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Paramterizations of single nucleon removal from the electromagnetic and strong

interactions of cosmic rays with nuclei are presented. These parametrizations are based

upon the most accurate theoretical calculations available to date. They should be very

suitable for use in cosmic ray propogation through interstellar space, the Earth's

atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.
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I. INTRODUCTION

Galactic cosmic rays (Shapiro 1983, Friedlander 1989) are very high energy

particles confined to the region of our Milky Way galaxy. They consist of about 98% fully

stripped nuclei including protons and alpha particles, and about 2% electrons and positrons

(Simpson 1983). Of the nuclear component, about 87% is hydrogen, about 12% is helium

and the other 1% consists of heavier nuclei. Of these heavier nuclei, the CNO group and Fe

are the most abundant with a typical energy of about 1 GeV/N. Even though these heavy

nuclei are not very abundant, they are very penetrating due to their large mass and high

speed.

An understanding of the interactions of galactic cosmic ray nuclei with not only

hydrogen and helium but also with heavier nuclei is important for several reasons:

!. Knowledge of the cosmic ray spectrum at the top of the Earth's atmosphere and

knowledge of the composition of the interstellar medium and heliosphere enables one to

determine the cosmic ray spectrum at the source (Simpson 1983). The interstellar medium

(Field 1986) consists primarily of hydrogen and helium so that cosmic ray interactions with

these nuclei axe the most important (Austin 1981; Ferrando et al 1988). However carbon,

nitrogen and oxygen are also present in the interstellar medium (Morton 1975; Karttunen,

Kroger, Oja, Poutanen and Donner 1987) and one anticipates that the understanding of

cosmic ray interactions with these heavier nuclei may be needed in the future.

2. Knowledge of the spectrum at high altitude and knowledge of the composition of the

Earth's atmosphere enables one to determine the cosmic ray spectrum at the top of the



atmosphere(Wilson,TownsendandBadavi1987a).

3. Theradiationenvironmentinsidea spacecraft,dueto solarandgalacticcosmicraysmay

be determined (Wilson and Townsend 1988). Such knowledge is important for lunar and

martian habitats and other long duration space flights (National Council on Radiation

Protection and Measurements 1989; Joselyn and Whipple 1990; Rester and Trombka

1989).

4. Studies of the history of extraterrestrial matter (such as lunar samples, meteorites and

cosmic spherules and dust found in deep sea sediments) and also of the history of cosmic

rays themselves can be made with the knowledge of the production rate of various nuclides

(Reedy 1987; Reedy, Arnold and Lal 1983).

5. Cross section parametrizations of cosmic ray nuclei interacting with arbitrary target

nuclei including those targets heavier than helium are required in the interpretation of

emulsion data and in the the interactions of cosmic rays with air. (Gaisser 1990; Gaisser,

Stanev, Freier and Waddington 1982; Gaisser and Stanev 1983, Shapiro and Silberberg

1970).

The basic nucleus-nucleus interaction that a cosmic ray undergoes can occur

mainly via the Strong or Electromagnetic (EM) force. (Actually the study of nucleus-

nucleus collisions began in cosmic ray studies (Goldhaber and Heckman 1978; Bradt and

Peters 1948, 1949, 1950; Kaplan, Peters, Reynolds, and Ritson 1952).) Strong interaction

processes (Goldhaber and Heckman 1978; Gyulassy 1981; Benesh, Cook and Vary 1989)

have been studied extensively and quite recently the study of Electromagnetic processes in



highenergycollisions has begun (Bertulani and Baur 1988).

To study the propagation of cosmic rays through interstellar space, the Earth's

atmosphere or a spacecraft wall it is not enough to have a good understanding of the

nucleus-nucleus interaction cross section as input to a transport computer code (Wilson,

Townsend, Schimmerling, Khandelwal, Khan, Nealy, Cucinotta, Simonsen, Shinn and

Norbury 1991). These codes can be very complex and therefore require simple expressions

for the cross sections rather than the use of large data bases or complicated theoretical

models (Wilson and Townsend 1988). Thus there has been a considerable effort to

parameterize the cross section expressions so that the only required inputs are the nuclear

energies and charge and mass numbers (Letaw, Silberberg and Tsao 1983; Silberberg and

Tsao 1973, 1990; Townsend and Wilson 1986; Norbury, Cucinotta, Townsend and

Badavi 1988; Wilson, Townsend and Badavi 1987a,b).

