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RESOLUTION PROPERTIES OF THE FOURIER

METHOD FOR DISCONTINUOUS WAVES 1

David Cottliel) and (;hi-Wang Slm

l)ivision of Applied Matl_ematics

Brown l Tniversity

Providence, RI 02912

ABSTRACT

In this paper we discuss tile wa,ve-resolution properties of tile Fourier approximations of

a wave function with discontinuities. It is well known that a minimum of two points per

wave is needed to resolve a periodic wave function using Fourier expansions. For Chebyshev

approximations of a wave function, a minimum of 77 points per wave is needed [3]. Here we

obtain an estimate for tile minimum number of points per wave to resolve a discontinuous

wave based on its Fourier coefficients.

In our recent work on overcoming tile Gibbs phenomenon, we have shown that the Fourier

coefficients of a discontinuous function contain enough information to reconstruct with expo-

nential accuracy tile coefficients of a rapidly converging Gegenl)auer ext)ansion. We therefore

study tile resolution properties of a Gegenbauer expansion where both the number of terms

and tile order increase.

1Research supported by A FOSR grant 90-0093, A RO grant DAA L03-9 l-G-0123, NASA grant NAG 1-1145,
DARPA grant, N00014-91-J-4016, and by NASA contract NAS1-18605 while the authors were in residence at
I(_ASE, NASA Langley Research Center, ttampton, VA 23665. (:omputation supported by the Pittsburgh
Supercomputer (',enter.





1 Introduction

In [5] (see also [31) , the issue of the number of points required to resolve a wave has been

considered as a measure of the accuracy of a given scheme. Ill particular it has been shown

that only two points per wave are required if the wave function is approximated by a Fourier

series. This result is almost trivial since the expansion basis contains the wave function. It

is also shown in [3] that if the wave function f(x) = e_'_'_ is approximated by a truncated

Chebyshev expansion then a minilnum number of rr points (or, alternatively, number of terms

retained in the expansion) per wave is required. The proof is based on the observation that

if the number of terms in the expansion exceeds this minimum of 7r per wave then the error

decays exponentially (see [3, page 35]).

Tile situation changes when the wave function is discontinuous. As a generic example,

consider tile above mentioned function f(x) = e i':_'_ define(| on [-1, 1] where _o is not an in-

teger. In this case, the truncated Fourier expansion does not converge at all in the maximum

norm. This is known as the Gibbs phenomenolz and there is no meaning to the question of

number of points required to resolve such a wave.

Recently, however, the Gibbs phenomenon has been resolved. In [4] it has been shown

that the first N Fourier coefficients of an analytic, but nonperiodic function contain enough

information on the solution to construct an exponentially convergent Ge.qenbauer series.

Consequently we are concerned with resolution properties of the expansion in Gegenbauer

polynomials C_(x) to approximate a non-periodic wave function f(x) = e '_'_ where co is ,lot

an integer. We first consider the question of minimum number of points per wave needed

to resolve this function. Two separate situations are considered. The first involves a fixed

A in the Gegenbauer expansion. Note that the Chebyshev expansion is a special case with

A = 0. For this situation our results show that the minimum number of points per wave is

it, the same as in the special Chebyshev case. In the second situation we assume that 3' = 7

is a constant in the Gegenbauer expansion. We show that the mininmm number of points

per wave increases with "7 at the boundary x = -I-1 (i.e. at the discontinuity of the wave)

and decreases with 7 at the center x = 0. This second situation corresponds to the case in

which the first N Fourier coefficients of the function are known, since in this case we Call

reconstruct the Gegenbauer expansion for -7 = x__constant.
77l

In Section 2 we quote some results about Gegenbauer polynomials. In Section 3 we study

the resolution properties of the Gegenbauer expansion of a wave function, first for A fixed

and then for 7 = x__constant. Section 4 is devoted to the discussion of how many Gegenbauer

coefficients can be obtained accurately from the first N Fourier coefficients. Here we have

the minimum number of points per (discontinuous) wave to get exponential decay of the



error. Section5 brings numericalconfirmation for the aboveresults.
We will use A to denote a generic constant independent of all the growing parameters

throughout this paper. The actual value of A may be different at different locations.

