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Preface

This report contains the 1989 annual progress reports of the Research Fellows

of the Center for Turbulence Research. It is intended primarily as a year-end

report to the National Aeronautics and Space Administration, Ames Research

Center which supports CTR through core funding and by making available its

physical and intellectual resources.
The Center for Turbulence Research is devoted to the fundamental study of

turbulent flows; its objectives are to stimulate advances in the physical under-

standing of turbulence, in turbulence modeling and simulation, and in turbulence

control. Last year was CTR's third year in operation. CTR now has about fif-

teen Postdoctoral Fellows, and supports five doctoral students and several short

term visitors annually. Several other doctoral students who are supported by

grants from the Air Force Office of Scientific Research, the Office of Naval Re-

search, and the National Science Foundation also conduct their research at the

CTR. The CTR staff study a wide range of turbulence problems in collaboration

with NASA-Ames scientists and Stanford faculty members. The CTR roster for

1989 is provided in the Appendix. Also listed are the members of the Advi-

sory Committee which meets annually to review the Center's program, and the

Steering Committee which acts on Fellowship applications.

This year, publication of the CTR Manuscript series was initiated. These are

•manuscripts prepared for submission to journals that are made available for early

dissemination of completed research results by the CTR staff. The reports ap-

pearing in the following pages are a brief account of the accomplishments of the

CTR Fellows in 1989. They are grouped in the general areas of modeling, exper-

imental research, theory, simulation and numerical methods, and compressible

and reacting flows.

Special thanks are due to Debra Spinks, the Center's Administrative Assistant,

for her skillful compilation and organization of this report.

Parviz Moin

William C. Reynolds
John Kim
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Modeling of compressible turbulence

By O. Zeman

1. Objectives

The work is directed toward understanding and modeling compressibility ef-

fects in turbulent flows. The primary objective is to investigate how compress-

ibility influences the basic turbulence processes such as turbulence production

and dissipation, length scale modification, spectral energy transfer, etc. The sec-

ond objective is to develop parameterization schemes and models to incorporate

compressibility into one-point closure models and into the subgrid scale models

for LES techniques.

The ultimate purpose of this research is to develop compressible turbulence

models which are capable of handling the hypersonic regime. Specifically, the

emphasis will be on the model capability of predicting a) heat and momentum

transfer in hypersonic boundary layers, and b) mixing and growth of high Mach

number shear layers, jets and wakes.

2. Accomplishments

The work described in the following section (2.1) is an abbreviated version of

the paper Zeman (1989). Section 2.2 is a part of a paper in preparation.

2.1. Dilatation dissipation: the theory and applications in modeling compressible

turbulent flows

_.1.1. Abstract

The concept of dilatation dissipation ed is predicated on the existence of shock-

like structures embedded within energetic turbulent eddies. On this assumption

a parametric expression for ed is found ed = (qS/L) F(Mt,K) containing calcula-

ble parameters of a turbulent field: Favre=averaged turbulence energy q2 = u_-_ffj ,

length scale L, and r.m.s. (turbulent) Mach number Mr. The function F(Mt, K)

is a measure of the probability of ed with respect to the solenoidal dissipation

(q3/L), and involves integration over the p.d.f, of fluctuating velocity. K is the

kurtosis, or intermittency factor, of the fluctuating field. The dilatation dissi-

pation is incorporated in a second-order closure model for compressible mixing

layers and the model predictions of mean and turbulence quantities are com-

pared with experiments. The model is capable of predicting the reduction of

layer growth rates as a function of the convective Math number Mc in exper-
iments. The Mach number effect on the turbulence structure is demonstrated

by comparing the computed centerline turbulence intensities with the measure-

ments of Samimy and Elliott (1989) and Samimy et al. (1989) for Mc between
0.51 and 0.86.
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FIGURE 1. (a) Sketch of shock-like structure in a turbulent eddy; (b) normal

shock relations.

$.l.t Theoretical model for dilatation dissipation

The compressible, homogenous, turbulence field can be described in terms of

solenoidal and dilatational components of velocity, i.e., ui = u,i + Udi, where

Uo and ud satisfy the constraints V.u, = 0, and V × ud = 0. Then, in high

Reynolds number approximation, the Favre-averaged second-order equations for

(decaying) homogeneous turbulence can be written as (Zeman, 1989)

1/20q 2
--_ = --vtakwk - 4/3v8 2 + p-z'_

c OT _l120q 2
p-g(=

(1)

(2)

(3)_= -_RT

The viscous term vwhwk (labeled _, for future reference) is the traditional

solenoidal dissipation due to the energy cascade to small scales and depends

only on Uo; the second viscous term in (1) is proportional to the square of

fluctuating divergence 8 = uj,j, and we shall call it the dilatation disMpation ed.

In the energy equation (2), T is the Favre-averaged (mean) temperature and the

sum of (1) and (2) yields the enthalpy conservation law %T + ½q2 = %To =

const. By dimensional analysis, it is then expected that the decay of compressible

turbulence be described by

Oqi _ q3
Ot L f(Mt)

where f is a function of the turbulent Mach number Mt = q/a based on the sonic

velocity a = _, and L is a turbulence length scale so that the solenoidal

dissipation e, c< q3/L.
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In direct numerical simulation of compressible 2D turbulence, Passot and Pou-

quet (1987) found that for sufficiently large initial density fluctuation levels p'/-fi

and turbulent Mach number Mt > 1 the computed field of initially solenoidal

turbulence evolved into a shock-like structure as sketched in Figure 1. Thin

regions of steep density gradients (shock-like structures) are embedded in large

scale vortices (of length scale L). The shock-like structure may be considered

quasi-stationary with the instantaneous dissipation rate v82 = v(Z_u/X) 2 where

Au is a normal velocity difference across the steep density interface which has a

thickness X. This thickness is determined by the Reynolds number relationship

),Au/v = O(1) and velocities upstream and downstream of the normal shock

are related by the Prandtl-Meyer relation:

ulu2 = a* 2 = 7RT* =.u_(1 - Au/ul). (4)

where a* is the sonic velocity at the "sonic" temperature T* = 2T/( 7 + 1),

(with respect to the turbulence frame of reference moving with the local mean

flow velocity). The volume fraction occupied by the shocklet structure is )_/L
regardless of the flow dimension, thus an instantaneous dilatation dissipation

rate (per unit mass) is

a*S (m_-l) s"'d T m, (5)

where ml = ul/a* is the instantaneou_Mach number on the low pressure side of

the shock which must be larger than one. We note that the expression (5) does

not contain viscosity explicitly and resembles a parametric expression for the

solenoidal dissipation at low speeds (except that (5) is applicable only when ml

is supersonic). Since the model assumes isotropic orientation of the shocklets, ul

must be proportional to the instantaneous total turbulent velocity u(t) = u_.

In order to obtain an average value ed, (5) has to be ensemble-averaged with the
aid of probability density function for ml.

There exists experimental evidence that in mixing layers the streamwise fluc-

tuations are highly intermittent with the kurtosis K = u4/(u _)2 ranging from 4

up to about 20 at the edges of the layer (Spencer and Jones 1971, Samimy et al.

1989). A convenient expression for non-gaussian p.d.f, p(u) is a Gram-Charlier
expansion

With the approximation that (6) is the p.d.f, of ml, i.e. p(u) .,_ p(rn,) (with
_r = q/a* = Mr), we obtain

3ed O( -_--[(q3_t41 _ \(rn_--m, 1 p(ml)dml], or, (7)
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FIGURE 2. Dilatation dissipation function F(Mt, K) for various values of K in

the p.d.f, equation (6).

The function F(Mt,K) represents the expression in square brackets above;

its values obtained by numerical integration are plotted in Figure 2 for various

values of the kurtosis K (in the p.d.f, equation (6). According to (8), ed is

proportional to the solenoidal dissipation since e0 oc q3/L. Hence, in a second-

order closure model which usually contains an equation for e0 (or for L), ed is

determined merely by the function F(Mt,K), and the total dissipation in (1)

and (2) is then

etot = e,(1 + caF(Mt, K))

as suggested by dimensional analysis mentioned earlier. Apart from the model

constant ca and K (to be estimated from measurements), the total compressible

turbulence dissipation is thus determined by (7) and a (standard) model equation

for e° .

$.I.$. Comparison with shear layer ezperiments

A comparison of the dilatation dissipation model with homogenous turbulence

data at sufficiently high Reynolds and Math numbers is not possible at present.

Instead, the model is compared with the experimental data in compressible free

shear layers which are the least contaminated by low Reynolds number effects.

For this purpose, a computer program for compressible, high Reynolds number
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shear flows was formulated (Zeman, 1989) to solve transport equations for all

non-zero Favre-averaged Reynolds stresses and for the vertical enthalpy flux.

The numerical scheme utilizes the yon Mises transformation from (z,y) to
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(z, ¢) coordinate system and all transport equations are solved by forward inte-

gration in streamwise direction z along streamlines ¢ = const.

The crucial test of the dilation dissipation model is the prediction of the nor-

malized growth rate _'/g'o as a function of the so-called convective Math number

Mc ( 6" is the growth rate in the incompressible limit Mc = 0). The con-
cept of convective Mach number has been described in Bogdanoff (1983) and

Papamoschou and Roshko (1987). With air as the (perfect) fluid, the values

of g'/g" were computed for three cases: a) uniform (freestream) temperature

7'1 = 7"2 (density ratio s = P2/Pl), and the kurtosis K = 7; b) uniform total

temperature To, and K = 7; and c) uniform temperature as in case a) but with

low kurtosis K = 4. The predicted and experimental growth rates g'/_" are

compared in Figure 3. The comparison shows that the model yields realistic

reduction of the shear layer growth rate as a function of the convective Mach

number Mc even for small kurtosis. Figure 4 demonstrates how turbulence fluc-

tuations are controlled by the dilatational dissipation: as M_ increases beyond

one, the r.m.s. Mach number Mt appears to approach a saturation limit of about

0.5; this is observed in experiments (Samimy 1989). Figures 5, 6, and 7 display

model comparisons of mean velocity, and turbulent intensities with experiments

of Samimy and Elliott (1989) and Samimy et al. (1989).

Figure 5 compares the computed and experimental mean velocity profiles at

two values of M_. The profiles are shown to be universal functions of the trans-

verse distance (y - y_) scaled by the vorticity thickness as suggested by Samimy
and Elliott.

The streamwise intensity profiles are compared in Figure 6. Considering the

uncertainties associated with measurements and modeling of high Mach num-

ber flows the model-experiment agreement is relatively good. Note that the

measured intensities exterior to the mixing layer are due to the unavoidable

background noise levels in supersonic wind tunnels.

Figure 7 compares equilibrium turbulence intensities (at the layer centerline

y = yc); although the model overestimates the absolute values of the intensities,
the attenuation of velocity fluctuations with increasing M_ is predicted. This

comparison corroborates our hypothesis that the reduction in growth rates of

high speed mixing layer is a consequence of additional (dilatational) dissipation

which arises due to the formation of steep density gradients, or shocklets.

_.1.$. Conclusions

We conclude with the following observations:

(1) As evident from Figure 4, the dilatation dissipation provides the con-

trolling mechanism that suppresses excessive supersonic fluctuations and thus
maintains the maximum level of the r.m.s. Mach number Mt below a certain

(subsonic) level of about 0.5. This is observed in experiments. Apparently, the

local intermittent shock events provide the needed dissipation to maintain, on

average, turbulent velocities subsonic.
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(2) The mechanism of shock formation and dilatation dissipation bypasses the

Kolmogorov energy cascade, and the process of spectral energy transfer to small

scales is expected to remain unaffected by the formation of shock structures.

Hence, the model equation for the solenoidal dissipation is assumed to retain its

standard form independent of the dilatation dissipation.

(3) The decomposition of velocities into dilatational and solenoidal compo-

nents is unique only in a strictly homogeneous turbulence field. In a bounded

turbulent flow, the decomposition is not unique because of the boundary condi-

tions. Nevertheless, the concept of the dilatation dissipation is valid, in general.

The dilatation dissipation model is Galilean invariant and, therefore, applicable

in any high Mach number flows such as wakes, jets, and boundary layers.

_._ Decay of _D cornpres_ible turbulence

In 2D turbulence the solenoidal dissipation e, is proportional to (q3/L)R[] ,

where the Reynolds number Re = qL/v. Hence, according to equations (1), (2),

and (8) in Section 2.1, the governing second-moment equations in 2D compress-

ible decaying turbulence are

Oq 2
- (q3/L) {c,R: ] + cdF(Mt,K)}, (9)

Ot

q2

cpT+ _ = const. (10)
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Now, (9) and (10) can be combined into a single equation for M_; if, in

addition, R+ is assumed to be large, the resulting equation for M_ is

OM2t _ 2cdM2tF(Mt,K)( l + Mzt i'y-1)} (11)
or

where r = tq/L is a nondimensional time. The above equation can be considered

as a decay law for 2D compressible turbulence. The equation can be used to verify

the dilatation dissipation model when eddy shocklets are limited to 2D motion.

According to ill), for a given value of the kurtosls K, Mt decays as long as

F(Mt) remains sufficiently large. Since the homogeneous turbulence p.d.f.'s are

gaussian, K = 3 and according to Figure 2 F(Mt, K = 3) is negligibly small for

Mt < 0.4 . In Figure 8 the evolution of Mr(r) according to ill) is tentatively

compared with the DNS of 2D turbulence in molecular clouds (where Rc >> 1)

reported by Passot et al. (1988). For comparison, we used two different initial

values for Mr. It is seen that the decay law (11) yields qualitatively the same

behavior as the DNS computations. In particular, the asymptotic leveling off of

Mt for r > 8 is well reproduced by (11). Note that the final iasymptotic) value

of Mt computed from (11) is independent of the initial conditions. This suggests

that in 2D turbulence at high Re, the dissipation is solely due to the presence

of shock-like structures whose formation ceases as Mt drops below certain level.

This is in agreement with the proposed theory of dilatation dissipation.
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3. Current and future work

Currently, a model is being developed to simulate a hypersonic turbulent

boundary layer (TBL) on a flat plate. The major concern here is to formulate a

realistic model for the viscous sublayer which, in a hypersonic regime, occupies

a significant portion of the total TBL thickness. Furthermore, in the hyper-

sonic regime at freestream Mach numbers, say, Mac > 15, it is anticipated that

pressure and density fluctuations, and shocklet dissipation will play a significant
role in the TBL momentum and heat transfer; these issues are presently studied

theoretically. Among problems to be addressed in the future are:

1) inclusion of density fluctuation equation in models of compressible and variable

density turbulence.

2) Turbulence oblique shock interactions in the compression corner TBL flow.

3) parameterization of shocklet dissipation in subgrid scale models for large eddy
simulations of compressible turbulence.

REFERENCES

BOGDANOFF, D.W. 1983 AIAA J. 21,926

PAPAMOSCHOU, D. & ROSHKO, A. 1988 J. Fluid Mech 197, 453

PAPAMOSCHOU, D. 1986 Ph. D. Dissertation, CALTECH, Pasadena, CA

PASSOT, T. & POUQUET, A. 1987 J. Fluid Mech 181,441

PASSOT, T., A. POUQUET & P. WOODWARD 1988 Astron. Astrophys 197, 228

SPENCER, B. W. & B.G. JONES 1971 AIAA Paper no. 71-613, Palo Alto, CA

SAMIMY, M. & G. S. ELLIOTT 1989 to appear in AIAA J.

SAMIMY, M., ERWIN, D. E. & ELLIOT, G. S. 1989 AIAA paper no. 89-_60,

Monterey CA

ZEMAN, O. 1989 to appear in Phys. Fluids A., Vol. _, #_



Center for Turbulence Research

Annual Research Briefs - 1989

Turbulence modeling:
and effects of rotation

j_

Jj .3
/

N92-3 51

near-wall turbulence
on turbulence

By T. -H. Shih

1. Motivation and objectives

Many Reynolds averaged Navier-Stokes solvers use closure models (including

two-equation models and second-order closure models) in conjunction with "the

law of the wall", rather than deal with a thin, viscous sublayer near the wall.

However, law of the wall functions are based on assumptions of local equilibrium

which are not always valid. For example, flows with separation, reattachment,

body forces, strong secondary flows, or streamwise pressure gradient can cause

the behavior of the near-wall sublaser to depart from the law of the wall. To

solve these problems, the modeled turbulence equations must be carried out

in the sublayer in order to capture the non-equilibrium characteristics of the

near wall region. Non-equilibrium turbulence models of the two equation type

include Jones and Launder (1973), Chien (1982), and Lam and Sremhorst(1981).

Second order closure models includeHanjalic and Launder (1976) and Launder

and Shima (1989). However, as Patel et al. (1985) pointed out, the damping

functions used in the existing k-e models need further modification in order to

improve their performance. In addition, analysis of the near-wall behavior of

the current second order closure models shows that they do not have the proper

asymptotic behavior. Predictions of the normal stresses near the wall are quite

poor. This work is motivated by the need for better models to compute near-

wall turbulent flows. We will use direct numerical simulation of fully developed

channel flow and one of three dimensional turbulent boundary layer flow (Kim

et al. (1987), Mansour et al. (1988), and Moin et al. (1989)) to develop new

models. These direct numerical simulations provide us with detailed data that

experimentalists have not been able to measure directly.

Another objective of this work is to examine analytically the effects of rotation

on turbulence, using Rapid Distortion Theory (RDT). This work is motivated by

the observation (Reynolds, 1989) that the pressure-strain models in all current

second order closure models are unable to predict the effects of rotation on

turbulence. All current rapid pressure-strain models in the equation for the

invariants of anisotropy tensor are insensitive to pure rotation.

One of the objectives of this work is to develop better models (for both two-

equation model and full-Reynolds stress type models) for the near-wall turbu-

lence, using direct numerical simulation data and existing methodologies. The

models will be tested using data from direct simulations, experiments and anal-

ysis. Another objective of this work is to use RDT to obtain an analytical
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solution for pure rotational turbulence, which will hopefully bring us some new

understanding of turbulence physics and provide improved turbulence models

for rotational flows. Specifically, the objectives of this work can be summarized

as follows:

1. Examine the performance of existing two-equation eddy viscosity models

and develop better models for the near-wall turbulence using direct numerical

simulations of plane channel flow.

2. Use the asymptotic behavior of turbulence near a wall to examine the

problems of current second-order closure models and develop new models with
the correct near-wall behavior of these models.

3. Use Rapid Distortion Theory to analytically study the effects of mean

deformation (especially due to pure rotation) on turbulence. Obtain analytical

solutions for the spectrum tensor, Reynolds stress tensor, Anisotropy tensor,
and its invariants. Use these results to develop second order closure models.

2. Work aecompllshed

_.1 k-e model

The k-e model is still the most widely used model for computing engineering

flows. In this work, we first examined the near-wall behavior of various eddy

viscosity models proposed by different researchers; we then studied the near-wall

behavior of terms in the k-equation budget. We found that tke modeled eddy

viscosity in many existing k-e models does not have correct near-wall behavior,

and the pressure transport term in the k-equation is not appropriately modeled.

Based on the near-wall asymptotic behavior of the eddy viscosity and the pres-

sure transport term in the k-equation, we proposed a set of new models for them.

In addition, a new model for the dissipation rate is derived more rationally. See

Shih (1989) for more details.

m
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The proposed k-e model for the near-wall turbulence has been tested against
direct numerical simulations of Kim et al. and compared with other k-e models.

The results show that the new model produces significant improvements over

existing models, see figures 1 - 5. The modeled equations are given as follows:

,J

e,_ + Uj _,j

O-k _--

0r_

C1 =

C2 =
=

¢=
VT ----

C'_ =

a 1 _

1.3

1.3

1.45

2.0

e-¢

vk,jk,j/(2k)

0.09

e e_

"_- C1 _I]TSijSij -- C2f_ T 71- uvTUi,jmUi,jm
,i

1 - exp(-aly + - a2y +2 - aay +3 - aly +4)

6 × 10-3,a2 = 4 × lO-4,aa = --2.5 × 10-6,a4 = 4 x 10 -9

,, :1- --0"4exP (1.8- (k_'v2e)2)

.05
C=

y. [1- exp(-u+)]
y+ = "a.ry/1_

2.2 Second order modeling of near.wall turbulence

Using the near-wall asymptotic behavior of turbulence (Mansour et al. (1988))

as model constraints, we formed a set of modeled transport equations for the

Reynolds-stress tensor and the dissipation rate of turbulent kinetic energy. The

main emphasis was on developing a model for the "slow term" in the Reynolds-

stress equation. A modeled dissipation rate equation is derived more rationally.

Near the wall, a reduction in velocity fluctuations normal to the wall become

significant. Because of this wall effect, the viscous diffusion term in the Reynolds-

stress equations becomes the leading term, and it must be properly balanced by

the slow term. We will use this as a model constraint for developing a model

for the slow terms. The proposed models in this work do not contain the wall

distance; therefore, they are generally suitable for an arbitrary surface. The

proposed models also satisfy realizibility which ensures no unphysical behavior

will occur. Here, we briefly describe and list the proposed models.
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Reynolds stress equation

The exact equation for the Reynolds stress tensor is:

D (uiuj) = Pij + Tij + D_ ) + II,j - _ij

where ( ) stands for an ensemble average, D/Dt = O/Ot + UkO/Oxk. The terms

Pij, Tij, D_ ), IIij and eij represent the production, turbulent diffusion, viscous
diffusion, velocity pressure-gradient correlation, and dissipation tensor and are
identified as follows:

Ti_ = --(uiujuk),k

1 u

eij -_ 2V(Ui,kUj,k)

The velocity pressure-gradient correlation IIij is split into the rapid part H!1 )
--tJ

H(2).and the slow part ::ij •

The proposed model for the return term, II_ ) eij is:

2
nl_> _(_b,j+- _j = - J_)(1 - 1=)

- f= _-_[2(=_=j) + 4(N_=_)_?_ + Nj,_)n,n_) + 2(uk=_)=k--_nj]

where ni is a unit vector normal to the surface, and

F_ 72 . 7.77

_= 2 + "_{_t/2 + 80.11n[1+ 62.4(-II + 2.3III)] } exp(-_)Rl/2

F= 1 + 271// + 911

II = - 1 bij bit

1
//I = -_b_jbjk bt_

bij -- (uiuj)/(q 2) - gij/3

I= = exp(-(R,/C_ )_)
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and Rt = _ C1 = 1.358R°_ ', Re_. = u,.6/v, u_ is the friction velocity,
9vc '

is the thickness of the boundary layer or the half width of the channel.

The rapid part of velocity pressure-gradient, II_ ) is modeled as follows (Shih

and Lumley (1985, 198611:

II_ ) = (-_ + 2as)(q2)(Ui,j + Uj,i)- (1 - as)(Pij - 2 ptiJ)3

2 16a D 32_p_i./) 2 p+ (5 + T 5)( ,j - + - + 5
2

where,

DiS = - (uiuk)Uk5 -- (uj uk)Uk,i

P = 1pil
2

1

a_ = -_-_(1 + C2F 1D)

C2 = 0.8[1 - exp(-(Rt/40)2)]

Finally the model for the third moments is modeled as:

(q2)%

Dissipation rate equation

The modeled dissipation rate equation derived in this work is:

e_

,,, + u,,_ = (_,_ - (eu_)),_- ¢0(q_--S

u(q2) (uk- ¢_7-_(u_uj)u_,j - ¢_ ,,t)(u,,jz - ut,_)u, jk
Iq'l e

where
14

¢o = "-if" + 0.9811 - 0.331n(1 - 55II)] exp(-2.83R_ -1/2)

¢1_ 2.1

¢2 = -.15(1 - E /

4(q 2 )

The turbulent flux term (eu_) is modeled as:

07 <q2)_u_
<,,_)=-. -_- u_),.,
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To test the models developed in this work, we chose a fully developed channel

flow as the test flow. The Reynolds number based on friction velocity and chan-

nel half width Re_ is 180, for which direct numerical simulation (Kim et al., 1987)

and experimental data (Nishino and Kasagi, 1989) are available for comparison.

The modeled Reynolds stress equations for this flow are one-dimensional and

steady; therefore, model testing is easy and accurate. The results of the present

model compared with direct numerical simulation and other models are shown

in figures 6 - 10. As the figures indicate, the proposed models capture the near-

walt behavior of the turbulence and show significant improvement over previous
second order models and k-e models.

_.$ Second order modelin 9 of a three-dimensional boundary layer

A study of three-dimensional effects on turbulent boundary layer was achieved

by direct numerical simulation of a fully developed turbulent channel flow sub-

jected to transverse pressure gradient. The time evolution of the flow was stud-

ied. Fourteen realizations, each starting with a different initial turbulence field,

were computed and ensemble averaged. The results show that, in agreement

with experimental data, the Reynolds stresses are reduced with increasing three-

dimensionality and that, near the wall, a lag develops between the stress and

the strain rate. In addition, we found that the turbulent kinetic energy also
decreased.

To model these three-dlmenslonai effects on the turbulence, we have tried dif-
ferent second order closure models. None of the current second order closure

models can predict the reductions in the shear stress and turbulent kinetic en-

ergy observed using direct numerical simulations. However, we found that the

proposed second order closure models developed in the previous section do at

least qualitatively capture these three-dimensional effects, see figures 11 - 14.

Detailed studies of the Reynolds-stresses budgets were carried out. One of the

preliminary conclusions from these budget studies is that the velocity pressure-

gradient term in the normal stress equation (v 2) plays a dominant role in the

reduction of shear stress and kinetic energy. These budgets will be used to guide

the development of better models for three dimensional turbulent boundary layer
flOWS.

_.4 The effect of rotation on turbulence

In addition to the above studies of second order closure models, we have car-

ried out some RDT analysis on simple homogeneous turbulent flows. An order

of magnitude analysis shows that under the condition of S(q2)/e >> v/_'t, the

equations for turbulent velocity fluctuations can be approximated by a linear set
_3/4

of equations, and if S(q2)/e >> _ttt , then the turbulent velocity equations can

be further approximated by an inviscid linear equation. Therefore, RDT can be

used to analytically study some very basic turbulent flows such as homogeneous
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shear flows, irrotational strain flows, and pure rotational flows. RDT analy-

sis will hopefully bring out some new ideas in turbulence physics and modeling.

Reynolds (1989) recently pointed out that all current rapid pressure-strain mod-

els are unable to predict the effects of rapid rotation on the turbulence. RDT is

certainly an ideal tool to study this kind of basic turbulent flow. It can provide

analytical solutions for the details of the flow field, and hence can be used to

guide the development of turbulence models.

This work focuses on the effect of rapid rotation on turbulence using RDT.

We obtained analytical expressions for velocity, the spectrum tensor, Reynolds-

stress, the anisotropy tensor and its invariants. The solutions show that the

turbulence is strongly affected by the rapid rotation. A typical case is shown

in figure 15. Using RDT, we are calculating the rapid pressure-stain term ex-

actly and we are obtaining very useful information for developing corresponding

turbulence models.

3. Future plans

1. Using direct numerical simulation data (Moin et al., 1989 and Spalart,

1989), we are planning to improve the second-order closure models proposed in

this work for three dimensional boundary layers.
2. Extend second order closure models to near-wall turbulent heat fluxes.

3. Use the information obtained from RDT to model the effects of rapid

rotation on the turbulence. It appears that at least the quadratic terms of mean

velocity gradient are necessary in the rapid pressure-stain model.

4. Modeling the effects of buoyancy on the turbulence.

5. Third order modeling of shearless turbulent mixing layer -- using moment

generating function method. This type of model will be needed when third order

moments play a dominant role in transferring of momentum and energy, such as

in a convective planetary boundary.

6. Explore the potential of the RNG method in one-point turbulence closure
models.
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An experimental study of scalar

mixing in curved shear layers

By P. S. Karasso AND M. G. Mungal

This report describes the work being undertaken to study the scalar mixing

in curved shear layers. First, the motivation for this work and its objectives are

described. Second, a description of the experimental rig that has been built is

given. Third, some preliminary results (flow visualizations) are discussed, and

finally, future steps that will be taken to complete the study are outlined.

I. Introduction

Straight mixing layers have been the object of considerable study over the

last twenty years. Curved mixing layers have seen less investigation. Here,

we will provide a brief description of the aspects that are important to this
work. The characterization of a curved shear layer depends upon the sense of

the curvature: if the high speed stream is on the inside of the curvature, it is

referred to as the unstable case; the reverse is referred to as the stable case (Fig.

1). For such shear layers, with equal density fluids, two kinds of instability modes

are encountered. First, the Kelvin-Helmholtz (K-H) instability which is due to

the shear per se and manifests itself with spanwise vortical structures. Second,

the Taylor-Gbrtler (T-G) instability, associated with the centripetal forces due

to the streamlines' curvature, which creates streamwise vortical structures. The

Taylor-G 5rtler instability is enhanced in the unstable case and suppressed in the

stable one. Plesniak & Johnston (1989) have provided detailed measurements

of the turbulence properties of curved mixing layers.

Wang (1984) studied a curved shear layer to determine the flow structure
for the stable and the unstable case. He used spatially averaged shadowgraph

pictures which can easily mask the real physics of the flow. He found evidence

of organized motion for the stable case but more 3-dimensionality and loss of

the large-scale (K-H) motion for the unstable case.

Koochesfahani (1984) made concentration field measurements in a plane shear

(mixing) layer, where the K-H instability is dominant, producing a non-marching

probability density function (pdf) of mixture fraction; a similar result was ob-

tained earlier by Konrad (1976). A new, more plausible model for mixing by

Broadwell & Breidenthal (1982) based on the large-scale structures was thus

supported.

The existence of streamwise vortical structures in a lower Reynolds number

plane shear layer was investigated by Bernal (1981). Image reconstruction by
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unstable stable

U 1

FIGURE 1. Definition of stable vs. unstable curvature

Jimenez, Cogollos and Bernal (1985) revealed the flow structure and suggested

possible growth mechanisms.
It is the purpose of this study to understand the flow physics, the molecular

mixing and growth rate in curved shear layers at high Reynolds numbers past

the mixing transition (up to 80,000 based on velocity difference and visual thick-

ness). The curvature offers a way to "dissociate" the effect of the two instability
modes: in the unstable case both K-H and T-G are present and strong whereas

in the stable the K-H is strong and the T-G is weak. A detailed quantitative

description of the composition field in the fully developed region is sought via

pdf measurements. The flow physics is investigated via detailed image recon-

struction approaches.
Instantaneous, spatially resolved pictures of high Reynolds numbers curved

shear layers do not exist in the literature, so we have chosen to begin there in

order to address the question of organized motion. Volume rendering in the

y- z - t space has proven to be a most powerful tool to investigate the evolution

of structures in flows (Cruyningen, Lozano, Mungal, Hanson, 1989) and will

be attempted in the curved layer. It is again noted that Schlieren pictures or

shadowgraphs are incompatible with the above ideas and that only instantaneous

planar cuts of the layer can reveal the real mechanisms of mixing.

2. Experimental facility & technique

A schematic of the facility that was built for this study is shown in Fig 2. It

is a blow-down water tunnel made entirely out of plexiglass which allows full
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FIGURE 2.

honeycomb

Layout of Rig

to drain

optical access. The overhead tank is partitioned so that one side (usually the

low-speed) can be totally dyed. The velocity ratio of the two streams and the

flow rates can be controlled by means of a draining valve and alr-admittance

valves. The facility is operated at a velocity ratio of 4:1. A speed of 2 m/s can

be achieved on the high speed side, which gives a Reynolds number of about

80,000 towards the end of the test section. The test section size is 16 cm (span)

x 10 cm (height) x 30 cm (length). The facility has been mounted over a recently

refurbished floor and underground sump tank.

The test section (curved walls, shown in the unstable configuration in Fig. 2)

was modelled after Wang's facility and it is considered to be of mild curvature.

The run-time of the tunnel ranges from 15 to 30 seconds, depending on the

velocity magnitudes.

Flow visualizations are effected with planar laser induced fluorescence (PLIF).

A fluorescent dye (sodium fluorescein) is diluted in the low-speed side and the

layer is excited with a laser sheet from a 2-Watt Argon-ion laser. The sheet can
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be directed in the z - y plane (side view), the z - z plane (plan view), and the

y - z plane (end view) to give the whole flow field. Fast photography (exposure

time 1/1000 sec) with 3200 ASA film was then used, minimizing smearing of the
flow field.

3. Present results

Some high Reynolds number flow visualizations are shown below, using the

techniques described earlier. The high and low speed streams are at 2 and 0.5

m/s respectively.

Figure 3 shows side views for the stable and the unstable case (flow is from

left to right). The K-H rolls are very well defined throughout the whole test
section for both cases. The two fiducial marks on each picture are at 15 and

25 cm downstream from the splitter plate (corresponding to Reynolds numbers

of approximately 35,000 and 60,000). The large-scale organized motion of the

flow prevails into the fully developed region of the shear layer. This photo

immediately shows the advantage over spatially integrated measures such as

shadowgraphy when compared to Wang's results. The growth of the structures

was in general found to be larger for the unstable case. To clarify the overall

growth rates, time-averaged pictures are shown in Fig.4 (flow here is from top

to bottom). The dots are put there to help the reader follow the mixing layer.

It can be seen that the layer grows about 50% more for the unstable case than

for the stable one.

In order to investigate the 2-D aspect of the K-H vortices, plan views of both

cases are presented. Bands of mixed and unmixed fluid are observed (Fig. 5).
Bands were found to be much more defined in the stable case, whereas much more

streakiness was evidenced in the unstable case. We believe that this is due to the

enhanced T-G instability which creates streamwise structures. Another rather

striking event is the fact that the spanwise rolls are seen to occur tilted with

respect to the flow direction. This, to our knowledge, has never been reported

before and would again show the difficulties in shadow techniques. Various runs

were performed to further investigate this fact for a case of a plane 2-D layer at

the same high Reynolds number (straight walls can also be easily mounted in

the experimental rig). The skewness of the structures was again evidenced.

End views of the layers are not presented here. The reason has to do with

the fact that single pictures of this view cannot easily reveal any structures.

This view, however, will be heavily emphasized during our upcoming image
reconstruction which is addressed in the next section,

We have emphasized here the importance of instantaneous cuts, especially

for such high speed flows, in order to understand the real physics underlying
the evolution of the structures. Also it is crucial to see that all three views are

needed and are complementary to each other. For instance, a side view capturing

a tilted object may look very ambiguous, whereas a plan view might reveal it.
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FIGURE 3. Side views of mixing layer, using PLIF. Time exp. 1/1000 sec.
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Time averaged side views of mixing layer, using PLIF. Time exp.
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FIGURE 5. Plan views of mixing layer, using PLIF. Time exp. 1/1000 sec.
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Similarly a plan view of K-H structures captured while pairing would not show

any organization of motion.

4. Future work

The future work has two main objectives: i) Perform image reconstruction of

the layer for both curved cases and for a straight case in order to compare the

changes in the flow structures and ii) Perform detailed quantitative measure-
ments of the concentration field.

The end view of the mixing layers will be used to get a y - z - t space re-

construction of the flow field. This will be done by using the Pixar computer

available at the High Temperature Gasdynamics Laboratory at Stanford Uni-

versity. Sequential digitized images will come from video recording of the flow.

It is important that each frame consist of a truly instantaneous cut; therefore, a

pulsed 20-Watt Copper-vapor laser will be used. The framing rate must also be

sufficient to have sufficient cut planes through a structure. To this end, video

framing rates will first be used, followed possibly by the higher framing rate of

a Spin Physics recording system, should it be necessary. First reconstructions

should occur in the Spring.

The final task is generating the concentration field pdf. For this, the imaging

system will consist of a self-scanning linear array camera. The laser source will

either be the Copper-vapor laser or the Argon-ion laser. The frame grabber in

this ease is not a trivial issue because of the extremely high framing rates needed

to resolve the flow and the amount of data generated. At this point the hardware

problem seems to be resolved and the various components' interfacing problems

are being tackled. Once components are bought (computer, A/D board and

optics), first results will occur within 3 to 6 months.

5. Summary

Instantaneous planar visualizations of high Reynolds number curved mixing

layers were presented. These cuts revealed that the K-H structures are existent

and well defined in the fully developed region. Additional views suggest that

these structures may occur tilted with respect to the flow. More streakiness in

the unstable case suggests a strong T-G instability. The growth rate was found

to be about 50% larger for the unstable case. Image reconstruction of the flow
field and detailed concentration measurements of the layer will constitute the
bulk of our_future work.
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An experimental investigation of a low
Reynolds number turbulent boundary layer

subject to an adverse pressure gradient

By J. H. Watmuff

The evolution of a low Reo turbulent boundary layer in an adverse pressure

gradient (APG) is being studied for comparison with direct numerical simula-

tions by Spalart. A short region of favorable pressure gradient (FPG) is applied

first to establish a self-preserving layer with Reo _ 600, which is a suitable initial

condition for the simulations. The APG is then applied rapidly such that fl _ 2

at Reo ._ 1500. The streamwise extent of the measurements exceeds the current

capabilities of direct simulations so that the results should also serve as a useful

data base for Reynolds-averaged boundary layer prediction methods and in the

future for direct simulation schemes as computer technology evolves.

1. Relationship between the experiment and CFD simulations

An important feature of the numerical method of Spalart (1988) is that there

is no turbulence modelling. A high non-dimensional grid density is needed which

restricts the simulations to low Reynolds numbers, i.e. Ro < 1500 at present.

The key assumptions in Spalart's 1988 method are that the streamwise evolution

of the flow is slow and that the straining of the turbulence by the mean-flow can

be neglected. These assumptions will inevitably cause the method to breakdown

in a large APG. Spalart has developed a new technique that should overcome
these difficulties, and preliminary results are coming to hand. One of the objec-

tives of this experiment is to obtain accurate measurements for comparison with
the simulations.

There are three requirements in the relationship between the experiment and

the simulation. Firstly, the Reynolds number must be matched precisely. Sec-

ondly, the experiment and simulation must have closely matched initial condi-

tions. Following a suggestion by Inman and Bradshaw (1981), a mildly favorable

pressure gradient is used to very closely approximate a self-preserving layer, i.e.

by careful experimental design the boundary layer is maintained at almost con-

stant thickness over some streamwise distance before being subjected to the

APG. The FPG region allows the simulated layer and the experimental layer

to approach each other without incurring a large increase in Reo which would

reduce the streamwise extent of the simulations in the APG. In the experiment

the additional development length has the added advantage of allowing upstream

trip effects to decay before the region of interest. Finally, accurate experimental

pressure coefficient (Cp) measurements with high spatial resolution are required

II_lt ._ ........ ll,t_l, ir_._l_,!ty _lc PRECEDING PAGE BLANK NOT FILMED
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as an input for the simulation. A suitable flow configuration for the computa-

tions would be one in which the boundary layer experienced a non-dimensional

pressure gradient _/= 6" dP,-"2"g_'_ _ 2 at a maximum Ro .._ 1500. This design goal
has been achieved.

2. Apparatus and methods

I!.1. Tunnel and traverse

The layer develops on a lm wide aluminium plate forming the test-section

floor of a small open-return wind tunnel. The plate is supported above an optics

table which also serves as an extremely flat and rigid mounting platform for a

high-speed computer controlled 3D probe traverse. A flexible ceiling is contoured

to produce the pressure distribution and two plexlglass sidewalls complete the
test-section.

Selection of a transition device was performed in the absence of the PG. The

incoming layers are laminar and closely follow the Blasius profile over an entrance

velocity range from 6 to 12m/s. Various transition devices were tried, including

3D roughness, but a d=2.4mm wire located at X=0.15m was best, producing

a "normal" turbulent boundary by X=0.35m. The Reynolds number per unit

length based on the entrance velocity to the test section is 4.28 x 105 1/m giving

a nominal entrance velocity of around 6.5 m/s. The Reynolds number was

maintained constant to within q-l_0 during all measurements. The free-stream

turbulence intensity in the test-section near the exit of the contraction is 0.25%.

The Y-axis (normal to the wall) of the traverse is carried by the (spanwise)

Z-axis which is supported within the test-section by a gantry constructed of

carbon-fiber composite. The Y- and Z- axes use linear stepping motors for

positioning. Rubber strips are used to seal the gaps between the edges of the

plate and the sidewalls. These gaps provide access for mounting the gantry to

carriages underneath the plate. A brushless linear d.c. motor is attached to one

of these carriages for positioning of the (streamwise) X-axis. The coordinate

origin is on the wall at the centerline of the contraction exit. The size and

repeatability of the measurement volume and the maximum traversing speeds

are 2100 4- 0.1 mm at 2.0 m/s in the X-direction, 95 -t- 0.05ram at lm/s in the Y-

direction and 500 4- 0.05ram at lm/s in the Z-direction. These traversing speeds

are sufficient for "flying hot-wire" measurements in regions of high turbulence

intensity (see Watmuff, Perry and Chong 1983), but this capability has not been

exploited yet.

_._. Probes

Three round Pitot tubes with o.d. ranging from lmm to 2mm are used to

measure the mean velocity (U), and nine different Preston tubes with diame-

ters ranging from 1.5mm to 7.9ram are used for skin friction coefficient (Cf)

measurements.

=
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Modified Dantec normal and cross-wire probes are used for the turbulence

measurements. The distance between the prongs is reduced, and the prongs are

stiffened with the addition of a small web. Platinum filaments 2.5 #m diam-

eter and 0.Smm long are used. Perry, Lira, Henbest and Chong (1983) found

substantial differences between profiles of _-U measured in a rough-wall bound-

ary layer where large turbulence intensities exist. The differences in _'_ were

found to depend on the included angle between the cross-wire filaments and on

whether the probe was stationary or "flying" upstream. The differences between

the stationary and flying results were substantial only for conventional probes

where the included angle is nominally 90 ° . Only small differences were observed

when the included angle was increased to 120". By tilting the probes in a uni-

form stream, Perry et al. found that a flow angle of 45 ° could be imposed on

the probe with the 120 ° included angle without appreciable error, but that the

probe with a 90 ° included angle started to show errors at flow angles as low as
20 ° .

Since relatively high turbulence intensities are also experienced in the APG re-

gion in this experiment, the included angle between the cross-wire filaments was

increased to 110 ° which is about the maximum possible angle considering the

probe geometry. Estimates of the Probability Density Function of the instanta-

neous flow angle (0) relative to V have been measured at various positions in the

layer and Pr[-20 ° < 0 < 20 °] > 0.995 in the most strongly turbulent regions.

Thus, the errors described by Perry et al. should be small in this experiment.

Wall distances are set using the electrical contact of a needle with the test

plate. This distance is calibrated by focussing a telescope on the filament and

its image in the wall.

_.3. Methods

The small pressure differences in the test section (0.100 inches of water maxi-

mum) are measured using a high accuracy commercially available pressure trans-

ducer with an advertised accuracy of better than 0.001 inches of water and a

range of 0.5 inches of water. The 44 static wall taps, pitot tube and reference

total and static pressures are connected to the transducer via a 48 port Scani-

valve under computer control. A pause of 5 seconds is used after the connection

before reading the transducer, and all averages are obtained over at least 90
seconds.

The Cp variation is shown in figure 1, and it acts as a simple data base for
inferring the local static wall pressure for all pressure probe measurements. The

Cp data base was created by simply averaging the results of a number of runs

performed several months apart. There is no discernible trend in the data taken

at the different times. Averaging periods of up to 15 minutes were found to be
necessary to achieve smooth data.

When the pressure probes are on the wall, the pressure difference between the

probe and the local static pressure can be very small owing to the low velocities



40

FIGURE 1.

0,5

0.4

0.3

0.2

O.l

0+0

-0.1

-0.2

-0.3

-0.4

-0.5

J. H. Watmuff

Average of Cp runs

0,000.25 0.50 0.?,5 1.00 |,25 1.50 1.75 2.00

X (m)

Variation of pressure coefficient Cp with X.

in the test-section. Further, the pressure difference is obtained by subtraction

of two relatively large numbers. For the Preston tube C! measurements, long

time averaging periods were also necessary for smooth results.

Hot-wire probes must be calibrated frequently in a uniform stream. Using a

conventional single-axis traversing system in this experiment would require the

removal and reinstallation of fragile and expensive probes from the measurement

region for the purpose of calibration. This would be time consuming and risk

probe breakage. One advantage of the computer-controlled 3D traverse is that

this operation occurs in a matter of seconds while minimizing the chances of

probe damage. The system also acts as a shaker for imposing accurately known

velocity perturbations on the cross-wire probes for calibration purposes.

A high-speed 15 bit Tustin A/D converter and a microVAX II computer are

used for double-buffered data acquisition. A 32K hardware buffer is located

between the Tustin and the computer and high speed DMA data transfers need

only occur when the buffer is nearly full. While waiting for the new data the CPU

is free to process data obtained during the previous data acquisition cycle using

newly developed high-speed algorithms for reducing hot-wire data to Reynolds

stresses, i.e. there is a high degree of parallelism between data acquisition and

data processing. A system throughput of 25K/s for single wires and 10K/s for

cross wires can be sustained indefinitely despite the fact that the calculations

are performed in double-precision.

Total computer control of tunnel speed, probe traversal, and data acquisi-

tion allows all procedures to be automated. Sophisticated software enables long
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duration experiments to be performed continuously over many days without

manual intervention. This mode of operation required several significant new

developments. For example, large and complex 3D measurement grids can be

programmed and viewed ahead of time. Hot-wire calibration drift is monitored

and new calibrations are performed (automatically) if the drift exceeds some

tolerance. Other features that have proved vital for long duration unattended

experimental runs include automatic error detection/recovery schemes and the

provision of "emergency" asynchronous manually initiated software interrupts
for hardware checkouts and to provide access to approximately 125 menu set-

table control variables.