In order to understand cosmic ray transport through the interstellar medium, the

early work on parametrizations (Rudstam 1966; Letaw, Silberberg and Tsao 1983;

Silberberg and Tsao 1973, 1990) concentrated primarily on proton-nucleus interactions due

to the fact that the interstellar medium consists primarily of hydrogen. However based on

the 5 items listed above it would also be very useful for a wide variety of cosmic ray

studies to have accurate pararnetrizations for any nucleus-nucleus interaction. It is the aim

of the present work to provide such a parametrization. Actually such parametrizations

(wilson, Townsend and Badavi 1987b) have already been formulated and give good

results for the removal of many nucleons. However for removal of only a few nucleons

from heavy nuclei, the parametrizations (Wilson, Townsend and Badavi 1987b) sometimes

give poor results. In fact a whole new approach to the parametrization of few-nucleon

removal cross sections in nucleus-nucleus interactions is required. In the present paper an



accurateparametrizationof single-nucleonremovalcrosssectionsis presented.Future

workwill discusstheremovalof more nucleons. When this program is completed we will

have available accurate parametrizations of few-nucleon removal cross sections in nucleus-

nucleus interactions. When combined with the many-nucleon removal paramterizations

(Silberberg, Tsao and Shapiro 1976; Wilson, Townsend and Badavi 1987b) and proton-

nucleus parametrizations (Letaw, Silberberg and Tsao 1983; Silberberg and Tsao 1973,

1990), there will be available accurate cross section parametrizations for arbitrary cosmic

ray species interacting with arbitrary media. See also the work of Webber et al (1990).

One approach to the parametrization of cross sections is to simply take all the

available experimental data and fit a curve through it. However such an approach often

requires a large number of adjustable parameters and may not be applicable to regimes

where experiments have not been performed. A much more satisfying approach is to base

one's parametrization on a physical theory or model that successfully describes the

experimental data as well. This will be the approach of the present work. The various

models and theories that have been developed will be collected together and parameterized.

The whole method will require only one adjustable parameter (Xd in equation 29).

Furthermore this parameter is not essential. Good results are obtained without it. It is only

introduced to provide some fine tuning.

A preliminary parametrization of the EM process has already been presented

(Norbury, Cucinotta, Badavi 1988), which utilizes the Weizsacker-Williams (WW) method

of virtual quanta (Bertulani and Baur 1988; Jackson 1975). However, since then the theory

has been improved to include the effects of both electric dipole (El) and electric quadrupole

(E2) interactions (Bertulani and Baur 1988; Norbury 1990a,b), which will henceforth be

referred to as multipole theory in contrast to WW theory. In addition Benesh, Cook and



Vary (1989) haverecently provided a parametrization of the strong interaction single

nucleon removal cross section.

II. STRONG INTERACTION PARAMETRIZATION

The parametrization due to Benesh, Cook and Vary (1989) is

o(N') = N OG Peso (la)

for single neutron removal where N is the number of neutrons and A is the number of

nucleons and

o(z) = AZoc Pe_ (lb)

for single proton removal where Z is the number of protons. See also Norbury and

Townsend (1990). ¢rc; is the reaction cross secdon given by

OG = 2rt (be - __!2) Ab (2)

where

Ab = 0.5 fm (3)

and the critical impact parameter for single nucleon removal is



bc= 1.34fm [A_/3+ A_-/'3-0.75(Ai,1/3+ A-i-t/3)] (4)

with Ap andATbeingtheprojectileandtargetnucleonnumbersrespectively.The single

nucleonescapeprobabilityis

Pesc= (1 - f) + f exp -v (5)

with

f = 1 (1 - cos 0max) (6)

and

sin 0max = b'c- Ab (7)
b'c

and

v = A f._.______ (8)

b'c2

where A isthe nucleon number of the nucleusfrom which the nucleon isbeing removed,

and b'cisthecriticalimpact parameterforthesinglenucleon escaping and isgiven by bc in

equation (4) but with AT = I (or Ap = I)ifthe nucleon isescaping from theprojectile(or

target).Thus theescapeprobabilityisindependentof AT (orAp) as one would expect.(_NN

isthe nucleon-nucleoncrosssectionwhich has been pararneterizedas (Wilson,Townsend,

Nealy, Chun, Hong, Buck, Lamkin, Ganapol, Khan and Cucinotta 1989)

fiNN = (1 + _----_---){40 + 109 cos(0.199rriE'/180) exp[-0.451(Tlab - 25) 0'258] } mb
Tlab

(9)



for Via b >--25 MeV and as

ONN = exp [6.51 exp (Ti_/134) °'7] mb (10)

for Tla b < 25 MeV.

