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A GRIDLESS EULER/NAVIER-STOKES SOLUTION ALGORITHM

FOR COMPLEX TWO-DIMENSIONAL APPLICATIONS

John T. Batina

NASA Langley Research Center

Hampton, Virginia 23665-5225

Abstract

The development of a gridlcss computational fluid dynamics (CFD) method for the solution of the

two-dimensional Euler and Navicr-Stokes equations is described. The method uses only clouds of points

and does not require that the points be connected to form a grid as is necessary in conventional CFD

algorithms. The gridlcss CFD approach appears to resolve the problems and inefficiencies encountered

with structured or unstructured grid methods, and consequently offers the greatest potential for accurately

and efficiently solving viscous flows about complex aircraft configurations. The method is described in

detail and calculations are presented for standard Euler and Navier-Stokes cases to assess the accuracy

and efficiency of the capability.

Introduction

Considerable progress in developing computational fluid dynamics (CFD) methods for aerodynamic

analysis has been made over the past two decades. 1 The majority of work that has been done in CFD

over the years has been on dcveloping methods for use on computational grids that have an underlying

geometrical structure and thus the grids are referred to as "structured". For example, Fig. l(a) shows

a structured grid for the NACA 0012 airfoil. The grid is of C-type topology, has 159 points in the

wraparound direction, and 49 points in the outward direction. Methods developed for structured grids have

been applied to a wide variety of geometrical configurations ranging from simple, analytically defined

airfoil sections such as the NACA 0012 airfoil to complex aircraft configurations such as the F-16A



fighter. 2 Although applications of structured grid methods to complex configurations are indeed possible

they generally require more sophisticated meshing methodologies such as blocked, patched, chimera,

or hybrid-type grids. For example, the F-16A fighter calculations reported in Ref. 2, which included

the engine inlet and boundary layer diverter as well as the wing, fuselage, and tail in the geometrical

modeling, used 27 blocks of structured cells to make up the grid. These more sophisticated meshing

methodologies, in turn, significantly complicate the solution algorithms of the structured grid methods.

An alternative approach is the use of unstructured grids. 37 In two dimensions, unstructured grids

typically are constructed from triangles, and in three dimensions, they consist of tetrahedral cells. The

triangles or tetrahedra may be oriented in an arbitrary way to conform to the geometry, thus making

it possible to easily generate grids about very complicated shapes. Although not a complicated shape,

Fig. l(b) shows an example of an unstructured grid for the NACA 0012 airfoil. The total grid has

3300 nodes and 6466 triangles. An advantage of methods developed for unstructured grids is that they

may be applied to complex aircraft configurations without having to make changes to the basic solution

algorithm. Numerous calculations for complex configurations performed using various Euler codes have

been reported by several researchers. 3-7 However, applications to three-dimensional configurations using

unstructured grid Euler codes have tended to be inefficient because the meshes have an excessively large

number of cells. The excessive number of cells is due, in part, to the current state-of-the-art in generation

of unstructured tetrahedral grids, which produces meshes that are much finer in the spanwise direction (for

a given streamwise density) than is necessary for accurate flow computation. To alleviate the problem,

the cells may be stretched in the spanwise direction when generating the mesh to reduce the number of

cells. However, the stretching can create convergence and accuracy problems for the flow solver. The

basic problem is that the tetrahedron is an inefficient geometrical shape (whereas the triangle tends to

be an efficient shape in two dimensions). A more efficient shape for an isolated wing application is a

prismatic cell defined by a polyhedron with a triangular cross-section. A mesh of this type uses triangles

which form prisms when connected in the spanwise direction to grid the planes of the airfoil sections of

the wing. This approach, though, not only puts structure back into the mesh it is not generally applicable

to complex three-dimensional configurations.



Anotherproblem with the unstructured-grid methodology is encountered in extending the methods for

solving the Euler equations to the solution of the Navier-Stokes equations, especially in three dimensions.