Automation of the experiment allows massive quantities of data to be pro-

eessed on-line over a relatively short period. Spatially dense mean-flow and

Reynolds stress profiles are measured along the tunnel centerline at 50ram inter-
vals from X=0.2m to X=2.0m, i.e. 37 profiles. The close spacing of the profiles

is needed in the region of FPG to examine the recovery from upstream trip ef-

fects and the approach to self-similarity and in the region of APG where there is

rapid growth with streamwise distance. The spacing of the profiles also provides

a sensitive means for detecting anomalous data.

The greatest obstacle in obtaining high quality data has been hot-wire calibra-

tion drift caused by extremely large changes in ambient temperature. Variations

of up to 40°F are typical over a 24 hour period while changes of up to 10°F

have been observed over a period as short as 5 minutes. Automation of the

experiment has provided a "brute force" solution to this frustrating problem,

i.e. hot-wire profiles are repeated until the drift check obtained after measuring

a profile is within a certain tolerance of a drift reference taken immediately af-

ter the wires have been calibrated. Setting the drift tolerance at 0.5% (larger

tolerances introduce too much scatter in the data) has meant that on average a

profile must be measured 5 times before it is acceptable. At the time of writing

over 600 normal- and cross-wire profiles have been measured.

3. Results

3.1. Skin friction

The streamwise distribution of C! at 37 streamwise locations along the tunnel
centerline has been measured with 9 different diameter Preston tubes ranging in

diameter from 1.5mm to 7.9mm In the FPG the larger diameter tubes protrude

into the region where the mean flow deviates from the law of the wall. Down-

stream towards the end of the APG region the pressure difference Ap between

the smallest diameter probes and the local static pressure inferred from the Cp
data base can be as small as 0.006 inches of water. Therefore, errors of 1% in

the reference total head (_ 0.1 inches of water) or in the Cp data base lead to
errors of _ 15% in Ap. Consequently, the estimates from the 9 tubes have been

averaged using the criteria that the nondimensional diameter d + < 100 and that
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AP > 0.01 inches of water. The averaged data are shown in figure 2. High val-

ues of CI(> 5.5 x 10 -a) are maintained in the FPG region. With application of

the APG the C/falls rapidly at first but for X>l.Sm C/ approaches a constant
value.

The accuracy of the C! measurements needs to be considered since the pres-
sure gradients in both the FPG and APG regions exceed the limits suggested by

Patel (1965). Hirt and Thomann (1986) compared the wall shear stress _',_ mea-

sured directly with a floating element to values inferred from Preston tubes in

axisymmetric boundary layers subject to sudden application and removal of ad-

verse pressure gradients, i.e. the layers were far from equilibrium. Preston tube

errors of up to 10% were observed. They found that the Preston tube readings
indicated velocities below the law of the wall in decreasingly adverse pressure

gradients. However, no parameters could be found to correlate the errors, so it

is difficult to apply their results to this flow.

McDonald (1968) used empirical information combined with similarity argu-

ments based on mixing length concepts to examine the effect of pressure gradi-
ent on the law of the wall. Deviations from the law of the wall were expressed

as a function of a stress gradient ao = (r,/pU_)dP/dX. In this experiment

-0.009 < a0 < 0.02 and his results indicate that the deviations from the law of

the wall may be as high as 8%. However, for a slnk-flow the predictions indicate

a negative deviation while the experiment of Jones and Launder (1972) and the

numerical study by Spalart (1986) both indicate positive deviations from the law

of the wall. Therefore, the accuracy of McDonald's predictions is questionable.
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In this experiment, the results from the 9 Preston tubes satisfying the av-

eraging criteria described above cover the range 20 > d+ > 100 and the Cy

estimates agree to within Jr 3%. Moreover, the mean velocity profiles in the

APG region shown in figure 3(b) (where + 3) fairly closely follow bothTr_ i rt _,

the sublayer profile and the logarithmic law. The most significant anomalies

appear in the FPG region, figure 3(a), where there are deviations from both the

sublayer profile and the logarithmic law.

3._. Mean velocity

It is well known that Pitot tubes suffer from wall proximity effects and a va-

riety of correction schemes exist. However, it is uncertain which is the most

appropriate for boundary layer data. Local static pressures have not been mea-

sured, and the Pitot tube data is reduced using the static pressure at the wall.

The local static pressure throughout the layer could differ substantially from the

wall static pressure owing to mean streamline curvature. Also, the Pitot tube

mean flow data shows some scatter, especially in the near wall region, owing to

the small pressure differences. For these reasons the normal hot-wire mean flow

data are presented here.

The mean-veloclty profiles in the FPG region are shown in figure 3(a). The

first profile at X=0.2m (50ram downstream of the trip wire) is strongly contam-

inated by the trip. At X=0.25m the pressure gradient is small and the profile

here has the appearance of a typical low Reo zero pressure gradient layer. Note

the wake component. Also, this profile follows both the sublayer profile and the

logarithmic law more closely than the other profiles. From X=0.3m onwards the

profiles are essentially identical for about 206 in the streamwise direction. The

layer thicknesses 5 _ 12.0mm, 5* _ 1.75mm and 0 _ 1.2mm remain very nearly

constant. At the end of the FPG the C! is uniform to within +1 -_% over a span

of 405. These results provide strong evidence that the design goal of producing

a highly 2D self-similar slnk-llke flow condition for compatibility with the initial

conditions of Spalart's CFD simulations has been closely achieved. The small

value of Rea,... = 650 at the end of the FPG increases the size of the APG

region which can be treated by the simulations.

Application of the APG increases the growth rate and the profiles become less

full, resulting in large values of the strength of the wake component as shown in

figure 3(b). The profiles appear to follow the law of the wall, but the region of

logarithmic velocity variation remains small (Y+ < 100). The layer thicknesses

/_, 5* and t_ (not shown) increase almost linearly with streamwise distance and the
profile shape factor H (not shown) is a weak indicator of the change. At the end

of the region corresponding to Spalart's simulations (X=lm) /_ _ 28ram. The

spanwise variation in C! is within +3% over 125, and the momentum balance is

within 5%. These results indicate that the layer is acceptably two-dimensional.

The flow will provlde an excellent test case for Spalart's new method since at

X=lm, Rea _ 1500 and/_ = 6." d___P_P_ 2.
_r_, d_



Low Re turbulent boundary layer subject to an adverse pressure gradient

0 X'O,20 m _ X'O.]O m -I- X-0.40 m 0 X'O,_ m • X-O.60 m

0 X=0.25 m V X'0,35 m x X'0.45 m • X'0.55 m
o

%
°

0.0

FIGURE 4.

scaling.

oil
U,,!

o

0•0

FIGURE 5.

45

I00.0 _Ur 200.0 300.0

v

£

00.0

0'.2 0'._ 0'.6 0'.8 ,% ,.2
/t
6

against r.Streamwise development of _

0 x-O b5 - o X-0.95 , II z-1.25 - + X-l.55 - Ii %-1.85 •

0 X-O.71J m Ill X'1.00 m 0 ]('[ .30 m X X'| .60 m M X"l ._0 m

n X-0.75 _ • X-1.05 . 0 X-1.35 - 0 X-] .65 - • X-1.95 m

v X-O,80 m • X*l.|O m n X-l,40m B X'l.70m _ X-2.00 m

+ X-O.B5 m _a X-l.I5 m d. X-1.'15 _ • X-I./5 m

x X-0.90 _ a X-l.2O m 9 X-1.5.0 m @ X'l .flO m

m

Streamwise development of u2/U_ in the FPG region with wall



46

*xoieO

_meel8

OC]41B'÷×

0"£

0"_[ O'_I 0"01 O'g 0"9 0"} 0"_ 0"0 0"1, _'_ 0"_ _'_' O'_ _'I (]'| _'0 0"0

FIGURE 6. Streamwise development of Reynolds stresses in APG region in

w_]l coordinates. (_) _ (b) _ (c) _ (d)



Low Re turbulent boundary layer subject to an adverse pressure gradient 47

Further downstream, in the region beyond the current capabilities of direct

CFD simulations, there is evidence to suggest that the layer finally reaches a

new self-preserving condition. Near the wall, the data follow the law of the wall,

and in the outer region profiles of the velocity defect collapse. /3 approaches a

constant value which is a necessary condition for self-preserving layers. Also,

the strength of the wake component asymptotes to a constant value of around

14. Unfortunately, the two-dimensionality of the mean-flow is poorer in this

region since the spanwise variation in G/ increases to 4-6% and the momentum
imbalance rises to about 9%.

$.5. Reynolds stress

The normal hot-wire measurements in the FPG region shown in figure 4 in-

dicate that the trip effects decay rapidly in the near wall and outer regions but

that a longer development length is required for recovery in the central region of

the layer. However, the profiles havea marked similarity over the last 20g of the
-- It 'l_ V 2

FPG region. The same behaviour is observed for the cross-wire data v,2 , u,=

and _- but these results are not shown here. The observations provide further
evidence that the layer is in a state of equilibrium before application of the APG.

Profiles of turbulence quantities in the APG region are shown with wall scaling

in figures 6(a) to (d). The close spacing of the profiles provides a sensitive

means of detecting inconsistencies in the data (assuming that the profiles should

develop smoothly and monotonically with X). Large values of all the fluctuating

quantities emerge in the central region of the layer with increasing streamwise
it 2

distance. Note that tr--)-in the central region of the layer is larger than the peak
value near the wall for z > 1.5m, in sharp contrast with channel flow and zero

PG boundary layers.

Profiles of _ are plotted against Y/6 in figure 5. Note that in the outer
half of the layer the profiles are essentially identical for X > 1.1m. Similar

observations apply for cross-wire data but these are not shown. It appears that

the turbulent fluid in the outer region of the layer is convecting downstream

almost without change. The peak values of the Reynolds stresses possess a locus

which is linear with X, being inclined to the wall. The locus of maximum v/_
U,,!

,___L
can be clearly seen in the contour plot shown in figure 7(a). Contours of tI_ are
shown in figure 7(b). The disparity between the two sets of contours illustrates

that the relationship between the turbulence structure at the wall and the outer

flow varies widely in response to the pressure gradient. This is one of the most

interesting aspects of this boundary layer.
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An experimental study of the effects
of rapid rotation on turbulence

By S. V. Veeravalli

1. Introduction

Experiments (Traugott, 1958, Wigeland & Nagib, 1978 and Jacquin et al.,

1988), large eddy simulations (Bardina et al., 1985) and direct numerical sim-

ulations (Bardina et al., 1985 and Speziale et al., 1987) all show that rapid

rotation (i.e. the rotation time scale (l/N) << the turbulence time scale) has

a striking effect on homogeneous nearly isotropic turbulence. The cascade pro-

cess is effectively inhibited by rotation, and thus dissipation is greatly reduced.

Some attempts have been made to incorporate this effect in turbulence models

(Bardina et al., 1985 and Speziale et al., 1987). Numerical simulations further

showed the somewhat surprising result that anisotropic homogeneous turbulence

subjected to rotation tended towards an isotropic state; however, the residual

anisotropy was not zero. Reynolds (1989) performed a detailed analysis using

Rapid Distortion Theory (RDT) and showed that a reduction in the anisotropy

is indeed expected and if the anisotropy is produced by irrotational strain then

the anisotropy tensor bij is asymptotically driven to half its initial value.

Our objective is to extend the work of the experiments mentioned above to

lower turbulent Rossby numbers (Ro_, -- (_ 2)_/(_) _ 0.07 to match those_q
used in the numerical simulations -- _ is the Taylor microscale and q2 is twice

the turbulent kinetic energy) and to confirm some of the results obtained by

Reynolds (1989) for anisotropic turbulence.

2. Previous work

Experimental studies of rotating turbulence can be broadly classified into two

groups: a) rotating tank experiments and b) wind tunnel experiments.

The work of Ibbetson & Tritton (1975) and Hopfinger et al. (1982) belong

to category a . Ibbetson & Tritton dropped a grid into a rotating tank and

found that the turbulence behind the grid decayed much faster in the presence

of rotation. Hopfinger et al. (1982) used a shaking grid to generate turbulence

and found that away from the grid the flow exhibited a strong tendency towards

2-dimensionality and essentially consisted of columnar vortices aligned with the
axis of rotation.

Traugott (1958), Wigeland & Nagib (1978) and Jacquin et al. (1988), on the

other hand, imposed solid body rotation on grid turbulence in a wind tunnel

and thus these experiments approximate homogeneous turbulence better. The

smallest value of Rox achieved in the Wigeland & Nagib (1978) experiment

INE .ZN FEr T[QNA, =I=y
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was approximately 0.4 while Jacquin et al. (1988) obtained a value of 0.3.

These experiments showed that the mildly anisotropic grid turbulence tended

towards isotropy and that the kinetic energy decay was greatly reduced due

to an inhibition of the cascade process. The flows did not exhibit a strong

tendency towards 2-dimensionality; however, the length scales along the axis

of rotation grew at a much faster rate compared to the non-rotating ease and

showed departures from the behaviour expected in isotropic flow (the direct

numerical simulation results of Bardina et al., 1985 show a similar behaviour for

the length scales).

Large eddy simulations and direct numerical simulations (Bardina et al., 1985

and Speziale et al., 1987) als0 showed the dramatic Suppression of the spectral

transfer term observed in experiments. In particular, Speziale et al. (1987)

found that the development of the energy spectrum E(_,t) agreed extremely

well with,

E(t¢, t) = E(t¢, to) ezp[-2vtc2(t - to)] (1)

which is what is expected for purely viscous decay with the spectral transfer

term equal to zero. (u is the kinematic viscosity, __ the wave number vector

and the development is for t > to.) SpeziMe et al. (1987) also showed that

homogeneous (unbounded) turbulence does not undergo Taylor-Proudman reor-

ganization -- the analysis is outlined below. The results of Reynolds (1989) are

also summarized below.

3. Theory

In the equations to follow, the mean velocity is constant, u, represents the

instantaneous velocity, fl__the rotation vector, p the instantaneous pressure, and

p the density. The Navier-Stokes equations in a frame rotating with the mean

rotation fl__and moving with the mean speed are,

O2u (2a)Oui Ouiuj _ 10p _ 2_ijkf_juk + v_
0-¥" + Ozj p Ozi OzjOzj

(the centrifugal acceleration term has been included in the pressure) and the

continuity equation is

= 0. (2b)
Oxi

If the Rossby number ¢/(ftq 2) is << 1 (where ft = I_1 ) and the Ekman number

v/(ftL 2) is also << 1 ( where L is a typical length scale) and the flow is nearly

steady, then we have,
0p

-- 2_j_ f_juk (3)

The curl of equation (3) then yields the Taylor-Proudman theorem

Ouk

= 0, (4)
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indicating that velocity gradients along the axis of rotation are suppressed.

However, for unbounded flows, the inviscid linearized equations (RDT equa-

tions),
0ui 1 0p

-- - 2_i_k ft_uk, (5)
c3t p Ozi

admit travelling wave solutions of the form (Greenspan, 1968 and Phillips, 1963),

= A= - a t)]. (6)

Thus,

_ui
- a(_) f_ Ai ezp[i(t¢. _- a(t¢) ftt)]. (7)

0t

And hence (Speziale et al., 1987),

[_t/I/IEi_t_uk I = O(1) (8)

always. Hence, equation (3) is not applicable and no Taylor-Proudman reor-

ganization occurs for homogeneous turbulent flows undergoing rapid rotation.

Equation (7) indicates that the time scale of the velocity fluctuations is O(1/f_);

however, the non-linear term in equation (2a) is still negligible as e/(ftq 2) is

<<I.

Reynolds (1989) showed, using the inviscid RDT equations (5), that for iso-

tropic homogeneous turbulence, the spectrum tensor Eij(t¢) is unchanged under
rotation. He also studied the effect of rotation on anisotropic turbulence by

defining the following 'structure' tensor,

f _i_j 1=1 t x.Yi j = -- _,_,_ t t¢)at¢ , (9a)
/£rt/£n

with the corresponding anisotropy 'structure' tensor

Y/J - qZgij/t3 (gb)
Yij = q2

1
(Note that if the turbulence is independent of zl then Yll = 0 and Yla = -_.) It

can then be shown (Reynolds, 1989) that Yij and consequently yij is unaffected

by rotation. Further,

(lO)bit ---* --- as t ---*c¢.
2

Reynolds (1989) also showed that 2-D 1-C (two-dimensional one-component) tur-

bulence and 2-D 2-C turbulence tended to 2-D 3-C turbulence with the asymp-

totic state given by equation (10).
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The turbulence generated in the laboratory is necessarily bounded and not

strictly homogeneous due to the presence of the tunnel walls. It is unclear

whether relations (8) and (10) would be strictly valid in such a case. If the

turbulence does tend towards 2-dimensionality, then there are two regimes of
interest:

V

a) -- << 1 but Ro,7 =---> 1
f_q2 f_r/

where 77and v are the Kolmogorov length and velocity scales respectively and

b) -- << 1 and << 1.
f_q2 _'_

(3"acquin et al., (1988) observed that when v/(ft_l) = O(1), then the turbulence

decay rate changes sharply from q2 .._ z-1.3 to q2 ... z-1 indicating that a

third regime could exist between 'a' and 'b'.) If the dissipation scales do be-

come axisymmetric for very small Ro,, then one would expect different decay

rates for the axial and transverse velocity components (Batchelor, 1946) and the
turbulence could then become anisotropic.

4. Experiments

The experiments will be carried out in three stages. Preliminary measure-

ments will be done in a 15.2cm diameter tunnel operated at a maximum speed

of 10 m/s and capable of rotation rates up to 200 rad/s. The second series of

experiments would be conducted in a 76 cm diameter facility capable of a peak

speed of 30 m/s and a peak rotation rate of 80 rad/s. Finally, the 76 cm facility

would be placed in a pressure vessel and operated at a pressure of approximately

16 atmospheres (and at approximately 8 m/s) in order to significantly increase

the turbulent Reynolds number.

The design of the 15.2 cm rotating rig is complete and a schematic diagram is

shown in Figure 1. The design is similar to the one used by Wigeland & Nagib

(1978). The flow is provided by a centrifugal blower; it is then passed through

a settling chamber and a contraction before entering the rotating section. The

rotating section consists of a honeycomb of sufficient pressure drop to induce

solid body rotation in the flow and a turbulence generating grid. The rotating
turbulent flow is then studied in the stationary test section. The in-house con-

stant temperature anemometers (Microscale HWM-100) were thoroughly tested
and were found to be adequate for the initial measurements. The software nec-

essary for data acquisition and analysis is being developed. A calibration set-up

for x-wires will be fabricated. We are also currently working on the design of

the larger (76 era) facility.

The types of the experiments and the measurements of interest are described
below.
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Detailed measurements of decaying nearly isotropic grid generated turbulence

will be made in the rotating rig and compared with the non-rotating case. The

quantities of interest would be the Reynolds stresses, dissipation rates and length

scales. Two point correlation functions R,_,_(r,0, 0) and R,_(O, r, 0), (no sum on

a) could be measured to compare the growth rates of the length scales obtained

from axial and transverse separations (the axis of rotation has been assumed

to be along x, see figure 1) -- none of the previous measurements shows a

comparison of the type; R33(r,O,O) vs. R33(0, r, 0). In addition the spectral

transfer term could be measured, both directly and from the decay of the energy

spectrum (c.f. Yeh & Van Atta, i_973).

The Rossby number used in the numerical simulations (Rox _ 0.07) was cho-

sen as the principal design parameter for the 15.2 cm facility; however, it should

be capable of operating in regime _b' discussed above. The expression for Ro T

when q2 _ AU2(z/M) -1 is given by

1 t.

(11)
2v½flz

(Here, M is the mesh size, U is the mean axial velocity and z is the downstream

distance). Thus, with a judicious choice of M, U, ft it should be possible to

obtain RoT _ 0.2 within the test section (approximately 0.75 m long). (Note that

one can't simply increase f/ to decrease RoT because when ft/(RU) .._ 1, where
R is the radius of the tunnel, the vortex exiting the tunnel could breakdown

(Dellenback et al., 1988), creating disturbances in the test section.)

A second set of experiments will be conducted to study the effect of rotation

on anisotropic turbulence. It would not be possible to verify all the results pre-

sented in Reynolds (1989), especially those pertaining to 1C and 2C turbulence,

in the laboratory; however, one could examine the validity of equation (10).
The intensity of the axial velocity fluctuations could be reduced with respect to

the transverse components by passing the flow through a contraction and the

behaviour of bij downstream of the contraction could be studied. Additionally,
a small difference in the intensities of the transverse fluctuations could be intro-

duced by using a parallel bar array instead of a bi-planar grid to generate the

turbulence (Veeravalli & Warhaft, 1989).

Finally, it would interesting to study the dispersion of a passive scalar in this

flow with a view to examining the difference in mixing rates along the axis and
in the transverse plane.
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1. Introduction

This report covers the first eight months of an experimental research project

on the secondary vortex structure in plane mixing layers. The aim of the project

is to obtain quantitative data on the behavior of the secondary structure in a

turbulent mixing layer at reasonable Reynolds numbers (Re6_ "_ 50,000. In

particular, we hope to resolve the questions of how the scale of the secondary

vortex structure changes with the scale of the mixing layer, and whether the

structures are fixed in space, or whether they "meander" in the spanwise direc-

tion. Co-investigator for this project is Rabi Mehta, a :/IAA research associate.

2. Background

It is well known that the development of plane mixing layers is largely influ-

enced by the formation and interaction of large-scale spanwise vortices (Brown

& Roshko 1974). Many of the earlier studies which first determined the impor-

tant role played by the spanwise vortices also showed the existence of a second

organized and persistent vortex structure in the mixing layer. Initial experi-

ments showed that this vortex structure was oriented mostly in the streamwise

direction, and suggested that its appearance might be related to the appearance

of small scales within the flow (Konrad 1977, Breidenthal 1981).

A fairly clear picture of the streamwise vortex structure was produced by

subsequent flow visualization experiments (Bernal 1981, Jimenez et al. 1985,

Lasheras et al. 1986, Bernal & Roshko 1986, and Lasheras & Choi 1988), and

this is described below. The structure is sketched in figure 1, which is taken from

Lasheras et al. (1986). It appears that the streamwise vortex structure arises in

the braid region of the mixing layer, between the spanwise structures. Residual

spanwise vorticity in this region is stretched by the strain field produced by the

spanwise structures. The extensional principle axis of the strain field is along

a line perpendicular to the spanwise direction and is oriented at an angle to

the streamwise direction. The result is the formation of a vortex tube which

winds back and forth between adjacent spanwise rollers. When viewed from

above, this structure appears to be a row of alternating-sign streamwise vortices

embedded in the mixing layer. This picture of the structure has been confirmed

by the results of numerical simulations using both the Biot-Savart law (Ashurst

& Meiberg, 1988) and the direct Navier-Stokes method (Metcalfe et al. 1987).

Despite these results, many features of the streamwise vortex structure are

not well understood. This is mostly due to a lack of quantitative information

IIAE.__ ..... It_l_,_._O_llY Bt._IPRF.,CEDING PAUE BLANK NOT FILMED
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FIGURE 1. Sketch of vortex structure in mixing layers. Thick lines outline

the spanwise structures, and the thin lines looping between them represent the

streamwise vortex structure. (Taken from Lasheras et al. 1986.)

on the development of this structure, which in the past has usually been studied

through flow-visualization. Fortunately, the streamwise vortex structure is suf-

ficiently stable that it shows up in the mean flow and can be examined through

measurements of mean streamwise vorticity in the mixing layer. This approach

was used by the authors in a recent study, which investigated the presence and

role of "naturally occurring" streamwlse structures in a mixing layer (Bell 8z

Mehta 1989a). A plane, two-stream mixing layer was generated, with a fixed

velocity ratio of 0.6 and both initial boundary layers laminar and nominally

two-dimensional. Measurements indicated that small spanwise disturbances in

the upstream boundary layer on the high speed side of the splitter plate were

amplified prior to the roll-up of the spanwise vortex sheet. Actual streamwise

vortices were first observed slightly farther downstream, prior to the estimated

location of the spanwise vortex roll-up. The streamwise vortices first appeared in

widely spaced clusters of 3-4 vortices of both signs, but further downstream, the

vortices re-organized to form counter-rotating pairs. The spacing between indi-

vidual streamwise vortices was found to grow in a stepwise fashion as the mixing

layer developed, with the location of the steps corresponding to the estimated

locations of pairing of the spanwlse vortices. Overall, the streamwise vortex

structure scaled approximately with the mixing layer vorticity thickness. The

streamwise vortex structures appeared to weaken with streamwise distance, with
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the maximum mean vorticity diffusing as approximately 1/X l"s. The stream-

wise vorticity was found to be strongly correlated in position, strength, and

scale with the secondary shear stress (u'w'). The u'w--7 data suggested that the

streamwise structures persisted through to the self-similar region, although they

were very weak by this point and the mixing layer appeared to be nominally

two-dimensionM.

The present study is an extension of Bell & Mehta (1989a), using more sophis-
ticated instrumentation to examine the role of the streamwise vortex structure

in mixing layer development. One particularly interesting question raised by the

experimental results relates to the observed decay of the mean streamwise vortex

strength with X. This finding is in conflict with the results of direct Navier-

Stokes simulations, which show no sign of streamwise vorticity decay (Rogers

& Moser 1989). It has been suggested that the discrepancy occurs because the

vortices tend to wiggle, or "meander" from side to side in the spanwise direc-

tion with increasingly greater amplitude as the flow moves downstream. The

increasing amplitude of the meander would presumably reflect the transition of

the mixing layer to an increasing turbulent state as the local Reynolds number

increased. Once the amplitude of the meander became greater than the spacing

between adjacent vortices, the structure would essentially average itself out of
the mean flow. However, the streamwise vortex structure should still be de-

tectable by more sophisticated means, such as spatial or temporal correlations.

In the present study, it is proposed to apply these techniques to examine the

behavior of the secondary vortex structure.

3. Experimental apparatus and techniques

$.1. Pre-ezisting ezperimental apparatus

The Mizing Layer Wind Tunnel located in the Fluid Mechanics Laboratory
at the NASA Ames Research Center was used for all of the work described in

this progress report (Fig. 2). The wind tunnel consists of two separate legs

which are driven individually by centrifugal blowers connected to variable speed

motors. The two blower/motor combinations are sized such that one has three

times the flow capacity of the other, although the components downstream of the

wide-angle diffusers are identical on the two legs. The two streams are allowed

to merge at the sharp edge of the tapered splitter plate. The included angle

at the splitter plate edge, which extends 15 cm into the test section, is about

1°, and the edge thickness is approximately 0.25 mm. The test section is 36

cm in the cross-stream direction, 91 cm in the spanwise direction and 366 cm in

length. One side-wall is slotted for probe access and flexible for pressure gradient
control.

The free-stream velocities within the test section are typically found to remain

constant to within 1% of the set value. The measured streamwise turbulence

level (u'/Ue) is about 0.15% and the transverse levels (v'/Ue and w'/U,) are
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FIGURE 2. Mixing Layer Wind Tunnel.

about 0.05%. The mean core-flow is found to be uniform to within 0.5%, and

cross-flow angles are less than 0.25 ° . Further details of the mixing layer wind

tunnel design and calibration are given by Bell & Mehta (1989b).

In the studies described in section 4, measurements were made using a single

rotatable cross-wire probe held on a 3-D traverse and linked to a fully automated

data acquisition and reduction system controlled by a MicroVax II computer.

The cross-wire probe had two 5 #m diameter tungsten sensing elements, each

about 1 mm long and positioned about 1 mm apart. The probe was calibrated

statically in the potential core of the flow assuming a 'cosine-law' response to

yaw, with the effective angle determined by calibration. The analog signals were

filtered (low pass at 30 Khz), DC offset, and amplified (xl0) before being fed

into a NASA-built computer interface. The interface contained a fast sample-

and-hold A/D converter with 12 bit resolution and a multiplexer for connection

to the computer. Individual statistics were averaged over 5,000 samples obtained

at a rate of 400 samples per second.

3.,_. New ezperimental apparatus

As indicated in section 2, single-point, time-averaged measurements are insuf-

ficient to fully address the question of how secondary vortex structure develops
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Sketch showing new probe holders made for spatial correlation
measurements.

in the mixing layer. Accordingly, considerable time has been spent on the con-

struction of new equipment and software for measuring spatial and temporal

correlations. The new equipment consists of a pair of new hot-wire probe hold-

ers, a second, independent, 2-D traverse system, and a new traverse table. New

software has been written to acquire two-point data and compute the correla-

tions, as well as to increase the degree of automation in the data acquisition

process.

The two new hot-wire probe holders are sketched in figure 3. Both probe

holders allow the crossed hot-wire probes to be yawed at 2.5 ° intervals for precise

angle calibrations. The larger ='movable" probe can be rolled at 45 ° intervals,

allowing measurements of all six independent components of the Reynolds stress

tensor, as well as the three components of mean velocity. The smaller "fixed"

probe can be rolled at 90 ° intervals. Both probe holders will be capable of moving

independently on separate traversing systems. In practice, however, the "fixed"

probe holder will be left at one point in the flow, while the "movable" probe

holder is traversed automatically around it, to obtain correlation measurements.

The movable probe holder is designed primarily for ease of use, and is mounted on

the original computer-controlled 3-D traverse system. The fixed probe holder is

designed with an angled head, so that the two hot-wire probes can be brought as

close together as possible. The minimum probe separation is 6 mm, which, in the

region under investigation, is approximately 1/10th the mixing layer thickness,
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and 1/5th the radius of the streamwise vortices. The fixed probe is mounted

on a 2-D traverse system, which rests within the 3-D traverse for the movable

probe.

A new table for the combined probe traversing mechanism has been con-

structed. The old traverse table, made from wood, had to be laboriously shifted

and re-leveled at each new measurement station. Careful leveling is necessary

because the angle the probe makes with the flow must be carefully maintained
from one station to the next in order to make consistent measurements of the

secondary velocities, which are comparatively small. The new traverse table is

more stable than the old one, and has a more effective leveling system. This al-

lows the probes to be shifted between measurement stations much more quickly

and accurately, increasing both the overall rate at which data is acquired and
its repeatability.

Under the old system, velocity data from the crossed hot-wire was reduced

on-line. Raw data was not stored. The greater volume of data produced by

the dual probes makes real-time data reduction impractical, while the recent

acquisition by the Fluid Mechanics Lab of an Exabyte EXB-8200 8mm helical

scan tape drive makes it considerably easier to store large quantities of raw

data. As a result, new software has been written to allow the raw data to be

stored and transferred to tape with extensive off-line data reduction. The stored

raw data will form a database from which any temporal or spatial correlation

implicit in the original measurements can be retrieved. Another major aim of the

software upgrade has been to further automate the data acquisition procedure.

The new probe holder design allows the crossed hot-wire calibration procedure

to be partially automated. As a result, the calibrations can be automatically

checked at periodic intervals during a run. This will result in longer running

times, a lower level of operator intervention, and lower errors due to hot-wire
drift.

$.$. New measurement techniques: application to the problem

A simple relationship between spatial correlation data and the actual coherent

structures in a turbulent flow can rarely be established. Considerable care must

be exercised in postulating the form of a turbulent structure from the correla-

tion data, and in fact some controversy has arisen in the past concerning the

interpretation of correlation measurements in mixing layers (Chandrsuda et al.

1978, Wygnanski et aI. 1979, Wood 1980). In the prese_at case, the task is con-

siderably easier. The general shape of the coherent structures has already been

discovered through flow visualization, and it is only necessary to determine their

scale and strength. Thus, it is reasonable to search for the particular correlation

which is most likely to give unambiguous data concerning the behavior of the
structures.
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FIGURE 4. Sketches showing details of proposed spatial correlation measure-

ments, z is the spanwise location of the fixed probe, r is the spanwise separation

between probes, a) Sketch of streamwise vorticity field in mixing layer, b) Level

of cross-stream velocity along a line through the centers of the vortices, c) Sketch

of spatial correlation R_, for the case of fixed streamwise vortices, d) Sketch of

spatial correlation R,, for the case of meandering streamwise vortices.
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To address the question of spanwise meander of the streamwise vortex struc-

tures, the best quantity to examine appears to be the variation of the cross-

stream velocity correlation in the spanwise direction, i.e., R_(0,0,r). Imagine

that the shear layer contains a row of alternating-sign streamwise vortices, as

diagrammed in figure 4a. A distinctive pattern of cross-stream velocity is pro-

duced. This is demonstrated in figure 4b, which shows the variation of V with

Z along a line drawn through the vortex centers. The cross-stream velocity

rapidly changes sign across the core of a streamwise vortex. If correlation mea-

surements are made along a line passing through the streamwise vortex cores

in the spanwise direction, there will be a zero-crossing at a separation corre-

sponding to the radius of the vortices. This correlation will be observed even

if spanwise meander has reduced the mean streamwise vorticity to zero. The

amplitude of the meander can also be determined from the variation of Rw with

both the spanwise location of the fixed probe (z) and the spanwise separation

of the probes (r). If the streamwise vortex structure is fixed in the spanwise
direction, the variation of R_v with z and r can be easily calculated from the V

vs z curve shown in figure 4b. The resulting contour plot is shown in figure 4c. If
the structure meanders over a distance larger than the radius of the streamwise

vortices, the very different correlation shown in figure 4d will be obtained. In

this case, while there is no dependence on the location of the fixed probe (i.e. z)
and no detectable mean vorticity, the variation with probe separation r sumces

to establish the presence and radius of the streamwise structures.

4. Effect of initial conditions on mixing layer structure

As an interim study while the new instrumentation was designed and built, it
was decided to examine the effects of initial conditions on streamwise vorticity

in mixing layers. The results of Bell & Mehta (1989a), for a mixing layer origi-

nating from a splitter plate with laminar initial boundary layers, were used as a

base case for comparison. Hereinafter, this case is referred to as the undisturbed

case. The second case was that of a mixing layer originating from turbulent

initial boundary layers, but with the same operating conditions as Bell & Mehta

(1989a). This case is referred to as the tripped case. No mean streamwise vortic-

ity was found in the tripped mixing layer, and a difference between the far-field

growth rates of the tripped and undisturbed cases was noted. It was specu-

lated that the difference in growth rates, which has been observed by previous

researchers (Browand & La_igo 1979, and Mehta & Westphal 1986) was related

to the absence of mean streamwise vorticity in the tripped case. Accordingly,

a third or vortez generator case was studied, in which streamwise vorticity was

injected into the tripped mixing layer by means of a row of vortex generators

mounted on one side of the splitter plate.
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_.1. EzperimentaI setup

In all three cases, the free-stream velocities were set at 15 m/s on the high-

speed side and 9 m/s on the low-speed side, thus giving a mixing layer with

velocity ratio U2/U1 = 0.6. In the tripped case, the boundary layers on the

splitter plate were perturbed using round wire trips about 0.75 mm diameter on

the high-speed side and 1.2 mm diameter on the low-speed side. The wire trips

were installed 15 cm upstream of the trailing edge to allow the boundary layers

to reeover from the perturbation. Well-developed turbulent boundary layers

were produced on both sides of the splitter plate; details of the boundary layers
for the first two eases are summarized below in Table 1.

Table 1. Initial Boundary Layer Properties

Condition

IHigh-Speed Side, Undisturbed

Low-Speed Side, Undisturbed

High-Speed Side, Tripped

Low-Speed Side, Tripped

U_ 69g 0 Reo H Cy
(m/s) (cm) (em) ×103

15.0 0.398 0.0526 525 2.52 0.87

9.0 0.441 0.0606 362 2.24 1.56

15.0 0.758 0.0820 804 1.49 5.30

9.0 0.851 0.0941 567 1.50 4.86

In the vortex generator case, streamwise vortices were injected into the mixing

layer by a row of half-delta wing vortex generators placed on the high-speed side

of the splitter plate, 2.54 cm ahead of the trailing edge. Both initial boundary

layers had been tripped with round wires as described in the second case. The

vortex generators were installed at alternating positive and negative angles of

attack with their trailing edges spaced 1.91 cm apart, so as to produce an evenly-

spaced row of counter-rotating streamwise vortices. Each vortex generator had

a 6.4 mm semi-span, a 68 ° sweep angle, and was placed at an angle of attack of

-t-17 ° . The vortex generator spacing was chosen to be comparable to the Kelvin-

Helmholtz wavelength, and the semi-span was chosen to be approximately equal

to the local boundary layer thickness.

Data were obtained in the uv- and uw-planes with a cross-wire probe at nine

streamwise stations for the undisturbed case and at eight stations each for the

two other cases. In each case, measurements were made at corresponding posi-

tions within the test section, located between X --, l0 to 250 cm downstream of

the splitter plate. In the undisturbed case, the last station is 476081 downstream

of the splitter plate trailing edge, where 0a is the momentum thickness of the

high-speed side splitter plate boundary layer. In the two cases with turbulent

initial boundary layers, the last station is 305001 downstream of the trailing

edge. At each station, data were obtained in a cross-sectional plane which typ-

ically extended over 20 points in the cross-stream direction and 60 points in
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the spanwise direction. The spanwise extent of the data set ranged from three

to ten mixing layer thicknesses, depending on the streamwise location. All the

global properties presented below were spanwise-averaged for all cases. The

measurements of U, W and u'w' were corrected for mean streamwise velocity

gradient (OU/OY) effects, assuming a linear variation in U between the cross-

wire sensors (Bell & Mehta 1989a). The streamwise component of mean vorticity

(_ = OW/OY-OV/OZ) was computed using the central difference method. The

overall circulation was defined as the surface integral of the streamwise vorticity

over the cross-flow plane with vorticity levels less than 10% of the maximum

value being set to zero in order to provide immunity from "noise".

_._. Results and discussion

Contour plots of mixing layer properties at a representative station show clear

differences in the three cases. Figures 5-7 show selected properties measured at

X = 57.3 cm, which is just downstream of the estimated location of the second

vortex pairing. The mean streamwise vorticity contours show the most marked

difference between the three cases. In the undisturbed case (figure 5a), an irreg-

ular row of 8 - 10 streamwise vortices of varying strengths can be easily made

out. In contrast, the tripped case (figure 5b) has a much lower level of vor-

ticity in an irregular pattern, not at all suggestive of concentrated streamwise

vortices. In the vortex generator ease, a single row of 11 round, well-defined

counter-rotating vortices are clearly observed, with the magnitudes of the peak

levels approximately the same. The spacing between the vortices is 2 era, ap-

proximately the same as the spacing between the vortex generator trailing edges.

In the undisturbed and vortex generator cases, the mean streamwise vorticity is

strongest at the first measurement station (X = 7.8 cm), and its effects on the

other flow quantities are greatest at this location.

The presence of mean streamwise vorticity leads to spanwise variation of the

mixing layer properties. Contours of mean streamwise velocity are shown for the

three cases in figure 6. In the undisturbed case (figure 6a), there is an irregular

distortion of the mean flow, corresponding to the presence of the streamwise

vortices. The tripped case (figure 6b) displays very little spanwise variation

-- the flow appears essentially two-dimensional. The contours for the vortex

generator case (figure 6c) give an idea of the strength of the injected vortices. A

very regular, well-defined spanwise wavelength can be observed in the contours,

the "peaks" and "valleys" of which mark regions of common flow up or down,

in between the vortices. Similar behavior is seen in the turbulence quantities, as

shown in figure 7, which plots contours of twice the turbulent kinetic energy (q2).

The undisturbed case (figure 7a) displays an irregular variation associated with

the streamwise vortices while the tripped case (figure 7b) turbulence distribution

is essentially two-dimensional. In the vortex generator case (figure 7c), the

pattern is quite well-marked and similar to that of the mean velocity, with the

presence of local peaks of q2 near the centerline.
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The differences between the three cases shown in the contour plots reflect

a difference in the global mixing layer properties. Figure 8 shows the mixing

layer thickness 5, determined by fitting the mean velocity profile to an error

function, for all three cases. ( Mixing layer thickness has been determined by

fitting the normalized mean velocity data to an error function profile shape:

U/(U1 - U2) = [1 + erf(_)]/2, where _ is the normalized cross-stream coordinate:

= (V- V0)//f- The values of 6 and V0 are taken to be the mixing layer thickness
and centerline location, respectively.) The three cases have very different growth

rates, especially in the far-field, where linear growth is expected. The tripped

case growth rate in the linear region is d_/dz = 0.023, quite close to the accepted

value for a mixing layer with this velocity ratio. But the far-field growth rate

for the undisturbed ease is 20% higher than that for the tripped case. As noted

above, similar differences in growth rate have been reported previously in the

literature. Spanwise averaging of the mixing layer properties, employed for the

first time in this study, shows that the difference in growth rates persists across

the mixing layer span.

Since the undisturbed case contains significant mean streamwise vortieity

while the tripped case does not, it was expected that the injection of streamwise
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vorticity would increase the growth rate. But, although the growth is high ini-

tially in this case (for X < 60 cm), the far-field growth rate is extremely low --

only 61% of the tripped case growth rate. Since the mixing layer growth rate

is so drastically affected by the vorticity injection, the Reynolds stresses would

be expected to show a comparable effect. This is indeed the case as seen in the

streamwise development of the peak turbulent kinetic energy, q_,_az (figure 9).

The tripped and undisturbed cases asymptote to about the same constant level

beyond X ,,_ 125 cm. The vortex generator case also achieves a constant level by

that streamwise location, but the asymptotic level is significantly lower. This is

not too surprising given the lower cross-stream velocity gradients in this case. At

the last station, a very slight upturn in the q2=,_ level for the vortex generator
case is noticeable. Measurements at a station some 30 cm farther downstream

(not shown) also show a slightly higher turbulence level, but their accuracy is

suspect due to test section end effects. This behavior may indicate that at some

distance farther downstream, this case will recover to a higher level of Reynolds

stresses, and presumably a higher growth rate as well.

The behavior of the injected streamwise vorticity in vortex generator case is

compared to that of the "naturally occurring" vorticity, measured in the undis-

turbed case, in figure 10. The peak vorticity and circulation data presented in
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figure 10 are left unnormalized. The most appropriate normalizing parameters

-- the initial strength and circulation of the spanwise structures -- can only be
8U

estimated in the present study. Mean spanwise vorticity, f_z = (_ 0r ) was

estimated by assuming the _ term is negligible. Spanwise vortex circulation
was estimated using an initial streamwise wavelength determined by the convec-

tion velocity and the measured natural frequency of the mixing layer. (For the

undisturbed case, the estimated values at about the location of the first roll-up

are: f_Zmo. = 1400 sl and Pz = 0.11 m2/s. For the vortex generator ease, the

estimate is made more uncertain by the highly distorted state of the mixing

layer and the lack of a clearly observable natural frequency. In this case, the

estimated values are: ft_._o, = 1100 sl and P, = 0.11 m2/s.)

The streamwise development of the peak mean vorticity for two cases is pre-

sented on a log-log scale in Fig. 10a, The decay is roughly linear on this

scale, indicating a power-law decay rate. Although the peak initial levels for

the injected vorticity are considerably higher, the decay rate is also faster; the

naturally occurring vorticity was found to decay as 1IX l"s, whereas the injected

vorticity decays as 1IX l"s. Beyond the station at X ,v 100 cm, the peak lev-

els for the two cases are seen to be comparable. As discussed previously, this

apparent reduction in vortex strength may actually be due to the increasingly

large meander of vortices of constant strength; spatial correlation measurements
will be conducted in the future to establish whether or not this is the case. The

vortex circulation (Fig. 10b) shows very different behavior for the two cases.

The naturally occurring vortex circulation shows a very slow decrease, with a

small intermediate peak at X ,_ 60 cm i this was associated with the change

in scale of the streamwise vortex structure (described below). However, the in-

jected vortex circulation shows a relatively fast linear decay and by X _ 125 cm,

the level is comparable to that of the naturally occurring vortices. The mean

spacing of the streamwise vortices can be easily found by counting the num-

ber of vortices present at each station. The vortex spacing in the undisturbed

case increases in a step-wise fashion, scaling approximately as the mixing layer

vorticity thickness (Fig. 10c). On the other hand, the spacing for the injected

vortices is constant within the measurement domain. This may simply be due

to the fact that the injected vortices are of equal strength and spacing, unlike

the naturally occurring structures, and so there is no tendency for self-induced

motion. Another possibility, related to the pairing of the spanwisc structures, is
discussed below.

4.3. Conclusions

The original purpose of injecting the streamwise vorticity into the tripped

mixing layer was to try and increase its growth rate to a level more comparable

to that of the undisturbed layer. The initial (X < 60 cm) growth rate is indeed

increased significantly due to the extra entrainment provided by the stream-

wise structures. However, the growth rate further downstream (X > 100 cm) is
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reduced drastically over both the tripped and untripped cases. A possible expla-

nation for this change can be made by postulating that the streamwise vortex

structure affects the pairing of the spanwise vortices. Most of the growth of a

mixing layer occurs due to entrainment during the pairing process of the nomi-
nally two-dimensional spanwise vortical structures (Sandham et aL 1988). If the

spanwise structures were altered so as to reduce the pairing rate, entrainment

by the mixing layer, and thus its growth rate, would be decreased.