Note that the energy dependence of the strong interaction cross section is totally contained

in equation (9). Because of the exponential factor in (5) this energy dependence is rather

weak as one would expect.

III. ELECTROMAGNETIC THEORY

The EM theory has already been discussed extensively (Bertulani and Baur

1988; Norbury 1989, 1990a,b) and only a few relevant details will be given here. The total

nucleus-nucleus EM cross section is written as

O = CYE1+ O'E2 =f [NEI(E)O'EI(E) + NE2(E)O'E2(E)] dE
(11)

where NEi(E) is the virtual photon spectrum (of energy E) of a particular multipolarity i due

to the projectile nucleus and t:rF.t(E) + _E2(E) is the photonuclear reaction cross section of

the target nucleus. (In principle the above equation should include other EM multipoles, but

their effect is much less important.) A less exact expression is given by WW theory as



=f Nww(E) [OEI(E) + OE2(E)] dE
(12)

where Nww(E) is the WW virtual photon spectrum. Bertulani and Baur (1988) have shown

that

and

1 2 Z 2_ l_L. _2 _2

Nww(E) = NEI(E) = _- _- 132 [_ K° Kl "l (K2 - K_)]
(13)

-. ...L. _ -NE2(E) l'2Z20t [ 2(1- _2)K 2 + _(2-_2)2KoKl 2_2134(K 2 K_)]
E/_ _4

(14)

with

_ E brain_ (15)

713(hc)

where all of the modified Bessel functions K are functions of _. In the above equations E is

the virtual photon energy, Z is the nuclear charge, ot is the EM fine structure constant, and

brain is the minimum impact parameter, below which the collision occurs via the Strong

1 where c is the speed of light and v is the speed of
interaction. Also _ = c and Y = q 1- _2

the cosmic ray. The minimum impact parameter is given by

bmin = be + gao
2Y (16)

v where



ao= Zp ZT e 2 (17)
mo v 2

allows for deviation of the trajectory from a straight line (Aleixo and Bertulani 1989).

In equation (11) the photonuclear cross sections satisfy the following sum rules

(Bertttlani and Baur 1988):

f OEI(E) dE = 60 A]_ MeV mb
(18)

and

f ffE2(E) dE = F 0.22 Z A 2/3 gbE 2 MeV
(19)

where F is the fractional exhaustion of this energy-weighted sum rule. The latter expression

is the sum rule for the isoscalar E2 giant resonance. The isovector E2 resonance is

ignored as it decays mainly by 2-nucleon emission (Bertulani and Baur 1988).

IV. ELECTROMAGNETIC PARAMETRIZATION

Because the photonuclear cross sections ar_l(E) and OE2(E) are Lorentzian

shaped, they behave somewhat like delta functions. The integrals of equation (11) can be

approximated by taking NEI(E) and NE2(E) outside the integrals as (Bertulani and Baur

1988):



(20)

andtheintegralsareevaluatedusingthesumrulesinequations(18)and(19). In theabove

equationEG_ and EOQRare the centralenergiesof the E1 and E2 photonuclearcross

sectionsgivenby (WestfaU,Wilson,Lindstrom,Crawford,GreinerandHeckman1979)

m*c2R_ (1+ u- 1 + e + 3u e) ]1/2EGDR = hc [ 8J l+£+u (21)

with

and

u = _, A t/3 (22)

Ro = r0 A 1/3 (23)

where e = 0.0768, Q' = 17 MeV, J = 36.8 MeV, ro = 1.18 fro, and m* is 7/10 of the

nucleon mass. Note that other expressions for EGD R such as 80 A 1/3 (Bertulani and Baur

1988) provide very inaccurate results for light nuclei. Equation (21) is accurate for all mass

regions. The central energy of the E2 resonance is simply

.. 63 MeV (24)
AI/3

In addition the fractional exhaustion of the Energy-Weighted Sum Rule in equation (19) is

given by (Bertrand 1976)



f= 0.9for A > 100

=0.6 for40 < A <

= 0.3 for 40 < A

100

(25)

Finally, to obtain the reaction cross section for proton or neutron removal the

above cross sections must be multiplied by the proton or neutron branching ratios. The

proton branching ratio has been parameterized by Westfall, Wilson, Lindstrom, Crawford,

Greiner and Heckman (1979) as

gp = min [ Z, 1.95 exp(-0.075 Z) ] (26)

where Z is the number of protons and the minimum value of the two quantities in square

brackets is to be taken. Assuming that only single nucleon removal occurs, the neutron

braching ratio is

gn = 1 - gp (27)

For light nuclei however the following branching ratios are used instead of equation (26)

gp -- 0.5 for Z<6

= 0.6 for 6_<Z<8

= 0.7 for 8<Z<14 (28)

Lastly, an adjustable parameter (the only one in the whole parametrization!) is introduced

as xa = 0.25 where



brain= (I + Xd)b_ + _ao
2),

(29)

in place of equation (16).

