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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilitles. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission s to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established rclationships with other universities and re-
search organizations, having common research {nterests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research and education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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RICIS Preface

This research was conducted under auspices of the Research Institute for Computing
and Information Systems by Dr. Rui J. P. deFigueiredo of Rice University. Dr.
Terry Feagin served as RICIS research coordinator.

Funding was provided by the Mission Planning and Analysis Division, NASA/JSC
through Cooperative Agreement NCC 9-16 between the NASA Johnson Space
Center and the University of Houston-Clear Lake. The NASA research coordinator
for this activity was Dr. Timothy F. Cleghorn, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.
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Reprint from the Proceedings of the Space Telerobotics Workshop held
at the Pasadena Center, Pasadena, CA, January 20-22, 1987

A Technique for 3D Robot Vision

for Space Applications!

Vishal Markandey, Hemant Tagare, and Rui J.P. deFigueiredo

Dept of Electrical and Computer Engineering

Rice University, Houston, Texas 77251-1892

1) ABSTRACT:

This paper reports an extension of the MIAG algorithm for recognition and motion parameter deter-
mination of general 3D polyhedral objects based on model matching techniques and using Moment Invari-
ants as features of object representation. Results of tests conducted on the algorithm under conditions simu-
lating space conditions are presented.

2) INTRODUCTION:

Many different object recognition and attitude determination techniques have been proposed by
researchers. The earliest ones used the approach of matching the observed image to a library of a fixed
number of views of objects. The limitations of such an approach are glaringly apparent. Among the later
techniques, Richard and Hemami (1] used Fourier descriptors and Dudani et al [2] used moment invariants.
Watson and Shapiro (3] used a model matching technique to identify wireframe perspective views. Their
method is iterative and requires use of a numerical optimization technique. Marr and Poggio [4] have
implemented a stereo reconstruction algorithm which uses geometric constraints to recover surface shape.
Similar range data techniques have been developed by other researchers also. A fundamental limitation of
these techniques is the introduction of restrictive assumptions about the imaged scene in terms of general-
ized cones [5] or in terms of planar and quadric patches [6). Homn [7] has worked on the extraction of shape
from shading, using the reflectance map. This method uses the brightness gradient as the image feature
used in recovery. It is applicable to smooth, uniform Lambertian surfaces. Stevens (8], Kender [9] and later
Witkin [10] have tried to recover shape from texture. This technique and also the shape from contour (sur-
face boundaries) technique presented by Barrow and Tenenbaum (11] rely on the assumption that the world
of objects is regular. Such techniques are limited to smooth-textured surfaces. For some other contributions
see Silcox [12].

Bamieh and deFigueiredo [12] have developed the Moment-Invariants / Attributed Graph (MIAG)
Algorithm in which 2D moment invariants which are invariant under 3D motion, have been used for the
recognition of 3D objects, using an attributed graph representation and based on the concept of model
martching. This approach avoids restrictive geometric assumptions and so offers an advantage over most
techniques discussed above. In its original form this algorithm was applicable for recognition of
polyhedral objects but it could not be used for attitude determination if the polyhedron had symmetric faces
for reasons discussed later in this paper. This limitation has been overcome now as discussed in this paper.

As this technique uses moment invariants as features of representation and these can be computed only for
planar faces, the technique is not directly applicable to the recognition and attitude determination of curved
objects. However we can use other representational features such as the Gaussian and mean curvature and
the attributed graph and model mawching techniques can still be applied.

To implement this technique we need picture information in the form of wireframes. So the picture
from the camera is digitized and converted to wireframe form before applying the MIAG algorithm to it. In
the work currently in progress, the overall process is divided into three parts:

Supported by the NASA coatract NAS 9-17145, the NASA/ISC grant NCC 9-16, and the NSF grant DCR-8318514.
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1) Data acquisition and digitization.
2) Wireframe extraction.
3) Recognition and motion parameter determination.