The naturally occurring streamwise vorticity in the undisturbed case first ap-

pears in the regions of maximum extensional strain, in the braid region. The two

structures become interlaced in such a way that, in flow-visualizations, it appears

that the only effect of the streamwise structure on the spanwise is to produce

a regular, gentle undulation in the latter (Lasheras et al. 1986). Therefore, the
entrainment due to the spanwise structures proceeds undisturbed; total growth

may in fact be enhanced by the additional entrainment in the braids due to the

streamwise structures. However, the injected vorticity in the vortex generator

case imposes its own pattern on the spanwise structures, as indicated by the

gross distortions in the mean velocity contours. It is possible that this changes

the pairing process, reducing the pairing rate. In the near-field, entrainment by

the streamwise structures more than makes up for this deficit. However, entrain-

ment due to the streamwise vortices decreases much faster than the spanwise

structures recover, so at some point the overall entrainment rate is reduced, and

hence the growth rate of the mixing layer drops. This hypothesis is also con-
sistent with differences noted in the behavior of the streamwise vortices in the

two cases. Previous investigations have suggested that the scale change in the

streamwise vortices occurs during the pairing of the spanwise rollers (Jimenez

et al. 1985, Bell & Mehta 1989a). The fact that a scale change is not observed

in the vortex generator case suggests that the pairing of the spanwise rollers has

been suppressed.

The mixing layer with vorticity injection maintains a lower growth rate and

turbulence levels out to the end of the measurement region in the current study.

Although there is some evidence of an upward trend at the last measurement

station, the data is not sufficiently extensive to determine when, if ever, the

vortex generator case will recover to a higher turbulence level and growth rates.

The absence of such a recovery would, of course, indicate that more than one

asymptotic structure is possible in mixing layers.

5. Future plans

The equipment and software for spatial correlation measurements is currently

in the final test phase. Once the checkout is complete, work will commence on:

• A study of the variation of Rvv(O,O,r) in the undisturbed mixing layer. An

examination of this quantity will show the extent of spanwise meander of the

streamwise vortex structure.
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• A similar study of the tripped mixing layer. In this case, the mean streamwise

vortex structure is entirely absent. Correlation measurements will determine

if it is actually present, but masked by a high level of meander.

• A study of the vortex generator case, which will attempt to determine what

sort of turbulence structure is responsible for the lower growth rate. Cor-

relation measurements should be able to determine the extent to which the

streamwise vortex structure influences the development of the spanwise rollers.

In addition to these studies, which are designed to take advantage of the new

instrumentation, two additional cases are being considered:

• A repeat of the vortex generator case, at twice the original free-stream veloc-

ities, but with the same velocity ratio. This would approximately double the

nondimensionalized development distance, as determined by either Reynolds

number or initial mixing layer thickness. Thus, it should be possible to deter-

mine when, if ever, the effect of initial conditions relaxes, and a more "normal"

growth rate is recovered. Requiring no complex measurements, this study can

be accomplished fairly quickly.

• A study of a mixing layer originating from a splitter plate with a corrugated

end. Such a splitter plate would inject cross-stream vorticity into the mixing

layer, in a manner analogous to the way that the vortex generator case injects

streamwise vorticity. Thus, this study would form a natural complement to

the vortex generator case. Although this flow has been previously studied at

low Reynolds numbers through flow-visualization (Lasheras & Choi, 1988),

the unusual behavior of the vortex-generator case suggests that it merits a

second, more intensive look.
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Development of renormalization
group analysis of turbulence

By L. M. Smith

1. Introduction

The renormalization group (RG) procedure for nonlinear, dissipative systems

is by now quite standard (Ma, 1976). The successes of its application to the

problem of hydrodynamic turbulence are also becoming well-known (Forster,

Nelson and Stephen, 1977, Fournier and Frisch, 1983, Yakhot and Orszag, 1986).

Much progress has been made towards an understanding of what is, and what

is not, accessible via RG analysis. In summary, the RG method isolates self-

similar behavior and provides a systematic procedure to describe scale-invariant

dynamics in terms of large scale variables only. The parameterization of the

small scales in a self-consistent manner has important implications for sub-grid

modeling. The limiting forms of such parameterizations are often universal, i.e.

independent of the numerical coefficients jn the original model.

Recognizing its limitations, the renormalization group technique is a powerful
tool. RG methods will predict characteristics of the dynamics of a model that

are approximately scale-invariant. Applied to the Navier Stokes equations, RG

provides an expression for the eddy-damping of the large scales by the small

scales. Other scale-dependent dynamics, such as sweeping, are not addressed

(Chen and Kraichnan, 1989).

Skepticism has surrounded the RG predictions for turbulence because the de-

tailed mathematics involved is not yet well understood. The method is justified

mostly by its success: universal scaling laws derived using RG methods are quite

accurate. Observed scaling laws are reproduced for a diverse set of problems,

from population dynamics (Feigenbaum, 1979), to turbulence, to nonlinear spin

dynamics near a ferromagnetic critical point (Wilson, 1974).

The deduction of experimentally known scaling laws gives credibility to the

RG method. The merit of any theory, however, must be based on its predictive

power. To date, the most important predictions from RG analysis of turbu-

lence have been low Reynolds number corrections to traditional high Reynolds

number models. For examples, RG formulas provide smooth transition between

the Smagorinsky eddy viscosity and the molecular viscosity, and deduced mod-

ifications to the traditional _ - e model (Yakhot and Orszag, 1986, hereafter

referred to as I). In the latter case, however, ambiguities remain with respect to

procedure and interpretation. This is not surprising given the pioneering nature
of the mathematics.

_tAW PRECEDING P_',iE BLA}JK NOT FILMED
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The RG model for homogeneous, isotropic turbulence is developed in Section

2. The steps of the RG procedure for nonlinear equations are reviewed. The

meaning and consequences of the _-expansion are addressed in Section 3 using the

work of Fournier and Frisch (1978, 1983). Their results are given in terms of the

expansion parameter _. Inertial range statistics and scaling laws are recovered for

the case of _ = 4 (I). Section 4 gives some results of the theory for homogeneous,

weakly anisotropic turbulence (c = 4 and no mean flow). Extension of the theory

to include a weak mean flow is discussed in Section 5. In Section 6, errors in the

Yakhot-Orszag RG _: - e equations are corrected. Consistency between direct
numerical simulation data for channel flow, the standard n-e model and the RG-

based model requires a reinterpretation of the contributions to the _-equation.

Finally, Section 7 proposes application of the RG method to a sequence of model

equations that converges to the Navier Stokes equations. The solutions of these

particular model equations are known to have self-similar solutions.

2. The RG procedure

The renormalization group symmetry transformation consists of two steps

(Ma, 1976). First, course graining is achieved by averaging over small scales.

Second, space is rescaled. New independent variables are defined in the original

domain by the rescaling. In most cases, the dependent variables are also rescaled.

It is not clear how to course-grain a nonlinear system in which the large

scales are coupled to the small scales. This is, of course, the closure problem

of turbulence. The RG technique was developed for the equations of nonlinear

spin dynamics, the time-dependent Ginzburg-Landau equations. It is based

on expansion about an equilibrium basic state whose Gaussian statistics are

known from the theory of statistical mechanics. Although this procedure is

sensible for near-equilibrium dynamics, it is not obviously relevant to turbulence.

Nevertheless, the basic state in the RG analysis of turbulence is also assumed

Gaussian. The meaning of the expansion will be explored using the work of

Fournier and Frisch (1978, 1983) in Section 3.
The RG transformation of a nonlinear system is illustrated with homogeneous,

isotropic turbulence driven by a Gaussian random force. The model equations

in Fourier space are

i_o f__oodoJfqx* dq_3i[k] = G°[k]fi[l¢]- --_-Pi,,_,[k] 2--_- =o (2_r) d fi'[cl]_3n[k - _11

= (2_r) 2D.0 2--_P,j[k]_[l_ + 1_']

(1)

(2)

where _i and fi are the itt'-components of the Fourier amplitudes of the velocity
and force vectors, i_ = [k,_,] is a four-vector, and G°[k] - (-i_ + ,,ok2) -_

• ,L 1_
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with k - Ikl and Vo the kinematic viscosity. The tensor Pim,_[k] results from

elimination of the pressure using the continuity condition ki_3i [1_]= 0: Pim,_ [k] -

k,,_Pi,_[k] + k,_Pi,,_[k] with projection operator Pij[k] = _ij - kikj/k 2, where 6ij
is the Kronecker delta function. The cutoff Ao is the wavenumber above which

viscosity wipes out all motion, _o 1 is an ordering parameter and d is the
number of dimensions. The brackets <> denote an ensemble average. The

force, and thus the zeroth-order velocity (in)_o), is homogeneous and isotropic,

defined by the scalar correlation function F[k].

Course graining is achieved with the following steps:

1. Define _3< = _3_[0 < k < kc] and fi> = fi_[k, < k < Ao] (with analogous

definitions for f< and f>) where kc is the low wavenumber cutoff of the band
to be eliminated.

2. In the nonlinear term let fi,_[il]fi,,[l_ - /1] = _)<[/l]fi<[ 1_ - (t] + 2fi<[ 1_ -

vm [q]v,_ [1_ Cl]-

3. Iteratively substitute for fi> in the equation for _3<. Iterate a number of

times equal to the order of the nonlinearity, i.e. keep terms to order _2o.

4. Ensemble average over f> and evaluate all four-dimensional >-integrals.

These are integrals whose integrand has wavenumber defined in the interval

[k,, Ao]. All >-integrals are calculated to lowest order in the distant interaction
limit. This is the limit in which <-wavenumbers are small compared to >-

wavenumbers.

Steps 1-4 eliminate the wavenumber band /% ___k __<Ao.

In addition to terms obtained by replacing vi by _< in the original equations,

correction terms are generated. They are

a. force renormalization terms. These terms are zeroth-order in 3 < and rede-
fine the force correlation.

b. viscosity renormalization terms. These are linear in _< and define an eddy

viscosity, V T = V o -_ gV.

c. vertex renormalization terms. These are second-order in 73< and redefine

the vertex, Ar = Ao + 6A. These terms must vanish in the infrared limit k _ 0

by Galilean invariance (Forster et. al., 1977).

d. higher order terms in _3<.

To focus on scale-invariant behavior inherent in the original equations, one jus-

tifies neglect of new terms. Then one proceeds to the second half of the RG

transformation, the rescMing. In this case the scale-invariant behavior is the

balance between forcing and eddy damping and the new terms are higher order

in _3< .

One iterates the two-part RG symmetry transformation until the equations

converge to a 'fixed point'. At a fixed point, the parameters in the model no

longer change; the equations are invariant under the RG transformation and
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describe self-similar physics. The scaling laws at a fixed point are often inde-

pendent of the initial parameter values and capture 'universal' physics contained

the original model.

3. The _-expansion

Fournier et. al., (1983) examined the general class of force-correlation func-

tions F[k] = 2_rk3-_ for _ > 0. (The parameter _ here simply defines F[k] and is

not the dissipation rate, traditionally denoted by the same symbol. In this paper

we denote the dissipation rate of the turbulent field by e to avoid confusion.)

They found for the eddy viscosity, after elimination of the wavenumber band

k_ < k < Ao,

[¢]Do. k_-" - A_-') )1/3
vT[k¢] = Vo(1 + 3 tr' v_ ( , " (3)

where tv, [,1 = (d 2 - d - ,)/(4d(d + 2)_r 2).

At the fixed point, which is found in the limit Ao >> k¢, kc --_ k --_ 0, the

following asymptotic relations hold:

vT[k I .., (3tTl[e.______])1/3 D_/Sk_,/s (4)

~ (5)

AoD lo12
= ,-.. (3_r, [e])-'/2, '/2 (6)(3/2,,/2

V T tee )

where X is the non-dimensionalized expansion parameter (Reynolds number).

Relations (4)-(6) are universal in the sense that they do not depend on to.

If c < 0, the fixed point energy spectrum (5) results from force-correlation

function F[k] = 2_k 3-_/3. The case _ = -2/3 was considered by Forster et. al.,

(1977), and reproduces E[k] _x k s for low wavenumbers. This is the power law

predicted by Saffman (1967) for homogeneous, isotropic turbulence. For _ < O,

the dynamics are not universal at the fixed point.

The point _ = 0 is called a crossover point: for t < 0, higher-order terms in _<

decay exponentially as kc is decreased and statistics are essentially Gaussian; for

> 0, higher-order terms in 6< become important and statistics are no longer

Gaussian (Fournier et. al., 1978, Kraichnan, 1987, 1989). Neglect of the higher-

order terms is rigorously justified only for e < 0. For all _ > 0, the higher-

order terms in 6< are marginal (neither grow nor decay exponentially) as k_ is
decreased.
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For _ positive and near zero, the expansion in powers of X is likely, but not

guaranteed, to be asymptotic by relation (6). Unfortunately, _ near zero cor-

responds to an energy spectrum near E[k] ,'.., k, which is not often observed in

nature.

Despite the mathematical uncertainties associated with positive values of

away from zero, Yakhot et. al., (I), applied the RG procedure to the forced

Navier Stokes equations (1) and (2) with c = 4. This case models the physically

relevant spectrum E[k] ,,-, k -5/s. Their results are exactly equations (3)-(6) with

= 4 everywhere except in the coefficient _rl. The value _ = 0 is used to evaluate

trl. By relating the parameter Do to the flow-averaged dissipation rate _-, they

found the universal scaling law E[k] = 1.617_ 2/s k -5/s (Leslie, 1973, I, Dannevik,

Yakhot, and Orszag, 1987).

The prediction for Kolmogorov's constant 1.617 is very close to the observed

values, which are in the range 1.4-1.6. It is found using _rl[0] = 1/(10_ "2). If

_r114] = 1/(30Z "_) is used, the RG value of Kolmogorov's constant is 1.11. It is

not apparent why the coefficient at the fixed point should be evaluated at e = 0

instead of _ = 4. Indeed, the general procedure advocated in I is to evaluate all
coefficients at the fixed point using t = 0. This procedure is supported by most

of the RG results for turbulence. As another example, the Obukhov-Corrsin

constant derived using _ = 0 is 1.16, while the value derived using _ = 4 is 0.41.

However, we show in Section 6 that evaluating coefficients in the RG equation

for the dissipation rate at e = 0 leads to results that are inconsistent with direct

numerical simulations and the traditional model. Paper I does not explain why

amplitudes of a k 1-spectrum are used for the theory of a k -5�3-spectrum.

If we are only interested in scale-invariant physics, the RG-expansion is likely

to reflect its essential features, regardless of the value of _. The difference between

from its crossover value gives a rough idea of the importance of the dynamics

that are being neglected and the departure from Gaussian statistics. For high
Reynolds number turbulence, with a well-developed k-5/S-spectrum, the eddy

viscosity (3) with _ = 4 may capture the eddy-damping effect of small scales

even though all other effects are ignored in the RG analysis. Numerical tests

will be decisive (Karniadakis, Yakhot, Rakib, Orszag and Yakhot, 1989).

To summarize, the RG-expansion probably provides an accurate description

of self-similar physics. The difference between the expansion parameter and its

crossover value is a measure of the importance of other dynamics and of non-

Gaussianity. It is not clear if and/or why amplitudes should always be evaluated

at the crossover value of the renormalized expansion parameter.

4. Weakly anisotropic turbulence

A model for weakly anisotropic turbulence can be developed by extending the

force correlation to depend linearly on the anisotropy tensor bij,
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F[k] ..
<//[_]]j[_'] >= (2_)_+'6[t + P]Do2--_{_,',j[kl+

+tl,{bij - (bi,,,knkj k2+bjnknki) + bnmknk,nkikJk4 {-

+ao(bn,,knk,_ij._ bn,,_k,,k,,_kikJk4 )}} (7)

where a, and 'k are constants. The anisotropy tensor is defined as bij -- (<

vi[x, t]vj[x, t] > -(1/3)_6ij)/_ where _ _= (1/2) < vi[x, t],,_[x, t] >. Relation (7)
is the most general weakly anisotropie correlation (i.e. linear in bij) that satisfies

continuity and the required symmetry conditions (Reynolds, 1987). Note that

bij is a matrix of constants because the flow is assumed homogeneous.
In anticipation of an anisotropic eddy viscosity, let

oo[_] = (-i0, + Vok2+/3ok.,k_b.,_)-' (8)

in the forced Navier Stokes equations (1), where/3o = 0. The model given by

(1), (7) and (8) has no mean flow.

The RG steps 1-4 result in renormMized equations with correction terms a-

d (Section 2) where the eddy damping is now defined by vT = uo + _v and

fit = /3o + _/3. In addition, a fifth type of term is generated which couples the

equation for _i[!_] to the equation for _3j[l_]:

e. linear coupling terms. In the equation for _3i[1_], these are linear in _j[l_]

and have the form (k2b,j - kik,_b,,_j)6<[[c] = Mijfi<[l¢].

The linear coupling terms show that the small scales can force _i through inter-

action with _j.

One can suppress this forcing by choosing a such that it vanishes at each

iteration of the RG scale elimination. The choice

7/3(")

a (n) = 1+¢_ (9)

makes the coefficient of the linear coupling terms zero. The superscript n is the

iteration number.

With constraint (9), F[k] = 2,rk a-" and e = 4 (E[k] ,-_ k-S/s), one finds

Do 1 (e'" - 1) (10)

D a(") (e" -
o ,-'T (11)_(_,+ 1) _/300 1 1),-'T - + ,,'2[4_(_ +_r , _T ¢)(A[-,])' 4
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where al[0] = 1/(107r 2) as above, a2[01 = 1/(40_r 2) and A[nr] = Aoe n" = k,.

The cutoff k, is now the last eliminated wavenumber.

The differential equations appropriate for repeated elimination of infinitesimal

bands (r ---*O) are

dvr [r/l_ (12)
dr/

dfiT[r/]
- a2(fiT[r/] + ¢VT[r/l)(_[r/]) 2 (13)

dr/

where r/= nr and _ is the renormalized expansion parameter given by (6). The

solution of (12) subject to VT[0] = vo is equation (3) with k¢ = Aoe-n; the

solution of (13) subject to condition fiT[O] = 0 is

• (1--a2/O'l), a2/eYtfiT[ke]-- (vtk<]_. ° vT [ke]). (14)
(1 - a2/a, )

As in the isotropic theory given in Sections 2 and 3, the fixed point is at

r/_ oo, which corresponds to k, _ k ---} 0. According to the theory of Yakhot

et. al., one evaluates the coefficients al and a2 at the crossover e = 0. Then

vT[k], E[k] and X are given by (4)-(6), fiT[k I ,,, (1/3)¢vT[k] and

13
~ --. (15)

6

The parameter ct defines the turbulent states that are energetically possible in

the model. As ct increases, the function space of realizable states decreases (Shih

et. al., to be submitted to J. Fluid Mech.). The value of ct for the Reynolds-

stress model of Launder, Reece and Rodi, (1975), is OtLRR = .527; the value

for the Reynolds stress model that matches Rapid Distortion Theory (RDT)

is OtRDT = 3/2. Both models have small regions of realizability around the

isotropic turbulence point.
If we suppress the linear coupling terms in the RG analysis, a increases from

1 to 13/6 as more and more scales are eliminated from the problem. In view

of the large values of a necessary to prevent linear coupling, turbulence models

based on RG theory which includes this coupling seem more promising. The

extension is relatively simple: the model equations become

i_o
_,[!_] = G°[fcl]_[fcl+OoM, j[k]_j[f_] - -TP_,=,_[kl f d_! (16)

where Mij is defined above and Oo = 0. Two special cases were treated by

Rubinstein and Barton (1987). This is a possible area of further research. The

equations of a passive scalar are amenable to similar analysis.
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5. Homogeneous turbulence with a weak mean flow

A formulation of the RG theory of turbulence without an artificial external _

force would be appealing. One might think that providing an internal produc-

tion mechanism by including a mean flow would alleviate the necessity of an

external force. However, if the zeroth-order turbulent velocity field is sustained

by interaction with the mean, then wavenumbers are changing in time as quickly

as Fourier amplitudes. For the RG analysis to be meaningful, one requires that

wavenumbers stay constant at least in the turnover time of a large eddy.

Thus we continue to assume that the turbulence is sustained by an external

force. The homogeneous mean must be considered weak and corrects the zeroth-

order solution given by the balance of external forcing and viscous diffusion. Our

model equations for the fluctuations _3_are

i °e k f d6= + ] fi_[£1lfi_n[I_ -cl] (17)

0 2k k nr (18)

where _3i = Ui + _, Ui -< _i >= Hijzj and IIij is constant (Leslie, 1973).

For simplicity, one may first consider isotropic, homogeneous forcing given by

the correlation (2). The RG procedure is carried out as in Section 2, by repeated

substitution of (_3_)> in the equation for (_)<. For consistent asymptotics, terms
2 2

of order IIij) % and IIij)_o must be retained, while terms of order _3o may be

dropped. One anticipates interesting changes in the RG eddy viscosity.

The RG analysis for homogeneous shear should reproduce the universal scalar

spectrum of the Reynolds stress in the inertial range. For shear in the zz direc-

tion, _r, = trY, z2, RG should predict 4_k _ < _;[k]_[k] >_ k -_/_.

One immediately notices the similarity between the model equations with a

mean flow (17) and the renormalized model equations due to anisotropic external

forcing (16). This similarity can be exploited to reduce the amount of work in

the problem with a weak mean flow. It is a straightforward extension to flow

with a homogeneous mean driven by a weakly anisotropic external forcing.

6. The RG _¢-¢ model

The most important RG contribution to turbulence modeling has thus far

been low Reynolds number corrections to previously established high Reynolds

number equations. The RG corrections are derived, unlike their ad-hoc prede-

cessors.

Unfortunately, there remain unresolved issues in the high Reynolds number

RG _ - ¢ model. These should be reconciled before study of the low Reynolds

number corrections. For better understanding of the HG _ - ¢ equations, the

traditional model is reviewed. The Yakhot-Orszag RG model is then discussed.

We give a corrections to, and a reinterpretation of, the results cited in I.



Development of renormalization group analysis of turbulence 89

6.1. The traditional _; - e model

The dissipation rate of fluctuations in homogeneous turbulence is _ = Uo <

(V_v_) 2 > where v_[x,t] are the zero-averaged fluctuations from the mean. As

in Section 5, vl = Ui + v_, Ui -< vi >= IIijzj where IIij is constant. The time

rate of change of e is

1 2

f

m = _ I ' VjU,_0_ 2vo_ < (%v.,v_? >-2,,o < (%_)(V._v_) > -
Ot

3 4
,,% ,_ _

-_Vo < (Vjvl)C%v'_)> v.,u_-_,o < (vj,,_)(vj_'_)(v,_)>. (19)

In the standard, high Reynolds number model of equation (19), the total

dissipation of _ is represented by the combination of the dissipation term 1 and

the turbulent transport term 4,

-2Vo_ < (%V,_v:)_> -2Vo< (%_,:)(%v'_)(v_v_)>~ -c_ T (20)

where C_ is an adjustable constant. A typical value of C_ is 1.8. The total

production is traditionally modeled by the sum of the two remaining terms, 2

and 3,

-2Vo< (%_)(V,_v_) > %tr,_- 2Vo< (%v_)(%v-) > v,_tr,

_-C_ e ' ' (21)
-_VjUi _ viv j )} .

The constant C_ is also adjustable. A typical value for C_ is 1.4.

The simplest model of _ for inhomogeneous turbulence simply restores diffu-

sion and advection by the mean,

0e 1 C 2 _ (22)O--i+ UjVj_ = C, _P,¢,¢- _ ,¢ + V_XTVje

where XT is an eddy diffusivity and P,¢ = "VjU_ < v_v_ >. The Reynolds stress
I ! I I

< vlv j > is usually modeled by - < viv j >= VTVjU i "}-2:¢_ij/3.
Though the parameterizations in (22) are for high Reynolds number turbu-

lence, their signs and general trends are supported by direct numerical simula-

tions of turbulent channel flow (Mansour, Kim, and Moin, 1988). The simula-

tions are necessarily at low Reynolds numbers. In section 6.3, consistency with

the simulation data is used to reinterpret the RG-based e-equation.
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6._,. The Yakhot-Ornzag RG e-equation

The goal is to calculate the effect of the small scale velocity field on the large

scale variations of e. The strategy is to assume that the high wavenumber

velocity field obeys forced Navier Stokes equations, for examples (1) or (18).

The model worked out in I assumes that the high wavenumbers are governed by

(1) with homogeneous, isotropic forcing given by (2).

The steps used in I to derive the RG e-equation are given in CTR Manuscript

106 (Smith, 1989). Many assumptions of the procedure are not explicitly ad-

dressed by the authors of I. A large amount of second guessing is required to

understand their interpretation of the results. Due to the complexity and vague-

ness of their method, the steps will not be presented here.

Here we simply state the results reported in I and give corrections. The

corrections are to purely mechanical errors and do not address assumptions or

interpretation. These more important issues are discussed in section 6.3.

The Yakhot-Orszag high Reynolds number, RG e-equation is

0e e e 2

0--t + UjVie : -I.063-P_ - 1.7215--t¢ '_ VJXTVJe
(23)

! !
where P_ = -VjUi < viv j > as above. The Reynolds stress is again modeled by

I I
-- < viv j >= VTVjUi + 2x_ij/3. The RG theory gives UT and XT as functions
of e and to.

The corrected model, based on the same method, assumptions and interpre-

tation, is

0! (24)

where the coefficient of the production term is identically zero (CTR Manuscript

102, 1989). The constants a_ and b_ are defined by integrals,

f0 _
a_ = -2 dr/VT[r/]h[r/l

1 (25)b= = 0.2 dr/

where VT[r/] is given by (3) with ke = Air/] = Aoe -n, The term 1.594¢(aoo +eboo)

has the same scaling as the term 10.5e2/_:, but is of the opposite sign and larger

in magnitude. All coefficients in models (23) and (24) are evaluated at the
crossover value of the renormalized expansion parameter, e = 0. Models (23)

and (24) should be compared with the standard model (22).
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6.3. Corrected results reinterpreted

In paper I, the starting point to derive the RG e-equation is the equation for

q_ -- vo(Vjvi[x,t]) 2. The average of ¢ is the dissipation rate in homogeneous

turbulence. The exact equation for _ is

_- = -,,j%¢ + _o%V_¢ - 2_o(V..%_) _-

-2 _(% _)(% v,P) - 2-o(%._)(Vjv.,)(v,. v_) (26)
P

The origin in (26) of the terms in model (24) suggests a reinterpretation con-

sistent with the standard model (22) and direct numerical simulation data for

turbulent channel flow. The RG analysis is actually performed on the transform

of equation (26) with 6i = _3< + _>, ¢ = ¢< + q_> and/5 =/3< +/3>. The fol-

lowing list gives the origin, Fourier integral and final contribution in real space
in the format

*). origin in equation (27)

Fourier integral

final contribution to RG model

a.) a renormalized diffusion term, generated by the -vjVj_b term:

-ikj / act _; [_]_> []¢ - q](2_)d+ 1

-..4 Vj)(.TVj_ < .

b.) a contribution from -2Vo (V,,, Vjvi) z :

-2Vo (2,_)_÷1q...q,(k - q)m(k - q)j_[_l_[k - _]

---, Bde(a_ + 3vTA}).

c.) contributions from -2Vo (Vj vi)(Vj vm)(V,,_ vi):

f d(td_d_2ivo (2_W+_,_[_ - _- e - f,]q_[_]pr_[_]_j_<[e] +

f d(td_d_+ 2iUo (27r)2d+ 2 5[1¢ - Cl - r - P]qjvi>[£1]rjv>[r]pmv<[P]

(27)

(28)
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--, +
3(d 2 +d+e-6) 1

2 2d(d + 2) vwAf2 2 )" (29)

In b.) and c.), A I is the integral scale. The relationships between AI, VT, _ and
_; are

r,TA _ = 3 e5eKe[el;

VT = c_[e] t¢ (30)

where .Ad = (d 2 - d - e)/(2d(d + 2)), /_,t = 1.5Ad/.1904, 7[e] = (3AdBd/8) 1/3,

c,,[e] = (47[e])/(9C_:[e]) and CK[e] is the RG prediction for Kolmogorov's con-
stant.

In the corrected Yakhot-Orszag model described by (24) and (25), the con-
stants were evaluated at the crossover value of the renormalized expansion pa-

rameter e. Here the e-dependence is shown explicitly. The definition of boo as a
function of e is

boo = (d2 + d + e - 6) f0 _° 1 (31)

The expression (3) for r,T[T/] and A[T/] = Ao e-'t may still be used to evaluate aoo

and boo. The coefficient defining aoo is not a function of e. The renormalized

diffusivity XT is a function of e.

The division into > and < functions identifies the sub-equation in (26) that

generates the renormalized e-equation. The derivation in I associates v > with'

' vi< with Ui and e = Vo < (Vjv >)2 >= VT < (Vjv[)2 >. The contributingvi,

sub-equation is then

0f

0-7= -v vj + Vjx V e - < (vjvm :) > -

-2,,o < (Vjv[)(V,,v_) > VjU,_ - 2Vo < (Vjv[)(Vjv') > VmUi. (32)

Equation (32) is the exact equation (19) for ¢ without the turbulent transport
term and with advection and diffusion restored.

The simulation data for channel flow indicates that the contribution c.) should

be a production term. If the Reynolds stressis modeled by - < v_v_ >= r'TVjUi,

then P_ = VT(VjVi) 2 = VT < (_TjV<) 2 >= ¢. Thus, in the context of RG and

traditional modeling, we may label t'T < (Vjv<) 2 > either P_ or e, depending

on the sign of its coefficient.
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The sign of contribution c.) is positive, in accord with the numerical simula-

tion data. Thus we should identify c.) as

1.594eP_(b= [0] - 4.__88), (33)

where boo is larger in magnitude than the 1/_ term and has the opposite sign.

The interpretation (33) is consistent with standard model (22) and the simu-

lation data for channel flow, and gives

0C

0--7 + UjVje = 1.594e(aoo[O] + eboo[O])+

_2

+5.7-- - 4.8-P_ + Vj)(.TVjE. (34)

In equations (33) and (34) all coefficients have been evaluated at e = O.

7. RG analysis of optimal equations

The Euler-Lagrange (EL) equations governing the optimization of a mean field

moment, subject to constraints derived from the Navier Stokes equations, have

smooth, ordered solutions. The EL solutions better approximate the ordered

features of turbulent flow with each additional constraint. A particular class of

EL equations that approximates the equations of shear turbulence has solutions

of self-similar, downstream rolls (Busse, 1970). This scale-invariant structure

suggests that RG analysis of EL equations may be fruitful.

Well chosen EL equations may adequately capture 'order within disorder' and

predict the organized motions observed in real turbulent flows. For example,

the size of the smallest downstream roll in the above mentioned solutions is a

prediction for the spacing of the streaks near the wall in shear flows. The fact

that these EL equations capture self-similar physics indicates that optimal theory

and RG theory are different approaches that may sometimes isolate the same

phenomena. Perhaps they are complimentary when applied to the turbulence

problem.

Optimal theory has until now been restricted to semi-analytically tractable EL

equations. Thus, the constraints have been limited to the boundary conditions,

continuity and the integral statement of energy balance. A joint project with

F. Waleffe is an upper bound formulation based on additional constraints which

impose the balance of vorticity. Such a formulation requires numerical solution,

but will unquestionably provide better and more accurate information about the

ordered structures in turbulent shear flows. (See the CTR 1989 Annual Report

by F. Waleffe.)

The optimal equations constrained by the boundary conditions, continuity

and the integral statement of energy have the same linear terms as the Navier

Stokes equations and different nonlinear terms. Only the nonlinear terms are
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affected by the addition of more constraints. The existence of nonlinear terms

which represent only the ordered, self-similar physics inherent in the Navier

Stokes nonlinear terms would be intriguing. The RG method is not limited by

nonlinearity, however complicated. Features such as the streak spacing and the

slope of the logarithmic layer should be products of RG analysis.

8. Conclusions

There remain unanswered questions about the Yakhot-Orszag theory of tur-

bulence based on renormalization group techniques. Among them are 'What

is the meaning of evaluating coefficients at the crossover value of the nondi-

mensionalized expansion parameter?' and 'What is the correct procedure for

deriving a model equation for the dissipation rate?'. Extension of the theory to

weakly anisotropic flow, and to flow with a mean, may help answer these ques-

tions as well as improve eddy viscosity/diffusivity models. Finally, RG analysis

of optimal equations may help isolate the ordered features of turbulent flows.
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Short-time Lyapunov exponent analysis

By J. A. Vastano

A new technique for analyzing complicated fluid flows in numerical simulations

has been successfully tested. The analysis uses short-time Lyapunov exponent

contributions and the associated Lyapunov perturbation fields. A direct simula-

tion of Taylor-Couette flow just past the onset of chaos demonstrated that this

new technique marks important times during the system evolution and identi-

fies the important flow features at those times. This new technique will now be

applied to a "minimal" turbulent channel.

1. Introduction

Numerical simulations of turbulence are increasing in number and quality each

year. These simulations provide a wealth of information about the structure of

turbulent flows. The analysis of these flows must start, therefore, by discovering

when and where to look at the system in order to see the important events in the

flow evolution. Short-time Lyapunov exponent analysis is a new technique that

shows promise for finding these events. Research at the Center for Turbulence

Research over the past year has shown that this technique can successfully locate

the times during a flow evolution when important chaos-producing mechanisms

are operating. At these times, the structure of the perturbation fields associated

with the Lyapunov exponent computation give a picture of those flow features

in which the exponential growth of perturbations is occurring. This report will

define the Lyapunov exponent spectrum, describe the short-time contributions

and fields used in the analysis, and discuss the numerical tests that have been
performed.

2. Lyapunov exponent analysis

The asymptotic motion of a bounded, dissipative system is on some attracting

set in its phase space (Eckmann and Ruelle 1985). Attractors range from simple

fixed points to chaotic strange attractors. The Lyapunov exponent spectrum

provides a fundamental description of the geometric and dynamical properties of

an attractor. Lyapunov exponents measure the long-term average exponential

growth rate of perturbations to the system trajectory in phase space. More

precisely, if the time evolution of the system z is given by

=

then a perturbation gz evolves according to

=

Illl_a___. IN_NTIONAllY BI_IN
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where J(z) is the lineai'ized form of F(z), S(z) = dF/dz. For a given initial

condition z(O) on the attractor and an initial perturbation gz(O),

=

where

M =

The long-time evolution of perturbations will be governed by the eigenvalues
of M*M. The eigenmodes specify perturbation fields 5zi(O) that will grow at

the rates given by the eigenvalues. We define the Lyapunov exponents _i by

_i = lim lvlog(16zi(t)l/l_zi(o)l).
t----_ OO $

The exponents are ordered so that )h is largest. There are an infinite number

of Lyapunov exponents for a spatially-extended system. Each exponent cor-

responds, roughly, to a separate direction in phase space. The Kaplan-Yorke

conjecture (Frederickson et al. 1983) gives a simple formula that relates the

Lyapunov exponents of an attractor to its dimension. Initial perturbations in

almost any direction will grow at the rate _a, but there exist subspaces of the

initial tangent space for which perturbations grow at the rates given by the

other Lyapunov exponents as well. In computing the exponents, one follows N

perturbations to estimate N Lyapunov exponents. A standard technique ex-

ists for evolving the perturbations for long times and obtaining estimates of all

N exponents (Benettin et al. 1980) The basic procedure is the Gram-Schmidt

reorthogonalization, which removes from the i-th perturbation field those com-

ponents corresponding to growth at rates _1 through _i-1.

The greatest difficulty in computing Lyapunov exponent spectra for model

systems is that the convergence of the running estimates to the long-time average

exponents is slow (like 1/t ) and cannot be accelerated. On the other hand, it has

been argued (Goldhirsch et al. 1987, Greene and Kim 1987) that the evolving

perturbation fields 6zi(t) decay exponentially fast to the eigenmodes of M(t, O)

and, furthermore, that these functions are themselves a smooth field over the

attractor. In other words, the Lyapunov perturbation fields are local properties

on the attractor. If this is the case, then the short-time contributions to the

long-time average exponent,

= log(16z,(t + At)l/16xzCt)l)

are also local properties on the attractor.

The growth of perturbations to the system at any time can be measured by

projecting the perturbation onto the local Lyapunov perturbation fields and
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checking the short-time expansion rates. Clearly, when these short-time rat_s
are much smaller or larger than average, perturbation will either be damped or

expand at large rates. In addition, if the perturbation fields themselves have

structure, they indicate where in physical space the mechanisms driving the

instability are located, and the form of the instability.

3. A test case

To test the utility of the short-time exponent analysis, numerical simulations

were performed on Taylor-Couette flow just past the onset of chaos in that

system. This system was chosen because there is experimental evidence that

the flow is low-dimensionally chaotic at computationally accessible Reynolds

numbers. A code for computing the base flow already existed (Moser et al. 1985)

and could be easily extended to the computation of N Lyapunov exponents.

Although there had been a great deal of previous experimental, theoretical, and

numerical work on this system, the transition to chaos was not understood. In

particular, no physical mechanism or instability underlying the transition from

quasiperiodic to chaotic flow had been determined.

The particular Taylor-Couette flow studied was chosen to match the most com-

plete experiment to date on the transition to chaos in this system (Brandstater

et al. 1985, Brandstater and Swinney 1987). For this case, the outer cylinder

is fixed and the inner rotates at a constant frequency. At Reynolds numbers R

near zero, the flow state is Couette flow, axially and azimuthally homogeneous.

At a critical Reynolds number Re, a bifurcation to another steady flow occurs.

This is Taylor vortex flow, consisting of an axial stack of ring vortices, still az-

imuthally homogeneous. Neighboring vortices rotate in the opposite sense, so

that vortices are separated by alternating inflow and outflow boundaries. The

axial wavelength is defined by a pair of Taylor vortices. In the experiment of

Brandstater and Swinney, the average axial wavelength was 2.5 times the gap

between cylinders. The numerical simulation assumes axial periodicity; the axial

period is set to 2.5 gaps.

At higher Reynolds numbers, first one and then a second azimuthal travelling

wave appear on the vortices. Each travelling wave introduces an independent

frequency of motion to the flow. The waves have integer azimuthal wavenum-

ber: in the experiment of Brandstater and Swinney, both travelling waves had
wavenumber four. This is convenient for the simulations, since the state is four-

fold symmetric in the azimuthal direction and it is only necessary to simulate a

quarter of the azimuthal extent. In the experiment, the onset of quasiperiodic

(two-frequency) flow occurred at R/Rc = 10.0, and a chaotic flow was observed

at R/Rc = 11.7. The dimension of chaotic attractors can be determined from

time series data. Experimental time series yielded dimension estimates between

two and three for Reynolds numbers as high as R/Re = 15.
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FIGURE 1. Contours of azimuthal velocity at a midplane in r for R/Re --

12.0. The horizontal axis is the azimuthal direction and the vertical axis is the

axial direction. One-quarter of the cylinder is shown azimuthally, and two axial

wavelengths (twice the computational grid) are shown axially.

4. Results

To convert the code of Moser et al. to estimate N, Lyapunov exponents

required following N + 1 times as many fields. The linear part of the time

evolution operator is identical for the base flow and the perturbations. The

nonlinear term of the evolution operator for the base flow is u × w. For the

perturbations, this term becomes//u × w + u × 5w. The only other addition to the

code was the G ram-Schmidt reorthogonalization procedure, which is done every

few time steps, primarily to give smooth short-time contribution curves. Since

computing N Lyapunov exponents requires (N + 1) times as many grid points as

does the base simulation, it was essential to use the lowest resolution possible.

The resolution used in the simulations was 16 Chebyshev modes radially by
32 Fourier modes in the axial and azimuthal directions. This resolution was

sufficient to capture the flow in the quasiperiodic regime immediately prior to

the onset of chaos with good accuracy. The travelling wave frequencies were

predicted to within 2% of the values seen in experiment at R/Rc = 11. Increasing

the number of radial modes to 32 dropped the discrepancy to less than a percent,
but did not otherwise alter the flow.

A sample flow visualization, at R/Rc = 12, is shown in Figure 1. This is a

picture at an instant of time of a chaotic flow. The quantity shown is the az-

imuthal velocity component of the flow at a radial midplane. The more focused,

higher velocity jet is the radial outflow boundary jet, while the more diffuse
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FIGURE 2. Convergence of the Lyapunov exponents at R/Rc = 11.32 for (a)

the first five exponents, (b) exponents six through fourteen.

jet is the radial inflow boundary jet. The jets are labelled by their radial com-

ponents, but the dominant velocity component in both jets is azimuthal, not

radial. Chaos appeared in the simulations at about R/Rc = 11.1, earlier than

had been observed in experiments. A power spectral analysis of a numerically

computed time series showed that the travelling wave peaks in the spectrum

corresponding to the travelling wave frequencies were about 8 decades above

the broadband noise component at R/Rc = 11.3. The experiments had only

six decades of signal-to-noise separation; thus, it is probable that the chaos was

already present in the experiment at this Reynolds number, but was masked by
the instrumental noise.
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FIGURE 3. Short-tlme contributions to the first nonzero Lyapunov exponent

for (a) R/R¢ = 9.71 (quasiperiodic), and (b) R/Rc = 11.32 (chaotic).

The convergence of the Lyapunov exponents in the simulation is shown in

Figure 2. The first five exponents were computed for almost 600 cylinder rev-

olutions, but clearly from the figure they are just converging. The next nine

exponents were followed for a much shorter time, and there is still a large un-

certainty in their estimates. The trend in the exponents is clear, however, and

the Kaplan-Yorke formula gives an attractor dimension of about nine. This is

higher than the values between 2 and 3 determined from experimental data. It

would appear that low amplitude structure unresolved in the experiments adds

significantly to the dimension of the chaos.

Computation of well-converged Lyapunov exponent spectra is expensive: the

runs described above used more than 500 hours of CPU time on a Cray-YMP

computer. This is in contrast to the short-time Lyapunov exponent contribu-

tions, shown in Figure 3 for a quasiperlodic and a chaotic case. The perturba-

tion fields, started from random initial conditions, evolved very rapidly towards
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FIGURE 4. The chaotic flow at R/Rc = 11.32. Shown are the azimuthal velocity

contours at a midplane in r for (a) a minimum in the short-time contributions

to )q, and (b) a maximum.

asymptotic forms that are displayed at selected times for the chaotic case in Fig-

ure 5. The short-time contributions settled down somewhat more slowly than

the gross form of the perturbation fields, but were qualitatively similar to the

time traces shown in Figure 3 within 40 cylinder revolutions.

The first thing to notice about the short-time contributions is the enormous

variation of the contributions compared to the long-time average exponents. For

the quasiperiodic case, the contributions are to the first negative exponent, which

has a value of -0.4 bits�T], where T] is the period of the primary travelling wave.

For the chaotic case, the contributions shown are for the first exponent, which

has a value of 0.35 bits/T1. The short-time contributions can be forty times or
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(b)

FIGURV. 5. The perturbation field corresponding to A_ for the flow of Fig. 4.

Shown are the azimuthal velocity contours at a midplane in r for (a) a minimum

in the short-time contributions to A_, and (b) a maximum.

more the size of the long-time average, and of either sign. There are fairly rapid,

small oscillations in the contributions that are not yet understood; they may be

related to the evolution of structures in the perturbation fields. The large scale

oscillations on a time scale of two cylinder periods are the important features for

understanding the flow. At minima, perturbations to the flow are crushed, while

at maxima they can expand at an enormous rate (for a short time). Figure 4

shows the chaotic flow at times corresponding to a minimum and the succeeding

maximum of the short-time contributions to )U. The large-scale change in the

wave-forms is the quasiperiodic part of the flow. The separation of the outflow

and inflow jets at closest approach is much smaller at the maximum time than at
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the minimum time. This seems to be what triggers the instability of the flow that

causes the chaos. The jet profiles have been followed as they evolve, and there

does not appear to be any change in the jets other than their separation. The

nature of the instability that is triggered can be seen in Figure 5, which displays

the perturbation field at the same times. All of the energy in the perturbation

is concentrated on the outflow boundary jet at both times, and it has the same

general form: the outflow jet is rolling up. Examination of the perturbation
field at other radial locations shows no important radial effects, so while the

jet is not two-dimensional, the instability is very much a Kelvin-Helmholtz type

phenomenon.

The instability scenario gleaned from the short-time analysis is this: as the

quasiperiodic evolution of the flow proceeds, the outflow jet is destabilized by

the close approach of the inflow boundary jet. For some part of the overall

evolution, a perturbation of the outflow jet in the form of a roll-up of the jet

can grow. This produces the chaos in the system. Examination of Figure 1

shows that at higher Reynolds numbers, the roll-up becomes more apparent in

the base flow itself. The same type of perturbation field is also observed for the

quasiperiodic case, indicating that prior to the instability, the same mechanism

is present as a damped mode.

5. Future plans

The test case has shown that short-time Lyapunov exponent analysis can be

a useful tool for examining chaotic flows. The next step will be to apply this

tool to a fully turbulent flow. The plane channel case studied by Keefe (1987)

has an extremely high dimension, requiring the evolution of many hundreds of

perturbation fields. This will not be possible in an economical way. A better

alternative is the "minimal" channel studied by JimSnez (1989): not only will

the dimension and thus the number of requisite perturbations be lower, but

the number of structures in the flow will be reduced, simplifying the task of

identifying which of them are important to the turbulence evolution
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Organized motions underlying

turbulent shear flows

By F. Waleife

1. Introduction

The objective of this project is to determine the nature and significance of

the organized motions underlying turbulent shear flows. There is considerable

experimental evidence for the existence of such motions. In particular, one

consistently observes longitudinal streaks with a spacing of about 100 in wall

units in the near-wall region of wall-bounded shear flows. Recently, an analysis
based on the direct resonance mechanism has predicted the appearance of streaks

with precisely such a spacing. Also, the minimum channel simulations of Jimenez

and Moin have given a strong dynamical significance to that spanwise length

scale. They have shown that turbulent-like flows can not be maintained when

the spanwise wavelength of the motion is constrained to be less than about that
critical number.

