes on the wall, the ratio of et/ep needs to be slightly greater

than unity at the wall for the dissipation rate equation to be consistent

with the inequilibrium analysis described in the following sub-section.

Thus the wall damping function is given as

fet = 1 - ¢tetexp(-Ry ) (17)

where otEt = 0.13. The use of Ry in the wall damping functions (f_t, fep and

fet) makes the influence of the wall proximity to disappear as the fully

turbulent external region is approached and hence it renders the

turbulence equations to be consistent with a physical observation that the

turbulence length scale in the near-wall region is related to the normal

14



distance from the wall while that of the external flows is related to the

flow field characteristics (Roshko 1976).

2.4. lnherent capability of LMS equations

The spectral density curves that correspond to different levels of Pr/et

and a partition representing the simplified split-spectrum are shown in

figure 3(a). The spectral density curves are constructed based on the

measured data of Klebanoff (1955) and Wygnanski & Fiedler (1969). The

spectral density curves show that the energy-containing large eddies

generated by the instability of the mean fluid motion are characterized by

low frequency and the fine scale eddies in the dissipation range are

characterized by high frequency. The curves also show that the ratio of

kp/ktis determined by the shape and the frequency domain of each

spectral density curve and that the ratio of kp/k t is large for large eddies

and is small for fine scale eddies. Thus the cascade of turbulent kinetic

energy is characterized by the ratio of kp/k t. The capability of the

multiple-time-scale turbulence equations to model the cascade process is

achieved by solving the splitted turbulent kinetic energy equations (kp-

and kt-equation).

The inequilibrium analysis is based on the turbulence statics observed

in the uniformly sheared flows (Tavoularis & Karnik 1989) and on the

semi-empirical data used in the generalized algebraic stress turbulence

models (Rodi 1972; Launder 1982; Kim & Chen 1988). For uniformly

sheared flows and free-stream flows, the diffusion terms vanish. In such

cases, dividing equation (1) by equation (3) yields (Kim & Benson 1992)

k_p_= Dkp/Dt = Pr/et - ep/e t (18)

k t Dkt/Dt ep/e t - 1

15



The existence of asymptotic states in which Pr/et takes constant values that

depend on the mean flow strain rates can be found in Tavoularis & Karnik

(1989), and the dependence of ep/Et on the ratio of Pr/et can be observed

in the semi-empirical data used in the generalized algebraic stress

turbulence models as shown in figure 3(b). The eddy viscosity equation,

equation (5), can be written in a form comparable with those of the

generalized algebraic stress turbulence models and is given as

k 2
_tt= PC_tfg _ (19)

where ct.t=cl.tf(et/ep). Thus, in the multiple-time-scale turbulence model, the

dependence of the eddy viscosity coefficient (c_) on the inequilibrium

turbulence (Pr/et) is described by the ratio of et/e p. The turbulence model

constants (Cpi and cti ) obtained by solving an under-determined system of

equations that governs the growth rate of the turbulence intensity in the

uniformly sheared flows and the decay rate of the grid turbulence produce

a c_t-curve shown in figure 3(b). The under-determined model constants,

subjected to constraint conditions obtained from a near-wall equilibrium

analysis (Pr=ep=et), are numerically optimized to yield best numerical

results for simple shear layers such as a plane jet in a uniform stream and

fully developed channel and pipe flows (Kim & Chen 1989; Kim 1991). It

can be seen in figure 3(b) that et/ep<l and the ratio of Pr/et increases

faster than Ep/e t (i.e., the slope of is less than unity) for the

production dominated case (Pr/et>l). In this case, Pr>ep>et so that equation

(18) always yields a positive ratio of kp/k t, and the ratio of kp/k t is further

increased as Pr/e t is increased. For turbulent flows in equilibrium state

(Pr=ep=et), equation (18) becomes indeterminate, and the ratio of kp/k t for
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Pr--ep_et is determined by the imbedded constraint conditions. As the

production rate becomes negligible (Pr_0), Pr<etand the ratio of ep/e t

decreases faster than Pr/Et. In the latter case, Pr<ep<et so that equation (18)

always yields a positive ratio of kp/k t, and the ratio of kp/k t is further

decreased as Pr/et is decreased. Therefore the trend of kp/k t distribution

obtained in the inequilibrium analysis is in correct agreement with that

observed in the spectral density curves shown in figure 3(a).