2 Preliminaries

In this section we will collect some definitions, equalities and inequalities which will be used

in later sections.

We start by defining the Gegenbauer polynomials C_(x).

Definition 2.1 For )_ >_ 0, the Gegenbauer polynomial C_(x) is the polynomial of degree n

that satisfies

with

x ) 2Ck(x)C,,(x)dx=O
1

k#_ (2.1)

r(. + 2_) (2.2)
C_(1) = .!F(2A)

The Gegenbauer polynomial C_(x) achieves its maximum at the boundary x = 1 [2, page

206]

IC_(x)l_<6_(1)

and its value at the center x = 0 is given by [1, page 777]

(2.3)

...r(a + n) c_,+,(0) 0.
c;,(0) = (-_) :-.,ff_ ;

The Gegenbauer polynomials thus defined are not orthonormal.

given by [2, page 174]

(2.4)

The norm of C_(x)is

h_ J_11(1 x2)_-½C_(x)C_(x)dx 7r½C_(l' F(A + ½)= - = Jr(_)(. + _)
We will also need the following identity, which can be found in [2, page 213]

(2.5)

q 1(1 -- (x)dx = r()_) i'(l + A)Jt+;_(Trw).

Throughout this paper we repeatedly use the Stirling's formula: for any x > l,

F(x + 1) <_ (27r)_x_+_e-_e _

1 x 1

V(x + 1) >_ (2_r):x +:e -_

(2.6)
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We will needthe following estimatesfor the Besselfunction J,,(nz) [1, page 362]

e4i_ _ '_ '_
[Jn(nz)[ < i

- 1-1-_] ' 0<z<l.

The following Lemma will he used in conjunction with the estimate in (2.9).

Lemma 2.1

If q(z) and p(z) are defined by

zeJ "f2_ q(z)l+_'

q(z) = 1 + lx/i"-Z-_--z2' p(z)- z "_

where 7 -> O, and the constant c(7 ) is defined by

c(-y)-
1+7

then

(1) For 0 _< z < 1, q(z)is a strictly increasing function and q(z) < 1;

(2) For 0 < z < c(-),), p(z) is a strictly increasing function;

(3) For c(7 ) < z < 1, p(z) a strictly decreasing function and p(z) > 1.

(2.9)

(2.10)

(2.11)

[3

3 Wave Resolution Properties of Gegenbauer Expan-
sions

Consider the non-periodic wave function

f(x)=e ''_'°_ (3.1)

where w > 0 is not an integer. The Gegenbauer coefficients of this function are defined by

with h_' given by (2.5).

1 1 Z2) A-
fa(1) = h--7 /_ (1 - ½ei_'_Ct_(x)dx

Our objective is to find a lower bound on the ratio

(3.2)

m

r = -- (3.3]
x ,,¢a3

where o., is the number of waves in (3.1) and m is the number of terms in the Gegenbauer

expansion



f_(x) = _-_f:'(l)C?(x) (3.4)
l=O

such that the approximation error using the expansion (3.4) is exponentially small when

m _ oo. The ratio r defined in (3.3) is usually called the number of points per wave. It is

literally the number of points per wave for tile collocation case and can be called number of

modes per wave for the Galerkin expansion (3.4)-(3.2). We can then define the regularization

error RE(A, m, r, x) to be

RE(A,m,r,x) = If(x)- f;)_(x)l (3.5)

and ask the question of finding a lower bound r0 = r0(A, x) such that the regularization error

(3.5) is exponentially small for r > ro when m _ e_.

According to the identity (2.6) and the definitions (3.2)-(3.4), the regularization error

(3.5) can be explicitly expressed as

RE(A, rn, r, x) = _
l=m+l

first we have the following theorem for the case with fixed A.

Theorem 3.1 If A is fixed, then r0 = _r is a lower bound for the number of points per wave

to obtain exponentially small regularization error for all -1 _< x _< 1.