Finally, if one is interested in a very quick calculation for estimation purposes we shall

write down an approximate "pocket" formula which does not require the evaluation of the

Bessel functions in (13) and (14). Using the low and high frequency approximations for

the dipole photon spectrum (Jackson, 1975) and ignoring quadrupole effects, equation (20)

can be written approximately as

_1_[In(1.123 cl36 = _.A__ 2 Z 2 a )-21- 132] for F-_DR <
EGDR _ _2 EGDR brain brnin

_ 1 Z 2 a 1 (30)( 1- 1 132)exp(_2E_Dt_bmin/_c13) for ECDR ->_c13
- _EGDR m132 bmin

This EM formula, combined with the Strong interaction parameterization, gives a very

simple "pocket" formula which may also be useful in complicated versions of transport

codes that have CPU time at a premium. However to get a good fit to data one must use

Xd = -0.1 in (30).

V. RESULTS AND CONCLUSIONS

The cross section parametrizations are compared with the existing nucleus-

nucleus experimental data in Tables I - III. It can be seen that the overall agreement is

extremely good for a very wide variety of projectiles, targets and energies. There are

however a few notable discrepancies particularly for 197Au targets in Table II. It should be



notedhoweverthatthesediscrepanciesarenotdueto theparametrizationperse.Similar

discrepanciesareobservedin comparisonsbetweentheoriginal theoryand experiment

(Norbury 1989, 1990a,1990b,Norbury andTownsend1990,Benesh,Cook and Vary

1989, Hill, Wohn, Schwellenbachand Smith 1991). It is not clear whether these

discrepanciesaredueto theoreticalorexperimentalproblemsandtheirresolutionis amatter

of ongoingresearch.

In summary a parametrization of single nucleon removal cross sections for

nucleus-nucleus collisions has been developed which accurately reproduces the

experimental data for a wide range of nuclear species and energies. Future work will be

devoted to few nucleon removal. Combining this with the many nucleon removal

parametrizations (Wilson, Townsend and Badavi 1987b) and the proton-nucleus

parametrizations (Letaw, Silberberg and Tsao 1983; Silberberg and Tsao 1973, 1990)

provides a very useful parametrization of arbitrary cosmic ray species interacting with an

arbitrary medium.
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Table_ Electromagnetic (EM) Cross Sections for single neutron and single proton

removal, cO_xptare the experimental EM cross sections from Olson et al 1981, Heckman

and Lindstrom 1976, Barrette et al 1990 and Hill 1988. Op_t_amis the parameterized EM

cross section discussed in the text. Values in parentheses use the EM pocket formula.

Projectile Target Tlab Final _o'_pt OpEn-am

(GeV/N) State (mb) (rob)

12C Pb 2.1 11C 51 + 18 48 (57)

12C Pb 2.1 11B 50 _+ 25 72 (86)

12C Pb 1.05 11C 39 +_ 24 26 (17)

12C Pb 1.05 11B 50 - 25 39 (26)

160 Pb 2.1 150 50 _ 24 71 (85)

160 Pb 2.1 15N 96 + 26 106 (127)

12C Ag 2.1 11C 21 + 10 20 (24)

12C Ag 2.1 llB 18 +_ 13 30 (36)

12C Ag 1.05 11C 21 + 10 12 (12)

12C Ag 1.05 liB 25 + 19 18 (18)

160 Ag 2.1 150 26 + 13 29 (35)

160 Ag 2.1 15N 30 + 16 43 (53)

12C Cu 2.1 11C 10 +7 9 (11)

12C Cu 2.1 11B 4___ 8 13 (16)

12C Cu 1.05 11C 9 + 8 6 (6)

12C Cu 1.05 11B 5 +__8 8 (10)

160 Cu 2.1 150 9 + 8 13 (16)

160 Cu 2.1 15N 15 + 8 19 (23)



Table [ continued

Projectile

12C

12C

12C

12C

160

16o

12 C

12 C

12 C

12 C

160

160

180

180

180

180

18 0

18 0

32 S

28Si

28Si

28Si

28Si

28Si

28Si

Target

AI

A1

AI

AI

AI

AI

C

C

C

C

C

C

-15

-13

Pb

Pb

U

U

197Au

27A1

27A1

120Sn

120Sn

208pb

208pb

Tlab

(GeV/N)