A critical review of the direct resonance ideas and the non-linear theory of

Benney and Gustavsson is presented first. It is shown how this leads to the later

mean flow-first harmonic theory of Benney. Finally, we note that a different

type of analysis has led to the prediction of streaks with a similar spacing. This

latter approach consists of looking for optimum fields and directly provides deep

insights into why a particular structure or a particular scale should be preferred.

Extension of past work is proposed.

2. The Direct resonance concept

The full velocity field is separated into a mean fi(y) and a perturbation. The

equation for the mean is obtained by averaging the incompressible Navier-Stokes

equations over z,z, t:

1 d2 O_O_p d-_- = + (:)
dy 2 Oz

The equations for the perturbations are then derived by subtracting the av-

eraged equations from full Navier-Stokes. Eliminating the pressure and using

continuity leads to a set of equations for the remaining 2 degrees of freedom,

which correspond to the vertical velocity v and the vertical vorticity 71. One
finds:

0 0 1 - 19

:V2)V2v - fi = NL_ (2)( +  '19--; - R "

19 _19 1 ,19
(_-_+u_- _V 2)r/+_ _-z v=NL_ (3)
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w_nere the n0n-linear terms, NLv, NL_, are given in Jang, et al. (1986). The

boundary conditions are v = 0-_v = _/= 0 at the walls (y = 4-1 say), together
with some periodicity conditions in the z and z directions.

In the linear case, one looks for normal mode solutions of the form:

v = _(y)e _(_+_z-'_O (4)

(5)

The equation for the vertical velocity v, which decouples from the vertical

vorticity, is known as the Orr-Sommerfeld (OS) equation. It constitutes an

eigenvalue problem. The vertical vorticity is then obtained as the solution of a

forced ODE. This can be done by expanding _ in a series based on the eigenmodes

of the homogeneous problem (also known as the Squire equation). Each term

in the expansion is proportional to (w - ¢ai) -1, where w is an eigenvalue of

the OS equation and wi an eigenvalue of the Squire equation associated to an

eigenmode 171(y). Of course, this procedure breaks down if any eigenvalue of the

Squire equation is identical to the OS eigenvalue. This situation corresponds

to a direct resonance. The free modes of the vertical vorticity equation are

always damped (that equation is simply advection-diffusion with zero boundary

conditions and no forcing). In consequence, a direct resonance can only occur for

damped modes. But even in the case of near-resonance, there is the possibility

that the vertical vorticity attains high amplitudes before the final viscous decay.

The general solution of the time dependent problem for a vertical vorticity of

the form y?(y, t)e i(a_+flz) is given by:

e-iWt _ e-iWot

_/(y, t) = fl),0 _/0(Y) + R(y, t) (6)
60 -- O) 0

where

f (7)
- f 77oT?_dy

The function R(y, t) contains terms of the same form for other eigenmodes _7iplus

homogeneous solutions so as to satisfy the initial conditions. We are interested

in the amplitude of the forced response:

e-i wt _ e-i_ot

A(t) = fl o (8)
0,/ -- ¢d 0

For a direct resonance one gets A(t) = fl$o te -i_t. After a time t. = Irm( )l ,
the amplitude reaches its maximum value given by :

ma IAI - fll 01 (9)
e Irm(0,)l
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where the vertical bars denote an absolute value or the norm of a complex

number and Ira(w) is the imaginary part of w. For near-resonance, a good

estimate of the maximum amplitude is given by

mazlAI (10)
e maz{llm(w)l, IIm(w0)l} + IRe(w) - Rc(w0)l/2

After reaching this maximum, the amplitude decays viscously. The most am-

plified modes are those for which the phase velocities are nearly equal and both

damping rates are small.

The interest in this mechanism is that if the gain in amplitude is significant

non-linear effects will start to play a role. The direct resonance mechanism

might then bridge the gap between linear theory and the observed 3-D non-

linear instability in shear flows. This is especially relevant to Couette flow for

which there is no known 2-D instability while direct resonances are present for

any wavenumber (and correspond to modes moving with the average velocity).

2.1. Non-linear effects

Whether direct resonance is an important mechanism or not depends on tile

nature of the non-linear interactions which can be triggered. Non-linearity must

act quickly enough to prevent the linear viscous decay. One must realize that

only the vertical vorticity is amplified by the direct resonance and this limits

the possible non-linear effects. The non-linear implications of direct resonances

have been investigated by Benney and Gustavsson (1981). The situation is quite

different depending on whether one has a single 3-D wave or several.

For a single wave, the vertical velocity remains decoupled from the vertical

vorticity. The only non-linear terms in the vertical vorticity equation have the

form of an interaction between the vertical velocity and vorticity, but there is

no self-interaction of the vertical vorticity. This imposes strong limitations on

the non-linear effects. Benney and Gustavsson conclude that if e is a measure

of the amplitude of the vertical velocity perturbation, the time scale for the

non-linear interactions is e -2, exactly as in classical weakly non-linear analy-

ses of OS waves. This time scale must be shorter than the viscous and phase

decorrelation time scales for the finite amplitude effects to act (i.e. one needs

llm(w)l, I/m(w0)l, IRe(w) - Re(w0)l < ,2, a strong restriction). However, their

deduction ignores the interaction between the vertical velocity and vorticity

through the mean flow. That interaction occurs on a time scale of O(,-1),

much faster than 0(,-2). That process is well illustrated by the following ex-
act viscous non-linear solution in an unbounded domain. Consider the flow:

u = w_(t)z -wz(t)y, v = -1/2 wz(t)z, w = 1/2 wz(t)y, which is a lin-

ear flow with time-dependent vorticlty. The u-veloclty is given by the su-

perposition of two Couette flows. The v and w velocities are that of a rigid
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body rotation around the z-axis at a rate 1/2_v,.

Dt_ = _.V_ + v_72_, becomes:

d_,= 0

1

1

The full vorticity equation,

(11)

a,v(f) = a sin(w,(O)t/2)
0,z(0 = - a cos(,,,,(0)t/2)

%(0 ~ a (et - (et)3/6)

_s:(t) ~ - a (1 - (ct)_/2)

The time scale is indeed of order e-1. In a domain bounded by two infinite

horizontal planes the rigid rotation given by _s, would be replaced by a periodic

array of downstream rolls. These downstream rolls would decay on a slow viscous

time scale due to the presence of the walls. The initial Couette flow would be

maintained by viscous action at the same wails. As a result, one would observe

a very "turbulent-looking" mean profile together with some associated streaks.

If there is a direct resonance for (a,/3), there is also one for (ct, -/3). It is then

necessary to consider the evolution when both waves are present. When several

modes are present simultaneously, there is the possibility of a non-linear feedback

on the vertical velocity. In that case, Benney and Gustavsson reason that the

time scale for the non-linear processes is c-1/2, which is very fast. On that

time scale the vertical vorticity and the associated horizontal motions reach an

amplitude of order c1/2. Benney and Gustavsson rescale the equations assuming
that the horizontal motions are of order _1/2 while the vertical vorticity is of order

e. At lowest order, the resulting system consists of the homogeneous vorticity

equation and a non-homogeneous equation for the vertical velocity. Although

the derivation of these scalings is not available in their paper, one suspects

that they proceeded as follows. Starting with a vertical velocity _ v(a, +fl), the

vertical vorticity is "directly forced" and behaves initially as etT/(a, +fl). The

non-linear distortions are at least of order c2t 2. These distortions might interact

with _/(a, +/3) to induce a feedback on v(a,4-/3) of order e3t 4, which introduces

an _3ts modification of _/(a, 4-/3). Schematically, one gets:

v(,:,, +/3) (1 +

For small times, one has:

which implies that w,(t) = ,,,(0) stays constant. Then if initially the flow is a

Couette flow, w,(0) = -a, o_(0) = 0, on which a small downstream vortex is
introduced, _o,(0) = 2,, the solution is:
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,(a, +8) = ,t(: + ,'t' +...)e _(°'_-_z-_')

However, due to the necessary requirement of small damping for the direct res-

onance to lead to significant amplification, one can expect more resonances to

appear. In the worst case, the vertical vorticity could resonantly force a v(0, 2/3)

mode (downstream roll with half spanwise wavelength), which then induces a

7(0, 28) mode (streaks). The non-linear feedbackon v(a, +8) could be as high as
order est'. This cascade of interactions is represented in the following diagram.

, v(_, +8) --_ ,t r/(_, +8)

_2t2 r/r/* ----* _2t3 v(0, 28)

,2t3 v(o,28) --* ,2t' r/(o,28)

,3t5r/(_, +8)r/(o, 28) _ ,3t_ v(_, +8)

The first and third interactions are linear and correspond to "near direct res-

onances". The second interaction was observed by Sang, Benney and Gran, it

is further discussed below. The fourth interaction has not yet been explicitly

established. If this scenario takes place, the correct expansion would rather be:

v(o_, -t-/3) = ( (1 + (2tn +...)e i(a'4"13z-w')

r/(¢_, +8) = (t(1 + e2t _ +...)e i(c_'-I-t_z-°_t)

implying a non-linear time scale of order (-1/3.

3. Applications

Gustavsson has looked for and found direct resonances for laminar Couette,
plane, and pipe Poiseuille flows. No exact resonances were found for laminar

boundary layer profiles; however, Sang, Benney and Gran (1986) found one for a

turbulent boundary layer profile. The use of the theory for a turbulent profile is

more delicate to justify, as in that case finite perturbations must exist to maintain

the turbulent mean. Yet, considering the linear perturbation equations around

a turbulent mean can be seen as an effort to determine a "proper eigenmodal

decomposition" of the fluctuating field. Kim has located several near-resonances

in the case of a turbulent channel flow profile. We are now confronted with a

selection problem. Which of these near resonances, if any, is the relevant one?

The first, and only, resonance found by 3ang, Benney and Gran corresponds

to a wavenumber intriguingly close from the peak of experimentally measured

power spectral distributions. In addition, the vertical velocity motion induced

by the non-linear interaction of the vertical vorticity with itself corresponds to a

downstream roll with a spacing of 90 in wall units. This is a very interesting non-

linear process which gives a mechanism to generate streamwise vorticity from

vertical vorticity. Longitudinal streaks are then introduced by the interaction
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of this streamwise vortex with the mean profile. Physically, the large horizontal

motions coming from the large vertical vorticity induced by the direct resonance

create downstream and spanwise vorticity (0--_w and 0_-fu) as a consequence of
the no-slip condition at the walls. These vorticity components are stretched

_-_u) and rotated (- 0--_-w0--_u), respectively, as can be deduced from the
equation for the z-vorticity':

D 0 0 0

_-y0_= = _z _-zu + % _--_Uy+ _,= _-z u + vV2_,_

neglecting °v and 0-_-v in the expressions for ¢offi and cat, one finds:

D O O O O

Mathematically this process translates into the non-linear forcing of a v(0,2/3)

vertical velocity mode. This mechanism is particularly relevant to the studies of

John Kim (1983). One emphasizes that according to the mechanism explained

above, the downstream vorticity is generated from the vertical vorticity rather

than from a "splatting" effect (Kim, 1983).

From the nature of the non-linear interactions, the streamwise vortex always

has twice the spanwise wavenumber of the 3-D vertical vorticity which generated

it. Thus double pairs of counter-rotating vortices should be observed if this

process is relevant. The "minimum channel" simulations of Jimenez and Moin,

show that "turbulence" can be maintained with only one pair of counter-rotating

streamwise vortices. This would imply that the mechanism for their generation

can not come from the non-linear interaction of the vertical vorticity with itself

as proposed by Jang, Benney and Gran. More cautiously, there must be another

mechanism for their creation.

4. Mean flow-first harmonic model

The appearance of the new resonances discussed above imposes some signif-

icant modifications to the non-linear theory of Benney and Gustavsson. It is

necessary to reformulate the problem in order to account for the intrinsic span-

wise modulation of the mean flow. Steps in that direction have been taken by

Benney and Chow (1989). These authors have formulated a mean flow-first har-

monic theory where the mean varies in both the vertical and spanwise direction

and the perturbation is composed of only one downstream fourier mode. No

extensive analysis of the solutions of these equations have yet been made. This

self-contalned theory is still in a primitive state. It seems that some careful nu-

merical simulations could test the validity of this approach. This mean flow-first

harmonic theory is in some sense based on an idea of triad resonances between

modes of the form (a,-t-/3) and (0,2/3), but it could also describe interaction
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between (a,-t-2/3), (0, +2/3) and (a,0). In other words, in the case of a mean

+ a spanwise mode (0,2fi), one might find both fundamental and subharmonic

instabilities (just as for a mean + a 2-D Tollmien-Schlichting (a, 0) wave). The

fundamental instability could be relevant to the minimum channel simulations.

Such instabilities of a spanwise periodic basic state might be the other side of the

3-D instability of a downstream periodic basic flow. The question is which basic
state should be studied? Laminar Couette flow modified by its slowest decaying

downstream roll eigenmode is a good candidate. The same basic state could be

chosen for channel flow, or, alternatively, a state generated from the computed

turbulent profiles could be used. This state would be obtained by averaging the

full-field over the downstream x direction and time.

In the mean flow-first harmonic theory, one hopes that the waves developing

on a spanwise varying basic state are such that their non-linear interactions

maintain the mean and especially the downstream rolls. It seems more likely to

the present author that the downstream structures would rather be formed by

a 3-D instability of the developing wave (i.e. the 3-D instability of a mean + a

downstream mode (a, 0); the elliptical instability).

5. Optimum fields

A related investigation is to determine optimum perturbation fields main-

taining the mean and being chosen so as to maximize various mean moments

(e.g. production) under some critical constraints derived from Navier-Stokes. In
this approach as in the mean field-first harmonic theory, the mean flow equa-

tions are exact while approximations are made on the fluctuation equations.

Busse (1978), for instance, showed that the field which maximizes the averaged

Reynolds stresses, while maintaining the mean and satisfying the boundary con-

ditions, the incompressibility constraint and an energy constraint, corresponds

to a downstream roll-streak structure with a spacing of about 50 in wall units.

Without a doubt, a numerical investigation including additional constraints will

improve this value. The advantages of this approach is that it is mathematically

rigorous and gives some definite physical insights such as what are the important

constraints on the real motions, and why a particular structure is observed. It

is an excellent way of getting the organized motions in a turbulent field. Once a

solution is found, it can then serve as the basis for a new expansion or analysis.

Busse's solution, for instance, could serve as the basic state in the 3-D stability

calculations referred to above.

The following question could be quite relevant to the minimum channel simula-

tions. Given the computed turbulent velocity profile, what is the most "efficient"

way of maintaining it? By "efficient" we mean, for example, that the ratio of the

total average turbulent energy production to the total average kinetic energy of
the fluctuations is maximized. Of course, one could look for other optima (suCh

as max average Reynolds stresses over rms fluctuations). Mathematically, the
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problem is that of determining the maximum of:

-- < ff_d-_ >
<u s÷v 2+w 2 > (12)

where the brackets < . > stand for an average over all variables z,y,z,L The

overbar, as before, is an average over z,z,t. We request that this optimum

fluctuating field maintains the mean, that is :

(13)

The optimum field should satisfy the incompressibility constraint: V._ = 0, and

the boundary conditions. Finally, we impose that it also satisfies the energy

constraint that, for a statistically steady state, the turbulent energy production

is equal to the dissipation rate. This reads:

1- < _ _ >= g < (_u)' + (_)' + (_w)' > (14)

As the turbulent profile and the Reynolds number are imposed, this last con-

straint implies that we are maximizing the functional:

(15)
< uz + v 2 ÷ w _ >

For this type of problem, one knows from Busse's work that the optimum field

corresponds to x-independent structures, thus we are really maximizing the span-

wise wavenumber. The question has thus become: what is the smallest spanwise

wavelength which could maintain the turbulent mean? The equations for the

optimum fluctuating field are obtained from variational calculus, after some ma-

nipulations they read:

1 d2 _//2 d2
[_- _(_- 11(_- - _')_(_)= _'_,(y)a(y) (16)

_'_(

with the boundary conditions: _ : d_/dy = _ = 0 at y = ÷1. The Lagrartge

multipliers _ and _2(y) are determined from the constraints that < (_ff)2 >

and _-_ have fixed values. This is a fairly simple numerical problem. One will

note the strong similarity between this system and the OS and vertical vorticity

equations. The most important difference is that we now have a production

term for the downstream roll (v). This term models some optimum process

maintaining the rolls.
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5.1. Improvements

The most efficient way of subtracting energy from the mean flow corresponds

to z-independent structures. Conservation of energy was insured but no further

constraint was imposed on how this energy should be spread among the 2 degrees

of freedom v and u, i.e. among downstream rolls and streaks. However, we know

that there are strong constraints on such a process. Indeed, if one introduces

downstream rolls into the flow they are very efficient at taking energy out of the

mean, but all that energy goes into the streaks. These streaks are themselves

precisely determined by the mean profile and the rolls.

One way of improving the results is to proceed as in the mean field-first har-

monic theory and recognize that the mean should have an intrinsic spanwise

variation (u(y, z)), with associated downstream rolls ( v, w motions). The prob-

lem is then to determine what optimum fluctuations could maintain such a

mean. The fluctuations will now be z-dependent. This problem will predict a

mean profile, streak spacing and an optimum z-scale.

A simpler alternative has been proposed by Malkus (1967). Instead of consid-

ering a different mean, the idea is to impose more constraints on the fluctuations.

Malkus' suggestion is to include the equation for the total streamwise enstrophy.

This should give insight into the mechanism of production of streamwise vortic-

ity. Yet another way is to split a priori the fluctuating field into its 2 degrees

of freedom and impose energetic constraints for both of them simultaneously.

In this way, the repartition of the turbulent energy production among the 2 de-

grees of freedom would be imposed from Navier-Stokes, instead of being freely

determined by the variational problem.

Dr. Leslie Smith has been working on related topics, and these optimum fields
projects will be realized with her collaboration.
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Turbulence dynamics in

the wavelet representation

By C. Meneveau

The phenomenon of small-scale intermittency is shown to motivate the de-

composition of the velocity field into modes that exhibit both localization in

wavenumber and physical space. We review some basic properties of such a

decomposition, called the wavelet transform. The wavelet-transformed Navier-

Stokes equations are derived, and we define a new quantity II(r, _, t), which is

the flux of kinetic energy to scales smaller than r at position _ (at time t). Then,

the main goals of this research are summarized.

1. Introduction

One of the most important features of a turbulent flow is the transfer of kinetic

energy from large to small scales of motion. For isotropic and homogeneous

turbulence, the three-dimensional energy spectrum E(k, t) obeys

aE(k, t) _ T(k, t) - 2vk2E(k, 1), (1)
at

where T(k, t) is the net transfer of energy through wavenumbers of magnitude

k. The total spectral flux of energy through wavenumber k to all smaller scales

is given by

CO

II(k, 1) = / T(k', t)dk'. (2)

k

Usually the mechanism of energy transfer is visualized by simplified models such

as the successive break-down of 'eddies', or as the creation of small scales by the

stretching and folding of vortical elements. One then argues that through scales

of motion of size k -1 , there is a net flux of kinetic energy to smaller scales, which

is equal to the time average of II(k, t). Notice that II(k, 1) does not depend on

position because of the Fourier representation used to obtain Eq. (2). If one

now wishes to reconcile this definition of a 'flux' of energy to smaller scales with

the phenomenological picture of breakdown of eddies, one needs to tacitly make

the assumption that its average value is indeed physically representative of the

underlying physics in any regions of space. In some loose sense, this then cor-

responds to the theory of Kolmogorov (1941), which neglects the phenomenon

of intermittency. Of course, it has been known for a long time that the rate

of dissipation c(m, 1) is distributed very intermittently (Batchelor and Townsend

mrENrl0NAtkY ll_flll PRECEDING PAGE BLANK NOT FILMED
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1949), a behavior which increases with the Reynolds number of the flow. Also,

its moments increase with Reynolds number according to power-laws in the iner-

tial range of turbulencel Among others, this permits a self-consistent statistical

and geometrical representation of s in terms of multifractals (Kolmogorov 1962,

Novikov 1971, Mandelbrot 1974, Frisch and Parisi 1985, Meneveau and Sreeni-

vasan 1987a, 1987b, 1989). The observation of power-law behavior of spatial

moments of the dissipation can be modelled again rather naturally within the

framework of breakdown of eddies, but now assuming that the flux of energy

to smaller scales exhibits spatial fluctuations. These fluctuations accumulate as

the scales of motion become smaller, and can lead to very intermittent distribu-

tions of the dissipation displaying power-law behavior. This suggests the need

for defining a flux of kinetic energy to smaller scales which, as opposed to Eq.

2, should retain some degree of spatial locality.

In a very interesting paper, Kraichnan (1974) proposed to decompose the

velocity field into band-limited contributions according to

where

2m+l

t) = (2,0 -d f  d3k,
1_t=2,,.

(3)

_i(k,t) = / ui(_ ,_)e -i_'zd3 x. (4)

-co

The equation of motion of u_"(£',t) can be deduced from the Navier-Stokes

equations, and multiplying the result by u_'(_,t) gives the evolution equation

of [u_n(_',t)] 2 which can be interpreted as the kinetic energy occurring in a

wavenumber band around 2 "_, at position _. The result is

0

(_-_ - vV 2)[u_({, t)]2= T-_(£, t),
(4)

where

2m+1

Tm(Z,t) -- 2(2vr),t u_({,t) f Piik(k)e i_'" f aj(q-*)ak(k -- q-)d 3qd3k. (5)

Ikl-z"

Here Pijk(_e) is the usual divergence-free projection operator. In analogy to Eq.

(2), Kraichnan (1974) then defined a flux of kinetic energy to smaller scales as

H'n(£'t) = Z T'_(£'t)' (6)
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FIGURE 1 (8). High-pass filtered version of the signal u(z). The filtering here

consists of cutting off all discrete Fourier modes of scales larger than 30.

which is now a position-dependent quantity because of the band-pass filtering.

However, filtering using Fourier modes can be dangerous in the following sense.

Take for instance the signal of Fig. (la), where an oscillation of wavelength

A = 30 is confined to a certain region of space. This could be thought of as an

extreme case of intermittency, where at a given scale A all activity is confined

to a subregion of space only. If we now high-pass filter the signal up to scales

equal to ,-_ 30, we get the signal of Fig. (lb). It is apparent that the elimination

of modes at scales larger than 30, some of which were needed to cancel the
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oscillations outside the domain of activity, has resulted in spreading the 'activity'

everywhere. This is because of the non-local nature of the Fourier modes.

This motiwtes the study of bases that retain locality both in wavenumber

and position space. Their use in describing turbulence dynamics is the primary

goal of this research, with special emphasis on the spatial characteristics of the

transfer of energy to smaller scales and the implications on intermittency. The

formalism will then be applied to numerical data bases of turbulent flows.

The theory and applications of the so-called wavelet bases, which are local

in wavenumber and position space, has recently generated much interest (for a

detailed account, see Daubechies 1988). Wavelets are currently used for speech

and image processing (Mallat 1989, Kronland-Martinet et al. 1987), and can

be used to describe affine coherent states in quantum mechanics (Paul 1985).

The work of Siggia (1977) and Nakano (1988) attempt to describe turbulence

using wavepackets, which display several similitudes with wavelets. Explicitly,

the potential use of wavelets in turbulence has been pointed out in the context

of coherent structures (Farge and Rabreau 1988) as well as in studies of its

fractal nature (Argoul et al. 1989), even though their claim that it has proven

the Richardson cascade based on single hot-wire measurements appears to be

premature.

Section 2 defines the (continuous) wavelet transform of a signal, and reviews

several of its properties. Section 3 defines the flux of kinetic energy to smaller

scales using the wavelet representation, and also derives the wavelet-transformed

Navier-Stokes equations. Section 4 contains some practical considerations re-

lated to the implementation of the discrete version of the wavelet transform,

and its generalization to three dimensions. Section 5 summarizes the future

objectives of the present research.

2. The wavelet transform

Given a signal u(z), its wavelet transform is defined as

_z. _ g( )u(x')d;_', (7)w(_, _){_} = c_ ' _-
--(X)

where g(s). is a function called wavelet, satisfying the admissibility condition

c9 -- f I_1-1I_(_)l_d_ < oo. (8)

Here b6') is the Fourier transform of g(,). a(s) is of zero mean, will have
some oscillations and will usually be real. A typical example is the mexican hat

g(s) = (1 - s2)e -°_/2, which can approximately be viewed (Coifman 1989) as

the difference between two exponentials of different sizes centered around s = 0.

Therefore, W(r, z) can be regarded as the relative contribution of scales r to the
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signal at position z. If g(s) obeys the above conditions, the wavelet transform

can be inverted (Grossmann and Morlet 1984). The inversion formula for the

wavelet transform reads

OO OO .

= , ' gt-S--)w t,, ='){,}dx'a,. (9)
0 --OO

W(r, x) can also be obtained from _2(k), the Fourier transform of u(x) accord-

ing to

w(,, =){u} = a;- '_(2,_)-1,_ f O(,k)'a(k)ei=_dk,

where ._(ta) is the Fourier transform of g(s).

given by

(10)

The total energy of the signal is

oo oo

0 --o0

One can also compute a(k) from W(r, x){u} using

oo oo

_(k)---- Og-_(27r)-l/ f ,-'O(rk)ei=kW(r,x){u}dxdr. (12)

0 --_

The wavelet transform commutes with differentiation in the spatial variable,

namely

For vector functions if(z) with components ui(z), the transform is a vector

l_(r, x) whose components are the transforms of the components of if(x).

For functions defined in higher dimensions, it is recommendable to use decom-

posable wavelets. In three dimensions we use

g(_ = g(s,,s_,s_)= g,(s,)g_(s,)g_(s_).

One can then prove the following useful relations:

(14)

and

Ce. _(,, z){_(_)} = w(,., i){xSe,. _(_)]} (15)

_,ffr(,, z){_(_,)} = w(,, i){¢_, _(_)}. (16)
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3. Wavelet representation of turbulence dynamics

Let us define Wi(r,_,t) as the wavelet transform of the velocity field ui(_, t).

(From here on we simplify the notation by using Wi(r, _, t) instead of Wi(r, _, t){ui})

Because of Eq. (15), the incompressibility condition reads

_. _(,., _, t) = o. (17)
_.I.

Multiplying the Fourier-transformed Navier-Stokes equations by C u 2 r _ (27r) -a

x_(rg)*e ir'_, integrating over wavenumber space and using Eq. (12) gives

where

(_ _o_v_)[w,(r,_,t)] =

, _,_')dr'dr"d3x'd3z '' , (18)t)Wk (_", _", t)r_ (_, e; _', ,",

Ii / -.* I f l -'# --#!

jk!,r,x;r ,r ,z ,z ) =

• _.

,r, f [l(rfe). piik(fe)elg.(_+_,, )-- t. _ - t_.+.g.
2C;(2_) 3d(r'r'') 2 .

k

q3)ei¢.(_'-_")d_qd_k.
e/

¢
(19)

This illustrates that there are now interactions of the Wi(r, _, t) occurring at

different positions as well as different scales. These non-local and inter-scale in-

teractions are dictated by the properties of I_j_ (r, £; r', r", _', _"). AdditionaIly,

one can, of course, apply the wavelet transform in time•

Of more immediate interest is to define a quantity analogous to Eq. (6) in

the wavelet representation• For this we start with Eq. (19) and multiply by

Wi(r, _, t) and express the right-hand-side as a function of the velocity field. We

obtain

0
(_-_ - vV 2 )[Wi (r, {, t)] _ = T(r, £, t),

(20)

where

T(r, _, t) =

ei_._
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×if _j(_(k- q3d3q]d3k. (21)

¢

The flux of kinetic energy to all smaller scales can then be defined as

H(r, _, t) = . _[T(r', _, t)dr'. (22)

0

Therefore, given the Fourier transform of the velocity field, the quantity

II(r,_,t) can be computed. Other quantities whose spatial distribution is of

interest is the dissipation term

v .OWi OWj ]2 (23)
= + "

Assuming constant mean shear, the production term is

P(r,_,t) = Wi(r,£,t)Wj(r,_,t)Sij,

where Sij is the mean rate of strain.

(24)

4. Wavelet bases and discretlzatlon

There are many possible choices for the wavelet g(s). The simplest is the Haar

function g(s) = 2_ for 0 < s < ½ and g(s) = -2_ t for _ < s < 1. Another is
the mexican hat mentioned in section 2. In terms of the discretization of the

transform, assume that one has a signal on a discrete grid consisting of N points.

One possibility is to space r logarithmically and 'slide' the spatial variable over

all N points of the signal. In such a case one obtains of the order of NIogN values

of the transform. This is what has generally been used in qualitative studies,

such as by Kronland-Martinet et al. (1987) and Argoul et al. (1989). The fact

that the transform consists of more points than the original signal comes from

the non-orthogonality of the wavelet functions in such a case.

Intuitively, for larger values of r one could use a coarser spatial grid than for

smaller values of r. This observation has led (see Mallat 1989) to the definition

of basis functions of the form

g,,_,i(x) = g(Z - iboa'_ ) = g(aom z _ ibo), (25)
a;'

where a0 and b0 are dilation and translation steps. Notice that now the trans-

lation depends on the dilation, both being logarithmically spaced. Choices for

a0 and b0 are not completely arbitrary (Daubechies 1988); here we will use the

simplest case a0 = 2 and b0 = 1. Notice that the Haar basis with such a choice

of a0 and b0 constitutes an orthonormal system, because
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FIGURE 2. Lemarie-Battle wavelet with exponential decay in physical space.

For a method of constructing such a wavelet, see Mallat(1989).

f gm'i(z)# nJ(Z)dz = t,,.,nSij. (26)

The discrete wavelet coefficients of a continuous function u(x) are defined as

W '''i = f gm'i(z)u(z)dz, (27)

and the (discrete) reconstruction formula is the wavelet series expansion of u(z)

_J,

,,(=)= cg , Z
m i

(28)

In practice, u(z) itself is discrete and the integration in Eq. (27) needs to

be replaced by a sum. In the formulation to be adopted here, the discrete

samples u(z,_) are viewed (Mallat 1989, Daubechies 1988) as resulting from the

convolution of u(z) with a function ¢0,,_(z) according to

f

u(=,,)= J (29)

It turns out that the conditions of orthonormallty of the entire wavelet basis

(as well as several other considerations) are related to the properties of _b0.,_(z)
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FIGURE 3. Wavelet transform of the signal of Fig. l(a) using the Lemarie-

Battle wavelet and the fast algorithm of Mallat (1989). The index rn denotes

the scale and runs from m = 1 to m = log2N = 9. The index i runs from 0

to 2-raN - 1. The spatial resolution thus decreases as m increases. The total

number of values of the transform is N - 1, and for the decomposition to be

complete, one also needs to know, say, the mean of the signal.

(Mallat 1989, Daubechies 1988). For instance, the use of such a formulation

naturally leads to an algorithm to compute fast wavelet transforms (FWT).

Several issues other than orthonormality need to be taken into account when

deciding which wavelets to use. One very important issue is the degree of locality.

The Haar system is very well localized in space (it has compact support in [0, 1]),

but has very poor spectral locality. This is a disadvantage, because we would

like the wavelet coefficients corresponding to a certain scale r to be large only

when the signal actually contains oscillations of that scale. In other words,

one is interested in fast decay both in wavenumber and position space. A very

convenient function complying with the conditions of discrete orthonormality

was discovered by Lemarie and Battle (see Mallat 1989). This function decays

as k -4 in wavenumber space and exponentially in physical space, and was used

by Mallat (1989) for image analysis. Figure 2 shows this function. Figure

3 displays the discrete wavelet transform of the signal of Fig. la. Notice the

spacing that becomes more coarse-grained as the dilation factor r = 2 m increases.

The transform peaks near m = 5 (corresponding to a scale )_ = 32) only in the

vicinity of the oscillations of the signal. Inverting the transform for scales up to

32 (m = 0 to 5) gives the signal of Fig. 4. Since the wavelet coefficients away
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FIGURE 4. High-pass filtered version of the signal of Fig. l(a) using scales

corresponding to rn -- 1 to 5. Here we have applied the (discrete) inverse-wavelet

transform algorithm of Mallat (1989).
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FIGVRE 5. Signal displaying oscillations of different frequencies at different

locations, as well as random numbers (right portion).

from the activity are very small, there is little risk in incurring the problems

that occurred with the Fourier representation (see Fig. lb).

Figure 5 shows another function consisting of oscillations of different scales

located at different positions. Figure 6 is its discrete wavelet transform. Figures

7 and 8 correspond to high-pass and low-pass filtered versions of the signal. The

wavelet transform is seen to separate events of different scales in a fashion which

respects their location in space.

Even though 9(s) of the Lemarie-Battle wavelets has fast decay in space, it

has non-local support (i..e. g"_'i(z) # 0 even at large [ z 1). If one were to
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m

FIGURE 6. Wavelet transform of Fig. 5 using the Lemarie-Battle wavelet and

the fast algorithm of Mallat (1989). Notice the localization in both waven,,nher

and physical space of the different events.
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FrGURE 7. Reconstruction of the signal using scales between m = 1 and m = 4

(high-pass filtering).

set it to zero after some value of l = I, then the discrete orthonormality is

not exactly obeyed. In other words, finite domain truncation leads to a loss

of discrete orthonormality. Daubechies (1988) shows that one can construct

orthonormal wavelets of compact support which are different from the Lemarie-

Battle wavelets. However, such wavelets do not possess symmetry (Daubechies
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FIGURE 8. Reeonstruct'_on of the signal using scales between rn = 5 and rr_ = 9

(low-pass filtering). Since the reconstruction only uses modes down to scales of

size 32, the result is a coarse-grained version of the signal.

(1988) even proves that the Haar basis is the only system with symmetry). It

turns out that non-symmetric bases are a problem in many respects for the

applications envisaged in this work. Essentially, the coefficients corresponding

to some portion of the signal appear shifted from that position. Therefore, in the

present work we will use the Lemarie-Battle wavelets. It is necessary to point out
that the deviations from exact orthonormality due to truncation are negligible

in practice. Also, the fast transform procedure of Mallat (1989) is implemented.

A generalization of the algorithm to three dimensions will be done.

5. Future plans

The main objective of this work is to compute II(r, 3, t) of Eq. (22) from
full numerical solutions of turbulent flows that are available in data bases at

certain times to. Then the degree of spatial intermittency of II(r, E, to) will be

quantified for different values of r. We will compare the statistics of 1"I(r, 3, t)

with e,, the rate of dissipation averaged over a domain of size r, which is the

quantity usually used for studies of intermittency. This is a dissipative quantity,

whose integral over domains of sizes pertaining to the qnertial range' is usually

thought to represent statistical features of the inertial range. By comparing the

dynamically relevant quantity II(r,_',t) with e,, we hope to clarify this issue.

Also, the statistics of 'breakdown' coefficients defined as

M = .II(r,,E,t) (30)
rl(r2,3, t)

will be quantified. It will be tested whether a cascade model constructed in such

a way as to display the measured statistics of M is consistent with our present
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knowledge of intermitteney of the dissipation. A similar study will be made in

the context of scalar dissipation and flux of scalar variance to smaller scales.

This will lead to a better physical and statistical understanding of the energy

cascade and of intermittency.

Other more long-term objectives are the study of Eq. (18) and in particular

of the quantity Iij_ (% _; r', r", _', _"). The problem of subgrid modelling in the
present context is to find approximations to the right-hand side of Eq. (18)

whenever there are interactions between the resolved scales (say r >__r0) and

the smaller ones. A guide to such considerations could be given by the work of

Nalmno (1988), who applied DIA to the wave-packet representation. Another

line of inquiry could be to attempt a real-space renormalization group analysis

of Eq. (18).

In general, the hope is that models deduced from the behavior of wavelet
coefficients may capture the physics of turbulence in a more natural way than

those based on Fourier modes. However, at this point the manipulations appear

to be much more complicated in the wavelet representation, and so its real

usefulness remains to be proven.
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Direct simulation of turbulent combustion

By T. J. Poinsot

Problem background and objectives

Understanding and modeling of turbulent combustion are key-problems in the

computation of numerous practical systems. Because of the lack of analytical

theories in this field and of the difficulty of performing precise experiments, direct

simulation appears to be one of the most attractive tools to use in addressing

this problem.

The present work can be split into two parts:

1. Development and validation of a direct simulation method for turbulent
combustion.

2. Applications of the method to premixed turbulent combustion problems.

The goal of part 1 is to define and to test a numerical method for direct

simulation of reacting flows. A high level of confidence should be attached

to direct simulation results, and this can only be achieved through extensive

validation tests. We have considered two major questions :

1.1. Which equations should be solved? Contrary to cold-flow turbulence, the

choice of equations to solve for turbulent reacting systems is still an open ques-

tion. At the present time, it is not reasonable to compute time-dependant so-

lutions of Navier-Stokes equations with complex chemistry in multi-dimensional

configurations. A reduction in the number of equations to be solved is needed.
This also leads to a loss of information which must be estimated.

1.2. Which configurations should be studied and what boundary conditions

are necessary? A second problem is the choice of the configurations to study

and of the associated boundary conditions. Most direct simulations of cold-

flow turbulence are performed for temporal situations with periodic boundary

conditions. This approach is not convenient for many reacting flows, and spatial

simulations are required. These simulations can not be done without adequate

boundary conditions.

In part 2, direct simulation is used to address some of the many critical prob-

lems related to turbulent combustion. At the present time, I have limited this

work to premixed combustion and considered only four basic issues :

_.1. The effect of pressure waves on flame propagation.

_._. The interaction between flame fronts and vortices. This is the basic

problem of turbulent combustion. The goal here is to gain more insight into the
fundamental interaction mechanisms between flame fronts and vortices.

_.3. The influence of curvature on premlzed flame fronts.

_.1. The validation of flamelet models for premized turbulent combustion.
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Questions 2.1 to 2.3 concern fundamental processes in turbulent premixed

combustion which are not well understood at the present time. Part 2.4 is

related to modeling and its goal is to use results obtained in sections 2.2 and 2.3

to construct and validate a flamelet model for turbulent premixed flames.

1. Development and validation of a direct simulation method for

reacting flows

I.I. The equationa to solve

The amount of complexity to include in direct simulations of reacting flows

requires difficult compromises. Taking into account the variations of thermody-

namical properties with temperature and chemical compositions as well as solv-

ing for all species present in a reacting compressible flow will typically lead to
codes slower by at least three orders of magnitude than the codes used presently

for cold flows. This is due to the high number of additional equations to solve

(around 30 for a propane flame) but also to the stiffness of the resulting equa-
tions which will need very dense computation grids. On the other hand, using

constant density assumptions, infinitely fast chemistry approximation or over-

simplified equations for species concentrations (like assuming that the Lewis

number is equal to unity, in which case the species concentration may be ob-

tained directly from the temperature) will lead to faster codes but will not tell us
much about real mechanisms. The choice which was made here is the following

(Poinsot and Lele 1989):
- solve the complete Navier-Stokes equations, including variable density and

compressibility effects,
- use an elementary reaction for premixed combustion (Reactants _ Products)

and finite rate chemistry (Arrhenlus law). The reaction rate _bR is expressed as:

_bR=BpYR exp (-T-_ -5-) (1)

where Tac is the activation temperature and YR is the local mass fraction of

reactants.

- solve separately for species concentration and temperature (non-unity Lewis

number),
- take into account the variations of species diffusion, viscosity and conduc-

tivity with temperature,
- take into account heat losses.

This choice is accompanied by certain limitations:

- the Schmidt, Prandtl and Lewis numbers are fixed,

- most cases are run in two-dimensional geometries,

- only premixed combustion has been considered.
Extensions to three-dimensional or to diffusion flames are straightforward. At

the present stage, the following mechanisms can be described:
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- dynamic effect of the flame front on the flow (this requires variable density),
- effects of the flow on the inner structure of the flame front (this requires

finite-rate chemistry),
- extinction of the flame by stretch and influence of curvature (this requires

non-unity Lewis numbers and non-zero heat losses),

- influence of pressure waves on combustion, triggering of combustion insta-

bilities (this requires compressibility).

- mixing, ignition, and quenching mechanisms in supersonic combustion (this

requires compressibility, non-unity Lewis number, and finite-rate chemistry).

- flame-generated vorticity and flame/vortex interactions (this requires non-

constant density and viscosity).

All these mechanisms are key-processes in many combustion phenomena and

few of them are well understood in a general sense. Before going to three-

dimensional cases with more complex chemistry, the present approach can lead

to many original and important results.

I._. Configurations and boundary conditions

A second problem is the choice of the configurations to study and of the asso-

ciated boundary conditions. An extensive study of appropriate boundary condi-

tions for spatial direct simulation has been performed. This effort goes beyond

the scope of reacting flows, and its goal is to provide a satisfactory method to

specify boundary conditions in cases where periodicity can not be assumed. Peri-

odicity has been used in most direct simulations of reacting or non-reacting flows

because it suppresses the need of boundary conditions (The domain is folded on

itself). When more realistic problems are considered (involving inflows and out-

flows, for example) the problem of boundary conditions becomes crucial. On the

basis of methods proposed for the Euler equations (Thompson 1987), a general

formulation for the Navier Stokes equations has been derived (Poinsot and Lele

1989). This method called Navier-Stokes Characteristic Boundary Conditions

(NSCBC) applies for most boundaries (inlet, outlet, adiabatic slip-wall, no-slip

adiabatic, or isothermal wall). It has been implemented in the high-order finite-

difference code of Dr. Lele and tested in the following configurations (all of them

concern spatially evolving flows) :

1/Non-reacting shear layers (confined by walls or unconfined).

2/Premixed flames in a shear layer.

3/Acoustic waves leaving the computation domain (subsonic and supersonic).

4/ Vortices leaving the computation domain (subsonic and supersonic).

5/Very low Reynolds number flows (Poiseuille flow).

As an example, Figs. 1 and 2 show results obtained from test 4. A vortex

is generated at time t = 0 in a supersonic flow and is convected downstream.

The mean flow is uniform, from left to right at a Math number of uo/c = 1.1

(c is the sound speed). The maximum velocity induced by the vortex is small

(0.0018u0). The plots on the left side of Figs. 1 and 2 give the vorticity field
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while the plots on the right side display the longitudinal velocity perturbations

(u - u0)/u0. The fight boundary is supposed to be 'non-reflecting'. It should

let the vortex pass through without generating any perturbation. Two methods

were used for the outlet boundary:

• Method 1 is a reference method proposed by Rudy and Strikwerda (1981)

which can be viewed as the prototype of methods used by many other authors

(Yee 1981, Jameson and Baker 1984). It uses extrapolation for the velocities and
the density. The pressure is then obtained by solving for a Riemann invariant

and relaxing the pressure to some value at infinity.

• Method 2 is the 'non-reflecting' version of the NSCBC method.

Supersonic outlet boundary conditions are supposed to be easy to implement
because no information can travel upstream towards the inlet. All errors created

at the outlet should be convected outwards. In fact, physical information satis-

fies this assumption but numerical instabilities do not (Vichnevetsky and Pariser

1986). Using extrapolation at the outlet generates numerical waves which travel

upstream much faster than the sound speed and interact with the inlet to gen-
erate other perturbations (Poinsot, Colonius and Lele 1989). This coupling is

very strong with method 1 (Fig. 1). Not only is the vorticity field near the outlet

strongly modified but the inlet field is also affected and additional vorticity is

introduced into the computation. The total vorticity and the maximum vorticity

in the domain do not go to zero after the vortex has left the domain (Fig. 3).
This numerical feedback between outlet and inlet can lead to non-physical in-

stabilities similar to the one described by Buell and Huerre for incompressible

flows (1988) and could make the final results of the simulation dubious.

When the NSCBC method is used, the vortex leaves the domain without any

perturbation. The total vorticity and the maximum vorticity in the computation

box both go to zero (Fig. 3). The improvement over the reference method is clear.

Although the method is based on inviscid characteristic theory, it also works

very well for viscous flows, like the Poiseuille flow. All tests are presented in

Poinsot and Lele (1989).

2. Applications to premlxed turbulent flames

_.1. The effect of presJure waves on flame propagation

The effects of pressure waves on combustion and especially the effects of acous-

tic waves on the stability of a reacting flow are not well understood at the present

time although their practical importance is evident in many situations (Yang and

Culick 1986, Poinsot et al 1987, 1988). Some of these effects can be simulated

numerically. One of the most interesting configurations is the premixed flame

in a shear layer (Fig. 4 to 6). This case illustrates also the importance of the

boundary conditions which control the acoustics. Depending on the boundaries,

the flame will behave very differently:
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- if all boundaries are non-reflecting (Fig. 4), acoustic waves will leave the

domain and no coupling may take place between combustion and acoustic waves.