The first two parts above constitute the image processing/feature extraction stage. The work in this
stage is briefly outlined below.

3) IMAGE PROCESSING / FEATURE EXTRACTION:

3.1) Data acquisition and digitization: Models of various space objects, such as mockups of satel-
lites, the space shuttle and parts of the space station are being used to test the performance of the algorithm.
These models are grabbed by cameras under illumination conditions simulating those prevelent in space
orbit. The pictures are digitized to obtain 2D arrays of brightness values. This is the initial level of
representation in the system.

3.2) Wireframe extraction: Wireframe extraction consists of removing noise from the picture and
subjecting it to edge detection and reconstruction. The input image is lowpass filtered to remove the high
frequency noise. A 7x7 Gaussian filter is used for this. The Sobel gradxent operator is then applxed to the
output of the lowpass filter to obtain an edge detected version of the input image. This image is a grey level
image. It is converted to binary form by thresholding, which also removes some of the noise and thins
down the edges. The remaining noise is removed by median filtering. A length 5 filter was employed for
this. The output so obtained is a noise free, binary edge image. But the edges are thick smears instead of
the fine lines required in a wireframe. A thinning algorithm [13] is applied to this to reduce the edges to
unit pixel thickness, thus obtaining the required wireframe.

4) RECOGNITION AND MOTION PARAMETER DETERMINATIO_N:

The MIAG algorithm [12] is an algorithm of recognition and attitude determination of 3D objects.
We discuss this algorithm in two steps: First, object recognition and second, attitude determination,

4.1) Object recognition: The MIAG technique recognizes a 3D object from its projection on an
imaging plane. The algorithm works for the identification of polyhedral objects. Each face of a polyhedron
can be considered as a rigid planar patch (RPP). Motion of the object can then be considered as motion of
its constituent RPP’s. If it is assumed that the image is formed by parallel projection then if an RPP under-
goes rigid body motion in 3D its image undergoes affine transformations. So the method which tries to
identify an object in 3D motion should use features of images which remain invariant under affine transfor-
mations, General moment invariants are such features. They remain invariant under translation, rotation
and scale changing. Moments are coefficients in a series expansion of the image function, similar to those
in a Fourier series expansion. But unlike in Fourer series where sine and cosine functions are the basis
functions, here the basis functions are polynomials in the image function variables. Thus if the picture
function is f(x,y) its moment is:

Myq = f J xPyIfix,y)dxdy

forp,g=0,1,2... 1T oo e ST

The value of (p+q) is known as the order of the moment. Theoretically, for a perfect description of
the picture in terms of moments, p and q should go to oo . But in the present algorithm moments upto only
order four have been used. This is because the computauon of higher order moments is mcreasmgly

difficult and it was found that picture representation in terms of four moments gives good results in the test

Cases.

These moments have to be computed for each face of the picture wireframe. The picture intensity is
taken to be 1 inside a polygon and 0 outside it. Thus all the picture information is contained in its boun-
dan'es Using this fact, the above surface integral can be changed to a line integral by Green's theorem. For

wireframe which needs to be identified, the moment invariants of each of its faces are computed. These are
then matched to the stored values of the moment invariants of the library objects. If all the moments
corresponding to a face of the RPP match all the moments of a face of a stored object, we can say that the
two faces are similar. For the objects to be the same, not only should the faces be similar but the adjacency
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conditions of the faces and the angles between the faces should be similar. To carry out this matching, the
wireframe is first converted to an attributed graph. Each node of the graph represents a face of the
wireframe. If two nodes are connected by a line (edge) it means that the faces corresponding to these nodes
are adjacent. With each node is associated a feature vector consisting of a set of moment invariants of the
face that it represents and with each edge is associated a scalar which gives the angle between normals to
the two faces it connects. As an example, the attributed graph representation of a cube is shown in Fig 1.