3. Computational results

3.1. Fully developed channel flows

Fully developed channel flows at Re(u x) = 180 and 395 are considered

below. In each case, the flow domain in x-coordinate direction extends 70

channel heights in the downstream direction and that in the y-coordinate

direction extends from the wall to the symmetric half of the flow domain.

The computational domain is discretized by 97x91 grid points in x- and in

y-coordinate directions, respectively. The grid size in the x-coordinate

direction is almost uniform while that in the y-coordinate direction is

stretched by a factor of approximately 1.1. The smallest mesh size in the

near-wall region is Ay+=0.25. The inlet boundary condition is obtained by

appropriately scaling measured data for a fully developed channel flow so

that the calculated flow field .,may reach a fully developed state at a shorter

downstream location from the inlet boundary. The numerical results

presented herein are obtained at 5.5 channel heights upstream of the exit

boundary so that the numerical results are not obscured by the exit

boundary condition either. Examination of numerical results obtained using

a few different mesh densities and extents of the flow domain shows that

the numerical results presented herein are grid independent.
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The numerical results for the normalized mean velocity (u+=u/ux), the

turbulent kinetic energy (k+=k/u2), the Reynolds stress (-u'v'+ =- u'v'/u 2)

and the dissipation rate (et+=vet/uz 4) for Re(ux)=180 are compared with the

DNS results and the numerical results obtained using a RSM (Lai & So

1990) in figure 4. It can be seen in figure 4(a) that the calculated mean

velocity profile is in excellent agreement with that obtained from the DNS.

The growth rate and the peak value of the turbulent kinetic energy in the

near-wall region obtained using the LMS is in better agreement with the

DNS result than those obtained using the RSM as shown in figure 4(b). The

calculated Reynolds stresses in figure 4(c) also show that the LMS yields

improved numerical result than the RSM. The calculated dissipation rate is

shown in figure 4(d). The slope of the dissipation rate obtained using the

LMS is less steeper than that obtained from the DNS. The less steeper slope

is caused by neglecting the turbulent diffusion term in deriving equation

(7) and by the nonlinearity of the turbulence equations. The most

distinguished difference between the LMS and the RSM as well as many

other turbulence models can be observed in the calculated near-wall

dissipation rates as shown in the figure. Extending the capability of the

multiple-time-scale turbulence model to resolve the inequilibrium

turbulence inside the near-wall layer enables the turbulence equations to

yield a near-wail dissipation rate that is in qualitatively correct agreement

with the DNS result.

Detailed comparisons of the various terms in the budget of the turbulent

kinetic energy are shown in figure 5, where ep+= Vep/U4 is the normalized

energy transfer rate. It can be seen in the figure that each component

obtained using the LMS overlaps with that obtained from the DNS in most

part of the flow domain. The excellent comparisons between the LMS and
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the DNS results indicate that the LMS can accurately resolve details of the