The total reaction rate in the computation box will reach a constant value after

a finite time and a steady state is obtained.

if the flame is placed in an infinite duct, where no reflection is allowed

at the downstream end but where walls are placed on each side of the shear

layer, no steady state is obtained (Fig. 5). The reaction rate oscillates and the

frequency of oscillation (obtained by a non-linear spectral method (Veynante and

Candel 1988)) is the frequency f2t of the second transverse acoustic mode of the

duct. This mode has a pressure antinode near the duct axis, where the flame is

spreading, and this condition, known as the Rayleigh criterion, is necessary to

have coupling between combustion and acoustic waves.

finally, if the flame is placed in a 'real' duct with walls and reflection on

a downstream end of the tube, the reaction rate oscillations are dominated by

the quarter-wave mode of the duct at frequency flL (Fig. 6). The second trans-

verse mode of the duct (frequency f2t) is also present as indicated by spectral

analysis (Fig. 7a). Although the reaction rate and the quarter-wave mode are

directly coupled, the vorticity oscillations are insensitive to the quarter-wave

mode (Fig. 7b). They depend only on the transverse modes f_ and f2t. The

flow structure in this case is displayed in Fig. 8. The fuel concentration field

(Fig. 8a) shows that the flame front is wrinkled. (These wrinkles do not appear

when no acoustic wave is present, for example for the case of Fig. 4). Structures

are convected along the flame front at the flow speed. The vertical velocity

contours (Fig. 8b) reveal that they are formed at the duct inlet by the sloshing

motion due to the acoustic transverse oscillations.

This simple example shows that a strong coupling may occur between acoustic

waves and combustion. This interaction is believed to be even stronger when the

flame front reaches a wall. More studies of these mechanisms will be performed

in the coming year.

_._. The interaction between flame fronts and vortices

The modeling of turbulent premixed combustion is still largely based on em-

piricism because of the complexity of flame/turbulence interactions. The first

step in building a turbulent combustion model is to determine in which com-

bustion regime the reacting flow will be. Diagrams defining combustion regimes

versus length and velocity scales ratios have been proposed by Borghi (1984), Pe-

ters (1986), Bray (1980) and Williams (1985). Knowing the integral turbulence

scale and the turbulent kinetic energy, these diagrams indicate if the flow will

contain flamelets, pockets or distributed reaction zones. Each of these regimes

requires specific modeling.

In the 'flamelet' domain, chemical times are small compared to turbulence

times (Bray 1980). Eddies stretch and convolute the flame front, but they do

not destroy its internal structure. The flame front can be described as a laminar
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flame between fresh and burnt gases. The modeling of such a flow is done by

tracking the area of this interface ( Candel et al 1988, Veynante et al 1989).

In distributed reaction regimes, the turbulence is very intense, and the flame

is shred in small elements. No laminar flame front can be identified any more.

Statistical models (Pope and Cheng 1987, Borghi 1984) are likely to be better

adapted.

Therefore, knowing which regime corresponds to the flow to be modelled is a

necessary and important step in turbulent combustion modeling. Unfortunately,

the dimensional analysis which is used to construct these diagrams is rather crude

and neglects important effects such as flame front curvature, transient or viscous
effects. The basic reason for this situation is that these mechanisms are not well

understood and, therefore ,are ignored in this first-order analysis.

It is possible to construct realistic turbulent combustion diagrams. The tech-

nique which was used here is based on a detailed analysis of the physical mech-

anisms controlling turbulent premixed combustion and uses direct numerical

simulation to quantify them (Poinsot, Veynante and Candel 1990). This is done

by constructing a 'spectral' diagram describing the interaction between one iso-
lated vortex and a laminar flame front. This information is used afterwards

to infer the behavior of a complete turbulent reacting flow and construct more

quantitative diagrams.

_._.I. Turbulent combustion diagrams

Classical turbulent combustion diagrams suppose that a reacting flow can be

parameterized using two non-dimensionalized numbers: the ratio of the turbu-

lence integral scale I to the flame front thickness lF and the ratio of root-mean-

square velocity fluctuations u' to the laminar flame speed sr. Using the nota-

tions and assumptions of Peters (1986), different transitions can be associated

to specific lines in this diagram (Fig. 9a).

• The line u'/sL = 1 indicates the transition between wrinkled flames and

corrugated flames (flames where turbulence can form pockets of fresh gases in

burnt gases).
• The limit between flamelets and distributed reaction zones is reached when

the stretch I _ta (A is the flame surface) imposed on the flame becomes largerX-gi-
than the critical stretch for extinction and creates local quenching. The critical

stretch depends on the flame characteristics but may be estimated by SL/lF

(Peters 1986). Defining the Karlovitz number by:

idA_
Ka- a dt (2)

SL/tp'

we expect local quenching and distributed reaction zones if Ka > 1.
The flame stretch I da_ can be expressed as a function of the Taylor scale A

and of u' as
1 dA
--_ __~u'lA.
A dt
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Using the definitions of the Taylor scale A and of the Kolmogorov scale r/, we

can construct four expressions for Ka:

a/2 2 (3)

where uK is the characteristic speed of Kolmogorov scales.

The Klimov-Williams (KW) criterion is then obtained by considering the third

expression of the Ka number in Eq. (3) and stating that no flamelet should be

observed in a reacting flow if the Kolmogorov scale r/is smaller than the flame

thickness lF. According to the KW criterion, no flamelets would exist beyond

Ka = 1 because their internal structure would be destroyed by stretching and

quenching. The Ka = 1 limit is a line with a slope 1/3 in the diagram of Fig. 93

(Eq. (3)). The region below Ka = 1 is the flamelet region. Note from the
1 dA

last relation in (3) that _-_- is the strain rate at the Kolmogorov scale: UK/_.

Therefore, the KW criterion is related to only one scale: the Kolmogorov scale.

• Increasing the turbulence intensity beyond the Da = (U'/I)/(SL/IF) = 1
limit leads to cases where all turbulence times are smaller than the chemical

time. This regime, called the well-stirred reactor, is not well understood at the

present time.

_._._. A spectral diagram for turbulent combustion regimes

The approach used to build diagrams in the previous section has many defi-

ciencies: it considers only one length scale to describe turbulent combustion, it

neglects all viscous and transient mechanisms as well as curvature effects. These
deficiencies are especially clear when the KW criterion is derived: in Eq. (3),

the KW criterion considers the Kolmogorov scales as the most active because

they generate the highest strains. This approach ignores three important points:

1- Kolmogorov scales might be too small compared to the flame front thickness
to stretch it.

2- Viscous effects might dissipate Kolmogorov scales before they quench the

flame front.

3- Scales smaller than the flame front may induce high local curvature and

thermodiffusive effects which might counteract the effects of strain.

Using direct simulation, we can derive criterions including viscous and curva-
ture effects and take all length scales into accbunt. The first step is to recognize

that turbulent combustion diagrams are obtained through drastic simplifications

and begin our analysis from a more basic point of view.

Let us consider first one flame front interacting with one 'turbulent' flow.

Supposing that turbulence and chemistry are fixed, we can define a spectral

diagram which maps the ifiteraction between one of the turbulence scales and

the flame front (Fig. 9b). There is one Spectral diagram for each point of the

Peters diagram.
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In this spectral diagram, three classes of vortices can be isolated because

they indicate important transitions: the vortices which can form pockets on the

wrinkled flame front; the vortices which can quench locally the flame front; the
vortices which are too small to interact with the flame zone.

It is important to emphasize that, in the same turbulent reacting flow, all

three types of vortices may be found at the same time. The flow structure is the

superposition of all vortices and describing it by using only one scale can not take

all mechanisms into account. These three effects (pockets formation, quenching,

and vortex decay) can be characterized by three non-dimensionalized numbers

which depend on the length scale r (r will vary between the Kolmogorov scale

7/and the integral scale/):

1- Vr(r) = u'(r)/sz is the ratio of the turbulent velocity fluctuations associ-

ated with the length scale r to the laminar flame speed.

2- Ka(r) = _ is the Karlovitz number for the scale r. It reduces to thetF/mr.
Karlovitz number Ka of Eq. (3) if r = 7/.

3- Po(r) = _,_, = (_)2 is a measure of the power of the vortex. It is the

ratio of the life-time of the vortex r2/v to the chemical time IF/SL. It can also

be interpreted as the ratio of the penetration length of the vortex into the flame

front (before it gets dissipated by viscous effects) to the flame front thickness.

It is also a good measure of the curvature effects.

In the spectral diagram, a turbulent flow field is represented by a straight

line (called here 'turbulence line') bounded by the Kolmogorov and the integral

scales, a Kolmogorov scales are located on the line Re n = u'(rl)rl/v = _ _ -mL lr --

1.

Each point of the turbulence line corresponds to the interaction of one length

scale with the flame front (Fig. 9). Such an interaction may be computed exactly

and an accurate spectral diagram may be constructed as we will show in the next
section.

$._.S. Direct simulation of vortez//flame front interactions

Many authors have studied vortex/flame interactions (Cetegen and Sirignano

1988, Ghoniem and Givi 1987, Laverdant and Candel 1988, Ashurst et al 1987).

However, very few have considered all mechanisms which should be taken into

account to determine turbulent combustion regimes. This is done here by solv-

ing the Navier-Stokes equations in a two-dimensional configuration using the

assumptions described in Section 2.1.

The configuration is the following (Fig. 10a): at t = 0, two counter-rotating

vortices are generated upstream of a laminar flame front. The flow is symmetri-

cal along the y = 0 axis and subsequently, only the upper half is calculated and

a We will assume here that the turbulent reference quantities correspond to the fresh gases

and that the turbulent spectrum in this part of the flow can be described by the Kolmogorov

relation: uf(r)3/r = _ where _ is the dissipation rate.
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results.



Direct simulation o[ turbulent combustion 149

displayed. The inlet flow speed is equal to the laminar flame speed so that the

flame does not move when it is not perturbed. The vortex-pair configuration

allows an accurate measurement of the flame stretch and speed on the axis. It

also generates a high stretch and may be considered as one of the most effi-
cient structures able to interact with the flame front because of its self-induced

velocity. Finally, it is easy to generate in an experiment and some results on

the interaction of a vortex pair with a flame front are available (Jarosinski et al

1988).

Simulations were performed for a flame with a temperature ratio of 4, a flame

speed sL/c = 0.012 and a Lewis number of 1.2 (Poinsot et al 1990). The flame

front thickness IF is 3.7v/sL. The length scale r used to characterize the vortex

pair is the sum of the vortex diameter D and of the distance between vortex

centers (Fig. 10a). The velocity scale C(r) is the maximum velocity induced by

the pair. Tests have been performed for 0.81 < r/IF < 11 and 1 < C(r)/sL <
100.

_._._. The spectral diagram and the new turbulent combustion

The resulting spectral diagram is displayed in Fig. 10b. Depending on the

scale r and on the vortex pair maximum velocity C(r), computation shows that
the interaction can lead to different results:

- a local quenching of the front (with or without pocket formation),

- the formation of a pocket of fresh gases in the burnt gases without quenching,
- a wrinkled flame front

- a negligible global effect without noticeable flame wrinkling or thickening.

Two lines have been constructed in this diagram: the quenching limit and the
cut-off limit.

* The quenching limit indicates vortices able to quench the flame front. It

was fitted among our data points for 0.81 < r/lF < 11 and extended for large

scales r/l F > 11 to match the line Ka(r) = 1 (Large vortices stretch the flame
front like in a stagnation point flow: stretch is sustained for long times and

little curvature is induced. Therefore, quenching by these structures is only

determined by the ratio of vortex-induced stretch to critical flame stretch and

occurs when Ka(r) = 1.)

• The cut-off limit corresponds to vortices inducing a modification of the total

reaction rate of less than 5 percent.

From the spectral diagram, it is possible to construct a premixed turbulent

combustion diagram by using the following assumptions:

(1) there are no interactions between vortices of different size,

(2) only one vortex interacts at a given time with the flame front,

(3) any structure located in the quenching zone of the spectral diagram will

quench locally the flame front and induce a distributed reaction regime.

These assumptions are rather simple. The energy spectrum, for example,

certainly plays an important role: scales in the quenching zone will not quench
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the flame front if the energy density for these scales is too low. Therefore,

assumption (3) is probably not satisfied. However, these hypothesis lead to a
'maximal' interaction diagram. Experimental results would probably lead to

higher limits of u'(r) for the first distributed reaction zones.

An important limitation of the present approach appears for very small and

energetic scales. In this region, the effect of many small vortices on the flame
front is difficult to deduce from the effect of one isolated vortex. Studying well-

stirred combustion would require to take s complete turbulent field into account.

Under the assumptions listed above, the construction of a turbulent combus-

tion diagram is straightforward. A turbulent field of type B (Fig. lla) will

contain inefficient scales (dashed line) and scales able to have some effect on

the flame front but unable to quench it (solid line). Point B will, therefore,

correspond to a flame!et regime. In the case of field A, even the integral scale

will not be energetic enough to interact with the flame front, and the latter will

remain pseudo-laminar. Turbulent field C contains scales able to quench locally

the flame front (double-width solid line). Note that these scales are larger and
faster than the Kolmogorov scale by orders of magnitude. C will correspond to
a distributed reaction zone. The limit of distributed reaction zones is obtained

by taking the tangent with a slope of 1/3 to the quenching limit of the spectral

diagram. Comparing this diagram (Fig. llb) with the Peters diagram (Fig. 9a)

reveals that the domain where distributed reaction zones may be expected has

moved at least of an order of magnitude towards more intense fields. The heat

losses used for this computation were quite high (see Fig. 13) and in most prac-

tical cases, with lower heat losses, we expect the flamelet domain to be even

larger than the present one.
Different characteristic scales may be extracted from the spectral diagram.

For example, the cut-off and the quenching scales introduced by Peters (1986)

can be evaluated from the quantitative data of Fig. 13 and are different by orders

of magnitude when compared with the estimates given by Peters. Quenching

criteria can also be derived (see Poinsot et al 1990).

_._.5. An ezarnple of flarae quenching by a vortez pair

To illustrate direct simulation results, we will describe a case where the vortex

pair size and speed are high enough to induce quenching of the flame front

(r/IF = 18 and u'(r)/sL = 28). Figures 12 and 13 display the reaction rate (@)

and the temperature (0) fields at four instants. Time is normalized by the flame

time lF/sL: t + = tsL/1F.
The interaction is fast and ends after about two flame times. At t + = 0.65, the

vortex pair has stretched and curved the flame but its inner structure is preserved

and no quenching is observed. The Karlovitz number at this instant on the

symmetry axis is around three. The fact that the flame is still burning despite

such a high Karlovitz illustrates the importance of transients. At t + = 1.3,

quenching appears on the downstream side of the pocket of fresh gases formed
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Rame time = 0.65

Flame time = 1.30

_ ]J_I o 1o9 " "
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FIGURE 12. Instantaneous reaction rate fields at four instants. Quenching

occurs at the tip of the flame at time = 1.30. r/IF = 18 and u'(r)/sL = 28.
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FIGURE 13. Instantaneous temperature fields at four instants. A pocket

of fresh gases is formed i the stream of the burnt products, r/lF = 18 and

u'(r)/_L = 28.
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by the vortex pair. These gases are pushed rapidly into regions where the burnt

gases have been cooled due to heat losses (Fig. 13). This effect, combined with

the high stretch generated by the vortices, causes almost complete extinction of

the pocket after it has been separated from the bulk of the fresh gases. At times
t + = 1.625 and 1.95, the pocket of fresh gases is convected through the burnt

gases without burning except near its tail. In this case, the flame front is not

only quenched locally by the vortex pair, in addition, unburnt mixture is able
to cross the flame. This mechanism may be associated with pollutant formation

(i.e unburned hydrocarbons in automobile exhausts).
To conclude, the direct simulation code used in this work appears to be a

powerful tool to study turbulent combustion. Possible problems to be studied

in the future year include the following :

- the extension of spectral diagrams to Lewis numbers lower than unity,

- the response of the flame front to an ensemble of small energetic vortices,
- the effect of the flame front on the vorticity field.

3. The influence of curvature on premixed flame fronts

The previous section shows that curvature is an important parameter in tur-
bulent combustion. A convenient geometry to isolate the effects of curvature in

a steady reacting flow is the tip of a Bunsen burner. This zone is highly curved

and depending on the chemistry and on the flow speed, the flow speed upstream
of the flame front can be five to fifteen times the laminar flame speed. Many ex-

perimental studies have been performed on flame tips (see for example Mizomoto

et al 1984). In a collaborative work with Dr. Mungal and T. Echeckki, who have
done a flame tip experiment at Stanford, I have started computations of flame

tips for different Lewis numbers and have found interesting results. In partic-

ular, for Lewis numbers lower than unity, the flame tip opening phenomenon,

where the flame is quenched at the flame tip, is correctly captured by the code.

This study will be pursued by writing a one-dimensional code able to predict the
combined effects of stretch and curvature on a flame and comparing its results

with the two-dimensional computation and with measurements.

4. The validation of flamelet models for premixed turbulent

combustion

The validation of flamelet models is an important aspect of the present work.

Two approaches are used.
First, the fundamental information obtained on flame / vortex interactions

are incorporated in the model. The existence of quenching, the dynamics of the

pockets, the effects of transients, and viscous dissipation constitute a valuable

source of guidelines to construct a model. For example, the fact that scales
smaller than the flame front thickness have almost no effect on the flame front (as

evidenced from the spectral diagram of Fig. lla) allows a much simpler modeling
of the flame front. It also indicates which strain should be used to quantify
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the flame area increase due to turbulence. Clearly the value of .¢_e/u) which

corresponds to the strain at the Kolmogorov scale overestimates the effective
flame stretch. A second obvious result is that the spectral diagram obtained

in Fig. lla would be completely different if the Lewis number was lower than

unity. In this case, stretch would increase the flame speed while curvature would

promote extinctions. The Lewis number must be a central parameter in any

turbulent combustion model. This conclusion is similar to the one obtained by

Abdel-Gayed and Bradley (1985) from experimental results.

Second, once a model is built, direct simulation can be used to test it and ad-

just 'constants'. This was done in col!a_ration with Dr. D. Veynante in Septem-

ber 1989. The Coherent Flame Model (Candel et al 1988) and the stochastic

model of Pope and Cheng (1988) were compared to direct simulation results.

Realizability of both models was also considered. This study will be continued
in 1990.
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Transition to turbulence in hypersonic flow

By J. J. W. van der Vegt

An outline of the project and recent progress toward the study of transition in

hypersonic boundary layers is given. Aspects of the numerical method and the

results of test computations are presented. At present the laminar flows over a

flat plate and wedge have been computed for M < 5.

1. Motivation and objective

The prediction of transition to turbulence is of crucial importance in the design

of space vehicles currently planned, such as the trans-atmospheric vehicle (TAV)

and the aeroassisted transfer vehicle (AOTV). The state of the boundary layer,

laminar or turbulent, has a dramatic influence on the heating of the surface

and drag. Surface heating poses a bigger threat for this type of vehicles than

previous ones because they do not have spherical noses and ablative heat shields.

The main tools presently available for predicting transition in hypersonic flow are

experiments and eN -stability theory. Both are of great importance in the design

of space vehicles, but they also suffer serious deficiencies. A serious problem with

wind-tunnel experiments is noise, which causes earlier transition than in free

flight. New results in the quiet Mach 3.5 pilot wind-tunnel at NASA Langley

show a dramatic difference in transition compared with older, noisier tunnels,

(Chen et al. 1989). Another serious problem with wind-tunnel experiments

is that it is impossible to scale the chemistry effects properly. These effects

are important at hypersonic speeds where the temperatures are so high that

real gas effects and chemical changes become important. Therefore, in addition

to wind-tunnel experiments, free flight experiments and theoretical tools are

indispensable.

Among the theoretical tools, eN-stability theory, which uses linear stability

theory together with an experimentally determined N-factor, is by far the most

widely used. Originally an incompressible flow method, it has been extended

to compressible flow by Mack (for a review see Mack, 1984), and applied to

hypersonic flow by MaUk (1989) and Gasperas (1987-89). The method has as its

main advantage that, for low disturbance levels and approximately parallel mean

flow, it generally gives reasonable answers when accompanied with a suitable N-

factor obtained by experiments. Using new results from the quiet Mach 3.5 wind-

tunnel, Chen et al. (1989) showed that linear stability results compare more

favorably with experiments on a cone than previous results. There are, however,

problems in using linear stability theory. For instance, it cannot predict the

effects of a shock on transition, which can be important in certain applications.

It also fails when non-linear effects are important. Compared to incompressible

i
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flow, however, non-linear stability theories for hypersonic flow are still in their

infancy and much remains to be accomplished.

The purpose of this research is to provide additional information about tran-

sition to turbulence in hypersonic flow by using direct numerical simulation of

hypersonic flows, together with non-linear stability theory. Special attention is

paid to the interaction between a shock and a boundary layer, in the so-called

shock layer. The two cases which will be investigated in more detail are a flat

plate boundary layer and the flow about a wedge. The flat plate boundary layer

is studied because it gives an opportunity to compare results with linear stability

theory. The second case, the flow about a wedge, offers the opportunity to study

the effects of extreme heating and shocks on transition in the shock layer.

2. Accomplishments

The main activity in 1989 has been the development of a numerical method for

the solution of the compressible Navier-Stokes equations and writing and testing

a computer program based on this method. In the next section the numerical

method will be discussed and motivation for the choices made will be given.

Results of test computations will be presented in the subsequent section.

3. Numerical method

Although the main objective of this project is to study hypersonic transition,

it was decided to foUow a stepwise approach to code development and test each

component separately. In the design of the program and the choice of numerical

method, however, the ultimate goal, hypersonic flow, was kept in mind, so the

code is not necessarily optimal for intermediate problems. For instance, the

program can handle an arbitrary equation of state, while in memory management

extensions to larger sets of equations are anticipated.

The code must both give accurate steady state solutions with a reasonable effi-

ciency and allow time accurate solutions. These are conflicting requirements, be-

cause for the steady case one can obtain fast convergence by adding dissipation,

while one tries to minimize dissipation in time accurate calculations. Whenever

there is a conflict between these requirements, time accuracy was favoured. The

flow field contains both strong shocks and boundary layers, which present differ-

ent problems. The addition of real gas chemistry makes the problem very stiff

and puts strong limits on the time step for an explicit method, making the use of

an implicit method almost mandatory. For time accurate implicit calculations,

the time step cannot be too large, if all the time scales of fluid motion are to be

resolved, while the faster chemical time scales are ignored by using an implicit
method.

An implicit method is much more complicated than an explicit method. There

are a number of implicit methods available for the compressible Navier-Stokes

equations. One of the first and most widely used methods is that of Beam and
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Warming (1978), which is not well suited for our problem. For time accurate

solutions the approximate factorization used in the Beam and Warming algo-

rithm adds an additional error and the viscous cross-coupling terms cannot be

taken into account implicitly. In addition the method requires artificial viscos-

ity to obtain stable solutions when there are shocks, due to the use of central

differences. The Beam-Warming method is designed for obtaining steady state

solutions efficiently, but is not well suited to time accurate calculations.

An alternative is a method based on splitting the non-linear terms in the

Navier-Stokes equations into components related to the positive and negative

eigenvalues of the operator. The method accounts for the traveling of informa-

tion along the (inviscid) characteristics in the differencing. Although the flow

is viscous, due to the high Reynolds number, this is not a bad approximation

in most areas of the flow. Recently Montagn6 et al. (1989) compared various

algorithms, such as flux splitting according to Steger and Warming or van Leer,

approximate Riemann solvers and TVD methods for real gas equations and did

not find major differences in their prediction of shock waves. Because we can-

not hope to resolve the details of a shock in our simulation, we are forced to

use one of these methods or central differencing with additional artificial dissi-

pation. The choice was made to use flux splitting for the non-linear terms for

its additional beneficial numerical effects, viz. a diagonally dominant matrix

suited for an iterative method. In the viscous region, however, one has to be

careful, because flux splitting can produce unwanted numerical dissipation, as

was demonstrated by MacCormack et al. (1989). The correction to the Steger-

Warming splitting proposed by MacCormack is used in regions with dominant

viscous effects, whereas in a shock the Steger-Warming splitting, as described in

Steger et al. (1981), is used. The fact that the flux splitting of the non-linear

terms, accompanied by one sided differencing, results in a diagonally dominant

matrix, which can be solved iteratively, was used to incorporate all the viscous

components implicitly in the numerical method. This was impossible in the fac-

tored algorithm of Beam and Warming. It also gives more freedom in the choice
of boundary conditions.

The numerical technique chosen to discretize the equations is a finite volume

method because an integral formulation is better suited to flows with shocks,

and it always satisfies the conservation properties of the equations. The present

algorithm solves the two-dimensional compressible Navier-Stokes equations in

conservation form in an arbitrary coordinate system. These can be written as:

0t + - + (G - try..) = 0
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together with the equation of state: p = 7M 2

Here p represents the density, u and v the velocity components in a Cartesian

coordinate system, p the pressure, T temperature and e the total energy. The

variables z and y represent the Cartesian coordinates, whereas _ and 7/represent

curvilinear coordinates. The coefficients M and Pr are the Mach and Prandtl

numbers, whereas #, _ and _ are the two viscosities and the thermal conductivity

respectively. It is important to realize that the shear stress and heat flux compo-

nents in V and I are functions of _ and 7/. The equations are solved in a general

coordinate system because the wedge does not allow an orthogonal coordinate

system and complicated local flow phenomena, such as shocks, and boundary

layers require local grid refinement. The use of generalized coordinates, however,

greatly increases the complexity of the code.

The basic steps in the development of the numerical scheme will now be sum-

marized. The first step is the choice of a time integration method. The time

integration is formulated as a Pads relation, cf. Beam and Warming (1978):
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with: AO" = O n+l - O"

Here the coemcients a and/3 allow different time integration schemes to be

obtained. For instance, a = 1, fl = 0, give the implicit Euler method, a = .5,

/3 = 0 give the trapezium rule and a = 1 ,/3 = 0.5 give a three point backward

scheme. The superscript n in this equation refers to the time t = t,.

Introducing the compressible Navier-Stokes equations (1) into this relation

yields:

aat O AF," ""= -- -- avvis, ))-4-AU" f¥_{-_( AVo,.,)- (Ae," ""

At O., _... _ _---_--0"-'- vo.,)} + 1+#17_{____(E _ .,,t)_ (Gn "n

(s)

which is first or second order accurate in time, depending on the choice of a and

ft. In order to solve this set of non-linear equations for the implicit case, the flux

vectors must be llnearlzed around their value at time t = t,_:

AE"(U) -_ ou ] AU" + ou ] AU"
+

(9)

o'ir_,, o_r;'i,'
cg"Q_i" AU" + --AU_ + _AU_ (10)

lrL

with similar linearizations for the vectors AG '_ and av_i, . The sumces + and
- on the Jacobian matrices of the inviscid flux vectors refer to the components

with positive and negative eigenvalues. Introducing the linearizations of the flux

vectors in (8) and integrating over a small volume gives the integral formulation
for the compressible Navier-Stokes equations:
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Here V0 represents a grid cell, Sij a cell surface and n¢ and n n outward normal

vectors at Sij. The final step consists of approximating the fluxes across the cell

surfaces Sij. The positive and negative flux vectors are differenced backward
and forward respectively, while the viscous terms are centrally differenced. In

boundary layer regions the modifications to the differencing of the inviscid flux

vectors presented by MacCormack et al. (1989) are used, whereas in a shock the

Steger-Warming splitting is used, see Steger et a1.(1981). After choosing proper

discretizations for the components at the cell surfaces and centers, a system of

linear algebraic equations is obtained:

_n 11 ^I$ n ^n n An n ^_ n

Aijaui,j + Bijaui,j+l + CijAUi,j-1 + DijAUi+I,j + Eijaui-l,j+

Fijaui+i,j+l + G_jAU__I,j+I + HijaUi+l,j_ , + I_jaUi_l,j_ 1 = R_j

^1% ^

Here Aij,'" , I_) represent the Jacobian matrices obtained after linearization

of the flux vectors and R_j is the right-hand side. For the compressible Navier-
Stokes equations they are 4 × 4 matrices, but for real gases they are much larger.
The details of these matrices will be published elsewhere.
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The solution of this system is the most time consuming part of the numerical

algorithm. The use of flux splitting for the non-linear terms makes the matri-

ces diagonally dominant and allows the use of iterative methods. Gauss-Seidel
line relaxation is used in all four directions of the fluid domain to reduce the

nona-diagonal block matrix to a tri-diagonal matrix. This system of tri-diagonal

matrices is usually solved with a direct inversion method because these matrices
do not have a structure suitable for most iterative inversion methods. If the

mean flow quantities are needed, it is not necessary to iterate this Gauss-Seidel

line relaxation to convergence at each time step, but for time accurate solutions

convergence to accuracy better than thetruncation error must be obtained each

time step. The inversion may become then prohibitively expensive. So an al-

ternative to the direct inversion must be found. It was suggested by Dexun et

al. (1989) that using the LU decomposition of the abridged matrices, consisting
of only the main diagonals of the tri-diagonal block matrices, as a precondi-

tioner and solving the tri-diagonal block matrices iteratively gives a significant

improvement in computational efficiency. It is convergent for time steps very

close to the maximum allowable ones of the total scheme. The fully iterative

scheme so obtained converges very rapidly. In two to four Gauss-Seidel sweeps

machine accuracy is obtained. The inner iteration, used to solve the block tri-

diagonal matrices in each Gauss-Seide! sweep, converges in about ten to fifteen

iterations for the first Gauss-Seidel sweep and in one to four the following inner

iterations, thereby greatly reducing the computational time. Further tests to

improve convergence by using residual correction and under- or over-relaxation

did not improve the convergence rate. The improvements in the solution of the

system of linear equations will be of great importance when the full real gas

equations are solved because the blocks in the nona-diagonal matrix are much

larger.

The outflow boundary conditions are zeroth order extrapolation, which per-

formed well and had no noticeable upstream influence. This condition is, how-

ever, not suitable for direct simulations because of its reflective properties. The

main source of trouble at the outflow boundary is the subsonic region close to

the wall. The technique of setting the pressure in this region to the free-stream

pressure does not work because it creates instabilities whenever the pressure

becomes smaller than the free-stream pressure. The boundary conditions at the

solid surface also require special attention. The set of boundary conditions used

for an adiabatic wall consisted of zero velocity and heat flux at the wall, de-

termining the pressure from the equation of state and using the continuity and

energy equations to close the system. The conditions are implemented using a

half cell at the solid wall, as discussed in Vinokur (1989), and works very well.

Conditions such as zero normal pressure gradient and/or zero density gradient
are not valid at the wall in a viscousfluid and should not be used.
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4. Test results

Careful testing has been performed to investigate the accuracy of the numer-

ical scheme and seek errors in the code. After preliminary test cases, such as

uniform flow and a normal shock, the main test case was to compare the re-

suits of the computations of the flow about an adiabatic fiat plate at zero angle

of incidence with the analytically derived results from Crocco (1941), see also

Schlichting (1979). In order to test the ability of the model to compute shocks,

the case of a finite plate in a uniform flow was considered and the results at the

trailing edge were compared with the boundary layer results of Crocco. This

also removed the problem of choosing an inflow profile. Due to the fact that

at the nose of the plate both the x- and y-derivatives are equally important,

it is necessary to use small square grid cells in this region, see Fig. 1, while

strong grid stretching is required in the boundary layer region. If the grid is

stretched too much in one direction at the nose, divergence of the computations

results. The general features of the flow field are presented in Fig. 2, which

shows the pressure field at steady state for Mach number 2. The plot shows a

large pressure jump at the nose of the plate, followed by an expansion around

the outer edge of the boundary layer, while a weak Shock originates from the

nose of the plate. After the nose region the flow relaxes to a boundary layer.

The temperature and velocity in the region just ahead of the trailing edge are

compared with the theoretical results of Crocco. In Fig. 3 and 4 the Steger-

Warming splitting and MacCormack splitting on a 42 x 42 grid are compared

with the results of Crocco, and it is clear that the Me Cormack splitting gives

much better results; the Steger-Warming splitting is much too dissipative in the

boundary layer. The results close to the wall are not bad, because this region has

most of the gridpoints. It must be remarked, however, that the Steger-Warming

splitting does not perform as badly as claimed by MacCormack et al. (1989).

To give, however, a more definite answer about the accuracy the effects of grid

refinement have to be investigated, this is currently being done.

A problem in the calculations is to define an initial field. The computations

for M = 2 were started from a uniform flow field, but in the computations at

higher Math numbers, the Math 2 result was used as initial field.

For all these cases, the iterative matrix inversion works without problems and

is convergent for a time step very close to the stability limit of the scheme. Due

to the presence of a shock and the reduction of numerical viscosity, the time step

for the calculations was, however, rather restricted. This is no surprise because

an analysis of implicit schemes for Burger's equation, done by Poinsot et al.

(1985), shows the same result. Further tests are currently being performed on

the calculation of the viscous flow about a wedge.
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5. Work to be done:

• Testing the code for time accuracy. This will be done using the most unstable

mode from linear stability theory and comparing growth rates. Propagation of

sound waves is another interesting test case.

• Improvement of inflow and outflow boundary conditions for time accurate

solutions, so that they are non-reflecting and compatible with Navier-Stokes

equations.

• The results of the first two steps may show that the spatial order of the
difference scheme must be increased.

• Study of transition in supersonic flow. This will be done by introducing small

disturbances into the flow. It will be accompanied by the development of non-

linear stability theory. Without a more advanced stability theory, it will be

difficult to do a complete study of transition phenomena, due to the many pa-

rameters involved and the extremely long computation times of the simulations.

Stability theory is, however, still in its infancy and will require a significant

effort. Preliminary investigations show that the non-linear geometrical optics

used by Artola and Majda (1989) is a good starting point.

The specific cases which will be investigated are:

Shock layer: For this case a wedge connected to a flat plate, compression corner

will be used. The effects of the shock on the boundary layer can be investigated

systematically as a function of wedge angle and Much and Reynolds number.
Free stream disturbances: An important reason for inaccuracies in linear sta-

bility theory are the effects of free stream disturbances. The effects of small

amplitude sound waves and free stream vorticity on the boundary layer on a
cone will be studied and compared with the experiments of Chen et al. 1989,

which show the effects of sound waves on transition. An important issue in this
case is resonance between reflected and transmitted waves at the shock and the

influence of the body. These effects on a vortex layer are also studied in Artola

and Majda (1989) using non-linear geometrical optics and application of their

theory to the flow on a cone or wedge will be very useful.

• Adding real gas effects to the code. This is a major, but rather straightforward

extension of the program and allows the study of real gas effects on transition.
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Direct simulations of wall-bounded

compressible turbulence

By J. C. Buell

1. Introduction

A study has been initiated on the effects of compressibility (Mach number)

on turbulent boundary layers. An understanding of both qualitative (turbulence

structures, physical processes) and quantitative (turbulence statistics) effects are

desired. This understanding should lead to better turbulence models for applica-

tions involving supersonic wall-bounded flows. Direct numerical simulations of

an idealized problem will be used to accomplish these objectives. Among several

possibilities we chose plane Couette flow with constant-temperature walls as the

first problem to be studied. The lack of a mean streamwise pressure gradient plus

isothermal walls implies that both horizontal directions can be assumed to be

homogeneous and that the flow can reach a statistically steady state. Together,

these features greatly simplify the calculations and analyses of the results.

To date, an algorithm has been developed and implemented (but not yet

fully tested) for the accurate solution of the Navier-Stokes equations with the

assumptions noted above. The scales we use for nondimensionalizing the problem

are the channel half-width (b), half the velocity difference between the walls (U_0),

average density (pa), wall temperature (To), and the fluid viscosity evaluated at

the wall temperature (/_). In nonconservative form, the continuity, momentum

and energy equations are

Op Ouj Op

0-7+ + - o,

coui Oui 1 OT T Op 1 cOrij

0-'-[- + uj_ + 7M 2 COxl + 7M2p Oxi pRe Oxj - 0,

7 COqj
+ -- O,

p cOxj pRe Pr cOxj

OT cOT Ouj 7(7 - 1) M2 vii cOui

cO--t--+ uJ _'xj + (7- 1)T cOxj Re

where

 'ij = + co i 3 ': Oxk] '
COT

qJ : -# COxj "

The ideal gas relation pT = 7M2p was used and the Reynolds and Mach numbers

are defined by Re = paUwb/#_ and M 2 = U_/TRT_. The Prandtl number

Pr = cptz*/k* and cp are assumed to be constant throughout the flow.
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2. Numerical method

Unlike homogeneous and free-shear flows, the simulation of wall-bounded tur-

bulence requires the use of an implicit time-integration scheme for the diffusive

and acoustic terms because of the small grid size near the wall. Furthermore,

unlike finite difference methods, an efficient implementation of a spectral method

requires that the terms treated implicitly have constant coefficients. Thus,

the terms that one would like to advance implicitly are broken into constant-

coefficient and variable-coefl3cient parts by adding certain linear terms to both

sides of the equations. We also let nj = itaij and write the diffusion terms in

nonconservative form. This yields

Op Ouj _ Ouj Op
o-7+ p' o_, (p-p_)_ - u,o_j'

Oui 1 OT To Op ito Oaij_ Oul 1 (O--T"+ 7M 20zi F -TM2p ° Ozl poRe Ozj ui Ozj 7M 2

1 d# OT 1 (it go) Oo',j

OT Ouj

O'-_"+ (7 - 1)To O-_j

T To) OpP Po _ +

7it0 02T ( 7 l d# O_zj) OTpore P_0_j0x_ = - _ R/P___

-Out 7 (It ito) 0 2T 7(7-1)M2 it°'U Oui(7-1)(T-To)_+ neP; p Po 0_0_,_ + Re p O_j'

where the constants Pl, To, To/po, and #0/p0 are used to optimize the stability
of the time advancement scheme.

Noting that the left-hand side of these equations are to be advanced implicitly,

the algorithm for solving them is as follows. First, perturbation variables T'

and u_ are defined by T = 1 + T', ua = U(y) + u'a, (U(y) may be any function

satisfying the boundary conditions on the velocity; we take U(y) = y for the

Couette flow case) so that homogeneous Dirichlet boundary conditions obtain
!for T w, ul, u2 and u3. All five variables are expanded in Fourier series in the

horizontal directions, e.g.,

N./2-1 N,/2-1

._=-N./2.=-N, /2

where the horizontal wavenumbers are am = 2zrrn/L, and /3,_ = 2_rn/Lz. L,

and Lz are the periodic box lengths in the z and z directions, and the coefficients

are assumed to be conjugate symmetric. The vertical functions are expanded

using Legendre polynomials,

N,

_,.,.(v) = _ A.,.,p,-l(v),
/=1
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=Z Smn,(P,-l(Y)-P,+1(Y)),
I=1

where ¢ denotes the four variables satisfying Dirichlet boundary conditions. The

only constraint on p analogous to the boundary conditions on the other variables

is that it satisfies global conservation of mass:

Using the above expansion and the Legendre orthogonality property,

p (y)pj(y) dy =
1 2j+l

this constraint reduces to Pool = 1. Numerically, it is imposed by simply not

advancing the density equation corresponding to this mode. Ordinary differen-

tial equations in time are obtained by implementing a Galerkin method. After

substituting the above expansions into the governing equations, one multiplies

by the corresponding basis functions and integrates over the domain.

The method of Spalart (private commnnication) is used for time-integration of

the ODE's. This method combines the explicit third order Runge-Kutta method
of Wray (1987) with a new implicit scheme. The latter has the same structure

as Crank-Nicolson applied at each substep, except it has different coefficients.

Like Crank-Nicolson it is second order, but the stability properties for modes

with large eigenvalues are better: instead of an amplification factor approaching

-1, it has one of about 0.5 (depending on the value of a free parameter). For the
implicit part, all five variables are coupled linearly. However, all the horizontal

Fourier modes decouple from each other, as well as the real and imaginary parts

of each mode, and the odd and even Legendre modes. This yields about 2N_ Nz
systems of bandwidth 15 and order s_N r that must be solved at each substep.

Fortunately, because of symmetries involving the real and imaginary parts of the

coefficients, and plus and minus z wavenumbers, only ½N_Nz systems actually
need to be inverted, each with four right-hand sides. One of the significant

advantages of Legendre polynomials over Chebyshev is that the best formulation

of the latter would yield systems with bandwidths of 20. Another is that the

eigenvalues of these systems are much smaller using Legendre polynomials. This

is important because numerical stability will be a limiting factor at sufficiently
high Mach numbers. The nonlinear and variable-coefficient linear terms on the

right-hand sides are evaluated by transforming to and from physical space and

are then advanced explicitly. Note that time advancement in wavespace allows
an arbitrary amount of dealiasing by using more collocation points than modes.

As opposed to the incompressible case, full dealiasing is not practical since the
density appears in the denominator of several terms.
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The appropriate model problem to test the time advancement scheme is

ut = )tu + Ao'u,

where :X is a complex constant and tr is a real constant (imaginary _ models

the acoustic problem and real _ models the diffusion problem). We want to

advance the first term on the right-hand side with an implicit scheme and the

second with an explicit scheme. For the "standard" coefficients in the Runge-

Kutta method, a straightforward stability analysis shows that as At)_ ---+ c_ in

the complex plane, the scheme is stable as long as -0.517 < tr < 0.165. The

constants Pl, etc., are chosen to make this so, at least in the near-wall region.

3. Linear stability

As an aid in testing the nonlinear code, as well as for its inherent interest, a

linear stability code was developed. Since the viscosity of air is not constant,

there is no general analytical solution for the laminar mean flow. The nonlinear

equations for the mean flow are solved with the same method as above, except

time advancement is replaced with an iterative scheme. The full 3-D equations

are then linearized around this base state and the perturbations are assumed

to be of the form ¢(z, y, z, t) = ¢(y) exp i(ctz + flz + )d). Applying the same

method in y yields an eigenvalue problem of order 5N u for the complex growth

rate $. This was solved using a routine from EISPACK.

Glatzel (1989) solved a simpler version of this problem. He assumed 2-D

perturbations and the limit Pr _ 0. The latter assumption implies T = const.

and thus eliminates the energy equation. Although the incompressible case

is stable for all Re, he found two different instabilities for supersonic Mach

numbers. One is a resonance between two acoustic modes and is an invlscid

instability. The other is a resonance between a viscous mode (related to Orr-

Sommerfeld modes) and an acoustic mode. The lowest critical Reynolds number

was 83.54 at M = 4.11 and a = .971, for an acoustic-acoustic mode. Glatzel's

results were reproduced with the present stability code.

Shown in Fig. 1 are the critical Reynolds number and corresponding wavenum-

her as a function of Mach number for air (we assume Pr = 0.7 and p = T'T).

The critical Reynolds numbers are much higher than in the case considered by

Glatzel (the lowest Rec is 1395.72 at M = 4.18 and a = 2.037). Further investi-

gation shows that increasing Pr and increasing the exponent in the temperature

dependence of viscosity are both strongly stabilizing. Neither trend is under-

stood. Intuitively, one would expect that increasing the diffusion of heat (lower

Pr) would stabilize the flow. Also, the stabilizing effect of a variable viscosity

is considerably greater than the amount of variation in the viscosity itself. It

appears that in both cases the stabilization occurs because of changes to the

mean profiles. The few 3-D perturbations tested were found to be more stable

than 2-D perturbations. A more exhaustive search for unstable 3-D modes will

be made.
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Turbulent transport
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in the solar nebula

By K. W. Thompson

This paper describes the current state of an ongoing project to simulate tur-

bulent flow in a solar nebula, which is the flattened disk of dust and gas out of

which a solar system forms. The goal of this project is to determine a model for

the transport of mass and angular momentum in the nebula.

The nebula flow exhibits compressibility, thermal conduction, viscosity, inter-

nal heating through viscous dissipation, a stable shear due to Keplerian rotation,

and a gravitational acceleration in the vertical direction which is linear with al-

titude. These properties combine to give flow patterns not seen in terrestrial

applications.

Primordial solar systems are known to exist and are presumably undergoing an

evolution similar to the early stages of our own solar system; for example, the

IRAS infrared telescope has discovered such a protoplanetary system around

the star Vega. Solar nebula evolution is the subject of much research in the

astrophysical community. In the long run, researchers hope to gain a better

understanding of planetary formation and the processes which dissipate the solar

nebula with time (Black & Matthews (1985)).

1. Background

The solar nebula circled the Sun during and shortly after its formation. The

nebula is thought to have formed out of the contraction of a much larger and

even more diffuse molecular cloud. The nebula's central star, our Sun, also

formed out of the molecular cloud matter, and it is the Sun's gravity which

held the nebula together and kept it from flying apart. The combination of the

Sun's gravitational field, the initial angular momentum of the molecular cloud

(retained by the nebular material), and radiative cooling is believed to have

confined the solar nebula to a thin disk, rather than a cloud.

Each fluid element follows a nearly Keplerian orbit around the central star.

Consequently, the radial velocity of the gas decreases with increasing orbital ra-

dius r, and the nebula undergoes a shear flow. Viscosity causes friction between

adjacent rings of fluid and has a braking effect on the inner ring, decreasing

its total energy and causing the fluid to spiral in toward the star. The net re-

sult is to turn orbital kinetic energy into heat and to drag much of the nebular

gas inward, where it ultimately becomes part of the central star. As mass is

transported inward, angular momentum is transported outward.

The problem with this scenario is that molecular viscosity is too small to dis-
sipate the nebula in a reasonable amount of time. Other effects must be invoked

to explain the disappearance of the nebula, and turbulence is a logical candidate.
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Turbulence may act globally much as a large viscosity, mixing fluid elements of

different energy and angular momentum and augmenting the transport of mass

and angular momentum.