The algorithm works as follows: Suppose we hypothesize that node W; in the wireframe corresponds
to node O; in the model graph. If W, has k nodes adjacent to it, W,...,W,, then O; should also have k
nodes adjacent o it, O,,...,O. The following constraints should be satisfied:

1) W, must have the same feature vectors as O,,,s=1,...,.k.
2) Angle between W, and W, should equal angle between O,, and O; for all s=1,....k.

3) If any two W, s are connected then the angle between them should equal that between their
matching nodes. S

If all these conditions are satisfied, then an admissible matching configuration is said to have been
obtained at nodes W; and O,. If matching configurations are obtained between all nodes of the given
wireframe and one of the stored models, then we can say that the wireframe matches the model. In most
cases, only a small part of the given model needs to be matched to discriminate it against the other models
in the library.

It may be noted that because of numerical truncations and rounding during calculations there may
not be a perfect match between the moment invariants computed for the wireframe and those stored for the
model. So we define a measure of error between the two sets of moment invariants. The moment invariants
can be taken as coordinates of a point in four dimensioinal vector space and the distance between the two
points is taken as a measure of error. If 7}, /,, I, and /, are the moment invariants of a wireframe’s face and

I'y, I'y, I’y and I, those of a model’s face then the distance is:
d=~\U,=1')pi + U= I')pf + Uy - I')Vpi+ U4~ I}

where the p’s are weighting factors. These are needed to equahze the contribution of all four moment
mvanants in the error measure because some of the moment invariants may have values of the order of
107 and others may be of the order of 107", If the value ’d’ is less than a certain threshold (taken 0.01
here), the two sets of moment invariants are taken to be equivalent.

The driver algorithm arbitrarily picks a node W, in the wireframe, then it looks for a node O, in the
model with the same feature vector. If matched, these nodes are marked as a pair. An adjacent i 1mage face
is chosen and the adjacent object faces are scanned to see if one of them matches it. As each adjacent pair
is found it is checked for consistent adjacency and equality of angles between faces. If everything matches
satisfactorily a succesful match is declared.

4.2) Attitude determination: The identity of the object having been so determined, one has to esti-
mate the attitude and location of the recognized object relative to a library standard.

Let (X,Y,Z) be the original coordinates of a point on the body and (X',Y’,Z’) be its coordinates after
motion. Then,

X’ X
YI=R |Y|+T
z A
where
fnrn

R=|rarsrs

7 Ty Iy

is the rotation matrix and
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is the translation matrix. s
Let the corresponding pomts on the image be (x,y) and (x Yy ) Then

[x'jl ~ [r1x+r2y+r3Z+Ax]

Y] [rextrsytrel+Ay
For simplicity let Z=0 i.e. the RPP in library lies in the x-y plane of the object space. Then the above
matrix can be repressented as:

2| Qi Qi [, . |ax
Y| lo? oFf |7 |aY
where

Qll =’1’Q21 =r2,Q12=r4,Q22=r5,Ax=AX,Ay=AY.

All Q’s and A’s can be determined from the moments of the images. To find the rest of the r’s we use
the fact that the sum of squares of any row or column in the r matrix is 1.

From the r’s we can find directional cosines of the rotation axis and the rotation angle as:

d’r, - (ry - r
sind = 2 and cosp = T80
2 —(rg- £5)

where

d=\[(rg—re? +(ry—ry)? + (rg— rp*-

{both sin 6 and cos 0 are needed to determine 6 uniquely). The direction cosines are:
nl=(rg-rg)/d
n2={_ry-ry)/d
nd= ( rg-r ) /d
where d? = (r8-r6)% + (r3-r7)2 + (r-ft—rZ)2
We can also find the translation in x and y directions as: -~ - -
Ax=mg/my ; Ay =my / my
A z is not computable by this method. Also, this method cannot give rotational information for

objects which have an axis of reflection symmetry (e.g. parallelograms, triangles) as the tensors all go to
zero in such cases. So given an RPP whose attitude has to be determined we need to:

a) Check whether any axis of reflection symmetry exists.
b) Check whether it will have any axis of reflection symmetry under any affine transformation.

c) If the face has any axis of reflection symmetry or will have it under affine transformations, subject
it to distortion which removes the axes of reflection symmetry.