- _"_ and z = '_ For 1 > m we have zt < " < 1 andProof: Assume r > 7r. Denote zt - r(t+,X) 7"

hence q(z_) < q(z) < 1 according to Lemma 2.1. Take s = _ < 1 and m big enough so
2

(t+,+_)(l+2A) , ,
that (t+:q(t+l) q_,z) <_ s for l > rn. If we define

F(l + 2A)
B(l) = (l + A)(q(z)) t+A (3.7)

we have, for l > rn

B(l + 1) (I + 1 + A)(/+ 2A)q(z _J< 8 < 1 (a.s)
B(1) (l+ A)(/+ 1) -

We can then start from the explicit formula (3.6) and absorb all the A dependent terms

into the generic constant A to obtain

RE(A,m,r,x) < Am-_ _-_ (IwA)J,+x C?(1)
/=m+l

< Am -_ _ (l+ A)(q(zl)) t+a F(/+ 2A)
- l!

l=m+l
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<_ B(1)
/=m+l

< Am_ _ B(m)
-- 1 --_q

< A,,? (q(z))

where we have used (2.:3) in the first inequality (2.9) and (2.2) in the second inequality, the

definition of B(1) in (3.V), the fact that q(zt) < q(z) in the third inequality, and (3.8) in the

fourth inequality. This finishes the proof because q(z) < 1. []

The result of Theorem 3.1 is not surprising; for A = 0 this is simply the known result for

the Chebyshev case [3].

For fixed A, the estimates are essentially the same for the boundary point z = 1 or for

the center point z = 0, since there is only an algebraic difference between C{(1) and C_(0).

However, this algebraic difference becomes bigger when A increases.

For our purpose we are more interested in the case A _-, m. This is because we are

interested in the situation where the finite Fourier series of f(x) is given. In [4] we proved

that it is possible to recover uniform exponential accuracy from the finite Fourier series of a

non-periodic analytic function through the use of Gegenbauer expansions with ._ --, m.

Let us now assume that 7 = A_ is a constant. We have then the following theorem.

Theorem 3.2 If 7 = a__is a constant, then
7Y_

(1) The regularization error RE(Trrz, m,r, 1), at the boundary x = 1, is exponentially

small if r > max(rl,r2) where rl is the unique solution of

rc ) _ (2e7(1 + 7)) "rP /'1(1 @ "y) (1 + 27) '+2"v = Q1(7) (3.9)

71" 71"

in the region r, >_ _ if (3.9) has a solution (i.e., if p(c(7)) _> Q,(7)), or ,'_ =

otherwise. Also, r2 is the unique solution of

_ ) 1 . (3.10)I

q r2(1+7 ) = 1+27

(2) The regularization error RE(TIn , m, r, 0), at the center z = 0, is exponentially small

if r > inax(r3, r4) where r3 is the unique solution of

) (,(1 +-y)),P r3(1 +7) -(1+2"/)} +w =@3(7) (3.11)

within the region ra >_ _ if (3.11) has a solution (i.e., if p(c(7)) _> @3(7)), or r3 =

otherwise. Here r4 is the un_ique solution of



_" ) 1 (3.12)q _,(1+_) - _"

The functions p(z) and q(z) in (3.9)-(3.12) are defined by (2.10) in Lemma 2.1 and the

constant c(7) is defined by (2.11).

= _-----_-_and z= .r. _ _ Forl>mwehavezt < z <c('_) whenProof: Denote zt r(l+a) 4re+a) - 41+--;-_"

,_ 1 according to Lemma2.1 and the condition (3.10).r > vl > 7_'g'g4'; hence q(zl) < q(z) <

_+(l+2-,)q(z) which yields (1 + 27)q(z) < s < 1. Hence we can take m big enoughTake s = 2 '

so that for l > m,

(l + 1 + "lm)(l + 27m)q(z )
(l+ _m)(l + i)

If we now define

= l+l__m _ _l+271] (1

( 1 )(l+2"7)q(z)<s<l._< 1+ lqS,,/m

+ 2._)q(z)

F(/+ 27m)
B(l) = (l + 7m)(q(z)) '+_m l!

we have for l > m

B(l+ 1)

B(0
(I-% 1 + _m)(l + 2"Tm)q(z ) < s < 1.