Anticipated sources of turbulence include thermal convection (driven by the

heat generated from viscous dissipation), vertical shear in the angular velocity

(due to the nonuniform deviations from the central plane orbital motion of the

gas with altitude), and the large velocity differential between the rotating disk

matter and the infalling (non-Keplerian) molecular cloud material. Of these,
turbulent convection is the focus of the current work. Turbulent convection

is strongly affected by the compressibility of the flow because the density and

pressure vary substantially with altitude above the nebula midplane. Hence, the

study of compressible turbulence is central to this project.

The greatest obstacle to the accurate modeling of the solar nebula is the fact

that the length scales on which viscous dissipation takes place (and on which

the turbulent kinetic energy is turned into heat) is many orders of magnitude
smaller than the size of the disk. Consequently, it is not currently possible to

create a single computational model which accurately simulates both the large
scale structure and the small scale dissipative processes. The objective of this

project is to simulate numerically the turbulent processes on a small scale, and

to obtain a parameterization of these processes which may be used in other

attempts to model the large scale evolution of the nebula.

2. Previous work

The work currently being performed is closely connected with that of Cabot,

Hubickyj, and Pollack (hereafter CHP), who have been using the turbulent chan-

nel flow code of Kim, Moin, & Moser (1987) to investigate incompressible tur-
bulence in the solar nebula.

The Keplerian flow velocities are highly supersonic in the rest frame of the

central star. A direct simulation of the flow in the star's rest frame is impractical,

as the flow velocities dictate unworkably small time steps. A better approach

is to work in a coordinate system which is comoving with the average flow in

the model volume, so that the velocities are subsonic in the model's coordinate

system, and the time steps are more reasonable.

CHP have relied upon a coordinate transformation based on the work of Ro-

gallo (1981) to represent the radial shear in a form which permits the use of

periodic boundary conditions in the radial direction. The Rogallo transforma-

tion eliminates the need to devise boundary conditions which properly advect
turbulent flow in and out of the radial boundaries.

In the comoving frame, the gravitational acceleration varies with altitude z

above the nebula midplane. The disk is very thin compared to its radial di-

mensions; therefore a fluid element a distance z above the central disk plane

experiences a downward-directed gravitational force (due to the central star)
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which is proportional to z. This linear variation of gravity has a significant ef-
fect on the convective flow. Convection in the Earth's atmosphere takes place

in an altitude range over which the gravitational acceleration is essentially con-

stant. The nebular problem has a variable acceleration with altitude, which

gives rise to flow patterns not seen in constant gravity environments.

The results of CHP show that those fluid elements above the midplane which

are cooler than the average temperature experience a downward acceleration

which draws them toward the midplane. Although the acceleration ceases when

the fluid reaches the midplane, inertia carries the fluid through the midplane

and beyond, until the now-reversed gravitational acceleration robs them of mo-

mentum. Thus the zero gravity region experiences some of the most extreme

motions, and the variable gravity leads to novel convection patterns.

The computational technique of Kim et al., as currently implemented by CHP,

assumes an incompressible fluid. The incompressible approximation is funda-

mentally flawed for two reasons. First, the density varies significantly with
altitude in the real nebula, and fluid elements which move in the vertical di-

rection undergo substantial volume changes. Secondly, the incompressible code

uses wall boundary conditions at the vertical boundaries, leading to boundary

layer formation, while there are no such boundary layers in the solar nebula.
These limitations in turn motivate the current work.

3. Current work

A compressible calculation can overcome the limitations of constant density

and boundary layer effects to which an incompressible calculation is subject.

Density variations and compressibility are taken care of automatically. The

boundary layer problem can be alleviated by adjusting the heating profile to

put a nonconvecting layer of fluid next to the walls, so that the convecting flow

does not feel the walls directly and cannot form boundary layers. In the event

that reflection of acoustic waves from the wall boundaries causes unacceptable

perturbations to the interior solution, nonreflecting boundary conditions might

be adopted to allow the acoustic waves to propagate out of the calculation, as

in Thompson (1987a, 1987b, 1990).

The current work is focused on the simulation of compressible turbulent con-

vection in three dimensions, in which the flow is subjected to a linearly varying

gravitational acceleration, viscosity, thermal conduction, and a uniformly ap-

plied volume heating. The heat supplied is enough to make the fluid convec-

tively unstable, and convection results. The current problem was formulated

to be as much like the corresponding incompressible problem solved CHP as

possible, with the goal of comparing the two calculations for consistency. CHP

solved this problem by adopting the Boussinesq approximation, in which the

flow is assumed to be incompressible and density variations are ignored except

for gravitational acceleration (Chandrasekhar (1961)).
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4. Numerical method

The equations to be solved are the compressible Navier-Stokes equations.

They describe the time evolution of a single compressible fluid in three dimen-

sions, and incorporate the effects of a variable gravitational field, molecular

viscosity, thermal conductivity, heating through viscous dissipation, and a sep-

arately imposed volume heating.
The current calculations are performed with a code which is designed to con-

serve mass, energy, and local vorticity. An earlier code which was not con-
servative was found to become unstable after a sufficient length of time. The

conservative code was written in the hope that it would be more stable, and this

has proven to be the case.
The density and energy equations are written in conservative form, the con-

served energy being the total (= kinetic + thermal + gravitational):

Op
0--_+ V. (pu) : 0,

0e

0-'_+ V. [(e + p)u - u.e- _VT] = Q,

where e = (1/2)pu • u + _ + p_; and where p is the density, e is the total energy
density, /I' is the gravitational potential, u is the velocity, p is the pressure, T

is the temperature, _ is the thermal conductivity, Q is the volume heating rate,

e = P/(7 - 1) is the thermal energy density, and o" is the viscosity tensor.
Numerical approximations to Eqs. (1-2) can be constructed which exactly

conserve the total mass and energy of the system. The numerical conserva-

tion laws hold provided that suitable numerical approximations are chosen for

both the volume integral of the fields and the spatial derivatives. Such approx-
imations have been constructed, and the calculations verify that the numerical

conservation laws are satisfied exactly.

The velocity equations are written in the form

Ou 1 7 P 1 (JVp Vp) + _,
oT-u× ,+v  u.u+ =g7 (7 - 1),o p

where w = V × u is the vorticity, c is the speed of sound, and g = -V_ is the

gravitational acceleration.

The viscosity tensor elements are

(Oui Ouj 26ijV. u )o'ij = # k. Ozj + Ozl

where # is the viscosity.

The pressure appears in two terms in the velocity equation, rather than as the

single pressure gradient term normally seen. The reason for this formulation is
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to avoid the spurious generation of vorticity by the numerical approximations.

Taking the curl of the velocity equation gives

! (dvp - Vp) +
cg--t-- V x (u x _a) = V × (7 - 1)p p

because the curl of a gradient is zero.

In the limit of zero viscosity (_ = 0), the vorticity will remain zero at all

times provided that it is zero to begin with and that the fluid is has a spatially

constant entropy. (The latter condition implies cZVp - Vp = 0.) The numerical

approximation to the velocity equation also avoids the spurious generation of

vorticity as long as the equation is cast into the form of Eq. (3). Analytically,

vorticity is not generated because the curl of the gradient is zero, due to the

fact that spatial derivatives commute: 02f/OzOy - Ozf/OyOz = 0. The vortic-

ity conservation carries over to the numerical case because the finite difference

approximations to z and y derivatives also commute.

The flow is defined to be periodic in the z and y directions. Slip wall (zero

stress) and constant temperature conditions are imposed at the z boundaries
z = -t-6. Gravity acts only in the z direction, for which the acceleration is linear

in z: g = -g_(z//_), where g = g,o at z = /L The heating rate Q is uniform

throughout the computational volume. The ratio of specific heats is 7 = 1.4.

The spatial derivatives in the above equations are approximated by fourth

order finite difference formulas. Suitable one-sided approximations are made at

the vertical boundaries at z = +//, while centered approximations are made in the

interior. The one-sided approximations are designed to preserve the numerical

conservation of mass and energy, and are third order accurate. The complete
set of derivative approximations is fourth order accurate.

The time integration is performed by the classic fourth order Runge-Kutta

scheme, which is simple to implement and has excellent stability properties.

The time dependent solution, therefore, has a global accuracy of fourth order

and contains little numerical dissipation. Consequently, the short wavelength

solution components do not undergo significant damping due to the numerical
scheme.

The choice of an explicit method over an implicit method stems from the

need to resolve the smallest features present in the flow. At the smallest length

scales, viscosity dominates the evolution of the flow. Since we need to simulate

the dissipation of kinetic energy accurately at these scales, the grid spacing and

time steps necessary are set by the properties of the flow, and are the same

whether explicit or implicit methods are used. The optimal grid spacing and

time step are those for which the propagation and viscous Courant numbers are

nearly equal. Consequently, the simpler explicit approach has been selected.

5. Results

The flow is characterized by seven numbers. These numbers have been chosen
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as the scale Mach number M, the Prandtl number Pr (ratio of viscosity to

conductivity), the Rayleigh number Ra (related to the volume heating Q), the

density exponent a, the scale density P0, the wall gravity gw, and the wall

temperature T,_. The initial state consists of an unstable static solution to

which velocity perturbations are added. The temperature and density initially

vary with z as T = T_, + T,(1 - z2/g 2) and p = po[T/(Tw + T0)] _'-_, where

To = Qg2/(2t¢) is a scale temperature, a is the density exponent, and s: is the

thermal conductivity.
The current simulations are defined by M = 1, Pr = 0.2, Ra = 1.25 × 105,

a = 1, P0 = 1, gw = 1000, and Tw = 300. The actual flow Mach numbers are

< 0.3, and thus approximate an incompressible flow only in a qualitative sense.
The Prandtl and Rayleigh numbers are the same as for the incompressible cal-

culations. The density exponent ct has no counterpart in the incompressible

calculations and was chosen as a = 1 to minimize the density variation. With

a = 1 the density is constant initially, but subsequently assumes an approxi-

mately Oaussian distribution with z.

Figure 1 shows the density and temperature profiles for a typical calculation.

The plots represent data which is averaged both in time and in the horizontal

directions, and then plotted with respect to z. Figures 2 and 3 show the spectra

and autocorrelations in the z and y directions at the midplane (z = 0).

Figure 1 clearly shows the effects of compressibility on the solution. An incom-

pressible flow responds to a convectively unstable state by undergoing turbulent

convection, which redistributes the heat and decreases the temperature gradients

from the initial perturbed state. The compressible flow not only redistributes

the heat, but also the density, into a more stable distribution. In the isothermal
-z2 /2H 3

limit where T = To, the density follows a Gaussian distribution p =pce

where H = v/kTcg/rng_ is the isothermal scale height, k is Boltzmann's con-

stant, and m is the molecular mass. The convecting flow is not isothermal, but it

does exhibit smaller temperature gradients than the initial state, and the density

is clearly tending to a Gaussian distribution.

The results agree qualitatively with those of CHP for the analogous incom-

pressible problem, but show some interesting differences as well. Relative to the

incompressible results, the compressible results show a higher midplane temper-

ature which is more sharply peaked, and up by a factor of 1.6; and smaller tem-

perature and velocity fluctuations, down by a factor of 0.7. The results should

not be expected to agree exactly, as the compressible results show significant

density variation, while the incompressible results do not.

6. Future directions

The next task is to study the effects of nonuniform density profiles on turbu-

lent intensities. The current simulations began with a flat density profile in an

unstable steady state, which was perturbed to initiate the growth of convection.

The time averaged steady state shows a density which resembles a Gaussian
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steady state, plotted versus altitude z. Density is normalized by its initial value.
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fluctuations about the mean are also shown. Note: V and W curves are identical.

curve, and is peaked at the midplane. Further simulations will begin with an

initial density profile which is peaked at the midplane, and should lead to a final

state which shows even more density variation. Comparison of these two cases

should demonstrate the dependence of turbulent intensities on the density strat-

ification. It will be interesting to see if the incompressible results are approached

as a constant density limit of the compressible results.

Some consideration is being given to the incorporation of a compressible sub-

grid sc_e model, such as that of Zeman. Such a model might render the cal-

culations more economical by allowing the use of a coarser grid; currently the

calculations take _ 10 hours of CPU time on a Cray YMP to collect decent

statistics for a single set of physical parameters. The current calculations might
also serve as a test for the validity of sub-grid scale models.

Subsequent work will evolve the simulations to more accurate approximations



182 K. W. ThompJon

o:

O0-

_i"
L I

Eo
_._-
X o

e_

L "1

>"o

I -* 0.37284 0.74568 i.li852

Log(Y Direction Wave Index)
0.00000 0.37284 0.74568 i.H852 1.49i36 0.00000

Log(X Direction Wave Index)

0

Oq
o

_,_

0

o

'L00000 0.a:_204 0.74560 t.1i8_2

LoE(X Direction Wave Index)

1.49136 0.00000 0.37284 0.74568 1.11852
Lo_(Y Direction Wave Index)

i.49136

1.49136

FIGURE 2. Log-log plots of the spectral intensities of the temperature and

velocity fluctuations, versus the z and y direction wave numbers, at the midplane

= o).

of the actual nebula conditions. The stages to be followed will add major new

physical phenomena, such as rotation, shear, and radial asymmetry.

The effects of rotation will be included by adopting a rotating coordinate

system which is comoving with the flow, and in which the flow is subject to

"centrifugal" forces as well as gravitational forces.

The effects of shear will be simulated by assuming a given base flow which is

Keplerian, and solving for the nonlinear perturbations with respect to the base

flow. The Rogallo transformation of CHP will not be used per se, although its

useful effects will be duplicated; instead, the perturbations will be assumed to be

periodic in a sheared coordinate frame, and will be mapped onto a stationary grid

by appropriate coordinate transformations. This approach avoids the distortions

entailed by the Rogallo transformation, in which the coordinate grid is itself

sheared and must be periodically remapped to a new grid to prevent the grid
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from collapsing.

Radial asymmetry is ultimately required for the flow to result in a net trans-

port of mass and angular momentum in the radial direction. Radial asymmetry

renders the flow nonperiodic in the radial direction, prohibiting the use of peri-

odic boundary conditions in this direction. It is not clear at this point how best

to implement radial asymmetry. One possibility is to assume that the solution

at the inner and outer boundaries consists of a known base state (from the Kep-

lerian profile) plus a perturbation, and to assume that the perturbations at the

two boundaries are related by a scaling factor. This issue will require further
research.

The results of each of the above modifications will be studied carefully before

proceeding to the next. By the time radial asymmetry has been implemented, we

should be in a position to answer questions about the effectiveness of turbulence

in transporting mass and angular momentum in the solar nebula.
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A new computer code to solve the time-averaged Navier-Stokes equations is

developed. Many of the state-of-the-art numerical techniques and algorithms

have been tested and implemented in the program in order to achieve a better

numerical accuracy and code efficiency.

Various turbulence models are tested for a wide range of flows. The initial

focus has been on "two-equation" eddy-vlscoslty models, which are the most

advanced available in current compressible-flow codes. The long term goal will

be to test Reynolds-Stress models and to explore their performance in the high-

Mach-number range.

Although testing and improvement of turbulence models for supersonic and

hypersonic flows is the primary objective of this research (70%), part of the effort

(30%) has been devoted to analyzing the vortex breakdown phenomena using the

new computer program. Some preliminary results on the breakdown of a vortex

flow in a tube are reported. Although calculations are at the moment restricted

to 2-D axisymmetric equations, an extension of this work to 3-D geometry is

proposed.

1. Introduction

Traditional finite difference methods are accurate for smooth flows but give

rise to over/under-shoots in region where a large gradient of the dependent

variable is encountered. Although a stable solution can be obtained by adding

ad-hoc artificial diffusivities, one must be careful that this solution may be cor-

rupted, for the excessive diffusion added may smear the sharp gradient. Even

in the case when one adds only enough diffusion to achieve a stable solution,

slight over/under-shoots of the solution would still sometimes be observed. A

mild over/under-shoot causes little difficulty in a pure Navier-Stokes calculation

while it may bring about divergence of a time-averaged Navier-stokes calcula-

tion employing a closure-type of turbulence model. One possible cause of the

divergence is the generation of negative turbulence quantities, such as k and e.

To search for an accurate numerical scheme that will preserve the realizability

property, two numerical concepts; namely TVD (Harten, 1983; Yee, 1987) and

FTC (Boris and Book, 1973; Zalesak, 1979), are tested against a wide range of

problems. Conclusions emerged from this investigation are reported in Section
2.
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The recent interest in applying Reynolds-stress models in complex turbulent

flow calculations has urged the need for a stable and efficient algorithm. The

stability problem arises mainly from the stiffness of the source terms and the

lack of apparent "eddy viscosity" in the mean-flow equations, while the need

for numerical efficiency is due to the large number of turbulence equations that

have to be solved together with the mean-flow equations and the strong coupling

between the mean-flow and turbulence quantities.

While a number of numerical treatments have been proposed in some existing

compressible codes to remove the source-term-related stiffness difficulties, these

methods are not general and have suffered from numerical inefficiency. More-

over, although techniques involving simultaneous solution of the mean-flow and

turbulence equations have open a door for handling the strong equation coupling,

such methods require the inversion of a large matrix and thus are not attractive

to be used in practical calculations. Last but not least, problems associated with

the lack of apparent "eddy viscosity" in Reynolds-stress calculations have only

begun to receive some attention and the extension of the available numerical

treatments to compressible calculation is yet to be seen. Section 3 is devoted to

a brief discussion of the current progress in dealing with the above-mentioned
difficulties.

Section 4 presents some calculations of vortex breakdown in a tube. The

importance of the boundary condition treatments is addressed in this section.

Finally, a discussion on the future activities is given in Section 5.

2. Numerical schemes

Comparisons were made for the following schemes:

FCT: Zalesak (1979)

TVD (An excellent review has been provided by Yee (1987)): Harten and Yee,

Yee-Roe-Davis, Roe, van Leer and Colella and Woodward

A wide range of problems have been chosen to test the numerical schemes:

1-D scalar: advection of square, Gaussian and semi-circle profiles.

2-D scalar: convection transport of a step profile and the solid body rotation

of a block-profile.

2-D Euler: inviscid channel flow and oblique shock reflection.

2-D Navier-Stokes: wall-driven cavity, laminar and turbulent (two-equation

model) boundary layers (M = 0.3, 2 and 10).

The study has shown the "Superbee" scheme by Roe emerged to be the best

in terms of overall numerical performance while Harten and Yee's "Minmod"

scheme is the simplest and the most stable one. Figures 1 and 2, respectively,

show the predicted velocity and skin friction profiles of a laminar boundary layer.

The calculation employs the Superbee scheme and shows good agreement with
Blasius solution.
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3. Numerical algorithm

The lower upper symmetric successive over-relaxation method (LU-SSOR)

developed by Jameson and Yoon (1986) will be the base of the present devel-

opment. This algorithm is closely related to the symmetric Gauss-Seidel line

relaxation method of MacCormack (1985). In our development, we show the ba-

sic equivalence between the LU-SSOR method and the Symmetric Gauss-Seidel

point relaxation method (LU-SGS) (Gnoffo, 1986).

A modified version of the LU-SSOR (or LU-SGS) has been successfully im-

plemented in the new code. The attractive features of the new code are:

(1) Solution of large block banded Matrices is not required.

(2) Vectorization of the code is possible.

(3) Relaxation can be done with infinite time step.

(4) Second-order time accuracy can be achieved with a finite time step.

(5) The operation count of the present method per iteration is only slightly

greater than that of an explicit method.

(6) The method is capable of handling unstructured grids.

The code has been fully vectorized and it runs about 15 times faster than its

scalar counterpart in Cray YMP.

To maintain the coupling between the mean-flow and the turbulence equations

while not to involve the inversion of a big matrix, an algorithm is developed to



O

188

10-1

10-2

10

FIGURE 2.

P. G. Huang

_ _ ' _I , i i in-11_ I i i i i J lll

--0--- M=0.3

i i , , ,,,,I , i i I lllll i l i i

10 2 10 3 10 4

Rex

Laminar boundary layer - C/.

obtain the solution by iterating between the mean flow and turbulence equations

when performing the LU point-relaxation sweep. As a result, a large matrix is

divided into two smaller matrices and they are solved sequentially in a point-by-

point fashion. It has been found that this method did not give rise to numerical

instability and, for a two-equation type of turbulence model, the overall com-

puter time saving may be as high as 30%.

Because turbulence equations contain large source terms and these terms are

often nonlinear, implicit treatments of the source terms are generally preferred.

The approach used in the present study is similar to the stabilizing strategy of

Huang and Leschziner (1986). The source is first divided into positive and neg-

ative parts. For turbulence quantities that are by nature positive, the measure

is to treat the negative part of the source implicitly while the positive part is

handled explicitly. The implicit treatment of the negative source is to ensure the

positiveness of the solution at all time during iterations and the explicit treat-

ment of the positive source is to preserve a diagonal domination of the matrix.

This method has been found to be very robust and the overall convergence rate

is satisfactory.

Figure 3 shows the predicted skin friction profiles of a Mach 2 turbulence

boundary layer. Turbulence Mod¢!s ch0sen were the k - e models of Chien

(1982), and Jones and Launder (1973), respectively. The results have shown
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FICURE 6. Vortex breakdown - sliding top wall.

FIGURE 7. Vortex breakdown - free-stream top boundary

good agreement with experimental correlation.

4. Some preliminary results on vortex breakdown

The current investigation is restricted to the study of a vortex breakdown of

the bubble-type, with the assumption of a 2-D axisymmetric flow. This problem

is closely related to the one studied by Grabowski and Berger (1976) and later

by Lugt and Gorski (1988).

Reynolds number, Re = vo,,_a_rc/v, is chosen to be 500 based on the core

radius, r_, where the tangential velocity has its maximum value,v0,_z. The

calculation domain is assumed to have a radius of 5r_ and an axial length of

50r_. The inlet conditions are given as follow;

u_ = l/S,

v_ = 0 and (1)
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where S, defined as vo,,,,,z/v_.i,,zet, is a swirl parameter and in the discussion

that follows it is assumed to be unity. The tangential velocity is chosen to

approximate a wing-tip vortex. At the axis, v, = vo = 0., cOve�Or = 0 and

Up�at = 0. The outflow conditions are 0/cgz = 0 for all variables.

In the present study, we have found that the top wall boundary-condition

treatment has a very strong influence on the dynamics of breakdown suggesting

that the breakdown is very sensitive to pressure gradient. Figure 4 shows the

centerline axial velocity profiles for three different top wall boundary-condition

treatments, no-slip, sliding (v_,w,n = v_lct) and free-stream boundaries. It

shows that the no-slip boundary introduces only slight retardation of the axial

flow while the other two boundary-condition treatments give rise to flow reversal.

This can be illustrated more clearly in the velocity vector plots, Figures 5 to 7.

The figures show that for the sliding and the free-stream boundary treatments,

the flow has formed a small well-pronounced bubble, similar in shape to that

observed experimentally by Uchita et al. (1985) and Faler and Leibovich (1978).

The surprising outcome can be explained by examining the pressure distri-

bution. Figure 8 provides a comparison of the pressure-drop profiles along the
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top boundary. The figure has shown that the no-slip wall has induced a favor
2 per rcpressure gradient equivalent to 0.4% of inlet momentum flux, pv_,inl_z,

distance. This favor pressure gradient has delayed the flow separation and thus

resulted in a quite unexpected flow behavior.

5. Future plans

(1) Implement the Reynolds-stress-transport models into the new code.

(2) Compare the performance of the turbulence models.

(3) Test new pressure-strain models.

(4) Examine compressibility correction terms.

(5) Propose near-wall correction for Reynolds-Stress-transport models.

(6) Integrate to the wall or use wall functions?
(7) Investigate effects of turbulence on the dynamics of vortex breakdown.

(8) 3-D simulation of vortex breakdown.
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1. Introduction

The understanding of the role of large-scale structures and the process of mix-

ing in free shear layers has advanced rapidly since the ground-breaking work of

Brown & Roshko (1974). Until recently, most of the advances came from ex-

perimental projects such as those of Konrad (1976), Bernal (1981), and Mungal

& Dimotakis (1984) in gaseous layers, and Koochesfahani & Dimotakis (1986)

and Lasheras et al. (1986) in liquid layers. For a review, the reader is referred

to the article by Ho & Huerre (1984). From the visualizations given in these

papers one can see the spanwise rollers, their pairings, and the geometry of the

streamwise vortices (called "ribs" here). As valuable as these experiments are

for investigating certain aspects of mixing layers, it is very dimcult to obtain

quantitative information from them about the dynamics of three-dimensional

(3-D) vortical structures. Numerical simulations, on the other hand, are ideal

for obtaining detailed information under well-controlled conditions. Of course,

there are disadvantages, usually related to limits on the Reynolds number or

on the size of the domain. Several researchers (e.g., Comte et al. 1987, Davis

& Moore 1985, and Lowery 1986) have recently simulated spatially-developing

mixing layers with the goal of extracting more information than is possible in

experiments. These efforts were successful to some degree, but they all suf-
fered from either too much diffusion (either physical or numerical) or lack of
resolution.

The first goal of this research is to understand the dynamics of three-dimen-

sional vortical structures, especially the interaction of the ribs and 2-D rollers.

Because of vortex stretching effects, this requires accurate and well-resolved

simulations. Another goal is to distinguish temporally- and spatially-growing

shear layers in terms of the dynamics and observed vortical structures. This is

important since the former is much easier to compute, but the error incurred in

using temporal results for certain applications is unknown. The third goal is to

investigate the effects of asymmetry on passive scalar mixing and fast-chemistry

product formation. In this report, a brief summary of a new numerical method

is presented, followed by results for mixingqayer and wake flows.

2. Numerical method

In this section we briefly describe a new algorithm for approximately solving

incompressible spatially-developlng free-'shear problems on a domain that is infi-

nite in the vertical (y) direction and finite in the streamwise (x) and spanwise (z)

PRECEDINGPAGEBLANKNOTFILMED
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directions. The numerical method is analyzed in more detail elsewhere (Buell

1989).

The total velocity field U = (U, V, W) is decomposed using

v(.,u,z,t) = Vo(u) + .v.(u) + ,,(.,u,z,O,
v(.,u,z,O = v.(y) + ,,(.,u,z,t),

w(_.,y,z,t) = _(_,u,z,O,

so that all components of the perturbation variable u satisfy homogeneous

boundary conditions at infinity. Here, V_ is some smooth function that tends to

the entrainment values at :i:oo but is otherwise arbitrary, Ue = -aV_/Oy, and

U0(y) is the mean velocity profile at the inflow (e.g., a tanh profile for mixing

layers, Gaussian for wakes). The Navier-Stokes equations are east in fourth-

order form by operating on the momentum equations with Vx and V x Vx,

and taking the streamwise components of both. The pressure is thus eliminated

and dynamical equations for the perturbation streamwise velocity and vorticity
result:

0 2 0 2°v_,, = O_Oyn_ O-;-d-;H3+ (1)V__HI V4U,

°N_,= H3- H_+_V_,, (2)

where H = U x _ and the "perpendicular" Laplacian is V._ = 0 2/Oy 2 + 0 _/Oz 2.
For mixing layers, lengths have been scaled With the inflow vorticity thickness 6_o

(the half-width for wakes) and velocities with the freestream velocity difference

U1 - Us (freestream velocity for wakes). The Reynolds number based on these

scales is thus (U1 - U2)_,o/v. The other two nondimensional parameters of the

problem are the velocity ratio r = U2/UI (velocity deficit for wakes) and the

Schmidt number Sc = u/D where D is the diffusion coefficient of the passive
scalar.

After (1) and (2) are advanced in time, the vertical and spanwise velocities v

and w are recovered directly from the continuity equation and the definition of

wl. There are two main advantages in casting the governing equations in this

form. First, only two dynamical equations need to be advanced in time instead

of three. Second, unlike primitive variable methods, we may allow a difference

to exist (consistent with the overall accuracy of the method) between the nu-

merical divergence of the gradient and the Laplacian operator in the Poisson

equation (1). This is because we invert the continuity equation directly instead

of relying on the gradient of the pressure to ensure exact conservation of mass.
The second point is very important since it introduces great flexibility in the

choice of numerical approximations to various operators.

Equations (1) and (2) are advanced in time explicitly using a compact third-

order Runge-Kutta scheme (Wray 1988). Since the Laplaeian is contained in the
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FIGURE 1. Contours of-ws for a 2-D mixing layer, Re = 200, r = 0.2. Contour

interval is 0.1.

time-derivative term, a Poisson equation must be solved during each substep.

The dependent variables are expanded in cosine (u, w) or sine i v, wl) series

in a mapped vertical coordinate _ (where y = -/3 cot(_r_) maps [-oo, oo] to

[0, 1]), and periodic Fourier series in z. The first z-derivatives in the continuity

equation and in the advection terms are approximated with modified Pads finite

differencing (Lele 1989). The particular approximation used here yields sixth-

order accuracy for the low to moderate wavenumber components of the solution,

and significantly lower dispersion errors for high wavenumbers. The second z-

derivative is approximated also with a new Pads formula due to Lele (1989).

Dirichlet boundary conditions are specified for u = (u, v, w) at the inflow.

Typically, 2-D Rayleigh equation eigenfunction profiles for a frequency near the

most unstable one are used for u and v, and 3-D steady profiles for v and w

are added to produce streamwise vortices. At the exit, each velocity component

is required to satisfy a "convective" outflow boundary condition of the form

Odd�cOt = -ccOdd/cOz, where c is the nominal speed of the large structures. At

infinity, u = 0. For the mixing layer simulations, we used V_(y =-oo) = .004

and V_(y = oo) = -.01. These values were chosen to minimize the streamwise

pressure gradient outside of the shear layer (this is analogous to experiments

where the walls of the wind tunnel are adjusted inward).

3. Mixing layers

3.1. Dynamics of vortical structures

Our base-line case is a two-dimensional flow at Re = 200 and r = 0.2. This

simulation was performed on a 192 x 128 mesh (grid points in z, modes in y,

respectively) with 144 collocation points in y for partial dealiasing. The domain

length in the streamwise direction is 70, and the vertical mapping parameter is

13 = 8. The layer was forced at a fundamental frequency of 0.5, although the

most amplified frequency at the inflow is 0.65. This was done to compensate for

the viscous thickening of the layer a short distance downstream.
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FmtrrtE 2. Contours of -w3 for a 3-D mixing layer, Re = 200, r = 0.2.

z = O, (b) z = 2.75. Contour interval is 0.15.

(a)

Shown in Fig. 1 are contours of vorticity (ws) where the fundamental was

forced at an amplitude of 0.01 and the subharmonic at 0.005. The former leads

to rollup and the latter to pairing of the vortices. The resulting flowfield is

periodic in time with a weak nonperiodic component due to the feedback from

the outflow boundary condition (Buell & Huerre 1988). The organized nature of

the inflow forcing creates a "stairstep" growth of the layer downstream, where we

find a high growth rate during the rollup and pairing, and small or nonexistent

growth in the saturated region between.

To examine the effects of three-dimensionality, a pair of counter-rotating

streamwise vortices are added at the inflow with maximum vorticity set to 5_0

of the maximum slope of Uo(y). Between each vortex and its neighbor to either

side is a symmetry plane where wl = 0. The Reynolds number and velocity ra-

tio is the same as before. We set the spanwise wavelength to 5.5, or 58% of the

streamwise wavelength of the rollers. This is consistent with both experiment

(Huang & Ho 1989) and theory (Pierrehumbert _z Widnall 1982). Due to the

larger gradients that arise in the 3-D case, a finer grid was used, 256 x 144x 24

with a yxz collocation grid of 192x32 to reduce aliasing errors.

Shown in Fig. 2 are contours of spanwise vorticity (w3) in the two z-y sym-

metry planes. These plots show the initial laminar layer, development of 2-D

rollers, and 3-D cup-like structures. The amplitude of the vorticity in the "cups"

reaches about twice that of the maximum vorticity in the inflow profile U0.

A 3-D visualization of the streamwise vortices (called "ribs") is shown in Fig. 3.

Shown also are opposite-signed streamwise vortices inside the rollers. Note that

the first pair of ribs is almost straight and nearly parallel, but the second pair

is distorted and not parallel. The latter pair is very similar to the structures

observed by Lasheras et al. (1986) in their low Reynolds number experiments in
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FIGURE 3. Perspective view of _vl, contour levels 4-0.6.

water. This distortion is apparently due to self-induction effects between the ribs

and the opposite-signed streamwise-vorticity structures inside the downstream

roller. The ribs are intensified by the 2-D strain field of the main rollers, but

this mechanism cannot increase the circulation around a rib. However, since the

radius of the ribs remains about constant (or grows), the circulation increases

significantly. The mechanism for this is the "conversion" of w3 into wl by one of

the "vortex stretching" terms in (2). This mechanism and quantitative measures

of the circulation are discussed by Rogers & Moser (1989).

Returning to the cup-like structures shown in Fig. 2, we would like to deter-

mine their origins and the reasons for their unusual shape. First, we see that the

cups that reside on the upper side of the rollers are slightly farther downstream

than the lower ones. This is not a spatially-developing effect since it is also

observed in the temporal case. However, the upper cups are about 25% stronger

than the lower ones. This difference is not allowed by symmetry in the temporal

case. The cups are clearly related to the ribs; the former lie symmetrically be-

tween the latter and slightly towards the middle of the layer. Furthermore, the

sense of rotation of the ribs causes a positive spanwise strain in the regions occu-

pied by the cups and thus creates a mechanism for the enhancement of spanwise

vorticity.

However, this mechanism does not explain why the cups are concave on their

inner sides, why they are strongest on the opposite side (in the streamwise sense)

of the roller from the associated ribs, and why they are not convected away by

the downwash (in the case of the upper cups) between the ribs. These questions

are answered by examining Fig. 4. Shown there are y-z cuts of 0;3 and _sl at

the x-location corresponding to the maximum of _ss in the upper cup. The wl

plot shows three pairs of counter-rotating structures: from top to bottom these

are ribs connected to the upstream roller, opposite-signed vortices in the core
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FIGURE 4. Spanwise cuts of vorticity through the roller at z : 44. The contour

interval is 0.15, and negative values are represented by dashed lines. (a) -w3,

(b)

of the roller (which we call "legs", a term which will become self-explanatory

later), and another pair of ribs connected to the downstream roller. Each of the

cups resides in the middle of a quadrapole formed by the legs and one or the

other pair of ribs. The maximum amplitude of the legs is located very near the

upper cup, contributing most to the positive strain there. The role of the ribs

thus appears to be secondary; they contribute less to the strain, but are needed

to produce a stagnation point in the vertical velocity so that the cups are not

convected away and can continue to get strained. The convective effect of the

strong vertical velocity created by the legs also explains the concave structure

of the cups.

One would expect the upper and lower cups to be connected by vortex lines,

and that these lines would show a streamwise tilt corresponding to the stream-

wise offset of the two cups. This is not quite true. Shown in Fig. 5 are two views

of two sets of vortex lines, each set initiated in the region of maximum spanwise

vorticity in each cup. A Uhairpin" structure is formed by the lines, where the

cups form the ends of the hairpin, and the regions between (consisting mostly

of 0:1 and ¢o2) are the "legs". We see that the two sets are definitely disjoint,

although there is one vortex bundle (not shown) that goes from the vicinity of

the downstream edge of the upper cup to the upstream edge of the lower cup.

Consistent with this, all the lines are inclined by about 45-50 °, whereas a line

connecting the middle of one cup to the middle of the other would be inclined
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FIGURE 5. Vortex lines in the roller near z = 42. Dashed lines start from

lower cup, solid lines from upper cup. (a) Perspective view, (b) top view.

only about 30 ° from the vertical. The lines emanating from the lower cup (for

example) go up and forward of the upper cup so that the legs produce counter-

rotating vortices just below the upper cup. Thus, vortex lines from each cup

produces a strain field to enhance the other.

$._, Passive scalar mizing

For the results discussed in this section, a passive scalar profile is specified

at the inflow that is zero on the low-speed side, one on the high-speed side and

has the same tanh profile as U0 in the shear layer. It is often observed that

a 2-D spatially-developing mixing layer will entrain more high-speed fluid than

low-speed. The process by which this happens is shown by the passive scalar

contours in Fig. 6, where Re = 500 and Sc = 0.8. When two vortices pair, they

initially form an oblong structure.

As this structure turns end over end, it efficiently "engulfs" a large amount

of pure fluid from both streams in the form of "tongues". We note that the

low-speed tongue is narrower than the high-speed one because the proximity of

an unpaired roller just upstream creates a blockage effect not present on the

downstream side of the paired structure.

Furthermore, the existence of a stagnation point (in the frame moving with

the vortices) between the vortices implies that the velocities associated with the

tongues should be similar. Dimotakis (1986) used these arguments along with

experimental data to estimate the ratio of the amount of high-speed to low-speed

fluid entrained in the layer as /_ = 1 + 3.9dgo,/dz. While it is very difficult to

measure this quantity directly, the simulations show no inconsistency with it (for
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FIGURE 6. Contours of passive scalar _b for a 2-D mixing layer, Re = 500,

r = 0.2, Sc : 0.8. Contour interval is 0.1.

the results reported here, d6,,/dz _- 0.087). Passive scMar contours at Re = 200

show similar features, although the tongues are not as distinct because of the

increased diffusion.

For the 3-D case, we plot contours of the passive scalar in three y-z cuts

through three different braid regions in Fig. 7. This sequence shows the effect

of the development of the ribs on the scalar field. In the terminology of Lin

_: Corcos (1984), the ribs start off in a "noncollapsed" state and only produce

a mild bending of the scalar contours. After they have strengthened farther

downstream, the ribs "collapse" and produce mushroom-shaped structures.

Y "_ "_--_

0 50 50 5

Z Z Z

FIGURE 7. Contours of passive scalar in y-z cuts at (a) z --- 28, (b) z = 48,

and (c) z -- 63. Contour interval is 0.1. Solid lines, 0.6 < ¢ <__0.9; dots, ¢ = 0.5;

dashes, 0.1 < ¢ _ 0.4.

Analogous features are seen in the experiments of Bernal (1981). We see that
there are two different kinds of mushroom structures: one falling and the other

rising (which requires a periodic extension of the plots to see fully). Due to the
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FIGURE 8. Contours of the probability density function for the passive scalar

at z = 57. Contour difference is 0.02. (a) 2-D case, (b) 3-D case.

asymmetry of the layer, the pair of ribs associated with the latter tend to be

closer together than the other pair.

This, together with the low Reynolds number of the flow, tends to "cut-off"

high-speed fluid from penetrating into the core of the descending mushroom. At

higher Reynolds numbers, the ribs do not interact diffusively. From the last two

plots, it is clear that the ribs cause the layer to have more surface area on the

low-speed side than the high-speed side. The last plot shows more low-speed

fluid being entrained into the ribs and that the average value of the scalar in the
core of the ribs is well below 0.5.

Statistics of the passive scalar (also called the "conserved" scalar) can be used

to calculate fast-chemistry reactions. Following the analysis of Mungal & Dimo-

takis (1984), we assume a simple reaction A + B --* 2P where the diffusivities

of both reactants and the product are all equal and the reaction is very fast
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compared to hydrodynamic or diffusive time scales. The equivalence ratio is

defined as 7? = Coz/Col, where c02 and c01 are the reactant concentrations in the

low-speed and high-speed streams, respectively. The concentrations of the two

reactants and the product are all related to the conserved scalar, ¢. For the
above inflow conditions, stoichiometry occurs when the conserved scMar has the

value ¢, = 7/(1+ 7). This value is called the stoichiometric mixture fraction and

is also the point where the product concentration reaches a maximum. Given a

probability distribution function (pdf) p(z, y, q_) of the conserved scalar, Mungal

& Dimotakis (1984) showed how several quantities of interest (such as the prod-

uct, product thickness, and mixture fraction derived from a "flip" experiment)

can be calculated. (The pdf gives the probability that the value of the conserved

scalar at (z, y) is ¢, averaged over z and time.)

Shown in Fig. 8 are contours of pdf's for the 2-D and 3-D cases at z = 57.
Several features are evident. Pure fluid with probability one is seen at the top-

right and bottom-left of both plots. Homogeneously-mixed fluid is shown in the

middle where the pdf's reach maxima between 0.5 and 0.6. In the temporal case

the maxima must occur at 0.5 by symmetry. The asymmetry here is due to the

2-D "engulfment" discussed above. These maxima are nearly independent of y,

as in the model of Broadwell & Breidenthal (1982). Between the homogeneous

fluid in the middle and the pure fluid are "wings" in the pdfs. These are due to
the strained flame sheets between the two pure fluids or between one pure fluid

and the homogeneous fluid. The main difference between the 2-D and 3-D pdf's

is a second maximum in the latter near ¢ = 0.4 and for y < 0. This is related to

the entrainment of low-speed fluid by the ribs, and (as discussed in connection

with Fig. 7) is undoubtably a low Reynolds number effect.

In Fig. 9 product thickness (_p) normalized by the 1% visual thickness (_1) is

plotted for the two cases. The downturn for large z for the 2-D case is due to the

faster growth of the visual thickness there, while in the 3-D case the structures
continue to mix the two fluids as fast as the layer grows, creating a plateau. The

average mixture fraction is plotted in Fig. 10. In the laminar region (small z) the

layer diffuses into the low-speed side faster than the high-speed side, lowering

below 0.5. At higher Reynolds numbers this quantity would be much closer

to 0.5 (the difference between the two cases in this regiOn is probably due to

the thinness of the layer there and thus poor statistics). Farther downstream,
the 2-D case achieves a value in the vicinity of that predicted by the Broadwell-

Breidenthal model (about 0.535), while in the 3-D case q_ falls below 0.5. The

latter effect is directly associated with the ribs and the second maximum in the

pdf. At higher Reynolds numbers we expect that the ribs would mix fluid more

symmetrically and that the second maximum would be close to 0.5. This was

confirmed by a recent simulation at Re = 400. In this case ¢ is between 0.5 and
the 2-D case.

The product thickness as a function of the stoichiometric mixture fraction at
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FIGURE 10. Mixture fractionl Solid line, 2-D; dashed llne, 3-D.

z = 57 is compared to the experimental results (at r = 0.38) of Mungal _ Dimo-

takis (1984) in Fig. 11. The 2-D results are just slightly below the experimental

measurements for all values of _,, while the 3-D results are above. For small _b,

(low-speed reactant lean), excessive product is created in the latter case due to

the effect of the ribs. It is not clear to what extent the close comparison in the
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FIGURE 11. Product thickness/visual thickness vs. stoichiometric mixture

fraction. Solid llne, 2-D; dashed line, 3-D; symbols, experimental data from

Mungal & Dimotakis (1984).

2-D case is fortuituous; the extra diffusion from the low Reynolds number here

appears to balance the small-scale motion and mixing in the turbulent experi-

ments. The Re = 400 product thickness (not shown) is closer to the experiments

than the lower Re results, especially for small $,.

4. Wakes

In this section some results from simulations of spatially-developing wakes will

be discussed. We will concentrate on the effects of 3-D perturbations on a plane

Gaussian wake at a moderate Reynolds number. Very few 3-D simulations of

wakes have been performed in the past. Riley 8, Metcalfe (1980) performed a

direct numerical simulation of the temporally-developing turbulent wake of an

axisymmetric body using experimental data for the initial conditions. Although

the mesh was coarse, low-order statistics compared well with the experiments.

Meiburg 8, Lasheras (1988) reported results from wake experiments with dif-

ferent types of spanwise forcing and computed the flow using inviscid vortex

dynamics calculations. It is difficult to use the latter to study small-scale de-

tails of free-shear flows, but they were able to reproduce the large-scale features

of the experiments. More recently, Chen et al. (1989) performed well-resolved

simulations of a compressible plane wake. Their main goal was to determine the

effect of Mach number on the development of the wake, but they also described

the development of 3-D structures which should be similar to the incompressible

case. =

In this work we present results for a relatively simple case where two different

kinds of perturbations are added to a Gaussian mean inflow profile. The first is

a two-dimensional (2-D) time-periodic forcing where the profiles for u and v are

the eigenfunctions of the corresponding Rayleigh equations. Any frequency near

the most amplified one produces the classical K£rm£n vortex street. The second

kind of perturbation is a spanwise-periodic array of counter-rotating streamwise
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vortices. These are assumed to be steady as they might be in a wind tunnel

with small nonuniformities in the last screen. As in the mixing layer and other

shear flows, the streamwise vortices (ribs) are amplified by the strain field of

the 2-D spanwise vortices (rollers). When the ribs become sufficiently strong,
they distort the rollers through ad,/'ection and strain effects. These effects will

be contrasted with a 2-D simulation sans ribs. In addition, a passive scalar

with a Gaussian profile is introduced at the inflow. It is often assumed in the

experimental literature that smoke or heat introduced in the wake will follow

the vorticity. The degree to which this is true will be tested in both the 2-D and
3-D simulations.

The Reynolds number is Re = UoS/U = 400, where 6 is the half-width of the

layer at the inflow. The inflow profile is defined by 0"(y) = 1 -)_ exp(-.69315y 2),

where )t = 0.692 is the velocity defect (corresponding to the experiments of Sato

& Kuriki 1961). The Schmidt number is Sc = 1. The 2-D forcing is applied

at a frequency of 0.5 and an amplitude of 0.06. The maximum growth rate

occurs at a frequency of 0.614, but the lower value was used to compensate for

the viscous thickening of the wake downstream. For the 3-D simulation steady

profiles for v and the spanwise velocity w are added at the inflow to produce

streamwise vorticity with an amplitude of 0.1 and a spanwise wavelength of 6.

