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Summary
A three-dimensional cubic cavity flow has been analyzed for diatomic

gases by using the Boltzmann equation with the Bhat nagar- Gross- Krook
(B—G—K) model. The method of discrete ordinate was applied, and the
diffuse reflection boundary condition was assumed. The results, which show
a consistent trend toward the Navier-Stokes solution as the Knudson
number is reduced, give us confidence to apply the method to a three-
dimensional geometry for practical predictions of rarefied-flow
characteristics. The CPU time and the main memory required for a three-
dimensional geometry using this method seem reasonable.

Symbols
a defined in equations (5) and (6)

Eor energy level (equal to the roots of the Laguerre polynomial
of degree n)

F Maxwellian distribution function
f distribution function
imax maximum i index
jmax maximum j index
Kn Knudson number
k Boltzmann constant
kmax maximum k index
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k a , kp, k  weighting coefficient of the odd equally spaced quadrature
L length
in of a molecule
n number particle density
R gas constant

Rol Gauss-Laguerre weighting coefficient
T temperature
u macroscopic velocity (flow velocity
v molecular velocity
w velocity of moving surface
Y vertical distance
ZR rotational relaxational parameter
A mean free path
IL viscosity
V collision frequency
" nondimensional quantity
Subscripts
el elastic
eq equilibrium
i, j,	 k index of physical space
inel inelastic
T total
t translational
x x-component
y y-component
z z-component
a, 0 ry index of molecular velocity space
U discrete energy level
1 reference condition

Introduction
With space vehicles orbiting the world at hypersonic speed, numerical

methods to cover all flow regimes become more important. Advances in
computer hardware in recent years allow methods based on the kinetic
theory to be used for practical applications. Many two-dimensional
problems have been solved by the kinetic approach. 1-7 A limited number
of three-dimensional problems have been solved recently by the direct-
simulation Monte Carlo (DSMC) method. 8"10 However, there are no three-
dimensional numerical solutions based on the discrete ordinate method"
applied to a Boltzmann equation.

A cubic cavity flow problem has been solved for diatomic gases using
the Boltzmann equation with the Bhatnagar-Gross-Krook (B—G—K)
model. 12,13 Because neither theoretical nor experimental data are available
for cubic cavity flow in free molecule flow, slip flow, and transition flow
regimes, efforts have been made to obtain a continuum flow solution as
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closed as possible so that the results from this study can be compared with
the results of the Navier-Stokes solution. 14

Governing Equation
The geometry of the problem considered is shown in figure 1. A cubic

cavity with the same dimension on all sides is filled with diatomic gas (such
as air), and the wall temperature is assumed to be the same on all walls.
The top surface (j = jmax surface) is moving at a constant speed, and
steady-state conditions are reached and analyzed numerically.

The distribution function at the energy level E00 fff , is governed by the
Boltzmann equation with the Bh atnag ar- Gross- Krook-Morse model for the
collision terms:

vx ax + vy a_ + vz	 — vel( F to — U + vinel(F ia — fo)	 (1)

where

n	
m 13/2e 2M ((Vx-Ux)2+(VY—UY)2+(Va—Ua)2)	

2c	 ( )

tv	 a 
21rkTt

f/2— M 
( (V

.
 Ux)2+(VY—UY)2+(Va—Ua)2)

Fiv	 q— nae 	m
	 e 2kTT	

(3)
2^rkTT

The elastic collision frequency vel 15,16 is given by

nkTt
vel —

	

	 (4)
(1 + a)µ

whereas the inelastic collision frequency vine, is related to vel in the
formula of

vine, = a vel	 (5)

ZR _ 5(1 + a)	
(g)

3a

where the rotational relaxational parameter Z R must be obtained by
experiment. The viscosity-temperature relation of the form
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µ = Tt	
(7)

µi	 T1

is assumed and the value of s can be found in reference 17; for the current
study, a and s are equal to 0.4 and 0.758, respectively, for air. The
subscript 1 indicates the reference condition. The reference condition used
in this study is the equilibrium flow in the cubic cavity when the top surface
is stationary.

The reference viscosity is related to the reference mean free path ai
by the relation

µi = 1 mn,A,(2,rRT 1 ) 1/2	(8)

Combining equations (4) to (8) gives

_	 18	 nkTt	 T _e
gel	

5(1 + a) Ajmnj(21rRTj1/2 ^Tjl	
(9)

All macroscopic quantities, which will be listed in the nondimensional
form, can be calculated in terms of f,'.