(l+ .r_)(t + 1)

We can then start from the explicit formula (3.6) to obtain

(3.13)

(3.14)

RE(Tm, m, r, 1) < F(Tm) _m _ (/+Tin) C_"(1)
l=m+l

oo

r(_m) (2_] ,m E (l+Tm)(q(zt)) t+'*_ r(l +2_m)
< P(27m) \Trm/ I=m+a l!

-< r(--5--_),_mj ,=..+,

< r(2,m) ,,.-,-r,, _- ;
{ (1+23,) 1+2_ , ,_m

-< a_(2eT( 1 +7)) _ptz))

where we have used (2.9) and (2.2) in the second inequality, the definition (3.13) and the

fact q(zt) < q(z) in the third inequality, (3.14) in the fourth inequality and Stirling's formula

(2.7)-(2.8) in the last inequality.



(I +27') I+2_

to condition (3.9) and Lem,na 2.1, the ,lumber (2e.y(,+.r))_p (_(-57-_))__ isAccording strictly

less than one for r > rl. This finishes the proof for x = 1.

The proof for the center point x = 0 is similar and is thus omitted. 1:3
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Figure 1: Minimum number of points per wave as a function of 7. Left: minimum 7"= "_
ca)

to obtain exponentially small regularization error; Right: minilnmn R = 2NNto obtain expo-
ca)

nentially small resolution error from Fourier partial sum.

In Figure 1 (left) we show the curves of number of points per wave, r = _, versus 7,

both for resolving the boundary x = 1 (upper line) and for resolving the center x = 0 (lower

line). These were obtained from the results (3.9)-(3.12) in Theorem 3.2. We can see that

the top curve for x = 1 is an increasing function of 7, while the bottom curve for x = 0 is a

decreasing function of 7 for 3' > 0.37. At 3' = 1, we need approximately 7.03 points per wave

to resolve the boundary and 3.51 points per wave to resolve the center. At 3, = 5, this two

numbers change to 8.11 and 2.33, respectively. Figure 1 (right) is related to the truncation

error to be discussed in next section.

4 The Truncation Error from Finite Fourier Series

In this section we consider the situation that f(x) = e i'_'_ is not known and only the first

2N + 1 Fourier coefficients f(k) are given. We would like to recover, within exponential

accuracy at all points in -1 _< x _< 1, the finite Gegenbauer expansion f_,(x) of f(x) as

defined by (3.4). This, together with the results in the previous section, will establish the

number of points per wave for resolving discontinuous waves based on its Fourier partial sum

through Gegenbauer polynomials. The result in this section parallels the general theorems

in [4].



The Fourier partial sum of the discontinuouswavefunction f(x) = e i_'x is given by

N

fN(x)= _ f(k)e ik_: (4.1)
k=-N

where the Fourier coefficients f(k) are defined by

1 /_ f(x)e_ik,_Xdz. (4.2)f(k) = _ ,

Assume that the first 2N + 1 Fourier coeflqcients f(k), Ikl <_ N and hence also the

Fourier partial sum (4.1) are known but the function f(x) is not. We thus do not know the

exact Gegenbauer coefficients fa(l) of f(x) defined by (3.2), but only the approximate ones

obtained from the Fourier partial sum fN(x), which we denote by .0A(l)

1 1

¢(0 = h_f_(1- x_?-_f_(x)C?(_)dx.

Notice that t)_(l) depends on N.

We now define the truncation error TE(.k, m, N, x) to be

(4.3)

< ( 2 )- (m- 1)!F(2A)

At the center x = 0, the truncation error satisfies

),-1

m,N,O)<_A(m+_)F(-_+A) " 2 _A-,T E(,_

If ,k = 7m and m =/3N where 7 and/3 are positive constants, then the truncation error

satisfies

TE(TflN,[4N, N, 1) < AN2 (/3"Y(l + 27)a+2"Y)_(27reT)-y

at the boundary x = 1 and

fiN

(4.7)

(4.5)

m

TE(A,m,N,x) = t_o(f:_(l) - _:'(l))C?(x)= (4.4)

Notice that w or r = "_ is not an explicit parameter in our definition of the truncation

error. The estimates we obtain later will be uniformly valid for all _o.