The procedures for these steps are as follows:

a) Symmetry conditions for polygons: To check a given polygon for axes of reflection symmetry, we
use the concept of the Voronoi diagram.

4.2.1) Voronoi diagram: leen a set of N points correspondmg to the vertices of the polygon, let x
and x/ be two of the points. Let P( x*, x/ ) be the half plane containing x' that is defined by the perpendicu-
lar bisector of x' x/ . The intersection of N - 1 such half planes, denoted by V(i) is called the Voronoi
polygon associated with p* . Note that the polygons are unbounded. For N pomts there are N such polygons
which pamuon the plane into a net called the Voronoi diagram. The construction of the Voronoi diagram
for a pentagon is shown in Fig. 2.
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Let the vertices of a polygon be x', x?, .., x" where

The points v/ such that

LTI
j_ X +x
VL S

will then be the extremities of the Voronoi diagram.,

Given a polygon its Voronoi diagram is constructed and the points v*/ obtained. For high complexity
polygons it is usually computationally more efficient to use this procedure than to directly evaluate v from
the x* and x/. The symmetry conditions are then determined as explained below.

The symmetry conditions for a polygon depend on whether it has an odd or even number of vertices.

(i) If the number of vertices is odd, the axis of symmetry should pass through a vertex and the mid-
point of two other vertices.

(ii) If the number of vertices is even, the axis of symmetry passes through two vertices or two mid-
points.

For an odd polygon, an axis of symmetry to exist and pass through a point x*, the required condition
is that there exist a set of x’ and x/ (i # k, j # k) such that

< —x/vi—xt =0

such x‘ and x/ will form pairs of points symmetric with respect to the axis through x*.
If there is to be no axis of symmetry through x*, then
<xi-x/vi—xks 20

fori=k,j=k. ’I'hxs is a necessary and sufficient condition to guarantee the nonexistence of any axis of
symmetry through x*. The same procedure is repeated for all vertices to verify whether the polygon has
any axis of reflection symmetry.

For an even vertex polygon, two different kinds of axes of symmetry can exist.
i) Axis passing through two vertices.
ii) Axis passing through two midpoints of vertices.

i) Let x® and x” be the vertices to be checked. An axis of symmetry will pass through these vertices if
there exists a set of x* and x/ such that

i —xivi—x% =0
and
«xi-xivi-xb5 =0
fori=a or b,j at aorb. Such x and x/ pomts will form pairs which are symmetric with respect to the axis
joining x® and x®, If the line joining x and x® is not to be an axis of symmetry then
xf-x/vi-x% 20
or
<ai=xlvi x5 20
forizaorb,j#2aorb. Thns isa necessary and sufficient condition to guarantee the nonexistence of any

axis of symmetry through x% and x® . This procedure is repeated for all vertices to verify whether the
polygon has any axis of symmetry.

ii) Let v# and v™ be the vertex midpoints to be checked. An axis of symmetry will pass through
these if there exists a set of x' and x/ such that



axf—x/vi—yPis =
and
< =iy y™s =0
fori= p.q,rors andj #p, q, r or s. Such x' “ and x/ will form pairs of points symmetric with respect to the
axis joining vP? and v™
If the line joining v# and v™ is not to be an axis of symmetry then
s TATL B N
or

<xi—xly -y 20 N
fori#p,qrorsandj#p,q, rors. Thisis a necessary and sufficient condition to guarantee the nonex-
istence of any axis of symmetry through v?¢ and v” . This procedure is repeated for all combinations of
vertices to check that no axis of symmetry exists.

b) Having verified that no axis of symmetry exists for a polygon, we need to further verify whether
any axis of symmetry will exist under any affine transformation of the face.