For viscous applications, grids generally need to be fine near the body in the outward direction to resolve

the boundary layer but less fine in the direction along the surface of the body. This naturally leads

to cells of high aspect ratio which tends to exacerbate the inefficiency of three-dimensional solution

algorithms based on tetrahedra. Specifically, the use of tetrahedra for viscous flow applications results

in an unreasonably large number of cells. The number of cells is in fact absurdly large in comparison to

grids that are generated for Euler calculations (which are already inefficient because of a large number of

cells as previously discussed) because of the additional requirement that the mesh be fine near the body.

To alleviate this problem, a hybrid approach has been developed recently using prsmafic cells for the

solution of the Navier-Stokes equations, s In this approach, the surface of the geometry under consideration

and the outer boundaries of the mesh are gridded using triangles, and instead of generating tetrahedra to

fill the interior of the computational domain, the triangles on the inner and outer boundaries of the mesh

are connected to form prisms. The prisms, of course, require the same number of triangles on the inner

and outer boundaries. While this hybrid approach is a viable solution to alleviate the inefficiency created

by using tetrahedral cells to solve the Navier-Stokes equations, it is not necessarily the best approach,

since it again puts structure back into the mesh and limits some of the advantages of the unstructured

grid methodology, such as spatial adaption.

What is truly required to advance the CFD technology to treat complex configurations in viscous

flows is no.._Atto take a step backward toward grid structure, but to take a bold step forward to develop

methods that do not require the use of grids at all. Hence the solution to the above-mentioned problems

with structured and unstructured grids is the development of algorithms for solving the Navier-Stokes

equations based on using only grid points and not on the connectivity information that relates all of the

points to one another. This type of approach, which may be referred to as "gridless" CFD, has distinct

advantages over methods that require grids. Since only points are required, or specifically clouds of

points as suggested by Chakravarthy, 9 gridless CFD methods offer the greatest potential for accurately

and efficiently solving viscous flows about complex aircraft configurations. It is noted parenthetically,



thatif finally the grid points too were not re.quired by the solution algorithm, then the ultimate flexibility

in methodology could bc attained. This type of method might then be referred to as "pointless" CFD.

The purpose of the paper is to report the development of a gridlcss method for the solution of the

two-dimensional Euler and Navier-Stokcs equations. The method uses only clouds of points and does

not require that the points be connected to form a grid as is necessary in conventional CFD algorithms.

The governing partial differential equations (PDEs) arc solved directly, by performing local least-squares

curve fits in each cloud of points, and then analytically differentiating the resulting curve-fit equations to

approximate the derivatives of the PDEs. The method is neither a finite-difference nor a finite-volume

type approach since differences, metrics, lengths, areas, or volumes arc not computed. The method is

described in further detail and calculations arc presented for standard cases to assess the accuracy and

efficiency of the capability.

Governing Equations

In this study the flow is assumed to be governed by the two-dimensional laminar Navier-Stokes

equations which may be written in differential form as

OQ O Ev)+ 0 0

where Q is the vector of conserved variables given by

E and F are the inviscid fluxes in the x and y directions, respectively, defined by

E = pu2 + p
puv

(e + i,) u

puv

I" = p.V2 + p

(e + p)v

(1)



and Ev and Fv are the viscous fluxes in the x and y directions, respectively, defined by

{ o }E_ = rx_
rxy

/ ° /Fo= r_u
ruy

ur_u + vruu - qu

In the viscous fluxes the shear stresses and heat flux terms are defined by

2Moo 2_zz_=_ R--T_

2Moo ( Ov Ou )

Moo (Ou i)v)T_= --_;_, _ + _

q_ 7- 1 Re-_r#-_x

q_ 7- 1 R---'--e_r#'_y

In these equations, Moo is the freestream Mach number, Re is the Reynolds number, Pr is the Prandtl

number, and # is the molecular viscosity determined using Sutherland's law. The Euler equations are

obtained by setting the viscous fluxes equal to zero.