near-wall turbulence structure. It can also be found in Lai & So (1990) that

the present numerical results are in much better agreement with the DNS

results than those obtained using the RSM, and the excellent agreement is

attributed to the calculated near-wall dissipation rate that is in

qualitatively correct agreement with the DNS result. The terms in the

budget of kp-and kt-equation are shown in figures 5(b) and (c),

respectively. It can be seen in the figures that the dissipation rate in the

region very close to the wall is mostly balanced by the laminar viscous

diffusion of the turbulent kinetic energy. The laminar viscous diffusion of

the turbulent kinetic energy do not require any modelling and, hence,

obtaining the correct dissipation rate at the wall depends on obtaining the

correct near-wall distribution of the turbulent kinetic energy. Thus the

qualitatively different near-wall dissipation rate obtained using the RSM is

caused by the near-wall turbulent kinetic energy distribution that do not

compare very well with the DNS result as shown in figure 4(b). Note that

the near-wall energy transfer rate (ep) shown in figure 5(b) exhibits

similar distribution as the dissipation rate obtained using single-time-scale
i

turbulence models in the sense that the peak value is not located at the

wall. Thus the dissipation rate that attains its peak value at the wall is

caused by a small amount of the laminar viscous diffusion of the

dissipation range turbulent kinetic (kt) at the wall as shown in figure 5(c).

The composition of the turbulent kinetic energy is shown in figure 6(a).

Since the peak production rate occurs at y+---12 and the balance of the

turbulent kinetic energy budget in the region below y+=12 is mostly

achieved by the laminar viscous diffusion, the turbulent kinetic energy in

the region is mostly contained in the production range. The ratio of kp/k t is
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also shown in figure 6(a). The viscous sublayer region is entirely

dominated by the viscous diffusion and, hence, the inequilibrium analysis

developed based on the turbulence statistics of Uniformly sheared flows do

not apply exactly in the region. Away from the viscous sublayer, the ratio

of kp/k t is decreased as Pr/et is decreased and, thus, the distribution of

kp/k t is in correct agreement with the inequilibrium analysis. The near-

wall distribution of et/e p is shown in figure 6(b). It can be seen in the

figure that et/Ep>l at the wall where the production rate vanishes, Et/ep< I

near y+=12 where the production rate attains its peak value and Pr/et>l,

and et/ep>l again in the region remote from the wall where Pr/et<l. Thus

the calculated et/ep is in correct agreement with the inequilibrium analysis.

The numerical results for the mean velocity, the turbulent kinetic

energy, the Reynolds stress and the dissipation rate for Re(ux)=395 are

compared with the DNS results in figure 7. It can be seen in the figure that

the calculated mean velocity profile, the turbulent kinetic energy and the

Reynolds stress are in excellent agreement with those obtained from the

DNS. Each term in the budget of the turbulent kinetic energy for

Re(ux)=395 case exhibits improved comparison with the DNS results than

the Re(ux)=180 case, and the improved comparison is caused by the

turbulent kinetic energy and the near-wall dissipation rate profiles that

are in closer agreement with the DNS results than the Re(ux)=i80 case.

Measured data show that the growth rate and the peak value of the

turbulent kinetic energy are increased as the Reynolds number is increased

(Patel et al. 1985). The turbulent kinetic energy obtained from the DNS also

show that the growth rate and the peak value of the turbulent kinetic

energy for Re(ux)=395 are larger than those for Re(ux)=lS0. Since the near-

wall dissipation rate depends mostly on the growth rate and the peak
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value of the turbulent kinetic energy near the wall, the peak value of the

dissipation rate at the wall for Re(ux)=395 is substantially larger than that

for Re(ux)=lS0. It can be seen in figure 7(d) that the LMS correctly predicts

the increased near-wall dissipation rate.

3.2. Pulsating pipe flows

Pulsating pipe flows at a wide range of dimensionless frequency

(o_+=0.0075-0.21) are considered below. In each case, the flow domain in x-

coordinate direction extends 70 pipe diameters in the downstream

direction and that in the y-coordinate direction extends from the wall to

the center of the pipe. The computational domain is discretized by 144x64

grid points in x- and in y-coordinate directions, respectively. The grid size

in the x-ccordinate direction is almost uniform while that in the y-

coordinate direction is stretched by a factor of approximately 1.1. The

smallest mesh size in the near-wall region is approximately equal to 1/15

8s (which corresponds to _y+-0.25~0.8 for different Reynolds numbers),

where 8s= 2v_-_ is the Stokes layer thickness, 0_=2_f is the angular velocity,

and f is the frequency. This mesh is fine enough to resolve the influence of

the imposed frequency on the near-wall fluid flow and to yield a grid

independent solution. The transient bulk velocity is prescribed as

%= -ffb{lq lsin(o t)}, where (--) denotes the time-averaged value, (")