The conditions derived above for no axis of symmetry to exist are of the general form
UTv=0
where U and V are two dimensional vectors. Under an affine transformation A, the condition becomes
UTaTav=0

whether this condition w:ll be satisfied or not depends on the nature of U and V ie. on the nature of the
polygon and also on what kind of affine transformation it is subjected to i.e. on A. Thus a nonsymmetric
triangle can be affine transformed to an equilateral or isosceles triangle which has axis of symmetry.

c) If the face has an axis of symmetry as verified in a) or b) then it is subjected to distortion which
removes the axes of symmetry. It has been found that while for any particular distortion there always exists
an affine transformation that would yield an axis of symmetry, if the polygon is subjected to two separate
distortions which are antisymmetric with respect to each other, there exists no affine transformation which
yields axes of symmetry for both cases. If these two distortions are referred to as D, and D, , then the pro-

cedure consists of subjecting the polygon to D, and checking it according to a) and b) to see whether it has

any axis of symmetry. If it does it is subjected to D, and by the above argument it will not have any axis of
symmetry,

It has been found that polygons with three or four vertices can always be affine transformed to sym-

metric polygons. So a minimum of five points are needed to obtain a nonsymmetric polygon. A technique
has been developed whereby it is not necessary for all the five points to physically lie on the polygon. If we
have three points on the polygon, the other two points can be obtained as functions of coordinates of these
three points. This is shown for a triangle in Fig.3, where P, , P, and P, are points on the triangle (its ver-
tices) and Q, and Q, are artificially created points. The five points should be positioned such that the
polygon formed by them is the distortion D, or D2 referred to above. Two such distortions are shown in
Fig.3bandc. e _ -

4.3) Expenmental Results: Flg 4 shows certain objects that have been used to test the simulation
of the MIAG algorithm. Fig.5 shows the output of the program for recognition and attitude determination
of an object under two different orientations. Fig.6, 7 and 8 refer to certain physical objects that have been
used to test the MIAG algorithm. These objects are a simple polyhedral structure, a space shuttle model
and a space station model. These fi gures show these ObjCCtS and t.helr t.hmned w1reframes

5) CONCLUSION:

The MIAG a]gomhm has been extended for the atutude deterrmnauon of general polyhedral objects.
The algorithm has been tested under conditions simulating space conditions and the results are presented in
this paper. Work is in progress to extend the algom.hm to the general case of recognising and localising any
general object. -
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Space Shutde [-Beam

T-Beam L-Beam

Cube

Fig.4 Examples of objects used to test the MIAG algorithm

-10-

|l ww o« e L 1]

L [T

I

[

I )
Il




{

Fig.5 Examples of Recognition and Attitude Determination using MIAG Algorithm

roll = 45
pitch = 45
yaw = 45

Matched to cube

Match correspondences are:

Wireframe face # ---> Model face #
0 --=> 0
1 ~--> 1
2 ---> 4

roll = 90
pitch = 30
yaw = 90

Matched to cube

Match correspondences are:
Wireframe face # ——-> Model face #

0 --=> 0
1 -=—> 1
2 —-==> 5
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Fig.6 Space Shuttle
Fig.7 Polyiiedral Structure

Object ---> Edge Detector Output --> Edge Thinning Output
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Invited Paper from the Proceedings of the 1987 IEEE International Conference on Robotics and
Auwomation, Raleigh, North Carolina, March 30-April 2, 1987.

ROBOTIC VISION/SENSING FOR SPACE Al’PLICA'ﬂONS+

Kumar Krishen *  Rui JP. de Figueiredo **  Olin Graham *

*Tracking and Communications Division, Code EE, NASA/Johnson Space Center,
Houston, Texas 77058

**Electrical and Computer Engineering Depanment, Rice Univenity, Houston, Texas 77251-

1892

umofdfmummdymmmahNASNJohnnnSp-a
Center and at Rice Umniversity, the accomplishments t© date, and
some of the anticipsted future developments. Bod:lymnd
algorithms are discussed. The esvolution of future 'sensing is
projected to include the fusion of multisensors ranging from
microwsve to optical with multimode capability to include position,
nnmde,mogmuon.ndmonm‘!b .onﬂ:m
information extraction would incorporate aspects of intelligence
knowledge for the interpolation and extrapolation of the needed
daza The key festures of the overall system design will bs small
size and weight, fast signal processing, robust algorithms, and accu-
rate parameter determination. These aspects of vision/sensing will
also be discussed in this paper.