Spatial Discretization

Derivatives

The spatial derivatives in the goveming equations (Eq. (1)) are approximated as follows. In each

cloud of points, each term of the fluxes is assumed to vary linearly according to

f(z,y) : ao + alx + a2y (2)

where the coefficients o_, a_, and a2 are determined from a least-squares curve fit. Performing a least-

squares fit in a given cloud results in three equations represented in matrix form by

Exi Ex_ z_xiyi al = Exifi

L _yi _xiyi _y? a2 ]_Yifi

(3)



where n is the number of points in the cloud and the summations arc taken over the n points. The

solution of Eqs. (3) requires the inversion of a 3 × 3 matrix which is performed for every cloud in the

computational domain. Having solved these equations for O.o, al, and a2, the spatial derivatives are now

known since by differentiating Eq. (2) it is obvious that

Of Of
-- = a2 (4)

Ox = aL Oy

In addition to approximating the spatial derivatives of the governing equations by differentiation of

the least-squares curve fits, the shear stresses and heat flux terms are calculated the same way. Since

these terms involve first derivatives of the velocity components or pressure divided by density, the shear

stresses and heat fluxes can be approximated by defining f to be equal to u, v, or p/p, evaluating the

terms of Eqs. (3), and inverting the left-hand-side matrix. The resulting values for al and as are the

derivatives of the specified quantity with respect to x and y, respectively, within a given cloud of points.

Artificial Dissipation

The unsteady Euler equations arc a set of nondissipative hyperbolic conservation laws that require

some form of artificial dissipation to prevent oscillations near shock waves and to damp high-frequency

uncoupled error modes. The unsteady Navier-Stokes equations also require artificial dissipation for

similar reasons because the physical viscosity generally is limited to the boundary layer. Since the

method of the present work is conccptuaUy analogous to a central-difference type approach, the artificial

dissipation must be added explicitly to the solution procedure. This is accomplished by adding harmonic

and biharmonic terms to the governing equations, corresponding to second and fourth differences of the

conserved variables, respectively. These dissipation terms are defined by

where A is the local maximum eigenvalue of the governing equations, and {(2) and _(4) are local dissipation

coefficients that are formulated similar to those of Jameson. I Furthermore, the above treatment of the

artificial dissipation constitutes an isotropic dissipation model (independent of coordinate direction) which

generally is only applicable to the Eulcr equations. For the Navier-Stokes equations, an anisotropic model



is requiredduein part to the close spacing of points normal to the surface relative to the tangential

distribution of points (analogous to high aspect ratio cells in structured or unstructured grid methods).

Thus an anisotropic dissipation model was developed for use when solving the Navier-Stokes equations

on clouds of points.

Temporal Discretization

Time Integration

The governing flow equations are integrated numerically in time using an explicit multi-stage Runge-

Kutta time-stepping scheme, n Typically a four-stage scheme is used to solve the Euler equations with

the artificial dissipation evaluated only during the first stage. A five-stage scheme is used to solve the

Navier-Stokes equations with the artificial dissipation evaluated during the first, third, and fifth stages.

Residual Smoothing

The Runge-Kutta time-integration scheme described in the previous section has a step size that is

limited by the Courant-Friedricks-Lewy (CFL) condition corresponding to CFL numbers of approximately

2.8 and 3.6 for the four-stage and five-stage schemes, respectively. To accelerate convergence to steady

state, the CFL number may be increased by averaging the residual R with values at neighboring points. 1

This is accomplished by replacing R by the smoothed residual R given by

"R- cV2"R = .R (6)

where c is a constant which controls the amount of smoothing and V 2 is a harmonic operator similar to that

used in the dissipation model. Also similar to the dissipation model, an anisotropic form of the harmonic

operator is used when solving the Navier-Stokes equations. Equation (6) is solved approximately using

several Jacobi iterations. Convergence to steady slate is further accelerated using enthalpy damping (only

for the Euler equations) and local time stepping.

Boundary Conditions

To impose the boundary conditions along the surface of the geometry being considered, ghost points

that are located inside of the geometry are used. The locations of these ghost points are determined by



a simple reflection of the flow field points that arc close to the surface about the edges that define the

boundary. A similar procedure is used near the outer boundary to determine the locations of ghost points

at which to impose the far-field boundary conditions.