2.1

2.1

1.05

1.05

2.1

2.1

2.1

2.1

1.05

1.05

2.1

2.1

1.7

1.7

1.7

1.7

1.7

1.7

200

13.7

13.7

13.7

13.7

13.7

13.7

Final

State

11C

ll B

11C

11B

150

15 N

11C

11B

11C

ll B

150

15 N

17 0

17 N

170

17 N

170

17 N

196Au

lp

In

lp

In

lp

In

e_xpt

(mb)

0+5

0+5

1+6

1+7

0+5

-1+9

-2+5

-1+4

-2+ 5

-2+5

-1+4

-1+4

8.7 - 2.7

-0.5 + 1.0

136 +2.9

20.2 + 1.8

140.8 ___4.1

25.1 + 1.6

1120 + 160

37+5

15+4

313+4

136+ 6

743 _ 27

347 +__18

(mb)

2 (3)

3 (4)

2 (2)

2 (3)

3 (4)

5 (6)

I(I)

I(I)

0(I)

I(I)

I(I)

I(I)

8 (lO)

12(15)

69 (79)

103 (118)

82 (92)

123 (138)

1274 (1297)

25 (28)

12 (13)

325 (370)

151 (172)

822 (942)

383 (438)



_Tot
Total ( = EM + Nuclear) Cross Sections for single neutron removal, oexpt are the

experimental total cross sections from Hill, Wohn, Winger and Smith 1988, Hill, Wohn,

Winger, Khayat, Leininger and Smith 1988, Hill, Wohn, Schwellenbach and Smith 1991,

Smith et al 1988 and Loveland et al 1988. OT_am is the parameterized total cross section

discussed in the text. Values in parentheses use the EM pocket formula.

_Tot erTot
Projectile Target Tlab Final Oexpt vparam

(GeV/N) State (mb) (mb)

12C 238U 2.1 237U 173 + 22 191 (195)

20Ne 238U 2.1 237U 192 _ 16 286 (300)

12C 197Au 2.1 196Au 178 + 7 172 (175)

20Ne 197Au 2.1 196Au 268 + 11 249 (260)

40Ar 197Au 1.8 196Au 463 + 30 458 (491)

56Fe 197Au 1.7 196Au 707 + 52 748 (812)

139La 197Au 1.26 196Au 2130 + 120 2187 (2295)

139La 197Au 0.15 196Au 765 + 48 729 (883)

238U 197Au 0.96 196Au 3440 ___210 3997 (3486)

160 197Au 60 196Au 400 + 20 383 (389)

160 197Au 200 196Au 560 + 30 458 (462)

12 C 89y 2.1 88y 115 + 6 117 (119)

20Ne 89y 2.1 88y 160 _.+7 148 (154)

40Ar 89y 1.8 88y 283 +__11 223 (240)

56Fe 89y 1.7 88y 353 + 14 319 (351)

12C 59Co 2.1 58Co 89 + 5 99 (101)

20Ne 59Co 2.1 58Co 132 +_ 7 119 (122)

56Fe 59Co 1.7 58Co 194 + 9 212 (229)

139La 59Co 1.26 58Co 450 __+30 433 (461)



Table II continued

Projectile Target Tiab

(GeV/N)

Final

State

(_Tot

expt

(mb)

_pTOt
afam

(mb)

12C 12C 2.1 llc

20Ne 12C 1.05 11C

56Fe 12C 1.7 11C

139La 12C 1.26 11C

28Si 12C 13.7 11C

61+1

78+2

94+2

148+2

73.5 +-- 3.5

65 (66)

73 (73)

100 (101)

134(135)

85 (85)



Table _ Nuclear Cross Sections for single neutron and single proton removal. _,t are the

experimental nuclear cross sections from Fig. 4 of Barrette et al 1990. O_parU'Zamis the

parameterized nuclear cross section discussed in the text.

Projectile Target Tlab Final o_eU_t _pUarCam

(GeV/N) State (mb) (mb)

28Si AI 13.7 lp 140 + 14 87

28Si AI 13.7 In 100 + 10 87

28Si Sn 13.7 lp 220 + 22 120

28Si Sn 13.7 In 145 __.15 120

28Si Pb 13.7 lp 300 + 30 136

28Si Pb 13.7 In 180 + 18 136