In the next theorem we shall bound the truncation error in terms of N, the number of

given Fourier coefficients, m the number of terms in the Gegenbauer expansion, and A.

Theorem 4.1 The truncation error at the boundary x = 1 satisfies the estimate



at the center x = 0.

Proof: Since

13N

TE(7/3N,/3N, N,O) < AN 2 (fl_(1 -I- 27)½+'Y'_- (_)_ ]
(4.8)

f(x)- fN(x)= _ f(n)e i'_x (4.9)
I,_l>u

and If(n)l _< 1 according to the definition (4.2) with f(x) = e i'_x, we can estimate the

truncation error as follows

TE(A,m,N,x) < (re+l)max (]_(O-i?(O)C?(x)O<l<m

: (m+ l)o<,<mmaX _ f(n)CtA(x)(_
- - InI>N I

= (m+l)0<t<_max_ f(,Oc?(_)r(a)
M>N

< Amr(a) _-_ o<,<mmax(l + A) C?(x) (4.10)

In the second step we have used (4.9), the definition of fa(1) in (3.2) and that of .0a(1)in

(4.3), in the third step we have used the equality (2.6), and in the last step we have used

the facts If(n)l _< 1 and [J,(x)[ _< 1 for all x and u _> 0 [1, page 362].

For the boundary point z = 1 we can then proceed as follows

(2)A-_TE(A,m,N, 1) <_ Amr(A) 7-_ o<t<_max(/+ A)Ct_(1)

Ara_ (_) A-1 (l + A)F(/q- 2A)
--- max

o_<t_<._ l!

< A(m+ tr(m+ 2 )- (m- 1)!F(2A) _ (4.11)

where in the second step we have used the formula (2.2) for CrY(l), and in the last step
(l+;gr(t+_)

we have used the fact that t! is an increasing function of l. The result in (4.5) is

thus proven. Some simple algebra and the use of Stirling's formula (2.7)-(2.8) easily produce

(4.7). The estimates (4.8) and (4.10) at the center point x = 0 can be obtained in a similarly

fashion and the detail is thus omitted. []

Since our estimates of the truncation error, (4.7) and (4.8), do not depend on the wave

number w or r = _, the minimum number of points per wave for exponential convergence,

9



defined by R = 2N r_ derived in Theorem 3.2 and the largest-7, is obtained by using the r = 7

/3 in (4.7) or (4.8) such that the factors on the right hand sides which are being raised to

power N are still less than one. This gives the following theorem.

Theorem 4.2 Assume that the Fourier coefficients

1 f_ f(x)e_ik,_d x?(k) = ,

of the function f(x) = e i_'_x are known for -N < k < N. Let _(1), 0 < l < m be the

_k=-N ](]g) eikrz given by (4.3). Define theGegenbauer expansion coefficients of fN(x) = N

number of points per wave by

2N
R = -- (4.12)

03

and the resolution error by

f(x) mE(A,m,N,R,x) = - _A(l)C{(x)
l=0

Then, if A = "ym and m =/3N, we have the following results.

(1) At the boundary x = l, if one uses

(4.13)

2re7
/3 < - B1(7) (4.14)

(1+ 27) 

and r = _ > max(rl,r_) as is derived in Theorem 3.2, then the resolution error is exponen-

tially small and bounded as

E(7/3N,/3N, N,R, 1) < A (N2b g + bN)

where

/3"Y(1 + 27)'+2w) a < 1, bR= k(2eT( l_k_7)).yp r(l+7) < 1.

The number of points per wave R = 2_ugis estimated by

2 max(r,, r2)
R>

where r_, r2 are defined in Theorem 3.2 and B_(7 ) is defined by (4.14).

(2) At the center x = 0, if one uses

71-e

< (1 "k- 2")') _+1 _ B2(')')

(4.15)

(4.16)

(4.17)

10



and r = _ > max(ra, t'4) as is derived in Theorem 3.2, then the resolution error is exponen-

tially small

where

E(TflN,/3N, N,R,O) < A (N2c g + cN)

(fl_(1 + 23`)½+'_'_ _
CT

(-_e-_ ] <1 cn=

(1 + 29') ½+'Y 7r

(e(1 + 9,)) "_p r(1 + 7) < 1.

