@ https://ntrs.nasa.gov/search.jsp?R=19920020414 2020-03-17T10:46:37+00:00Z
G S D
o> 02 ~cp s
A

- AEROSPACE :
£ © 0N
B o w3
: % ENGINEERING | i
Vo
zZ 55
- 7 OEPARTMENT ]
= 3
- o
TEXAS A&M UNIVERSITY Pz
- 5t
_ DETERMINATION OF AERODYNAMIC SENSITIVITY COEFFICIENTS é '; g
. FOR WINGS IN TRANSONIC FLOW § E’u: <
- e 5se -
_ = E——— gglnegi'xhg _]Epgrt_ment == 59 z
= : == Texas A&M University ~ua
E Ollege - Station, Texa§‘77843 3141 °,2
7 o —
1z, F
vE- -
E <DV
48%a
T Foundation Report v EE
) No. 5802-92-02 —

e Sponsored by NASA Grant No NAG 1793




[

LI

1 1 a8 NI

’ll‘ W\‘

DETERMINATION OF AERODYNAMIC SENSITIVITY COEFFICIENTS

FOR WINGS IN TRANSONIC FLOW

by

Leland A. Carlson and Hesham M. El-Banna
Aerospace Engineering Department
Texas A&M University
College Station, Texas 77843-3141

May 1992

Texas A&M Research Foundation Report
No. 5802-92-02
Sponsored by NASA Grant No. NAG-1793



I

o
11
i

n'"‘m‘m“llu N- |

DETERMINATION OF AERODYNAMIC SENSITIVITY COEFFICIENTS
FOR WINGS IN TRANSONIC FLOW

Leland A. Carlson

Professor, Aerospace Engineering

and

Hesham M. Elbanna
Graduate Research Assistant
Texas A & M University
College Station, Texas 77843

ABSTRACT

The quasianalytical approach is applied to the three-dimensional full potential equation
to compute wing aerodynamic sensitivity coeflicients in the transonic regime. Symbolic ma-
nipulation is used to reduce the effort associated with obtaining the sensitivity equations,
and the large sensitivity system is solved using ”"state of the art” routines. The quasian-
alytical approach is believed to be reasonably accurate and computationally efficient for
three-dimensional problems.

INTRODUCTION

To design transonic vehicles using codes which utilize optimization techniques requires
aerodynamic sensitivity coefficients, which are defined as the derivatives of the aerodynamic
functions with respect to the design variables. In most cases, the main contributor to the
optimization effort is the calculation of these derivatives; and, thus, it is desirable to have
numerical methods which easily, efficiently, and accurately determine these coefficients for
large complex problems. The primary purpose of the present study is to investigate the
application of the quasianalytical method [1,2] to three-dimensional transonic flows using as
the fundamental flow solver the three-dimensional transonic full potential fully conservative

code, ZEBRA [3].

PROBLEM STATEMENT

Application of the quasianalytical method to the full potential equation yields the sen-
sitivity equation

OR; jx O¢isjjki \ _ [ ORije (1)
Obii jj kk XD | T XD



fi

r

where XD is the vector of design variables and the residual expression, Rijx, of the full
potential equation in the computational plane, X,Y, 7, in terms of backward differences is

- pU - pV ~ w )
R = 6X('p7')i+1/2,j,k + 5Y(p7)i,j+1/2,k + 5z(p7-).',j,k+1/2 (2)

Here, the retarded density 5 and the contravariant velocity components U,V, and W, are
lengthy functions of the reduced potential function, ¢. The boundary conditions for Eq.(2)
are the surface condition, W = U25 + vV £5, the Kutta condition along the wing semispan,
I'=A¢, w7z <z < oo,and the far%feld condition. Additional conditions are the downstream
boundary potential ¢, =0 and the wing symmetry condition, V = 0.

The discretized form of Eq.(2) contains lengthy expressions, and mathematical symbolic
manipulation [4-6] was used to determine the functional dependencies of the residual, the
analytical forms of the derivatives, and to generate the corresponding computer code. The
basic approach used to differentiate the residual expression was to treat the main expression
in terms of smaller subexpressions, each of which was examined in terms of its constituents.
This process was extended until simple functional forms for the derivatives were obtained.
This subdivision and chain rule differentiation by symbolic manipulation efficiently generated
source code for the jacobian and vectors in Eq.(1). The resultant large sparse system,
typically 17500 x 17500, of algebraic equations is then efficiently solved for 53 using either
the iterative conjugate gradient method or the generalized minimum residual algorithm [7-
8]. From these, the pressure and lift coefficient sensitivities to the design variables can be
computed. Notice that the effort associated with this approach is essentially independent of
the number of design variables considered on the right-hand-side of Eq.(1).

EXAMPLE AND DISCUSSION

Consider the ONERA M6 wing planform with NACA 1406 airfoil sections at a super-
critical condition of M. = 0.84 and o = 3deg, which has subcritical lower surface flow and
exhibits an upper surface shock wave located at 70 % chord at the root to 10 % chord at
the tip that increases in strength from the root to a point near the wing tip. Basic design
variables for the current problem include freestream design variables, Mach number Ms and
angle of attack a; cross-section design variables of maximum thickness, T, maximum camber,
c, and location of maximum camber, L; variables that define wing twist, T1,T2,T3, and T4;
and planform tip coordinates, X LE:,, XTEu,, and Y.;,. Knowing the sensitivities to these
basic design parameters permits subsequent evaluation of the derivatives with respect to
the nonbasic variables taper ratio, aspect ratio, wing area, and sweepback angles. Thus, the
present method determines sensitivity coefficients for twelve design variables and five derived
design variables.

As part of the solution 8¢/8X D values are obtained for every grid point in the flowfield.
Also, the method automatically computes 9C,/8XD at twenty-five chordwise locations at
each of the twenty semi-span stations on the wing as well as 9C;/8XD at each of the span
stations. Typical results for the example case are shown in Fig.1 for a midspan station. As
expected, the sensitivity derivative profiles for the lower surface are typical of subcritical
flow [2]; and the upper surface results exhibit large variations in the vicinity of the shock
wave. The latter reflect the influence on the aerodynamic coefficients of the semsitivity of
the upper surface shock wave location to the various design parameters. Currently, efforts
are in progress to validate the present method by comparison with the finite difference
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approach, which calculates sensitivities by perturbing a design variable from its previous
value, obtaining a new solution, using the differences between the new and old solutions
to obtain the sensitivity coefficients. While this direct technique is computer intensive and
inefficient, it should serve as a check on the present method.

Based upon the present results, it is concluded that the quasianalytical method is a
viable and efficient concept for the determination of three-dimensional transonic aerodynamic
sensitivity coefficients. In addition, use of symbolic manipulation to evaluate the elements
of the sensitivity equation is believed to be an efficient approach to the development of
such methods. Finally, further studies are needed to determine the accuracy and range of
applicability of the quasianalytical approach.
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