As with the mixing layer calculations, each velocity component is required to

satisfy a convective outflow boundary condition, except here we use c = 0.9.

At infinity, all perturbations are set to zero. The length of the computational

domain is L_ = 70 and the vertical mapping parameter is _ = 6. The mesh is

384 × 128 × 24 (grid points in z, Fourier modes in y and z). Most of the aliasing

errors were eliminated by using a collocation grid in the spectral directions of
160 × 32.

Shown in Fig. 12 are contours of spanwise vorticity (a,3) for the base-line 2-D

case. The formation of a vortex street consisting of alternating-sign vortices

(rollers) is clearly seen. A consequence of conservation of angular momentum is

the formation of "spiral arms" around each vortex; not all the vorticity can roll

up into the vortex cores. Farther downstream these arms diffuse away, leaving

nearly circular vortex cores. Note also the near-symmetry between the upper
and lower vortices.

Contours of 0J3 for the 3-D case are plotted in Fig. 13 in the two x-y symmetry

planes (where 0_1 = 0). These planes are each between a pair of counter-rotating

streamwise vortices. Qualitatively the same structures appear as in the 2-D

case, but there are important quantitative differences. Considering the row of

vortices along the top (negative _a3), we see that the flow starts off very much

like the 2-D flow, but by z = 20 significant distortion in z appears. At z = 0

the peak vorticity is on the inside edge of the rollers, while at z = 3 the peak

vorticity is on the outside edge. This cannot be an advection effect since by

z "_ 40 the peak value of w3 reaches -0.8 (at the inflow it is about -0.5). Thus

the variation in z must be due to vortex stretching effects. This enhancement
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FIGURE 12. Contours of spanwise vorticity for the 2-D case. Contour interval

is 0.1. Dashed lines denote negative levels, solid lines denote positive levels.
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FIGURE 13. Contours of spanwise vorticity for the 3-D case at (a) z = 0 and

(b) z = 3. Contour interval is 0.1.

of vorticity occurs at all z locations but is most pronounced at z = 0. Beyond

z "_ 35, a different process from the one responsible for the above enhancement
becomes dominant. At z = 3, the maximum vorticity amplitude drops suddenly

by z = 40, then rises to nearly its previous level by z = 60. At z = 0, a small,
intense and nearly symmetric elliptic roller forms by z = 40. This is followed

by a suppression of vorticity on one side of the center of the roller so that a

nearly irrotational region is imbedded inside the roller by z = 60. Because of

the symmetry in the inflow conditions, all of the above comments for the upper
row of vortices at z = 0 and z = 3 apply to the mirror image in y of the lower

row at z = 3 and z = 0, respectively.

Some of the mechanisms for the enhancement and suppression of 0_3 in certain

regions are evident from an examination of the streamwise (0_) and vertical (w2)
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Contours of (a) streamwise vorticity and (b) vertical (cross-stream)

vorticity corresponding to Fig. 2 at z = 1.5 Contour interwl is 0.1.

components of vorticity, shown in Fig. 14 at z = 1.5. Both components develop

very quickly up to about z = 25, then decay slowly thereafter. At z = 1.5,

0J1 is positive at the inflow and leads directly to the formation of ribs with the

same sign. These ribs can be divided into two sets; those with positive 0_2 and

those with negative. For z < 20 the former are clearly associated with the upper

rollers and the latter with the lower rollers. During the growth phase of the ribs,

they connect spanwise vortices of like sign (see Chen et al. 1989).

As in mixing layers, the ribs are intensifled by the 2-D strain field of the

main rollers, but again this mechanism cannot increase the circulation around a

rib. We find that the same mechanism as in the mixing layer is responsible for

converting w3 into wl. However, the process is less efficient as the layer develops

since the 2-D strain field between rollers is weakened by the presence of both

signs of oJ3 in alternate rollers. In Fig. 13 note that the main effect of the 3-D

distortion of w3 for z < 35 is the enhancement of vorticity along one side of a

roller and suppression along the opposite side (both due to the vortex stretching

terms produced by the ribs), thus shifting the peak vorticity towards one side. In

the z-plane on the other side of a particular streamwise vortex, the peak vorticity

is shifted to the other side of the same spanwise roller. Due to this distortion,

the vortex lines in the rollers will have an z (as well as a y) component. Farther

downstream, one end of each rib becomes increasingly associated with a roller

on the opposite side of the wake. Also, they tend to stand nearly vertical, in

contrast to a typical rib angle of 45° for z < 25 and for mixing layers. This

transition coincides with the end of the growth of the ribs and the beginning of
their decay.
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FIGURE 15. Contours of streamwise vorticity in z-y planes at (a) z -- O, (b)

z : 29, (c) z : 40.5, (d) z = 52, and (e) z = 63.5. Contour interval is 0.05.

Shown in Fig. 15 are spanwise (z-y) cuts of wa at five z locations. The first

plot shows the inflow forcing, and the others show cuts through the upper rollers.

Note that in either half of the domain (e.g., 0 < z < 3), the magnitudes of the

positive and negative streamwise vorticity are about the same even though there

is only one sign at the inflow. For z < 40 the ribs (the lowest and highest pairs

of vortices in Figs. 15(b-e)) have the characteristic shape of "non-collapsed"

vortices - elliptical and tilted from the horizontal (see Lin & Corcos 1984). This

is a relatively stable state. Farther downstream they begin to show signs of

collapse to small, round and more intense vortices (however, a higher Reynolds

number is needed to see this clearly). Comparing Figs. 14(a) and 14(b) at z = 29

to Fig. 15(b) we note that the regions of enhanced ws are located in the middle

of positive strain regions created by wl-quadrapoles. Similarly, regions of w3

suppression are also located in the middle of quadrapoles, but where the strain

is negative. Further, half of the wl vorticity involved is associated with ribs while
the other half is due to the distortion of the rollers. By z = 40 (Fig. 15(c)),

several changes in the structure of the flow have occurred. The ribs and rollers

have moved away from one another so that the former are not a part of one of

the above-mentloned quadrapoles and do not appear to significantly contribute

to the strain in the vicinity of the rollers. Instead, new wi is created within

the rollers, which are then strained in a different manner than before. One can

follow the evolution of wa and see that the quadrapoles it forms are responsible

for the changing distribution and intensity of a,3.

A perspective view (Fig. 16) of the rollers located between z = 40 and z = 60
shows part of the evolution of ws. In Fig. 17 two perspective views of vortex
lines initiated in the ribs located at z = 28 and z = 34 show the formation of

vortex loops. Since both signs of ws are needed to close the loops, the ribs must

connect opposlte-signed vortices. Farther upstream, vortex lines continue all

the way across the span and are not closed, suggesting the ribs connect vortices
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FIGURE 16. Perspective view of Iw31 corresponding to figure 14 in the range
40 "-: z < 60. Contour level is 0.35.

FIGURE 17. Top view of vortex lines initiated in the ribs at z = 28 and = = 34.

= axis extent is 28 _< z <: 40.

of like sign. We note also that the vortex loops originally associated with the

bottom half of the wake (one of which is shown at the left in the plots of Fig. 17)

are all lined up and centered at z = 3 while the upper ones are centered at z = 0
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FIGURE 18. Passive scalar contours for the (a) 2-D case, and (b) 3-D case at

z = 0. Contour interval is 0.1.

(or, equivalently, z = 6). Introducing time-periodicity into wl at the inflow will

create other patterns of loops.

Experimentally, one often introduces smoke or heat as a passive scalar into

the wake in order to trace the vorticity. Of course, this is only an approximation

unless the flow is 2-D, the Schmidt number is unity, and the inflow passive scalar

profile is identical to the vorticity profile. We tested this approximation here for

both the 2-D and 3-D cases, using a Gaussian profile (with half-width 0.833) to

model the injection of a passive scalar. Shown in Fig. 18 are the results for the

2-D case and for the 3-D case at z = 0. Comparing Figs. 12 and 18(a) we see

significant differences. However, for x > 45, the maxima of the passive scalar lie

very close to the extrema in vorticity, but with no consistent relative offset. For

the 3-D case, a comparison of Figs. 14(a) and 18(b) shows larger differences. In

particular, the upper and lower sides are less similar in the passive scalar than

in the vorticity. Also, while there is a local maxima in the passive scalar near

each roller, there are also concentrations of scalar in nearly irrotational areas

as well. This may be an indication of history effects; the passive scalar may

concentrate in regions of high vorticity, and then be left behind as the vorticity

moves elsewhere through vortex-stretchlng effects.
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By P. Orlandi

1. Introduction

Direct simulation has often been applied to describe flow fields within regions

described by simple coordinate systems. Spectral methods have been used be-

cause of their higher accuracy compared to finite differences (Moser et al. 1983).

For complex geometries, implementation of spectral methods is not generally

emcient; modifications of these methods, such as spectral element methods (Ko-

rczac and Patera), can be applied but the accuracy is greatly reduced. In this

paper we describe a finite difference method for incompressible flows with ge-

ometrical complexities in two dimensions and periodic conditions in the third
direction.

In contrast to Cartesian coordinates, the choice of the best system of velocity

components when curvilinear coordinates are used is not unique. We have shown
that an accurate and simple formulation can be obtained when the Navier-Stokes

equations are written in terms of fluxes. As with Cartesian coordinates (Harlow

and Welch), the fluxes are staggered and pressure is located at the cell center.
This scheme is compact and the solenoidal field is easily obtained.

We have derived the equations for the fluxes directly from the equations for

the Cartesian components in the"new" coordinate system. This is done in the

discrete space by multiplying the equations by the metric quantities at the same

cell positions where the fluxes are defined. This procedure requires definitions

of the metric quantities at the center of the cell faces, at the center of the cell,
and at the corners.

A fractional step method has been used for the time advancement. When

generalized coordinate are used, the method requires modifications of the method

used in Cartesian coordinates (Kim and Moin, 1985). The major difference

resides in the "pressure" calculation; while in Cartesian coordinates "pressure"

is obtained by Fourier methods, in general curvilinear coordinates and for a

large number of grid points the pressure solution requires iterative schemes.
The usual iterative schemes have convergence rates dependent on the number of

mesh points. A modified multigrid method appropriate for general curvilinear

coordinates (Orlandi and Esposito, 1989) has been developed. At present it has

been demonstrated that the method has very good convergence properties for

2-D but requires improved relaxation scheme for 3-D.

The ultimate goal of this work is to study the flow inside a channel with
riblets on one of the two walls. The method has been tested for 2-D flows in
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the presence of bodies with a geometrical singularity and for 3-D flows inside
domains described-by Cartesian coordinates. The results have been compared

with previous numerical simulations and with experimental results.
The cases considered are:

a) the growth of Orr-Sommerfield waves in plane Poiseuille flow,

b) the flow over a backward-facing step,

c) the flow past a wedge,

d) the flow inside a narrow channel.

Finally the case of a channel with two large fiblets on a wall has been simu-

lated. In this case a limited number of grid points is sufficient, and in spite of

the slow convergence for the pressure solver, one is able to obtain solutions with

a reasonable CPU time. At present solutions with very fine grids in all three

directions can not been obtained, due to the lack of a fast "pressure" solver for

general curvilinear coordinates. Data analysis aimed at finding reasons for drag

reduction will be the subject of a future study.

2. Physical model

Different formulations can be obtained of the Navier-Stokes equations in a

system of generalized curvilinear coordinates z i (defined by yJ = VJ(zi), with

Vj the Cartesian coordinates) depending whether Cartesian covariant and con-

travariant velocity components are employed. In this word flux variables are

used. The relation among the Cartesian components v j and the fluxes qi is

vi = qic_lg (1)

J
where the metric quantities c i are

j Oy j
ci - Oz--7 (2)

The other metric quantities necessary for writing the Navier-Stokes equations in
'" I 1

generalized coordinates are the a" (the inverse of aji = cjci) and the Jacobian
of the coordinate transformation g = v/'ff with (a =11% I1).

The continuity equation in terms of fluxes is

I Oqi 0 (3)
di1 (-v) - g Oxi -

a form very similar to the expression in Cartesian coordinates. With Cartesian

coordinates, numerical methods based on velocity staggering have a very com-

pact form for the discrete div and grad operators, and well-structured matrices

readily yield solenoidal velocity fields within round-off errors. The extension of

velocity staggering to curvilinear coordinates is highly desirable.
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The momentum equations in the z j coordinate system are

Ovi • • Op 1 i

0-7 + (v'u')/_ = -b-_u' + _(v )/'_
(4)

First- and second-covariant derivatives expressed in conservative form are

10v_q i (5)
(viuJ)/J - g OzJ

(vi)/i j __ 1 0 ..Ov ig Oz i a'J OzJ (6)

where a ij = aiJ 9. The pressure gradient is

op _ (c})-' op
OY i OX j (7)

Flowfields periodic in one direction and with geometrical complexities in the
other directions can be solved by introducing the coordinate transformation

yJ = yj(xi),j,i = 1,2, and y3 = x3. This transformation reduces the number

of terms in Eqs.(4-6) because ai3 = 0 for i # 3. It is worthwhile to introduce
the fluxes ql, q_ in the plane of geometrical complexity and to use the Cartesian

component qZ = v 3 in the third direction. The fluxes qJ are related to the

Cartesian components by ql = v lc] - v 2c_ and q2 = v 2c] - v Ic_. The equation

for qJ is derived in the discrete space which requires the definition of the metric

quantities at several points of the cell. The equations for the fluxes have a large
number of terms which can be gathered in five groups: nonlinear term, H z,

pressure term, pl, and three diffusive terms, D t, Dt'r(r # l), and D l'r'iJ. Let

Q_ =qkclm/g , 7_" = (ctn)-' g (8)

Each term in the ql equation can be expressed as

HZ 1. z OqJ Q,_ n Oqt q3
=_(_ _ )+W

pI = aU O___p_p
OxJ

D' = 1.,t 0._0 jjOQI '_,
g("_ OxJ" Ozi )

D,,-: °o.°0:2)
g OzJ OzJ

D,,,j, / 1(7 _ 0 aiiOQ;n)
= 0-7 O__g

02 qt
+_

j,m,n = 1,2 (9)

j = 1, 2 (10)

j,n = 1,2 (11)

j,n = 1,2, r ¢ I (12)

j¢i=1,2; r,n=l,2 (13)
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The terms in the equation for q3 are

1_ Oq3 q_H_= ( )+_ ; j = 1,2

DS 1. 0 i_ Oq s, 0 2 qs= -t----.a-- _-----_1+ ; j = 1,2
g OzJ OzJ "0_

1 0 "i Oq s-
DS,S,i,J = -(--a _ =

# OzJ _z _) ; j#i 1,2

(14)

(15)

(16)

(17)

The general form for the momentum equations is

1 1

D _ = -P_ - H _+ _-e(] _3.- ] D°'+ ] _3kj [ D _'r'kJ) ; r,k,j = 1,2
Ot Re (18)

where eki ! denotes the usual permutation tensor. The boundary conditions for

qi are obtained from the Cartesian velocities.

The second order accurate central differencing is used for nonlinear and viscous

terms. The discretized equations for the component qi can be written as

Oq i 1 Di = _pi _ Ri (19)
Ot Re

where the nonlinear term and the diffusive terms of Eqs. (12, 13, 17) have been

included in R i.

The systems of equations were solved by the fractional step method with the

pressure at the previous time step introduced in evaluating the non-solenoidal

velocity field _i. Accuracy of time advancement was second-order and the time

step, At, was chosen such that At I !.__ + q' I,_az< 1.
g _z I _z 3

The fractional step method requires a second step to evaluate the solenoidal

field (qi)n+l by

(qi).+l _ ¢ _ 1_(,i) (20)
At 2

• _ is given by Eq.(10) and Eq.(15) where the scalar ili is substituted for p.

The "pressure" is calculated from an elliptic equation obtained by substituting

the fluxes (q_)"+' of Eq.(20) in the continuity equation, yielding

g 6_.. 6_- + _ = 0 ; ,n,,, = 1,2 (21)

Equation (21) is evaluated at the center of the cell.

For incompressible flows, it is desirable that Eq.(21) be solved to be within

round-off errors. Usually with iterative schemes like line SOR and point SOP.
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FIGURE 1. Energy growth rate: --

----- averaged Jacobian.

linear theory; ........ centered Jacobian;

the convergence error is not reduced to round-off levels. However, these schemes

together with a multigrid algorithm are able to provide a fast convergence. In or-

der to vectorize the code a four-color checker-board scheme with over-relaxation

was used. The method and the treatment near the boundaries is described in

the paper of Orlandi and Esposito (1989). From the _b the pressure, necessary

in Eq.(19), can be calculated by (see Kim and Moln, 1985)

pn+l = pn + - _-r--ra"_-'-r + _-.--=)),
2Re g tfz_ bz3

j = 1,2 (22)

The numerical algorithm requires the coordinate transformation yJ = yJ(zi).

This transformation is usually given by an analytical relation; however, for some

complex geometries the transformation has been obtained numerically by using

the code GRIDGEN2D of J. P. Steinbrenner (1986).

3. Results and discussion

Evolution of small disturbances

A useful test for the accuracy of numerical methods is accurate prediction of

the evolution of small disturbances.

The time evolution of small perturbations in the plane Polseuille flow at

Re = 7500, with the initial perturbation obtained from solutions to the Orr-

Sommerfield elgenvalue problem, has been used by Canuto et al. (1987) and

Rai and Moln (1988) to measure the accuracy of different numerical methods
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FIGURE 2. Computational grid for a backward-facing step.

with different resolutions. We have computed this ease using a 98 x 48 grid.

Computed energy growth is shown in Fig. 1 and shows an agreement with lin-

ear theory. To emphasize how the calculation is influenced by the calculation

of metric quantities, the energy growth evaluating the Jacobian 9 in the diffu-

sive terms by averaging two neighbor values is also shown (dashed line). The

averaging significantly reduces the accuracy of the numerical scheme.

Flow over a backward-facing _tep

This flow has been considered for the geometrical singularity and because

solutions are available in literature. First, the numerical method was tested

using a Cartesian grid. For this case convective boundary conditions at the

outflow and a parabolic profile at the inflow were prescribed. With a grid of

96 x 48 at Re = Uch/v = 600 the present simulation predicts the reattachment

location of the main separation region at Xlr = 10.4, which compares well with

the values Xlr = 10.5 obtained by Kim and Moin (1985) using a finer grid in the

vertical direction. In the case of cartesian coordinates the characteristic points

of the separation regions reach their final values in a short time of integration.

To obtain the solution in a domain which considers also the upstream section,

the domain is mapped into a Cartesian computational domain by an analytical

expression based on a conformal transformation. Stretching functions resulting
in a finer resolution near the walls and corners are used. In the case of a mesh

128 x 48, the grid distribution in the region of the step is given in Fig.2. The

simulation in general curvilinear coordinates was performed with several meshes

and different grid distributions without finding appreciable differences. Fig.3

shows the convergence of the characteristic points of the separation regions to

their steady values. Convergence is achieved in a longer time than the time
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FIGURE 3. Time evolution of characteristic points of separation regions at

Re = 450. Computations were performed using generalized coordinates. (a)

Reattachment length of the primary separation bubble; (b) separation and reat-

tachment locations of the secondary separation bubble.

necessary in Cartesian coordinates. Moreover, the final values are slightly lower.

The values obtained by general curvilinear coordinates are XI_ = 10.1, X2, =

8.2, X_ = 15.9, while those by Cartesian coordinates are X1_ = 10.4, X2, =

8.6, X2r = 16.1. Here X2r and X20 denote the location of separation and

reattachment, respectively, of the secondary separation bubble at the upper
wall.

Flow past a $-D wedge

This case has been studied experimentally by Pullin and Perry (1980) using

detailed flow visualization to describe the motion of the vortex generated at the

vertex of the wedge. The flow was driven by a piston to the left of the wedge (see

Fig. 4). They considered several cases varying the Re number, the velocity of

the piston, and the shape of the wedge. In the present case we did the simulation

only for the 60deg wedge and at two Re. This case has been considered especially

because the geometry of the body is very similar to the geometry of the riblets.
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The grid has been obtained by using the GRIDGEN2D code.

In the case of a 60 deg wedge with a 128 × 64 mesh, the grid distribution in

the wedge region is given in Fig.4. Different shapes of the velocity profile at the

inlet have been used. No appreciable differences on the trajectory of the vortex

were observed when prescribing a slug velocity profile or profiles with different

boundary layer thickness at the inlet. At the outflow a convective boundary

condition was employed.

Fig.5 shows the time evolution of the horizontal position of the center of the

vortex at Re = 1560 and Re = 3687 compared with the measurements of Pullin

and Perry (1980). In the present case, the center of the vortex has been obtained

by evaluating the position of minimum pressure, while in the experiment the

position was obtained by dye flow visualizations. At the beginning the agreement

is very good, while at later times there are differences.

In the numerical simulation, the ramp-like trajectory is due to the fact that

the position of the vortex center has been calculated without introducing an

accurate interpolation scheme. The difference with the experimental results is

in part due to the fact that dye concentrations do not perfectly coincide with

vorticity concentrations. A further reason for the difference may be due to three-

dimensional effects which have not been considered in the present numerical

simulation.

Turbulent channel flow

Rai and M°in (1990) have shown that the finite difference schemes are capable

of generating results very accurate and comparable with those obtained by pseu-

dospectral methods. They simulated the full channel capturing several spanwise

structures. Following 3imenez and Moin, in this work we have simulated the
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FIGURE 5. Horizontal position of the vortex center relative to the wedge-apex.

a) Re = 1560 ;b)Re = 3687 (o numerical, * experiments).

case of a narrow channel with a spanwise dimension sufficient to capture one

or two streaks. The solution obtained by this calculation is then used as initial

condition for the case with ribietsf_In_(his casel a large number of grid points is

necessary to represent accurately the geometrical complexity of the riblets.

The calculations were initialized with random perturbations with amplitude

of up to 25% of the centerline velocity superimposed on the parabolic velocity

profile. This large perturbation was chosen because the Reynolds number (Re =
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UcS/u = 4200) is subcritical. The small spanwise dimension is used with Lz =

.2897r_. This dimension has been chosen because at this Re, R_ = uTS/v = 180 is

obtained. Eight riblets can be located in the channel with s/h = 1 and h + = 20.

In these calculations, the "pressure" field was obtained by a direct method

which uses Fourier expansions in the streamwise and spanwise directions. For

a 16 × 64 × 16 grid, calculations require half second for each time step on the

CRAY-YMP. The calculation done with finer grids in the spanwise direction

resulted in no appreciable difference in the mean velocity and Reynolds stress

distributions.

Figs.6-9 show the profiles of mean velocity and turbulent intensities obtained

by averaging the instantaneous quantities for a period of time tu_/_ = 15. In the

near-wall region, the agreement with the results obtained by spectral calculation

for the large channel is very good. The pseudospectral numerical simulation was

shown by Kim et al. (1987) to be in very good agreement with experimental

results. In the central region, the present results show a larger normal stress with

respect to the spanwise stress; this behavior does not depend on the numerical

method but depends on the narrow channel assumption (Jimenez and Moin,

1990).

Turbulent channel flow in the presence of riblets

As mentioned before, the iterative pressure solver is not efficient in three

dimensions. In some cases, we were not even able to obtain convergence. This

constraint limited the present study to the geometry in Fig. 10, which has a

limited number of grid points in the streamwise and spanwise directions.
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FIGURE 7. Root-mean-square velocity fluctuations normalized with the wall
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coordinates; b) in wall coordinates.

The initial velocity field was obtained from a turbulent plain channel simula-

tion. The riblets were introduced gradually using a continuous transformation
in time.

Figs.11-12 show mean velocity and rms profiles in the valley and tip regions

respectively. The usual averaging in the z- direction and over a time of t =

lO_/u,, was performed.

These preliminary results show that riblets cause modifications of velocity and

the rms profiles. In the valley (Fig. 11) of the rihlets, there is a weak reduction of

the streamwise intensities, while the other stresses are not affected. At the tip of

the riblets (Fig. 12) the profile are similar to those of the flat wall. At the center

of the channel, the flow is not strongly affected by the riblets. The computation

of channel with riblets reported here is of highly preliminary nature. However,

it has been demonstrated that such a computation is feasible. In the coming

year we will refine these computations and use the resulting data to examine the

phenomenon of drag reduction.
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The large-scale structures in
turbulent plane Couette flow

By M. J. Lee

Turbulent plane Couette flow has been numerically simulated at a Reynolds

number, Re = U,h/v = 6,000. Preliminary examination of the instantaneous

velocity and vorticity fields revealed the existence of large-scale eddies which

grow in the flow direction with time and have the spanwise scale as large as

the channel-height. The persistence of the longitudinal eddies was not observed

when the small scales in the spanwise direction were not well resolved, indicating

that the growth of the large-scale longitudinal eddies requires the contribution

from the small-scale motions in the spanwise direction. The statistical correla-

tions in thh flow agree well with the experimental results.

1. Introduction: motivation and objectives

An important fluid-mechanical aspect of a fully-developed plane Couette flow

is that the flow has a constant shear stress across the entire channel height, be it

laminar or turbulent. The constancy of shear stress, "r/p = v dU/dy - _-_ (equal

to its value at the wall, _',,/p = vdU/dyl,,), is a direct consequence of zero mean

pressure gradient in the flow as it is driven by shear generated at two plane, solid

boundaries in rectilinear, parallel movement (at speed Uw) relative to each other

(see Figure 1). Here, (z, y, z) denote the coordinates in the flow direction, in the

normal direction to the center plane of the channel (i.e. -1 < y/h _< 1, where h

is the channel half-height) and in the spanwise direction, respectively. In a fully-

developed plane Couette flow, turbulence statistics are uniform in a horizontal

zz-plane. Because of its simple flow geometry and the existence of the constant

shear-stress region, turbulent plane Couette flow has been considered as one of

the building-block flows for study of wall-bounded turbulent shear flows.

Another characteristic of plane Couette flow is that both the mean vorticity

(or mean shear, S = dU/dy) and turbulent shear stress (-p_) are symmetric

about the center plane (y/h = 0), in contrast with pressure-driven Poiseuille flow

that has profiles antisymmetric about y/h = 0. Because of the resulting finite

production rate, -S _, even in the core region (say, 0.2-0.5 < y±/h < 1, where

y_ is the distance normal to a nearest wall) the shapes of the turbulence intensity

profiles (u S, v 2, w 2) differ significantly among the three components (see El Tel-

bany & Reynolds 1982), indicating the existence of a high degree of anlsotropy

in the flow. Therefore, we conjecture (or hypothesize) that instantaneous turbu-

lence structures in the core region of plane Couette flow would be quite different

from those of Poiseuille flow. This question has not been addressed before. How-

ever, in the vicinity of the walls (e.g. yj./h < 0.1-0.2), turbulence structures
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FIGURE 1. Schematic diagram of a typical experimental setup of turbulent

plane Couette flow. Because the belt is prone to deform at high speeds, the

length of the shearing boundary has to be limited, resulting in a rather short

flow-development length (or time), zm/h = 10-300.

of the two flows are expected to be similar, since the near-wall dynamics of a

turbulent shear flow is primarily controlled by a mechanism universally repre-

sented by the 'law of the wall.' For instance, the near-wall turbulence structures

in boundary layer and plane Poiseuille flow appear to be identical even though

the outer structures of the two flows are significantly different.

Despite its apparent importance as a paradigm of wall-bounded turbulent

shear flows, plane Couette flow has not been studied extensively. In most previ-

ous experiments (Reichardt 1956, 1959; Robertson 1959; Robertson & Johnson

1970; Leutheusser & Chu 1971; E1 Telbany & Reynolds 1980, 1981), the bound-

ary shearing was realized by employing either a (flexible) moving belt or a fluid

interface, which is prone to deform at high speeds (or at high Reynolds numbers,

Re = Uwh/v). To alleviate this problem, the length of the shearing boundary

had to be made short, which resulted in a rather short flow-development length

(or time): zm/h -- 10-300 (Zm is the distance from the entrance to the location

of the principal measuring station). Because of the difficulties arising from the

movement of the shearing boundary, only the profiles of mean velocity, turbu-

lence intensities and turbulent shear stress were obtained in most experiments,

and measurements of energy spectra and two-point velocity correlations were

limited in the streamwise direction only (Robertson & Johnson 1970; Aydin &

Leutheusser 1979, 1989)'

The present study aims at two main objectives. First, we would like to iden-

tify turbulence structures in plane Couette flow and examine differences from

those in plane Poiseuille flow. Previous works showed that the core region of

:4 :.
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plane Poiseuille flow is dominated by hairpin-shaped vortical eddies (Moin &

Kim 1985; Kim & Moin 1985). It is our goal to understand the mechanism by

which the boundary shearing produces turbulence structures different from those

generated in a pressure-driven flow. Second, we would like to test the capability
of existing turbulence models (and scaling laws) in describing the turbulence

characteristics of plane Couette flow. Because most near-wall turbulence mod-

els have been developed by assuming that the wall layer is of constant-stress

equilibrium (Townsend 1976, §5), there is an intrinsic interest to examine the

performance of existing models.

To achieve these objectives, turbulent plane Couette flow has been numeri-

cally simulated by integrating the Navier-Stokes equations in time (for a brief

description, see §2.1). Using the database obtained from the direct numerical

simulation, the existence of large-scale eddies in plane Couette flow was found.

In this report, special attention is focused on the large-scale motions that de-

velop in the flow direction with time and that have the cross-stream dimensions

as large as the channel-height, 2h. A discussion of the statistical correlations
follows the examination of the instantaneous structures.

2. Accomplishments

L1. Direct numerical simulation

For the present study, the flow Reynolds number (U,,h/v) of 6,000 was se-

lected. Note that the chosen value of the Reynolds number is higher than the

range of the reported critical transition Reynolds numbers, 1,000-2,000. The

numerical algorithm of the present code is identical to that used in the compu-

tation of Kim, Moin & Moser (1987), except the wall boundary conditions. A

spectral method (Fourier in the horizontal zz-plane and Chebyshev in the verti-

cal y-direction) for the spatial differentiations and an Adams-Bashforth/Crank-

Nicolson algorithm for time advancement were used.

Direct numerical simulation (DNS hereinafter) of a turbulent flow is meaning-

ful only when all the essential scales in the flow under consideration are properly

represented in the computation. As shown in Table 1, computations have been

carried out with three different sizes (i.e. horizontal dimensions, B_ and Bz) of

the computational domain (or box): B_/h = 4_r, 8zr and 16rr. In all the cases

reported here, the number of the Chebyshev modes used for the vertical direc-

tion was 65, and the spanwise dimension was half the streamwise dimension:

Bz/B_ = ½. The largest computational domain (for runs Q1, Q2, Q3) has a
high streamwise-to-vertical aspect ratio, B_/(2h) " 25.

A computation on a box of a given size was started on a coarse mesh with

horizontal modes (NX,NZ) of 32 × 32, which was successively expanded up to

128 × 128 modes. The expansion of the horizontal modes was done after the flow

reached a 'quasl-steady' state as determined by inspection of such statistics as the
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Case B./h B_/h NX NZ A_/h Az/h

B1 47r 21r 32 32 0.393 0.196

D1 81r 4_r 32 32 0.785 0.393

D2 64 64 0.393 0.196

D3 128 128 0.196 0.0982

Q1 167r 8_r 32 32 1.57 0.785

Q2 64 64 0.785 0.393

Q3 128 128 0.393 0.196

TABLE 1. Specifications of the computational

modes for plane Couette flow simulations. For

vertical Chebyshev modes was 65 and Re = Uw

box and the horizontal Fourier

all the runs, the number of the

h/v = 6000.

mean velocity, turbulent kinetic energy, shear stresses, two-point velocity corre-

lations and energy spectra. Table 1 also shows the corresponding horizontal grid

spacings, (Ax, Az). When the flow reached a _quasi-steady' state the Reynolds
number, Re, = tA.h/v, based on the wall-shear velocity, = (vdV/dyl,,)ll2,
and channel half-height, h, was about 180. (Laminar Couette flow at this flow

Reynolds number has Re_ "_ 55.) The size of the biggest computational domain

was B + "_ 9,000, B + - 4,500, where the superscript + denotes a quantity made
dimensionless by the viscous length scale, lv = v/U,-.

_.YJ. The large-scale structures

The streamwise two-point correlations of fluctuating velocity components,

(u,v, w), at the center of the channel (y/h = 0) from the computation on the
smallest box size, (B_, B_)/h = (4zr, 2a') are shown in Figure 2. The significant

correlation of the streamwise velocity component, u, at the streamwise separa-

tions near rffi/h = 2r indicates that the size of the computational domain is not

sufficient for the largest eddies. Therefore, it was decided that the computation

must be performed on a bigger computational domain.

Figure 3 shows the streamwise two-point correlations at the center plane

(y/h = 0) from the computation with a bigger box, (B_,B_)/h = (8r,47r).
When the number of the horizontal modes was small with the grid spacing

(Az, Az)/h = (0.785, 0.393), the bigger box size appeared to be sufficient enough
to contain large-scale motions in the flow, as indicated by the negligible corre-

lations at large streamwise separations in Fig. 3(a). However, as the number of
the horizontal modes increased so that thegrid spacing became (Az, Az)/h =

(0.393, 0.196), the correlation of the streamwise velocity, u, was high again (see

Fig. 3b). Comparison of the computations on the same box size but with differ-
ent numbers of the horizontal modes (especially the spanwise modes) suggests
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FIGURE 2. The streamwise two-point correlations of velocity at y/h = 0 from the

computation with the smallest box, (Bz,B_)/h = (4_r, 27r). --, Q_,_(rz/h);

* " * r.... , Q,,(r,/h), -----, Q_( ,/h). The significant correlation at the stream-

wise separation, r_/h = 2_r, indicates that the box size is insufficient to contain

largest eddies in the flow. The grid spacing is (Az, Az)/h = (0.393, 0.196).

that the growth of the longitudinal eddies requires the contribution from small-

scale motions in the spanwise direction.

Inspection of the spanwise energy spectra, Euu(kz), of the streamwise velocity

(Figure 4, run case D3) revealed that with the contributions from small scales

a definite peak develops in times at kzh _- 1, which is an order-of-magnitude

higher than the density at other scales. The presence of the sharp peak indicates

the existence of a finite spanwise scale of the energetic eddies. The generating

mechanism of these large-scale eddies differs significantly from that of the streaky

structures in the near-wall region (sublayer) and in homogeneous shear flows

(Lee, Kim & Moin 1987). The streaky turbulence structures are selectively

amplified by the high mean shear rate (S* = Sq2/e >> 1), a linear mechanism in

which transfer of energy between different scales is absent (Lee _: Hunt 1989).

Some details of the instantaneous structures in the computed flow are dis-

cussed below. Figure 5 shows the contours of the streamwise velocity fluctu-

ations, u, plotted on the center plane (y/h = 0). The contours on the center
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FmuRE 3. Comparison of the streamwise tWo:point correlations at y/h = 0
from the computations with different number of horizontal modes (NX,NZ) on

the bigger box, (B,,B_)/h = (87r,41r): (a) (NX,NZ)= (32,32); (b) (NX,NZ)
* T= (64,64). --, Q*_(r=/h); .... , V_( ,/h); -----, Q*_,(r_/h). The de-

velopment of high correlation with the increase of the number of the spanwise
modes suggests that the growth of the large eddies in plane Couette flow requires

contributions from the small-scale spanwise motions.
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plane clearly show the existence of organized large-scale eddies in the flow. The

topological configuration of these structures may appear to be similar to that of
the near-wall streaky structures in that the low- and high-speed flow regions are

highly elongated in the flow direction and alternate in the spanwise direction.

However, the length scales, As and A,, of the structures in the core region are

much larger than those, A® and Az, of the streaks in the sublayer: A+ __ 5,000-

7,000, A+ -_ 900, A+ _ 1,000, A+ -_ 100, where the subscripts z and z denote the

streamwise and spanwise directions, respectively. This difference in scales also

suggests that the generating mechanism for the large-scale structures in the Cou-
ette flow is different from that responsible for generating the wall-layer streaks.

Contours of the other velocity components (v and w), vorticity and pressure are

not as much elongated, and they are more intermittent and localized in space

(not shown here).

The spatial distribution of u near the two walls are different (see Figure 6).

Near the bottom wall where the mean fluid speed is larger than the wall speed,

the distribution of u is positively skewed, and the converse is true near the top
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X

FIGURE 5. Contours of the streamwise velocity fluctuations, u, at the center of

the channel (9/h -- 0), showing the existence of large-scale structures developing

in the core region. --, u > 0; .... , u < 0.

wall. In contrast, the respective distributions of other components of velocity

(v, w) and the streamwise and vertical vorticity components (w_, a,_) are not

as much different near the two opposite walls as the u distribution, and have

skewness factors much less than that of u. However, the spanwise vorticity (w_)

has a high negative skewness factor near the both walls.

The vertical extent of the eddy structures is shown by the contour plot of u

on a yz-plane (an end view) in Figure 7. (The vertical direction is magnified

by a factor of 2½ for visual clarity near the walls; L_ = 47rh and Ly = 2h.)

The vertical extent of the large eddies is as big as the channel height, 2h. The

spanwise spacing between the low- or high-speed regions as determined from

an inspection of contour plots such as Figure 7 is about 4h. This is consistent

with _he spanwise _wo-poin_ correlation of the streamwise velocity fluctuations,

*Q_,,,(_), that has distinct negative dips at separations r_/h __ 2, 6 and positive

peaks at r_/h "_ 4. If the computational domain were larger, the dips and peaks

would appear at the separations r_/h = 4n - 2 and 4n, respectively (n = 1, 2,

...). However, the near-wall regions consist of small-scales structures.

_.3. Statistical correlations

Here, the statistical properties of plane Couette flow computed from the sim-

ulation with the best resolution are presented. In Figure 8(a), the computed
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(a) x

(b) x

FlCtrRE 6. Comparison of distribution of the streamwise velocity fluctuations

(a) near the bottom wall, y/h = -0198 (y+ = 3.5); (b) near the top wall,

y/h = +0.98 (y+ = 3.5). --, u > 0; .... , u < 0. Note that the u-distribution

is positively skewed near the bottom wall and the converse is true near the top
wall.
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FIGURE 7. Contours of the streamwise velocity fluctuations on a yz-plane (an

end view), showing that the vertical extent of the large eddies is almost the

channel height (2h) and the spanwise spacing (or the size) of a pair is about 4h.

--, u > 0; .... , u < 0. (Note that the vertical direction is magnified by a

factor of 2_ for visual clarity near the walls.)

mean velocity profile across the channel is compared with the experiments con-

ducted at different flow Reynolds numbers (Re = 2,900, Reichardt 1959; Re

- 2 x 104-4 × 104, E1 Telbany & Reynolds 1980). It should be noticed that

at high Reynolds numbers the velocity profile changes rapidly within a narrow

region near the wall (yi/h < 0.1), and that it has a constant slope over the

half channel-height around the center (-0.5 < F/h < 0.5). The mean velocity

gradient at the boundary, S,, = dU/dy[,,, grows substantially with the Reynolds

number, whereas that at the center plane, Sc = dU/d_tl_=o, decreases with in-

creasing Reynolds numbers. The mean velocity gradient (or mean shear rate)

in the core region is about 5% of the wall value (or total stress) and it is about

30% of the value for a laminar flow with a linear velocity profile. Thus, the total

shear stress in the turbulent case is about 10 times higher than the laminar

equivalent.

The near-wall profile, U + , made dimensionless by the wall-shear velocity (U,-),

vs. _+, the distance normal to the wall scaled by the viscous length (t, = v/U,.)

is shown in Figure 8(b). The solid and chain-dashed lines are the profiles near

the lower and upper walls, respectively. The dashed and dotted lines denote

the universal law of the wall: U + = y+ and U + = (1/_)ln9+ +B (n = 0.4

and B = 5.5), respectively, which fits the experimental data at a high Reynolds

number (El Telbany & Reynolds 1980). The data from the present simulation
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FIGURE 8. Mean velocity profile in plane Couette flow: (a) global profile,

U/U,, vs. y/h; (b) near-wall profile, U + w. y+. --, present result; O,

Reichardt (1959); O, E1 Telbany & Reynolds (1980); .... , U + = y+; ........ ,

u + = (1/,,) In y+ + B (,, = 0.4 and B = 5.5); In (b), the solid and chain-d_shea
lines are the profiles for the lower and upper walls, respectively.
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FIGURE 9. Profile of shear stresses in plane Couette flow:

stress (-p_-'_/rw); .... , total shear stress (r/_',,).

, turbulent shear

show B = 3.5, a lower value than that for high Reynolds numbers (B = 5.5).

This is counter to the usual dependence on the Reynolds number.

Figure 9 shows the profiles of turbulent and total shear stresses. The total

shear stress is nearly uniform across the whole channel height. In the near-wall

region, the turbulent shear stress increases rapidly with the distance from the

wall: it attains 0.9rw at y±/h = 0.2. (The small deviation of 7"/_'w from unity is

due to the insufficient number of the sample fields used for average.)

The turbulence intensities (u '+ , v '+ , w '+ ) scaled by the wall-shear velocity (U_)

in Figure 10(a) show good agreement with the experimental results at higher

Reynolds numbers (El Telbany & Reynolds 1981). Compared with those in a

plane Poiseuille flow at comparable Reynolds numbers (Fig. 10b, Kim et aI.

1987), the intensities in Couette flow are significantly higher at most locations

in the channel, except in the vicinity of the wall (y+ < 30) where the Couette-

flow values are higher only slightly. This marked contrast is a direct consequence

of the constancy of total shear stress, r = p dU/dy - p_-_, across the channel in

the flow. (In a plane Poiseuille flow, the total shear stress has a linear profile

r/]rw] = -y/h, and dU/dy = 0 and _'_ = 0 at the channel center, y/h = O, by

symmetry.)
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Figure 10(a) also shows that the turbulence structure in the core region has

strong anisotropy, i.e. u 2 : v z : w 2 _ 6 : 1 : 2. The mean velocity profile is

approximately linear in the core region, indicating that turbulence statistics are

uniform there as would be in homogeneous turbulent flows.

3. Summary

In this report, preliminary results are presented on the existence of the large-

scale structures in turbulent plane Couette flow, The structures are primar-

ily associated with the streamwise velocity fluctuations in the core region (say,

y±/h > 0.2). These eddies develop in the flow direction in time and grow to fill

tile whole channel in the cross-stream plane. Analysis of the two-point correla-

tions and spectra shows that the spanwise scale of the individual eddies is about

tile channel height (2h). The generating mechanism of these large-scale eddies

differs from that of the streaky structures found in flows at high shear rate.

There is an intrinsic interest in studying plane Couette flow from the model-

ing point of view because this flow has a constant total shear stress across the

channel. We plan to analyze turbulence statistics including the Reynolds-stress

transport budget to examine the capability of the existing turbulence models.

Comparison of these with those in plane Poiseuille flow would reveal the differ-

ences and similarities of the two flows in how the wall layer is affected by the

structures in the core region.
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Turbulent thermal convection in

a differentially rotating channel

By W. Cabot

1. Motivation and objectives

Differentially rotating disks of gases and solids occur in several astrophysical

systems, in particular in the inner parts of protostellar nebulae, of which our

own solar system is thought to be a relic (see reviews in Black & Matthews,

1985). These "accretion disks" (see review by Pringle, 1981) are characterized

by near centrifugal balance (i.e. nearly Keplerlan orbits), a small vertical-to-

radial aspect ratio, highly supersonic rotation speeds (the rotation rate being

the dominant timescale), and very low effective Prandtl numbers due to very

low densities that give rise to high radiative emissivities. Accretion disks are

deduced to evolve on timescales many orders of magnitude faster than can be

accounted for by angular momentum transport by molecular viscosity. Other

mechanisms -- like turbulent Reynolds stresses -- are thus hypothesized to
/

account for angular momentum transport. Turbulence is suspected becausf'any
sustained large-scale disturbance in the disk will have a very high Reynolds

number. Unfortunately, there are as yet no reliable models to describe accretion

disk turbulence, nor even many testable constraints from present astronomical

observations. It is not even agreed on which mechanism is most responsible

for generating and sustaining the postulated turbulence: mechanical stirring by

infalling material, or thermodynamic instabilities, such as thermal convection,

or magnetohydrodynamic instabilities (more than one may apply at different

epochs in the protostellar evolution). The shear for Keplerian rotation is stable,

and by itself cannot drive the turbulence, but in the presence of an instability it

can generate Reynolds stresses that transport mass and angular momentum. As

a result, as material in the disk falls down the gravitational well of the central

body, gravitational potential energy becomes available to drive turbulence in a

self-sustaining manner.

Lin & Papaloizou (1980) and Cabot et al. (1987) proposed ad hoe -- and

mutually incompatible -- models of Reynolds stress production in protostellar

disks due to thermal convection, and it is this particular problem that mo-

tivated the work described here. We have undertaken a program of making

numerical "experiments" to test various models of Reynolds stress production

and convective heat transfer in differentially rotating thermal convection, and

to develop better models if need be. (This problem in principle has a wider

interest than the astrophysical one, for it involves the complicated interactions

of thermal convection, rapid rotation, and shear in a turbulent, compressible
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medium, which should provide a severe test for many turbulence models.) We
also wish to determine if thermal convection can indeed generate self-sustaining

turbulence in an accretion disk environment. Our objectives are (1) to study

localized turbulence in circumstances approximating those found accretion disks

using previously existing expertise in performing direct numerical simulations of

turbulent, incompressible channel flows with low Reynolds number, (2) to deter-

mine the limitations of such calculations, and (3) to extend the type of numerical

simulation (e.g., to include density stratification and compressibility effects and

to accommodate higher Reynolds numbers with subgrid-scale modelling) so that

the relevant physical effects are realistically captured.