Nondimensionaliz ation
A characteristic velocity used for non dimensionalization is defined as

V 1 = (2RT 1 ) 1/2	(10)

The definitions of nondimensional variables are defined as follows:

n = n	 T = T	 (11)
n i	 T1

uX	 uY	 uZ
llX =	 ; ilY =	 ; ll Z =

V 1	V1	 V 1

vX	 V
Y	 v vX = _;vY = _;vz=

V1	V1	 V1
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Equation (1) becomes

°x	 + °y	 + °z	 — vel((Fto - fa) + a(Fio _ i,))	 (12)

where

+(Vy-uy)2+2

1

	

13/2

e	
i t
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vel =	 Tt
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A lKn = 
L
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Discretization of Distribution Function and Numerical Scheme
The distribution function at energy level v, fQ, was discretized with

equal spacing in the physical space, the arguments of the odd equally spaced
quadrature (see appendix and ref. 18) was the spacing for the velocity space,
and the roots of the Laguerre polynomial of degree 4 was used for the
spacing for the internal energy space. The value of the distribution function
at these discretized points was calculated by solving the Boltzmann equation
using the finite difference method in the physical space.

The difference scheme is the first-order upwind difference based on the
molecular velocity; for example,

afP _ 
f 	 — 

fv,i-1 	 when Vx >- 0
N	 AX

and

Cif _ fQ , i+ l l, k , a ,Q,7 - 
f
o,il,k,a,^,7 when Vx 0

The distribution functions were then integrated for all macroscopic
properties by using the odd equally spaced quadrature, e.g., the particle
density at energy level Q and at the physical point (1, j, k) is

(	 (	 (	 n'	 n,	 n'

J ± - .1 ± w .1 + „ i od3xdvydv E =	 kakpk7f v(1^],k,a,p,7}

where k a , kp, and k,y are the weighting coefficients of the odd equally
spaced quadrature for the velocity components 8, , va, and - 7V respec-
tively. These properties were summed over the energy space, and then
saved and used for the next iteration.

Boundary Conditions
For a constantly moving surface, perfectly diffuse reflection is assumed to

specify the interaction of the molecules with the surface of the moving plate.
Molecules which strike the moving surface (j = jmax surface} are emitted
with a Maxwellian velocity distribution characterized by the plate temper-
ature TN, and the plate velocity w; that is,

_	 y	 a

is = nW 1
 13/2 

e	 Tw

irTN,
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where the density of molecules diffusing from the plate n W is not known
a priori and must be found by applying the condition of zero mass flux
normal to the plate at the surface, i.e.,

0 -

f f f vy fadvXdvydv Q + f f f vy fadvXdr dv " = 0

where f+ is the distribution function for - Y > 0 and f or

	

 < 0. In the discrete	
is the distri-

bution function for v 	 ordinate form, this gives the
relation at (1, j, k)

2(7r)1 /2 	 n	 n'	 n.,	 n"'

nw 	 i1 12 E E L E k.k0k7vpfv,a,Q,1
a=1 a=-n' 0=1 7=-n"'

W

Similarly, a zero-mass-flux boundary condition was applied to all other
surfaces, and a Maxwellian velocity distribution function characterized by
the plate temperature was used for the molecules emitted from the surface.

Because of the symmetry of the flow inside the cubic cavity, half of the
cubic cavity was used for the computation. At the symmetry plane (i.e.,
k = kmax plane, the symmetry boundary condition was applied; that is,
the distribution function of the outgoing molecule is equal to the distri-
bution function of the incoming molecule at the symmetry plane.

Computational Procedures
For the present study, the initial condition assumed was that the flow

everywhere was characterized by n = 1 and T = 1. As mentioned
previously, the i = jmax surface was selected to be the moving surface.
The computation began from the j = 2 surface with a known value for
fa at the j = 1 surface. On each j = constant surface, the computation
was performed along the i direction first and then marching toward the
symmetry plane (k = kmax) starting with fo ++ The symbol fo ++ is
defined as the subdistribution function at energy level v for v X > 0,
vY > 0, and vz > 0. At the symmetr7+plane, the symmetry boundary con-
dition was applied (i.e., f ++ = f + ^. Knowing fa } at the sym-
metry plane, the computation was marched backward from k = kmax - 1
toward k = 1. Similarly, the computation continued for f a ++ and fa + .

After the computation reached the j = jmax surface, the particle
density was found at this surface by applying the no-flux boundary
condition and then the computation marched downward from i = jmax - 1
to j = 1 surface.	 The order of computation was	 f 0 

+-+

fo , fa -+ and f^	 The particle density on the surfaces could then
be found by using the no-flux boundary condition and the iteration



continued. The fourth-order Gauss-Laguerre quadrature was used for the
energy space, and four sets of the third-order odd equally spaced quadrature
were used for the molecular velocity space with the equal spacing of 0.15.
(See the appendix.) The convergence was assumed when the maximum
particle density increment was less than 10-4.

Results
As mentioned previously, efforts have been made to calculate the flow

with as small a Knudson number as possible so that the results could be
compared with the solution of the Navier-Stokes equation. The results of
this study are all based on w = 0.1. Comparisons between the Boltzmann
solution and the Navier-Stokes solution 14 are given in figures 2 to 4.