Along solid surfaces, the velocity components at the ghost points arc determined from the values at

the corresponding flow field point adjacent to the surface. When solving the Euler equations, the velocity

components at the ghost points arc determined by imposing a flow tangency or slip condition which

requires that the velocity normal to the surface vanishes. When solving the Navier-Stokes equations, the

velocity components at the ghost points are determined by imposing a no-slip condition which simply

changes the sign of the values of the components at the adjacent flow field points. In either case (Euler

or Navier-Stokes), pressure and density at the ghost points are set equal to the values at the adjacent

flow field points. Additional conditions arc imposed using the ghost points to accurately treat the shear

stresses and heat flux terms, as well as the artificial dissipation terms.

In the far field a characteristic analysis based on Riemann invariants is used to determine the values

of the inviscid flow variables at the ghost points that are located outside of the outer boundary. This

analysis correctly accounts for wave propagation in the far field which is important for rapid convergence

to steady state. Values of the viscous flow quantities at these ghost points arc set equal to the values at

the corresponding flow field points adjacent to the outer boundary.

Results and Discussion

Calculations were performed first with the Eulcr equations and then with the Navier-Stokes equations,

to assess the feasibility of the gridlcss CFD concept. The results wcrc obtained for standard cases to

determine the accuracy and efficiency of the methodology. All of the results were obtained on the

Cray-YMP computer (Reynolds) at the Numerical Aerodynamic Simulation Facility located at the NASA

Ames Research Center.

Euler Results

Results were obtained first by solving the Euler equations for flows about the NACA 0012 airfoil.

The field of points that was used to model the flow about the airfoil is plotted in Fig. 2. For convenience,



the locationsof thesepoints were determined by using the cell centers from the unstructured grid of

Fig. l(b), and the cloud of points for each point was taken to be the cell centers of the three triangle.s

that share edges with a given triangle. To more deafly demonstrate this, Fig. 3(a) shows a close-up view

of the unstructured grid near the airfoil nose, and Fig. 3(b) shows the points determined from the cell

centers. Figure 3(b) also shows ghost points that are located inside of the airfoil in order to impose the

surface boundary conditions. The computational domain has a total of 6,500 points, 134 of which are

ghost points. It is emphasized that the unstructured grid of Fig. l(b) was used to determine the field

of points of Fig. 2 only for convenience. In general, any method to determine the points is acceptable.

Efficient generation procedures to determine clouds of points have yet to be developed.

Euler results were obtained using the points of Fig. 2 for four standard NACA 13012 airfoil

cases corresponding to various combinations of freestream Mach number Moo and angle of attack ct

including: (l) Moo = 0.8, a = 0*;(2) Moo = 0.85, a = 1"; (3)Moo = 0.8, a = 1.25"; and

(4) Moo = 1.2, a = 7*. All four cases were run using a CFL number of 5.0 with local time-stepping,

residual smoothing, and enthalpy damping to accelerate convergence to steady state. Figure 4 shows

the resulting convergence histories plotted as the log of the L2-norm of the density residual versus the

CPU time in minutes. The convergence histories indicate that convergence to steady state is obtained

in only several minutes of CPU time; thus, the method is reasonably efficient in comparison with ac-

cepted runtimes of more conventional Euler methods (without multigrid acceleration). As further shown

in Fig. 4, the slowest convergence is for case 2 (Moo = 0.85, a = 1"), which is because the solution

contains two shock waves (upper and lower surfaces of the airfoil) of moderate strength. Therefore, it

is slightly harder to converge the solution of case 2 in comparison with the solutions of the other cases.

Figure 5 shows the corresponding pressu/e coefficient distributions Cp versus the fractional chordlength

z/c for the four NACA 0012 airfoil cases. The pressure distributions for cases 1, 2, and 3 indicate that

the shock waves are sharply captured with only one interior point, which is somewhat surprising for a

method that corresponds essentially to central differencing. The pressures for all four cases indicate that

the generally accepted Euler solutions have been obtained, which suggests that the gridless CFD method

is accurate as well as efficient for such applications.