1. Introducdon

The major space program for the next decade for the Uniwd
States is the NASA permanenty manned Space Station. The Space
Snuoumﬂheamﬂu-purpouftuhlymd:udsdouwhd:mu

snd robotics (A&R) for the establishment and operation of the
Space Station has been stressed by the Senate Appropristions Com-
mittee (SAC). During 1984, SAC required that NASA establish an
Advanced Technology Advisory Committee (ATAC) w0 identify
advanced sutomation and robotics technologies for the Space Sta-
ton program. These directives reflected the visw of Congress that
the Space Station program should not omly incorporate advanced
A&R, but should also use this opportunity to stimulste nadonal
development of these technologies.

t Some of the work reported bere was by NASA contract
NAS 9-17145, the NSF grant DCR-8318514, and the ONR conract
N00014-85-K-0152.

TheuseofA&RfmdnSpneeSmonpromcanbemwed

operational capability, and fiexibility. The 1985 ATACrepon[l]
contzing 3 comprehensive smnmary of the goals that should be pur-
wed for the initial sation (Table 1) and the msture station, pro-
Jjocted for year 2010 (Table 2).

The dominant aspects of the technology for A&R are that it be
lightweight, small in size, highly reliable, and multifuncton. Soft
docking with the Spece Station can provide an example of the
advanced tachnology needed for robotic control {2). T'hemnonu

WMWuWWW
ing a high level of stability would be severely impacted. Hence,
mdhdmbodcbethngmmdmmwﬂlm
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A simplified schematic which shows the functional elements

precision/accuracy of the data
nseded will depend on the nsture of the task 1o be accomplished.

It should be poiosed out that vision is a ol that has broad
spplications extending beyond robotics/sutomation. Vmou‘u

The evolution of vition systems ssems © have been dictated
by the need for quality inspections and productivity improvement.
Early vision systems were cameras whose data was fed o 2 com-
puter. Algorithms in the host processor/computer determined the
necessary scane/object which were needed for controll-
ers for various actions. In the 1970°s this approach to vision was
successful in many industrial spplications; however, it was too

resolution, sense color, and provide locaton and orientation data
became obvious. In the latest versions, inelligence is another
feature added to the list.
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Table 1. Proposed Goals for Automation and
Robotics Applications, Initial Space Station

Automation

Electrical Power

Controllers enhanced by expert systems for
- Load distribution and switching

~ Solar array orientation

= Trend analysis

- Fault diagnosis

Cuidance, Nsvigation, and Control

Expert system for

- Station attitude control

~ Experiment pointing

- Orbitsl maintenance and reboost
= Rendezvous navigation

= Fault diagnosis

Communication and Tracking

An executive snhanced by expert systems for
= Communication scheduling

- Rendezvous tracking

~ Data rate selection

=~ Antenna pointing

¢ Information and Data Management

An executive enhanced by expert systems for
control of

= Subsystem statusing

= Trend analysis

- Fault diagnosis

= Redundancy and configuration management
= Data base management

o Environmental Control and Life Support

Controllers enhanced by expert systems for
= Trend analysis

~ Fault diagnosis

- Crew alarm 7

- Station atmosphere monitoring and control
= Hyperbaric chamber

Robotics
Teleoperation of mobile remote manipulator with
collision avoidance

Mobile multiple-arm robot with dextrous manipulators
to ingpact and exchange orbital replaceable units

Systems designed to be serviced, maintsined, and
repaired by robots

Table 2. Proposed Goals for Advanced Automation
and Robotics Applications, Mature Space Station (2010)