The number of points per wave R = 2__Nis estimated by
(l]

2 max(ra, r4)
R>

where r3, r4 are defined in Theorem 3.2 and B2(3`) is defined by (4.17).

Proof: This is simply a combination of Theorems 3.2 and 4.1.

(4.18)

(4.19)

rn

In Figure 1 (right) we show the curves of number of points per wave, R = 2N"-_-, versus 3`,

both for resolving the boundary x = 1 (upper line) and for resolving the center x = 0 (lower

line), obtained from the results (4.16) and (4.19) in Theorem 4.2. We can see that the top

curve for x = 1 achieves its minimum at around 3' = 0.9. and the bottom curve for x = 0

is an increasing function of 3`. We emphasize that these results are obtained with different

/3 for x = 1 and x = 0 (from (4.14) and (4.17) respectively). In practice a single/3 should

be used since one would like to resolve both the boundary and the center simultaneously. If

the/3 for x = l, given by (4.14), is also used for x = 0, the minimum number of points per

wave, R, to resolve the center x = 0, would be described by the middle curve in Figure 1

(right). For the single/3 chosen according to (4.14), at 3' = 1, a minimum of 22.2 points per

wave is needed to resolve the boundary x = l, and a minimum of 11.1 points per wave is

needed to resolve the center x = 0.

5 Numerical Results and Conclusions

In this section we perform numerical calculations to demonstrate the theory developed in

previous sections. We use the discontinuous wave function

f(x) = cos(_r_(x + 1)) (5.1)

for various wave numbers w and report both the regularization error defined by (3.5) and

the resolution error defined by (4.13).

ll



We implement the method in the following way. The exact Gegenbauercoefficientsof

f(z), which are needed for the regularization error, are computed using (2.6). The approx-

imate Gegenbauer coefficients _0"X(l), defined in (4.3), which are needed for the resolution

error, are computed using the following formula

0h(1)= _0,f(0)+ r(A)i'(1+ A) _ J,+_(_.) /(k) (5.2)
O<lkl<_N

where f(k) are the Fourier coefficients of f(z) defined by (4.2). This fornmla can be easily

derived from the definition of .0h(1) in (4.3) and the integration formula (2.6). We compute

the Bessel function J,,(z) using an IMSL routine. The approximation to f(z) is obtained by

directly summing (3.4) for the regutarization error, or by directly summing

7Yl

_((_) = _O_(t)c?(_) (5.3)
/=0

for the resolution error. The Gegenbauer polynomials C_(z) are computed by the formula

' r(k + _) r(t- k + _)
C?(cosO)= }2 k!r(A) _ - _!b-(_ cos(t- 2k)0 (,_.4)

k=0

which can be found in [1, page 175].

We remark that the implementation techniques described above are subject to roundoff

reffects for large A aim m. A better way of implementing the method through Chebyshe_

polynomials is currently under investigation.

In Figure 2 we show the errors, in a logarithm scale, at the discontinuity z = 1 for _o = 1.4,

2.4, 3.4 and 4.4. We choose _ - x - 1 in this illustration. On the left, the regularization

error RE(m,m,_,l) is shown as a function of m, the number of terms retained in the

Gengenbauer expansion. On the right, the resolution error E(_, N 2Ny, N, 1 asV-, ) is shown a

fimction of 2N, to total the number of terms in the Fourier expansion. Here we take/3 = 0.5

which satisfies (4.14). We can see that the errors are order O(1) until r = "-_ or R = 2___N_,

reaches the critical values obtained in Theorem 3.2 and in Theorem 4.2, after which the

errors drop exponentially. Figure 3 shows the same result but for the center point z = 0.

12
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Figure 2: Logarithmic error at the discontinuity , = 1 for (5.1) with ¢o = 1.4, 2.4, 3.4 and

4.4. Here "y - ,,_ - 1. Left: the regularization error RE(re, m, r_, 1) as a function of m

Right: the resolution error E( @, N 2NT,N, 1) a7-, as function of 2N, # = 0.5.
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Figure 3: Same as Figure 2 but for the center point x = 0.
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