denotes the ensemble-averaged value, and denotes the amplitude. The

boundary condition for the axial velocity that corresponds to the time-

varying bulk velocity is obtained by scaling measured data for a fully

developed pipe flow so that the calculated flow field may reach a fully

developed state at a shorter downstream location from the inlet boundary.

The numerical results presented herein are obtained at 4 diameters
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upstream of the exit boundary so that the numerical results are not

obscured by the exit boundary condition either. Numerical tests show that

the calculated results become independent of the time-step size for

AT<T/200, where T is the period. The numerical results presented herein

are are obtained using AT=T/300.

The calculated time-averaged wall shearing stresses for

Re=15000~60000 and the ensemble-averaged wall shearing stresses for a

few representative cases are shown in figures 8 and 9, respectively. It can

be seen in figure 8 that the calculated wall shearing stresses are in very

good agreement with the measured data for the wide range of Reynolds

number. The ensemble-averaged wall shearing stress for Re = 15400,

I_bb_Ub = 0.1, and f = 0.625 Hz is shown in figure 9(a). This pulsating flow

represents an extreme case of a low Reynolds number flow subjected to a

high frequency oscillation. In such a case, the spatial variation of the

oscillating velocity is mostly confined in the near-wall region so that the

amplitude of the wall shearing stress is a several times larger than that of

the ensemble-averaged centerline velocity (Mao & Hanrathy 1986). It can

be seen in the figure that the calculated phase difference is in good

agreement with the measured data while the calculated amplitude is larger

than the measured data. The over-predicted amplitude is caused by a

slightly over-predicted turbulent viscosity in the core region of the pipe.

The case shown in figure 9(c) represents an opposite extreme case of a high

Reynolds number flow subjected to a low frequency oscillation. The

Reynolds number is 60000, [__b_Ub = 0.05, and f=0.325 I-Iz. It can be seen in

the figure that the calculated and the measured amplitudes are by far

smaller than those shown in figure 9(a). The highly decreased amplitude is

caused by the large Reynolds number and the small amplitude of the
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ensemble-averaged centerline velocity. The calculated and the measured

wall shearing stresses for an intermediate case of Re=15400, I_bb_Ub= 0.05,

and f = 0.625 Hz are shown in figure 9(b). In each case, the amplitude of

the wall shearing stress is over-predicted while the calculated shape and

phase lead of the ensemble-averaged wall shearing stress are in very good

agreement with the measured data. It can be found in Kebede et al. (1985)

that the shape, phase lead and the amplitude of the ensemble-averaged

wall shearing stresses obtained using a k-e turbulence model and a RSM do

not compare favorably with the measured data. The significantly improved

numerical results obtained using the LMS indicate that the turbulence

equations can correctly describe the influence of the Reynolds number and

the imposed oscillation frequency on the fluid flow.

The calculated phase lead of the wall shearing stress with respect to the

ensemble-averaged centerline velocity is shown in figure (10), where _=o_t

is the phase angle. It is shown in the figure that the calculated phase lead

for o_+>0.045 (or o_+/15>0.003) obtained using the LMS is in better

agreement with the measured data than that obtained using the RDT which

is developed to accurately solve pulsating pipe flows at high dimensionless

frequency. It can be found in Mao & Hanrathy (1986) that the present

numerical result is in as good agreement with the measured data as that

,obtained using an optimized relaxation turbulence model, it can also be

seen in the figure that the LMS correctly predicts the rapidly varying

phase lead that occurs for o_+<0.015 (or to+/15<0.001) while RDT and various

other turbulence models fail _ to predict such a phenomenon (Mao &

Hanrathy 1986; Mankbadi & Liu 1992).