Automation

o Propulsion

An intelligent controller for
= Fuel distribution and management
= leak detection and evaluation

Electrical Power

An autonomous intelligent controller for
- Powver mansgement

- Fsult detection and isolation

= Haintenance scheduling

Guidance, Navigation, snd Control

An intelligent controller for

= Fully automstic rendezvous and docking -
Space traffic control
Remotely piloted vehicles

= Collision avoidance

Communication and Tracking

An intelligent system for

- Automatic plamning

~ Tracking multiple vehicles

- Schaduling bulk dats storage for comsuni-
cations blackouts

- Detection, identificstion, and character-
ization of genarsl targets _

Informstion snd Data Management

An intelligent systea for
= Fault detection, isolation, and repsir
= Natural language interface with crew

A data base manager for
- CAD/CAE bulk data storage facility
= Retrieval and routing to requestors

o Environmental Coentrecl and Life Support

Ao intelligent controller for

= Ensuring fail-safe/fail-operationsl modes
Fault detection and isclation

Chemical snalysis of air and vater

Toxic gas analysis

© Habitability

An intelligent system for
- Health maintenance

- Spesch interpretation and synthesis
- Physiological monitoring

= Automsted medicsl decisions

= Trend analysis

0 Structures and Mechanisms

Advanced work station
Intelligent actuators
Teleoperators

o Orbiting Platforss

An intelligent systeam for

- Process control

= Maintanance control

- Planning and trend analysis

Robotics

Inspection, maintenance, refurbishment, and repair
Fuel and materisls transfer

Detecting hazardous leaks

Satellite retrieval and servicing
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As the new ers in robotics dawns, the 3D scene/object descrip-
ton, along with location, orientation, and motion parameters, will
be needed. Multisensor capability is deemed essential in order to
have the daws for the determination of these parameters. Sensor
complements may include both microwave and optical with diverse
modes. The fusion of these sensors for the mensuration of various
parameters in an efficient manner provides by far the greatest chal-
lenge for the organization and use of partial or noisy information in
8 coherent manner. The compression, storage, and transmission of
the information associated with multisensor capability require novel
tlgorithms. Finally, both in the single- and multiple-sensor cases,
the peed for s dramatic increase in processing speed to achieve
real-time vision sensing goals will constitute an important con-
sideration in hardware design and development. Current efforg to
develop highly parallel multiprocessor arrays, pipelines, and other
sppropriate network configurations for this purpoose represent a
step in this direction.

In this paper, the requirements for data are viewed from the
spplications standpoint. A revisw of the systems aspects of
vision/sensing is provided. The progress in the ares of algorithm
development is summarized. Additonally, new concepts in the
aress of sensor and algorithm development are elaborated.

Z. General Requiremenis for Space Vision/Sensing Applica-
ns

OneofthzﬁmﬁmcﬁomdmhsheenplmnedforduSpwe
Station is the assembly iself. This can involve mating structures,
bolting, locking, and forming joints in the swucture itself. An
option for the assembly of the structure is the use of Shuttle Remote
Manipulator System (RMS), controlled either by astronsuts during
Extra-Vehicular Actvity (BVA) or those in the cabin (Figure 2).
The initial vision system could be remote TV cameras with the
prime function of providing imagery for inspection. As time
proceeds, the assembly processes could involve Orbital Maneuver-
in;Vehicle(OMV)wid:mbodcmmdmfavhion.m
pnmumnblycouldinvolvemdmnaspotweuing.elmnbem
Wdingforeonﬁmwujoimmdndfomxﬁon.loaliudli;hx
forming, and precision light machining. Such functions will need
dnmdcimptovcmeminunﬁngmdpemp_ﬁonmwhimmm
mechanical control and mositor the performance of the OMV. The
wrmilityoflbOMVanheincrundbyinmd:ngingtpedﬂ-
ized lightweight end-effectons [2). Ultimately, in the distant funmre
(yw?.OZO).mtonomo\umboueonldbenndbulmbhdenﬂed
structures in space. hh&uppﬁuﬂommmuuiueuﬂd
invdvemzinzndidenﬁﬁuﬁon.uwllumoﬁonmnimﬁu_