Navier-Stokes Results

Next, results were obtained by solving the Navier-Stokes equations first for a fiat plate and then for

the NACA 0012 airfoil. For the fiat plate, a solution was obtained initially to assess the gridlcss Navicr-

Stokes capability by making comparisons with the exact Blasius solution. The field of points used in

these calculations was generated from a structured mesh of grid points, that were uniformly distributed

along the fiat plate but clustered near the plate in the normal direction to resolve the boundary layer.

The calculations were performed for Moo = 0.5 and Re = 10,000. The resulting strcamwise velocity

component u (normalized by the freestream value ue), plotted versus the similarity variable (y/z)v/_,

is shown in Fig. 6 at x/l -- 0.233, 0.383, 0.533, 0.683, and 0.833. The gridless results, represented by

the symbols, indicate that the similarity solution for a fiat plate boundary layer is correctly obtained and

that the solution agrees well with the Blasius solution.

Navicr-Stokes results were also obtained for a standard laminar case for the NACA 0012 airfoil

corresponding to Moo = 0.5, ¢_ = 0", and Re = 5000. The field of points that was used to model

the flow about the airfoil was again determined for convenience by using the cell centers from an

unstructured grid of triangles. A partial view of the unstructured grid is shown in Fig. 7(a) (generated

from a structured grid of C-type topology), and the corresponding view of points for the gridless method

is shown in Fig. 7(b). Close-up views near the airfoil nose of the unstructured grid and the gridlcss

field of points arc shown in Figs. 8(a) and 8Co), respectively. The computational domain in the latter

case has a total of 30,720 points, 608 of which arc ghost points. Navier-Stokes results were obtained

using a CFL number of 4.0 with local time-stepping and residual smoothing to accelerate convergence

to steady state. Figure 9(a) shows the resulting convergence history plotted as the log of the L2-norm of

the density residual versus the CPU time in minutes. The convergence history indicates that acceptable

convergence is obtained in less than one hour of CPU time which is reasonable considering that the

method does not currently use multigrid to accelerate convergence to steady state. Figure 9('o) shows the

corresponding pressure distribution which indicates that the generally accepted Navier-Stokcs solution

involving separated flow near the trailing edge has been obtained by using the gridless CFD method. To

10



morn clearly see the flow solution in the trailing-cAge region, velocity vectors arc presented in Fig. 10.

The flow separates near 82% chord along the upper and lower surface, s of the airfoil, and the vdocity

vectors indicate that them am small re,circulation bubbles downstream of the trailing cage. This solution

is consistent with the Navier-Stokes solutions reported by other researchers obtained for this case using

structured (Ref. 10) and unstmcturcA (Ref. 11) grids.

Concluding Remarks

The development of a gridless CFD method for the solution of the two-dimensionai Euler and Naviero

Stokes equations was described. The method uses only clouds of points and does not require that the

points be connected to form a grid as is necessary in conventional CFD algorithms. The gridless CFD

approach appears to resolve the problems and inefficiencies encountered with structured or unstrucmrcA

grid methods and, consequently, offers the greatest potential for accurately and efficiently solving viscous

flows about complex aircraft configurations. The method was described in detail and calculations for

standard cases were presented to assess the accuracy and efficiency of the capability. The capability

was tested for the solution of the Euler equations and for the solution of the laminar Navier-Stokes

equations. These solutions were found to be accurate and efficient in comparison with solutions from

conventional CFD methods.

Future Work

The three-dimensional version of the gridless algorithm has been developed for the solution of the

Euler and Navier-Stokes equations and is currently being evaluated for three-dimensional applications. An

Euler case that is being considered is a transonic flow about the Boeing 747 transport configuration. For

convenience, a field of points has been created from an existing unstructured mesh of tetrahcAra for the

747, using the cell centers to locate the points for use by the gridless method. The computational domain

contains 109,805 points, 8,330 of which are ghost points. The ghost points that are being used to model

the surface of the 747 are shown in Fig. 11. These ghost points clearly show that the geometry includes

the fuselage, the wings, horizontal and vertical tails, underwing pylons, and flow-through engine nacelles.

11
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cases to assess the accuracy and efficiency of the capability.
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