The calculated ratio of the normalized amplitude of the wall shearing

stress to that of the centerline velocity is shown in figure 11. It can be seen
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in the figure that the present numerical result for high dimensionless

frequency range is in as good agreement with the measured data as that

obtained using the RDT. It can also be seen in the figure that the LMS

yields qualitatively correct numerical result for o_+<0.015 (or t_+/15<0.001)

while the RDT completely fail to predict the experimentally observed

behavior of the pulsating pipe flow.

4. Conclusions and discussion

A low Reynolds number multiple-time-scale turbulence model that can

resolve the inequilibrium turbulence phenomena down to the viscous

sublayer is presented. The capability to resolve the inequilibrium

turbulence phenomena inside viscous sublayer enables the LMS to yield a

near-wall dissipation rate that is in correct agreement with the DNS result.

It is shown that the near-wall turbulence structure for the low Reynolds

number fully developed channel flows obtained using the LMS is in better

agreement with the DNS results than those obtained using a Reynolds

stress model. Each term in the budget of the turbulent kinetic energy

obtained using the LMS is in excellent agreement with that obtained from

the DNS, and the excellent agreement is caused by the near-wall dissipation

rate that is in correct agreement with the DNS result.

Calculations of unsteady turbulent flows using algebraic turbulence

models, k-E turbulence models and Reynolds stress turbulence models

show that the numerical results obtained using the algebraic turbulence

models are in much better agreement with the measured data than those

obtained using k-e turbulence models or Reynolds stress turbulence models

(Kebede et al. 1985; Mankbadi & Liu 1992; Mao & Hanrathy 1986). The

improved numerical results obtained using the algebraic turbulence models
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clearly indicate that the algebraic turbulence models can describe the

transient near-wall turbulent viscosity more accurately than k-e

turbulence models or Reynolds stress turbulence models. However,

optimized algebraic turbulence models can not resolve the turbulence field

of various complex turbulent flows and lack a theoretical background (Mao

& Hanrathy 1986). It is shown that the low Reynolds number multiple-

time-scale turbulence model (LMS) yields highly improved numerical

result for the pulsating pipe flows at a wide rage of the dimensionless

frequency than the algebraic turbulence model derived from the rapid

distortion theory (RDT). For pulsating pipe flows at high dimensionless

frequency, the spatial variation of oscillating velocity is mostly confined in

the near-wall region. Therefore, a turbulence model that yields only a

slightly deteriorated numerical results for steady flows may yield a largely

deteriorated numerical result for pulsating flows. It is shown in the fully

developed channel flow calculations that the near-wall dissipation rate that

attains its peak value at the wall yields improved near-wall turbulence

structure than the near-wall dissipation rate that attains its peak value at

y+-12. The improved numerical results for the pulsating pipe flows

obtained using the LMS is attributed to its capability to resolve the near-

wall turbulence structure more accurately than other turbulence models.

Numerical investigations of various complex turbulent flows show that

the multiple-time-scale turbulence model yields as accurate numerical

results as those obtained using an optimized turbulence model for each

flow (Kim & Chen 1989; Kim 1990, 1991; Kim & Benson 1992). These

accurate numerical results indicate that the developments of the fluid flow

and the turbulence field in complex turbulent flows depend strongly on the

inequilibrium turbulence. The improved numerical results for the fully
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developed channel flows and the pulsating pipe flows obtained using the

LMS indicate that the development of the near-wall turbulence field also

depends strongly on the inequilibrium turbulence. The capability of the

multiple-time-scale turbulence model to resolve various complex

turbulence fields is attributed to its capability to model the cascade of

turbulent kinetic energy and to correctly resolve the inequilibrium

turbulence phenomena.
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