Figure 2 shows the velocity profiles along the centerline for free
molecule flow (Knudson nu;ftbcr (Kn) = 100), slip flow (Kn = 0.1), and
nearly continuum flow (Kn = 0.03). It clearly shows that the flow slips on
the moving surface for Kn = 100 and Kn = 0.1; that is, the flow velocity
on the surface is less than the speed of the moving wall. It also shows that
the no-slip boundary condition of the Navier-Stokes equation was almost
recovered for Kn = 0.03.

The comparison of the velocity vector plot on the symmetry plane
between the Navier-Stokes solution and the Boltzmann solution is given in
figure 3. The general shapes of the primary vortex are similar except that
the center of the vortex for the Navier-Stokes solution is slightly farther
downstream than that for the Boltzmann solution.

Figure 4 shows the surface static pressure looking from the center of the
cubic cavity toward the upper corner for both the Navier-Stokes solution
and the Boltzmann solution. The three-dimensional effect of the static
pressure distribution is clearly shown qualitatively. The Boltzmann
solution, even for the case of Kn = 0.03, is still not close to the continuum
solution obtained by the Navier-Stokes equation; however, the consistent
trend toward the Navier-Stokes solution is encouraging.

The symmetry plane velocity vector plots for two different Knudson
numbers are shown in figure 5. The shape of the primary vortex is clearly
shown even for Kn = 100. The center of the vortex moves upward toward
the center obtained by the Navier-Stokes solution (fig. 3) when the Knudson
number is reduced. It also clearly shows that the magnitude of the velocity
vectors increases as expected when the Knudson number is reduced.

Figure 6 is a plot of the number particle density on the surfaces for
three Knudson numbers. The distribution patterns for Kn = 100 and
Kn = 0.03 are completely different. For a free molecular flow (Kn = 100),
there are not enough molecular collisions to ensure the high number particle
density at the upper downstream corner as shown for the case of Kn = 0.03.
The high number particle density on the upper corner of the downstream
vertical surface (i.e., near i = imax and j = jmax) and the low number
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particle density on the upper corner of the upstream vertical surface (i.e.,
near i = 1 and j = jmax) is a reasonable solution.

The convergence history is shown in figure 7 for Kn = 0.03. Each
iteration took about 40 min on the Cray 2 supercomputer. Fortunately, it
required less than 50 iterations to reach a convergent solution. In other
words, it took less than 30 hr of CPU time for Kn = 0.03. The CPU time
for Kn = 100 was less than 10 hr. To reduce the main memory
requirement, the Maxwellian distribution functions and collision frequency
were calculated repeatedly, as a consequence, extra CPU time was needed
for each iteration. The grid size used in the study was 31 by 31 by 16 in
the physical space, 12 by 12 by 12 in the molecular velocity space and 4
levels of internal energy in the energy space. Considerable CPU time can
be saved by improving the integration scheme in the molecular velocity
space. In any case, the discrete ordinate method used in this study can be
applied to simple three-dimensional geometries without using the parallel
programming technique.

Concluding Remarks
A three-dimensional cubic cavity flow was solved for diatomic gases by

using the Boltzmann equation with the Bh at nag ar- Gross- Krook (B-G-K)
model. A comparison was made between the Boltzmann solution and the
Navier-Stokes solution for the velocity profiles along the centerline, the
primary vortex on the symmetry plane, and the surface static pressure. The
general trend toward the Navier-Stokes solution as the Knudson number is
reduced indicates that the solutions are very reasonable and that the
discrete ordinate method can be used with confidence to a three-dimensional
geometry for practical predictions of rarefied-flow characteristics. Because
of the robustness of this numerical scheme, it requires less than 50 iterations
to obtain a converged solution. The present method has a potential to be
a practical flow simulation method to cover all flow regimes.

Appendix—Laguerre and Odd Equally Spaced Quadratures

Abscissa and Weight Factors for Laguerre Integration

°°	 n

f e E f (E) dE _	 Rif(Ei)
0	 i=1

where Ei are the abscissas and are the roots of Laguerre polynomials.

For n = 4,

E 1 = 0.322547689619
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E2 = 1.745761101158
E3 = 4.536620296921
E4 = 9.395070912301
R 1 = 6.03154104342x10 -1
R 2 = 3.57418692438x10 -2

R3 = 3.88879085150x10 -2

R4 = 5.39294705561 x 10 -4

Odd Equally Spaced Quadrature

1	 n
f f(x)dx	 kif(ai)
0	 i=1

where the arguments a i are taken to be 1/(2n), 3/(2n),..., 1 — [1/(2n)] and
the weighting coefficients k i for n = 3 are

k l = k3 = 0.375
k 2 = 0.25
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