2. Direct numerical simulations

The direct numerical simulation code of Kim et al. (1987) for an incompress-

ible, semi-infinite channel flow was modified as described previously by Cabot

(1989). The flow is homogeneous in the horizontal (z, z) directions (with periodic

boundaries assumed) and inhomogeneous in the vertical (9) direction, bounded

by impermeable walls. The simulation code now allows buoyancy in the vertical

direction in the Boussinesq approximation; gravity can be uniform or variable.

The flow must be either externally or internally heated, as the heat dissipation of

kinetic energy is neglected in the internal energy equation in the incompressible
limit. For the accretion disk problem, the flow is given a gravity proportional to

the distance from midchannel and an imposed uniform internal heat source. The

code includes imposed differential rotation about the vertical axis by integrat-

ing the governing equations in a comoving frame with a (locally) linear shear

profile using Rogallo's (1981) transformation to remesh the distorted numerical

grid. The boundary conditions imposed on the walls are that the vertical ve-

locity component (v) vanishes, that the potential temperature (8) is fixed, and

that the horizontal velocity components (u, w), or their normal derivatives, van-

ish (no-slip or no-stress conditions, respectively). No-stress wall conditions are
used almost exclusively for the accretion disk problem, as they produce weaker

viscous boundary layers. (A few simulations performed with internal heating

featuring an interior source and exterior sinks are observed to further reduce the

viscous boundary layers.)

3. Current progress

$.1. Unsheared thermal convection

Direct numerical simulations of non-rotating thermal convection have been

performed for external and internal heat sources, uniform gravity, and no-slip

walls and compared favorably to prior laboratory and numerical simulation data.

Sequences of simulations for different rates of uniform rotation were performed

for internal heating, linearly varying gravity, and both no-slip and no-stress

walls; the results of these simulations are described in Cabot et al. (1990).
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The rotational (and viscous) stabilization of the thermal convection is found to

agree well with linear stability analysis. Turbulence is transported efficiently

through the midchannel region where gravity vanishes, leading us to model the

convective heat flux by modifying mixing length models for B_nard convection
with a reduced effective Rayleigh number to account for the variable gravity

and with rotational stabilization based on linear analysis. The models give the

correct qualitative effects of rotation, but with poorer quantitative agreement

with heat fluxes and turbulence intensities, missing by as much as factors of 2.

I have begun to apply some second-order closure models (e.g., k-_ and Rey-

nolds stress models) to the case of thermal convection with no rotation, uniform

gravity, uniform internal heating, and no-slip walls, which is convectively un-

stable on one side and stable on the other and features an entrainment region

much like planetary boundary layers (PBLs). I have therefore focused on clo-

sure models successfully applied to PBLs, e.g., Zeman & Lumley (ZL, 1976),

although there are some difficulties with all such models. In contrast to the

channel simulation, PBLs have an impermeable, no-slip lower surface with fixed

heat fluxes and a moving, no-stress upper surface; they also feature very high

Reynolds numbers. This channel simulation therefore resembles a viscous PBL

with a lid on top. Aside from requiring low Reynolds number corrections, this

poses a problem in applying boundary conditions using the ZL model. As match-

ing conditions in the near-wall vicinity to the inviscid interior, ZL use similarity

solutions based on the distance from the fixed wall and the positive buoyancy

production term; but this approach breaks down near a fixed wall with negative

buoyancy production, as occurs in the channel. I am currently exploring other

ways to specify matching conditions. A related problem with some second-order

closures (generally attributed to deficiencies in modelling the pressure terms) is

their inability to predict realistic near-wail horizontal velocity intensities that

peak due to deflection by an impermeable wall ("the splatting effect").

3._. Differentiall_l rotating thermal convection

Sequences of simulations with differential rotation, internal heating, linearly

varying gravity, and no-stress walls have been performed most recently with

(1) fixed epicyclic frequency _: = [2f_(2a + (measuring the mean angular

momentum gradient) while varying the ratio of shear rate S to rotation rate ft,

and (2) a fixed Keplerian ratio of .q to ft (-3/2) while varying _. The orientation

of the rotation, shear, and gravity are depicted in Figure 1. The latter sequences

for Keplerian rotation are being performed at three different Reynolds/Prandtl
numbers with fixed P$clSt number to determine the effects of different viscosities

for the same heating. Statistical samples are extracted when the numerical grid

is orthogonal, which occurs once per b33/S, where b33 >_ 1 is the ratio of the

streamwise to spanwise box size. This limits us to perform simulations with

moderate to rapid shear rates in terms of convective scale times.
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FIGURE 1. Orientation of rotation ft, (positive) linear shear S, and gravity g

with respect to numerical simulation coordinates.

3._.1. Fized to, Re; varying S/f_

Simulations with scale Reynolds number Re = 559, scale P_cl_t number Pe =

112, and scale epicyclic frequency _ = 0.14 (i.e., with fixed convective and

centrifugal stabilization properties) were performed for 8 = S/2_ = 0, -0.25,

-0.50, -0.75, and -0.90 (s = -1 being the critical value for marginal centrifugal

stability). The roughly uniform vertical profile of the Reynolds stress -_--_ for

this value of _ is found to increase nearly homologously with shear, and its

correlation u'--_/u_,,_,wr,,_° increases from 0 to about 0.28 for s = 0 --, -1; _-C

varies roughly as Isll/2 in this range (S = _s/[1 + 811/_). The cause of this

apparent scaling is not yet known. Despite different degrees of elongation of

convective cells in the streamwise direction and other anisotropy characteristics

of u and w, statistical convection properties, such as the vertical convective heat

flux, the buoyancy production rate, the convection correlation Ov/O,,_°v_,n°, and

the vertical velocity variance, are only slightly affected by the presence of the

shear; the turbulence time scale r = q2/e _ 10 (where q2 is twice the turbulent

kinetic energy) also varies little. However, the shear-to-turbulence ratio ]S[r is

only about 0.5 to 4 in these simulations, and most of the variation is seen at

the high end of this range. It may therefore be instructive to do another fixed-to

sequence with higher shear rates. A characteristic of more rapid rotation and

shear rates is that _ becomes negative in regions near midchannel and at the

walls, and a fixed-to sequence in this regime would especially test the homology
of the Reynolds stress profile for different values of 8.
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$._._. Fized (Keplerian) S/fl; varying _,Re

Three sequences of Keplerian rotation simulations with Re = 559, 1000, and

1789 were performed for _; = 0.14, 0.25, 0.45, 0.61, and 0.80. The scale P_cl_t

number Pe = 112 for all simulations. It was necessary to increase the mesh size

from 64 × 33 × 64 for Re = 559 (where 33 is the vertical) to 96 × 49 × 96 for

Re = 1000 and 128 × 65 × 128 for Re = 1789. (Some runs are still in progress,

and some results are presented for more coarsely meshed grids than indicated

above and/or with minimal statistics.)

There are two distinct trends that are evident from these simulations. The

first is tendency for the Reynolds stress -h'-_ to change sign near the wall and

midplane regions for rapid rotation, where there is significant rotational stabi-

lization of the convective flow, such that the net shear production of turbulent

kinetic energy becomes negative. This is seen in Figure 2, which depicts the

ratio of net shear to net buoyancy production in the channel and the average

Reynolds stress correlation versus epicyclic frequency. The epicyclic frequency

too where the Reynolds stress changes sign is seen to be a sensitive function

of Re. The rough progression of I¢o _ 0.4, 0.6, 0.7 for Re = 559, 1000, 1789

may suggest asymptotic dependences for _¢o like a exp(-fl/Re) with a _ 1 and

fl _ 500 or a/[1 + (b/Re) 2] with a _ 0.75 and b _ 500, which imply that there

is always negative net shear production for t¢ > 1 at this value of Pc. However,

higher-Re data is needed to confirm the accuracy of this estimate, and runs with

different Pe are needed to determine its dependence on convective efficiency.

The second major trend seen in these sequences of simulations is the tendency

of the channel flow to become two-dimensional (but still three-component) for

> tq, where _1 < 0.8 regardless of the value of Re. In such simulations the

streamwise autocorrelation functions for v and 0 (and u and w at some depths

in the channel) remain constant and large (typically > 0.6) at large separations;

namely, most of the power in these variables is found at (or very near) k_ = 0.

Increasing the box size in the streamwise direction has no ameliorating effect on

the autocorrelation functions. As a result, the spectral code is unable to resolve

the streamwise direction, making any statistics therefrom untrustworthy. The

energy spectra in the spanwise direction tend to have a lot of power concentrated

at a particular (finite) value of kz. The onset of this regime is perhaps governed

by a critical Richardson number of some sort composed of the shear rate and

a convective time scale (perhaps depending on Pe). The shear causes the flow

to become two-dimensional in the linear analysis, and it is only the effect of

buoyancy production of turbulence that counters that trend. The shear-to-

turbulence ratio ISl appears to be between about 7 and 9 (depending on Re)

at the onset of two-dimensionality.

Note from Figure 2b that the maximal Reynolds stress correlations appear

to be not much greater than 0.2 (and probabIy less than 0.25) for all cases,

although the maxima are not that well defined by the simulation data. Vertical
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FIGURE 2. (a) The ratio of volume-averaged shear production rate P, to

buoyancy production rate Pb and (b) the volume-averaged Reynolds stress cor-

relations at different epicyclic frequencies _ for Keplerian rotation (shear rate

S =

profiles of the Reynolds stress correlation are shown in Figure 3a for Re = 559

at different t¢, in which the progression of positive to negative values at the walls

and mldchannel is seen. Note the region of positive values around y = +0.6,

which persists for all shear rates; this is probably not directly related to the

buoyancy production peaks at about y = +0.7, but is rather a reaction to

impermeable walls, like "splatting', regulated by pressure effects. The regions

of positive _ move to y = 4-0.7 for Re = 1789, and the wall regions of negative

u-"_ have thicknesses that scale roughly as Re -1/2 and are comparable to the
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FIGURE 3. Vertical profiles of (a) Reynolds stress and (b) convective flux

correlations for Keplerian rotation and Re = 55g.

viscous length (vq2/_) 1/_ = (tiRe) ]/2. We also note again that properties of

vertical heat convection are not greatly altered by the Keplerian shear. For

example, Figure 3b shows the vertical profiles of the convection correlations for

the same cases as Figure 3a.

Statistics for terms in the governing equations of uu, vv, ww, and uw are

being accumulated, which include pressure-strain rates. The normal pressure-

strain components tend to become concentrated near the walls for larger rota-

tion/shear rates. The pressure-strain component for uw remains more evenly

distributed and largely balances the production term in the interior; about a

viscous length from the walls the production features positive peaks that are
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not balanced by pressure-strain (hut rather by diffusion), and this appears to be

directly related to the positive-_-_ regions seen in Figure 3a. I have yet to explain

adequately what controls the appearance of the negative-_-_ regions, especially

in the interior where we expect (hope) that wall effects are minimal. It is clear,

though, that near-wall models will be crucial for an accurate overall represen-

tation of such flows. The dissipation rates for the normal velocity components

follow the trends of the normal velocities; this is also true for _ at lowest Re,

with _ and its dissipation becoming negative at the walls, but at the higher

Re the dissipation rate stays positive definite, even though _'_ goes negative,

and is distributed like dissipation rates for _ and _'-_. This has implications

for modelling, for it shows how the low-Re component of dissipation behaves

differently than the high-Re asymptote.

4. Discussion

From the preceding work, we are able to make a few tentative conclusions

about the nature of thermal convection in a differentially rotating, centrifugally

balanced disk, although there are several deficiencies in the incompressible sim-

ulations when it comes to describing the actual physics in protostellar accretion

disks. The incompressible calculations have, however, provided a number of

insights into the course that future endeavor should take.

_.I. Present conclusionJ

Most of the properties of vertical heat transport by convection are not drasti-

cally affected by the rotational shear (at least in the regime of three-dimensional

turbulence), which means that results from simulations with uniform rotation

can be used more widely for differential rotation cases with the same epicyclic

frequency _. Since s __ 1 in protostellar disks, we conclude that convective e_-

ciencies are much less (by over an order of magnitude) than for no rotation, as

was assumed in the mixing length models by Lin & Papaloizou (1980).

Turbulent shear stresses that can, in principle, transport angular momentum

are produced by thermal convection in the presence of differential rotation, but

they are found to be very sensitive to the rotation and shear rates, as well as

the viscosity. There is a possibility that the flow may develop negative shear

production of turbulent kinetic energy, which is a pathological (i.e. unsustain-

able) situation in accretion disks, as well as becoming nearly two-dimensional.

Some of this behavior is undoubtedly due to weakening of the thermal convec-

tion by rotational stabilization, but there are also clearly strong viscous/waN

effects that need to be disentangled. Nevertheless, the present simulations sug-

gest that the conversion of thermal convection to Reynolds stress is less efficient

than commonly assumed in protostellar disk models with a maximal Reynolds
stress correlation for thermal convection of about 0.25 and a maximal value of

_-_/q2 of about 0.06, which is an order of magnitude less than in the standard

solar nebula model of Lin 8_ Papaloizou.
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g._. Deficiencies in the numerical simulations

_._.I. Incompressible flows

Codes that simulate incompressible flows, including those in the Boussinesq

approximation, cannot take into account the large density variations and acous-
tic waves that occur in nature. In accretion disks the regions of interest cover

several density scaleheights, and some disturbances are likely to develop strong

acoustic components, if not weak shocks. Another property of density stratifi-

cation is the occurrence of convectively stable exterior regions where radiation-

dominated emissivities grow as p-2 and cause the temperature gradient to de-

cline to subadiabatic levels; this stable buffer zone in principle can damp exterior

disturbances and make them less susceptible to less-than-physical (i.e. numeri-

cally convenient) boundary conditions. This would mitigate the direct effects of

impermeable walls on the turbulence properties, which has already been seen to

be a problem in the incompressible simulations.

_._._. Low Reynolds numbers

Accretion disks feature very large Reynolds numbers (but moderate P_cl+t

numbers), and this means that direct numerical simulations are susceptible to
unrealistic viscous effects. Low Reynolds numbers also stabilize convection in

the direct numerical simulations at lower rotation rates than are expected in

accretion disks. It is therefore desirable to attain higher Reynolds numbers

(preferably in conjunction with more realistic boundaries) in order to minimize

viscous effects, as well as to provide more stringent tests on asymptotic relations,

such as for the Reynolds stress production in §3.2. In order to accomplish this

goal, modelling of the subgrid scales is required.

g._.$. Self-consistent energy balance in protostellar disks

An important question for convective accretion disks is whether or not they

can quasistatically sustain thermal convection by tapping the grv,vitational en-

ergy released from torqued disk material, and what internal heating distribution

arises. In the incompressible governing equations, terms in the internal energy

equation involving the adiabatic temperature gradient, the pressure work, and

the heat dissipation of kinetic energy are formally neglected. Internal heating

is imposed on the flow. This makes it impossible to determine consistently the

energy balance in the disk.
For simulations of thermal convection in a compressible channel flow (e.g., see

Thompson, 1989), where all of the previously neglected internal energy terms are
included, there is still a problem in making a realistic, self-sustaining balance.

The heating distribution in the channel with no imposed heat source will equal

the heat dissipation of turbulent kinetic energy less the pressure work, with

net heating equal to the net shear production, since the pressure-work precisely

balances the buoyancy production of turbulent kinetic energy. The energy source
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(sink) for a positive (negative) net shear production is supplied in the channel

by the work done to maintain the imposed rotational shear rate. It is not

clear what vertical profile of heating would result, nor even if a self-sustaining

state exists. The problem is that one cannot relate this heating to the release

of gravitational energy, which depends on the radial (spanwise) gradient of the

stress, when the spanwise direction is assumed to be homogeneous in the channel

flow. In a real accretion disk, the local heating is supplied by a combination of

comparable amounts of gravitational energy and annular stresses that maintain

the Keplerian rotation. To do this problem consistently, we clearly need to

abandon homogeneity in the spanwise direction.

4.3. Future directions

4.3.1. ModelIin9

I am pursuing second-order (Reynolds-stress) modelling of the incompressible

simulation results, starting at the simple case of uniform gravity and uniform

heating in the channel (with the attempted development of better wall matching

conditions and near-wall models). Next I plan to move to cases with vertically

varying gravity, initially testing the simple replacement of derivatives of the

convective flux with derivatives of the buoyancy production rate containing the

variable buoyancy term. If these prove successful, then modelling of cases with

uniform rotation and differential rotation can proceed. Such tests should be

useful for testing the limits of current models and, if reasonably successful, could

be used to approximate some properties of accretion disks. Since simplified forms

of second-order closure models are commonly used as subgrid-scale models, these

tests could conceivably help to verify or improve them.

In principle, density stratification in the Boussinesq approximation can be

included in a straightforward way in the modelling, but general compressible

effects will require careful consideration of dilitation and shock effects, llke the

model proposed by Zeman in this volume.

It must also be determined if two-dimensional flows occurring at rapid shear

rates can be made tractable to (perhaps simpler) modelling or different numerical

simulation techniques.

4.3._. Direct numerical simulations

Although useful direct numerical simulations of the incompressible flow for ap-

plication to protostellar disks have been nearly exhausted, there are a few trial

runs that could prove interesting. First, a few simulations with uniform rotation

have been done with a centrally peaked heat source and large heat sinks near the

walls (approximating the effects of a large adiabatic gradient), which provides a

convectively stable exterior and greatly weakened viscous wall layers. It would

be interesting to repeat some of these simulations with differential rotation and

compare the production of turbulent shear stress to simulations with uniform

heating in order to gauge the qualitative effects of the walls. Second, to test
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for self-sustaining states, simulations could be attempted for developed, inter-

nally heated convection in which the imposed internal heat source is replaced

with some function whose net heating is comparable to it, but which is directly

proportional to the shear production rate. The same test with a compressible

channel code can be made more easily, since the frictional heating due to turbu-

lence is already consistently included, and once the imposed internal heat source

is turned off the convection can conceivably feed off of the work done to impose
the constant shear.

Once the compressible channel code being developed by Thompson (1989) is

in production, we will be able to repeat similar sequences in parameter space

that have been done with the incompressible code, and we will be able to assess

realistic density stratification and compressibility effects in protostellar disks.

As noted above, though, the exact energy balance in a real protostellar disk

requires relaxation of spanwise homogeneity, and the concomitant use of periodic

boundary conditions, in order to generate torques. A scheme needs to be devised

to specify spanwise (radial) gradients in a consistent way. It may also not be

much more trouble to include previously neglected curvature terms.

Finally, a wider range simulations with density stratification and/or compress-

ibility, not confined to such a narrow application as discussed here, would prove

useful fodder for, e.g., second-order closure models. We would have more confi-

dence in applying or extending those models that have proven themselves under

a wide range of circumstances.

g.$.$. Large-eddy simulations

In order to obtain more realistically high Reynolds numbers and to make de-

termine better high-Re asymptotic behavior, we must inevitably perform large-
eddy simulations in which the smallest scales are modelled rather than resolved.

For buoyancy-driven (incompressible) flows, commonly used subgrid-scale (SGS)

models are ones based on second-order closure models (e.g., Schmidt & Schu-

mann, 1989) and on buoyancy-modified Smagorinsky models (e.g., Mason, 1989).

It would be of interest to incorporate these into numerical simulations for Boussi-

nesq convection in order to gain expertise with SGS modelling and to extend

our results to higher Reynolds numbers. Because we are interested in very

low Prandtl number flows, thermal fluctuations become unimportant at much

lower wavenumbers than velocity fluctuations, which could either cause reso-

lution problems due to the scale dichotomy or simplify matters by allowing

resolution of all relevant thermal scales and modelling of smaller velocity scales.

An important consideration is testing the ability of SGS models to provide

accurate results at moderate to high Reynolds numbers. Unfortunately, there

are no astrophysical flows that can be resolved well enough to provide accurate

data for such testing. (This is why we're using numerical simulations in the first

place!) For buoyancy-driven flows, planetary boundary layers have received a
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lot of attention, and data exists for internally heated fluids in a uniform grav-

ity. Laboratory experiments with rotating B6nard convection have also been

performed. Other terrestrial or laboratory flow fields with rotation and shear
effects need to be found or devised to test SGS models.

The development and testing of compressible SGS models is crucial to simu-

lating accretion disks and other astrophysical systems in which acoustic waves

are believed to transport energy to rarefied regions and deposit heat through

shocks. Shocks in low-viscosity media by nature are narrow and difficult to re-

solve numerically. Again finding pertinent, terrestrially realizable test-cases will
be the rub.

_.3._. Magnetohydrodynamics

Finally, magnetic fields are known to be important in stars, energetic accretion

disks, and in the collapse of molecular clouds to protostars. The importance of

magnetic fields in protostellar disks is still problematic. Simulating the interac-

tion of magnetic fields with convected and/or sheared turbulent flow in different

systems is thus of fundamental interest, but something that has been largely

neglected heretofore.
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Patterns in simulated turbulent channel flow

By D. Stretch

1. Motivation and objectives

The arrival of direct numerical simulations as a practical research tool for

studying the fundamental physics of turbulent flow has provided data of un-

precedented detail. The volume of data available, however, presents its own

difficulties and has generated a need for new methods of interrogating the avail-

able data and extracting information of physical importance.

The detailed nature of databases from numerical simulations makes them ide-

ally suited to studying the spatial structure or topology of the flow kinemat-

ics. The identification of organized motions or coherent structures in turbulent

flows is a controversial area of research. The key difficulty is the specification

of appropriate criteria for the identification of these structures. In particular,

the subjectivity often associated with such choices is a major drawback. One

consequence of this is that different researchers, using different criteria, have

"discovered" a variety of structures, and it remains unclear how they are related

to one another. For example, flow visualization experiments have shown that

elongated low and high speed streaks are characteristic of the flow near the wall

(e.g. Kline et al, 1967), while inclined horseshoe or hairpin shaped vortices have

apparently been observed in the outer flow (e.g Head & Bandyopadhyay, 1981).

Similar vortices have also been observed in the near wall region (e.g. Britter _:

Stretch, 1985; Robinson et al, 1989). Conditional sampling analyses have shown

that protruding shear layers are common features of the near wall flow, and are

associated with a large contribution to turbulence production (Johansson et al,

1987). Analysis of the flow kinematics using the method of proper orthogonal

decomposition, which employs a global optimization criterion, has also been car-

ried out to yield quasi-streamwise vortices in the near wall region, with attached

double-roller eddies spanning the flow (Moin & Moser, 1989).

The surface stress is a key diagnostic in wall-bounded turbulent flows. Large

fluctuations in the stress are believed to be associated with intermittent "burst-

ing" events during which a large proportion of the turbulence production takes

place. If this is so, then a detailed investigation of the structure of the surface

stress and its spatial relationship to events within the flow could have wide ap-

plication in drag reduction and other aspects of flow control. The initial phase

of this research project, therefore, concentrated on the surface stress field.

The main objectives of the research project may be summarized as follows.

(a) Carry out a statistical analysis of the instantaneous surface stress in a sim-

ulated turbulent channel flow, including comparison with multi-point experi-

mental data from a zero pressure gradient turbulent boundary layer (Britter

PRECEOING PAGE BLANK NOT FILMED



262 D. Stretch

and Stretch, 1985).

(b) Apply a simple pattern-recognition procedure to educe the characteristic spa-
tial structure of various flow diagnostics. Initially attention was focused on the

instantaneous streamwise component of the surface stress. The objective was

to investigate the relationship between characteristics features of the surface

stress and dynamically significant events occurring within the flow.

(c) As initially implemented the pattern analysis was restricted to investigating
the structure of a scalar diagnostic (such as the streamwise surface stress

fluctuations) in two spatial dimensions. A final objective of this program was

to extend the pattern recognition analysis to examine the whole 3-D structure

of the flow. One of the main questions we wished to address was "What are

the spatial relationships among the many different kinematic structures that

have been proposed by previous investigators.'?".

2. Outline of the pattern recognition methodology

The pattern recognition method used for the present study is based on work
by Townsend (1979), Savill (1979) and (particularly) Mumford (1982,1983). Re-

cent applications of this pattern analysis method have been reported by Ferre

and Giralt (1989a,b). These studies were all concerned with the analysis of

multipoint experimental measurements in turbulent wakes and boundary layers,
and were confined to locating flow patterns in a 2-dimensional plane of data.

The present study seems to be the first application of this type of approach to

data from numerically simulated turbulent flow. This has allowed the full 3-D

structure of the flow to be studied using an extension of the method employed

by the above-mentioned authors. The low Reynolds number simulation of tur-

bulent channel flow by Kim, Moin and Moser (1987) was the primary source of

data for the present study (Reo = 287).

In general terms the objective of the pattern recognition analysis is to educe

a statistically significant spatial organization of a given flow diagnostic. For

example, suppose the flow diagnostic is smoke or dye concentrations resulting

from injection into the sublayer of a turbulent boundary layer. If an ensemble

of photographs showing the structure of the smoke (dye) concentration field

just downstream of the injection position is examined, it is clear that a streaky

pattern would be recognized as the most probable spatial organization of that

flow diagnostic. Note that in order to recognize this, a translational invariant

pattern recognition method is required, since the streaks may be at different

spanwise locations at the instant of each photograph.

Details of the pattern recognition strategy may be outlined as follows. Con-

sider a field of data D(x), which for present purposes is assumed to be a scalar

function of a position vector x E R 3.

D(x)={d(i,j,k), O < i < nl, O < j < n2, O < k < n3}



Patterns in simulated turbulent channel flow 263

In the present context D is some chosen diagnostic of the turbulent field. Note

that the pattern analysis procedure can easily be generalized to include time

evolution and vector functioned diagnostics. We now define a pattern field P(_),

a scalar function of the position vector _ _ R 3.

P(1) = j, k), o < i < ,7,,, o < j <_r 2, 0 < k < m3}

where rn I, m2, ra3 _< nl, nz, rt3.

The first step in the pattern analysis is to initialize the pattern field P(_) =

P0 (_). Next a convolution is performed between the pattern and the data fields.

C(x): P(1),D(.)

Patterns which have a shape similar to the input pattern P are then located

in the data field D by searching for all the local maxima in the convolution

function C. Note that there is no threshold criterion used in the pattern selection

(although it is, of course, simple to include one if desired). Once the patterns

have been located in the data they are extracted and ensemble averaged to

yield an updated estimate of P, and the process is repeated. The iterative

procedure results in a pattern P which on average has the best correlation with

the instantaneous patterns located in the data field D.

Note that the pattern recognition method does not employ an absolute crite-

rion for locating patterns. The pattern selection depends on a relative criterion,

namely that locally the flow kinematics are more similar to the reference pat-

tern P than elsewhere in that neighbourhood, where the measure of similarity

is the magnitude of the convolution (or cross-correlation) between the reference

pattern and the data. The use of convolution for pattern recognition is a well

established and tested method (see e.g. Duda and Hart, 1973)

The pattern analysis procedure outlined above has translational invariance but

not scale or rotational invariance; it is assumed that the patterns can occur at

any position x in the data, but the orientation and size of the patterns is always

assumed to be the same. It is possible to include scale and rotational invariance

in pattern recognition schemes such as this one, but it involves considerable

complication of the analysis, and thus has not been implemented to date.

It shall be shown later (by examples) that the results of the pattern search

do not appear to be sensitive to the choice of initial pattern P0. In the present

investigation P0 was usually specified so that the first iteration simply performed

a spatial averaging operation in one plane of the 3-D data field.

The results of the pattern analysis may be assessed in a variety of objective

tests. For example, the statistical significance of the ensemble averaged patterns

P may be tested using standard methods from sampling theory. The proportion

of the data volume occupied by the patterns and the similarity between the

ensemble averaged pattern P and the instantaneous flow field is information

available directly from the pattern recognition algorithm.
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FIGURE 1. Probability density and distribution functions for the streamwise

surface stress fluctuations : (a) experimental data 915 < Reo < 2140, (b) sim-

ulation data Reo = 287. The stress fluctuations are normalized by their rms
values.
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fluctuations from experiments and simulations.

3. Summary of results

$.1 One-point statistics

The basic 1-point statistics for the streamwise surface stress fluctuations from

both the simulations and experiments are shown in figures 1 and 2. The proba-

bility density functions of the stress fluctuations are positively skewed and have

a kurtosis somewhat higher than a Gaussian distribution. Values for the skew-

ness and kurtosis coefficients S = _-f/_.,3, F 1"4--/_"'4 from the experimental

measurements are in the range 1.0 < S < 1.6 and 4.0 < F _< 6.0, which may be

compared with the Gaussian values S = 0 and F = 3. The experimental data

show a slight increase with Reynolds number. The simulation results of S : 0.88,

F = 3.9 at a low Reynolds number Reo _- 287 are consistent with this trend.

Preliminary simulation results at Reo "" 660 (also shown in fig 1) are S : 1.06

and F = 5.04, which is also consistent with the experiments. The skewness in

the surface stress is apparently caused by the way the low and high stress regions
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are generated. High surface stresses are associated with the "sweep" (or fourth

quadrant, Q4) event during which high-speed fluid moves toward the wall. Low

stresses are associated with the "burst" (or second quadrant, Q2) event during

which low speed fluid moves away from the wall. The low speed fluid involved
in the burst must be drawn from regions near the wall and at the sides of the

event, a motion which is apposed by the strong viscous stresses in the sub-layer.

The ratio of the root mean square streamwise stress fluctuations to the mean

wall stress was experimentally determined to be "r'/_ = 0.4 + 0.1, increasing

slightly with Reynolds number. The simulation results are 0.36 and 0.39 at

Res = 287, 660 respectively, again in reasonable agreement with the experiments.

From the probability density function, it can be seen that the instantaneous
streamwise surface stress is less than the mean value for 55 - 60% of the time

(increasing with Reynolds number). The most probable value is approximately
0.5r' below the mean. The pdf drops off sharply at 2.0r' below the mean. Note

that since r'/_ __ 0.4, stress fluctuations exceeding 2.5r' below the mean would

imply reversed flow adjacent to the wall. From the pdf's it appears that the

instantaneous (near) surface streamlines are topologically free of critical points,

or at least that their occurrence is extremely rare.

3._ Two-point statistics

Two-point correlation functions for streamwise and transverse separations are

shown in figure 3. The experimental data and simulation results are shown with

separations scaled on wall variables v and u,. A streamwise advection velocity
of 10u, for the stress fluctuations was measured experimentally using two-point

measurements with streamwise separations. This value is consistent with those

obtained from previous analyses of the simulation data bases (Alfredsson et al

(1988), Johansson et al (1987), Guezennec et al (1987), aussain et al (1987),

Swearingen et al 1987). If this advection velocity is used to convert the time

series experimental measurements to a spatial analog there is surprisingly good

agreement with the simulation results. Conclusions regarding the scaling of the

two-point correlations on wall variables should, however, be made with care,

since the range of Reynolds number covered by the data is limited.

The two-point correlations for spanwise separations do not scale as well as

those for streamwise separations; there is a decrease in the magnitude of the

negative loop for Az + >_ 40 with increasing Reynolds number. This trend has

been tentatively confirmed by the preliminary channel simulations at Reo _- 660

and by the boundary layer simulations of Spalart (1988). The reason for this

effect is not clear, but it probably reflects the broader range of scales in the

higher Reynolds number cases.

3.3 Results of _-D pattern analyses

The application of the pattern analysis to the simulation data was begun

using 2-D data comprising the streamwise component of the fluctuating surface



Patterns in simulated turbulent channel flow 267

N

{E
rY
0
C3

IY
r_
CD

0_00_0

_|11111

|11111

-o

o

(3

_o

0_

x
w

n_

C)
0

./

0'I O'O 9"0 T,'O _'0

J,aO0

x

(E
O_
o
0

0_00_0

0 ....

_llllll

Illlll

_x
(Ix(x

oo Q.

0 0

O'l O'O 9"0 _'0 _'0 O'O _'0- 0'1 O'O 9"0 I,'0 _'0

JJO0 JJOO

o

+
x
"o

o

0"0

0 c_

+
_J

"13

o

@

(3

0

__ O

0"0

FIGURE 3. Two point correlation functions of the streamwise surface stress

fluctuations : (a) experiments, (b) simulations.



268 D. Stretch

C3

Z

(_
i i El,

/
o| ........................... o., ........... .....

• "........................ 0.4:::::::::::::::: ...... _'_:" :/_ 0 2 _'' " .......................

I i t I ! t

0.0 50.0 100.0 150.0 200.0 250.0 X' 300.0

Co)

o

_]: ::::::::::::!::::::iii!.i_i!i!:!_i_!!E!!F!!!!_;O_.6 ,:.:..:.:T:.:!..:.:..v.vv.v....... :::::::::..u:._................ _:

. ,, 0 OK'" :,!i_iii:.:_i__!iii_:::::::::-
t-'__ ,_,"7- v'-- _=_ ,7 ,,
o.o so.o ioo.o tso.o 200.0 250.o x 300.0
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stress at the wall. Several data fields consisting of 128 x 128 values of the stress,

spaced as Az + = 18.0, Az + = 6.0, were used for the analyses. The results

were compared with those from similar analyses of multi-point experimental
measurements.

Using a simple spatial filter as the initial pattern for the iterative pattern

analysis, the structure of locally high and low stress regions were investigated.

For example, initial patterns defined by

4-1, if7<i< 11, j=l, 3< k<9;po(i,j, k) = 0, otherwise.

where the pattern size was m] = 17, m2 = 1, ms = 11, were used to obtain the

results shown in figure 4. Five iterations were performed to obtain this result,

although there was little variation after the second iteration.

The high- and low-stress patches have some distinct characteristics. High

stress regions have a larger amplitude and are somewhat more localized in space

than the low stress regions. Non-dimensionalized with the inner variables r, and

u,, the amplitudes and scales of these stress patterns have been found to be

broadly consistent with those educed from experimental data.
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3.4 Results o1 3-D pattern analyses

The data used for the 3-D pattern analysis comprised fields of 128 × 128 × 16

values in the z, z, and y directions respectively, spaced as Az + = 18.0, /kz + =

6.0 and/ky + ___10.0 + 0.1.

Pattern analyses for a range of different flow diagnostics and initial patterns P0

have been performed. The examples described below illustrate some of the main

results. Note that all references to lengths or positions are non-dimensionalized

using the length scale u/u,. Velocities are non-dimensionalized with u,, and

vorticity by the scale u,/6, where _ is the channel half-width (dividing by 180

gives values of the vorticity scaled by u,2/v). Furthermore, co-ordinates z, y

and z refer to the data space D, while 4, _ and _ refer to the pattern space P.

Ezample 1 : Diagnostic = streamwise velocity fluctuations.

In this example, a simple initial pattern /90, which was designed to select

near-wall shear layers in the first iteration, was used. That is

po(i,j,k) = {

+1, if 10<i<15, j=2, 3<k< 13;

-1, if 17<i<22, j=2, 3< k<13;

0, otherwise.

where the pattern size was rnl = 31, rn2 = 15, ms : 15. Note that the indices i,

j, and k refer here to the streamwise ($), normal (_), and spanwise (_) directions

respectively. Only horizontal translations were allowed in this pattern search.

The results of the pattern eduction are shown in figure 5. After 4 iterations,

the educed pattern is seen to comprise asymmetric high and low speed regions

in the zz plane at 9 + = 10. Note the occurrence of smaller scale high and

low peaks within the elongated "streaks". These high/low pairs seem to occur

alongsid_e one another separated by A_+ _ 50. An zy cross-section through the

pattern at _+ = 42 is also shown in figure 5. An elevated shear layer typical of

those obtained by conditional sampling methods can be seen.

Ensemble averages of flow diagnostics other than the streamwise velocity fluc-

tuations were examined in the regions centered around the Iocated patterns. The

streamwise vorticity is shown in the yz plane at 4 + = 270 (figure 5c), and in the

zy plane at _+ = 42 (figure 5d). It can be seen that a single dominant positive

streamwise vortex is associated with the near-wall high/low peaks in the u field.

In this example, 57 patterns were identified in a single data field D. The

average value of the normalized cross-correlation coemcient between the final

ensemble averaged pattern and the 57 instantaneous patterns was 0.36. The data

used to obtain the ensemble average comprised 82% of the whole 128 × 128 × 16

data field. These figures are typical of all the cases described here.
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Ezample _ : Diagnostic = streamwise vorticity (near wal O.

In this example the initial pattern field P0 was chosen to perform a simple

spatial averaging in the yz plane. That is

+1,po(i,j,k) = O,

ifi= 8, 2<j<4, 2<k<8;

otherwise.

where the pattern size was ml = 15, m2 = 5, m3 = 9. Vertical translations

were allowed in the pattern search, but were constrained so that the center of

the pattern was in the region 20 < y+ < 60. The objective was to locate and

examine quasi-streamwise vortices in the near-wall region of the flow.

Results of the pattern eduction are shown in figure 6. The pattern comprises

a vortex inclined at a small angle to the horizontal axis, roughly 15 degrees.

There is only weak evidence of spanwise pairing of opposite signed vortices.

However, there is strong negative vorticity underneath and downstream of the

primary positive vortex. Near the wall this arises to satisfy the no-slip boundary

condition. Note, however, that the region of negative vorticity is also inclined

to the wall and appears to separate from the wall sufficiently far downstream.

This is further illustrated in example 3 below.

The ensemble averaged streamwise and vertical velocity fluctuations associ-

ated with the patterns are also shown in figures 6c and 6d. The streamwise

velocity field has the same features as were found in example 1. The vertical

velocity field shows the expected upwelling over the low speed "streak" and flow

towards the wall over the high speed region.

Ezample 3 : Diagnostic = strearnwise vorticity (outer flow).

In this example, the initial pattern field P0 was identical to the previous

example, except that vertical translations in the pattern search were constrained

to the region 80 < y+ < 130 in order to examine the structure of the streamwise

vorticity in the outer part of the flow.

Results of the pattern eduction are shown in figure 7. As in example 2, the

pattern comprises inclined vortices. The scale of the vortices seems to have

increased, as has the inclination angle. Once again we note how the primary

pairing of opposite sign vortices is in the vertical and streamwise directions, but

not in the spanwise direction.

Ezample 4 : Diagnostic = spanwise velocity fluctuations.

A simple attached eddy of the type proposed by Townsend (1976) may be

expected to give rise to transverse velocity fluctuations of the same sign in elon-

gated regions extending from the wall to the outer flow. Preliminary study of the

instantaneous velocity fields from the simulations suggested that such features

were indeed present. This motivated a pattern analysis using the w velocity field

as the flow diagnostic. The initial pattern was designed to select (after spatial
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smoothing) regions of locally high transverse velocity in the outer part of the

flow (V+ _ 100). That is

+1,po(i,j,k)= 0,
if3<i< 7, 10<j<12, 5<k< 11;
otherwise.

where the pattern size was rnl = 9, rn2 = 15, rrt3 = 15. Only horizontal

translations were allowed in the pattern search.

A result from this pattern analysis is shown in figure 8a. The educed pat-

tern for the w field comprises elongated positive and negative (paired) regions

extending from the wall to the outer part of the flow (the channel half width

is at y+ = 180). Examination of other flow diagnostics has shown how these

paired w fluctuations are linked to the shear layers near the wall. In figure 8b,

data of the instantaneous w field in an zy plane is shown as an example of an

occurrence of the educed w pattern.

Summary

The main contribution of the pattern analysis has been to clarify the spa-

tial relationships among various flow structures. In particular, we have used

the method to investigate the relationships among between near-wall high/low

speed streaks, near-wall shear layers, and quasi-streamwise vortices (or vortex

pairs). These structures have been observed or educed from flow visualization

and/or conditional sampling analyses by many previous investigators, so their

presence in the patterns obtained in the present investigation is neither new nor

surprising. However, the unification of all these observations seems to be a par-

ticular achievement of the present analysis. A summary of the main conclusions

is presented schematically in figure 9.

4. Future plans

The major objectives of this research project as outlined in section 1 above

have been achieved. In particular, a pattern recognition procedure for analysing

scalar fields in two or three spatial dimensions has been successfully implemented

and used to study the structure of simulated turbulent channel flow. The full

results of this work are currently being written up for publication.

There are several ways in which the present research project may evolve, and

the following are some in progress and planned for the immediate future.

_.1 Pattern analysis

Application to additional flow diagnostics

To date the pattern analysis has been limited to the study of the stream-

wise and spanwise velocity fluctuations and the streamwise vorticity, although

the structure of other flow diagnostics at the pattern locations have also been

examined. There are obvious extensions of the work in applying the pattern
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recognition to further diagnostics of the flow directly. Examples which have

not yet been analysed are the instantaneous Reynolds stresses, vertical velocity

fluctuations, and components other than streamwise of the vorticity field. In ad-

dition, the structure of the helicity density and the local dissipation rates may

also be investigated. The pattern recognition approach is particularly useful in

cases where the spatial shapes of features and/or their spatial relationships are

required.

An analysis presently in progress is to use the product of the pressure and

the vorticity as a diagnostic intended for detecting vortices (as distinct from

simply vorticity). Vortices which display roughly circular streamlines in a plane

perpendicular to their axes characteristically have low pressure regions in their

cores (Robinson et al, 1989). Alternatively, the pattern analysis procedure may

be used to examine the spatial structure of the eddy, streaming, and convergence

zones defined by Hunt et al, 1988.
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Application to simulated boundary layer data

An interesting extension of the present research would be the application of the

pattern analysis to the simulated boundary-layer data of Spalart (1988). While it

is expected that the near-wall structure of the boundary-layer and channel flows

is at least qualitatively similar, significant differences may be present in the

outer flow structure. Application of the pattern analysis to investigating these

differences is straightforward. The boundary-layer data also covers a wider range

of Reynolds number than the currently available channel flow data, with 225 <

Reo <_ 1410. This may enable Reynolds number effects to be assessed, at least

within the limited parameter range available. Application of the pattern analysis

to the higher Reynolds number channel flow data, when they are available, is

also planned.

,t._ Dynamics of the turbulence structures

While the pattern recognition analysis has proven to be useful for extracting

information on the kinematics of the turbulence, it is limited in its ability to
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provide dynamical information. It is possible to study temporal evolution using

the pattern analysis, but the volume of aata required increases dramatically and

the details of the dynamics may in any event be unacceptably smeared by the

ensemble averaging process. Furthermore, the absence of scale and rotational

invariance in the pattern analysis scheme (as it is currently implemented) may

also be a drawback in that context. For example, it is expected that changes in

scale are an important aspect of the evolution of the vortex structures.

A more promising approach for studying the dynamics of the flow may be

the analysis of simplified initial value problems. Research based on the use of

linearized Rapid Distortion Theory to study the evolution of localized 3-D dis-

turbances in a strong shear (with and without the presence of a boundary) is

planned for continuing work. Previous work at CTR by Lee & Hunt (1988)

and Lee, Kim & Moin (1989) has shown how prolonged straining of initially

isotropic turbulence by strong shear gives rise to a "streaky" structure in the

flow (a 1-component, 3-D flow in the limit of rapid and large strains). The

scaling of the resulting structure, however, is unclear from the above-mentioned

work. There were two length scales in the problem considered: L0, the initial

characteristic length scale of the turbulence, and (v/S)2 t, a length scale based

on the viscosity v and the shear rate S. This issue may be analytically re-

solvable and efforts are underway. Furthermore, it may be worth noting that

work by Jang, Benney & Gran (1986), and developments thereof currently in

progress at CTR (by J. Kim), have suggested that a "direct resonance" mech-

anism may explain the observed scaling of the near wall streaks and the origin

of associated quasi-streamwise vortices. These "resonant" modes, which have

algebraic growth rates, also appear to be present in uniform shear flow. An

interesting question, therefore, arises concerning the effect of curvature in the

mean velocity profile on these modes. Curvature gives rise to a class of solutions

comprising propogating, wave-like disturbances in the flow, as distinct from the

purely convected disturbances in the absence of curvature.

Flow visualization experiments (Britter & Stretch, 1985) have suggested that a

wake-like "instability" or roll-up of vertical (and transverse) vorticity associated

with the low and high speed streaks may be involved in the generation of quasi-

streamwise vortices near the wall. A similar mechanism has been proposed and

studied by Swearingen and Blackwelder (1987). An investigation of this proposal

using linearized initial value problems is planned.

_.3 Channel flow manipulation using buoyanc!l effects

Previous experiments by the author (Stretch, 1985 ; Britter & Stretch, 1985)
have suggested that a weak stable stratification can have a profound effect on

the structure of turbulent boundary layers. In particular, rapid and dramatic

decreases in turbulence mass and momentum transport can occur with increasing

stable stratification to the extent that it seems possible to partially laminarize

the flow. These experimental observations (involving both flow visualization
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and quantitative measurements) suggest that the stratification effects are closely

focused on the fundamentally important dynamics of the flow. In addition to

obvious applications in flow control, it thus appears that the use of stratification

as a manipulative tool may be a revealing way to study the dynamics of the
turbulence. It is planned to perform simulations of a stably stratified turbulent

channel flow in order to study these effects.
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