Inthemofiuspxdon,ndmwce.mdnpaif.mny
tasks must be performed. Inspecdon will include mosnhoring
Mmﬁlw.hm.mmoﬂndnm.mmmmm

Mm.dwthubu.mm.powtym.ud
aging composite materials. Initially, they could be done using
MobﬂekMSMMS)ondnSpusSuﬁcn(HmZ). In the dis-
tant furure, the inspection/maintznance/repair functions would be
highly sutomated and contimuous (Figure 3). This would mean that
the robots have to be versatile and adaptive. The vision sensors for
d:ueopenﬂonsdmﬂdincludelmlmgeofmdn;whid:h
independent of natmral light. Many servicing functions such as
refurbishment, resupply, refueling, cleaning, and storing human
umnanddebﬁs.lndnplmemofbmﬁumdbemmlud
with minimum vision, involving only the video sensors. However,
most of these wmsks require docking/berthing which, when
mmud.amﬂdbemdefwndmble.'mhopemionanbe
made economical by choosing a vision system which is accurate and
very fast.

A major thrust for uslization of space environment is
manufacturing. Many processes have been envisioned for micro-g
stable environment, which can yiueld unique products hard or
ikmpossible to manufacture on earth, These processes are long
duration, need relatively contamination-free eavironment, can be
dangerous to humans, and/or require disturbance-free surroundings.
Thus, it is either mandatory or desimble that sutomated
system/robots provide the servicing and maintenance of these facili-
ties. General Electric, in a recent review [3], recommended tha: the
manufscturing facility to able to perform slicing, polishing, clean-
ing, sawing, separation, ion implant, photo resist, annealing, E-
beam direct write, and reactive ion itch. One opportunity is to pro-
duce computer chips from hazardous material gallium arsenide for
super computer systems. The critical limitation on the vision sen-
son imposed by the mamufacturing task is small size. In most cases
the need for vision will arise for human mogitoring purposes. Thus,
ldism‘buwdsymcpmdmmehbomoxymidnbewqdmd
to cover all areas. For the robotic end-effector, in addition to small-
nus.uhighlymmdhighmoluﬁonlymwiubemqmmd.

For the direct conrol seleoperator systems, the primary func-
tion of robotic vision it to provide information about the position of
the object relative to the system’s effector (Figure 4). In a direct
conmolled teleoperator system, some subfunctions may be allocated
o the human Purthermore, the object identification can be
delegated to the uman After the description is given by the buman
[4], the machine generates a mode! from the observed video image,
This model uses 2 generic description from the data base. The pat-
tem parameters derived from the video-based model provide the
necessary information to generate the end-effector position com-
mand (Figure 5).

In & goal-directed teleoperasor system, reliability and Bexibil.
ity have o be provided, with which it searches, identifies, and
locates parts based on existing data base. The CAD/CAM type
infomnﬂonnddimcdmmmvidedwidﬁnhuleop«mrm-
tem. hhmofhﬂdmmmm,mmﬁmdobjea
identification and position data must be entered manually. In a
higher leve! goal-directed teleoperator system, the operator supplies
goals. Mgoahmdnnbmbninmmhbyhknowledge
based CAD/CAM information regarding the processes involved.
Complex tasks are broken into simpler commands which are ezxe-
¢uted using known rules and sequences. In such a system, a con-
tinuous daa flow must be maintained from the vision sensors. The
location data should not only identify the object but also the
position/motion parameters of the end-effector st each instant of
time or successive step in the accomplishment of the task.

In general, for the auzonomous robotic systems, three levels of
information are needed. These levels pertain to the scene/world in
which the objects are located, the objects themselves, and specific
pars of the objects. In most tasks an envelope of parsmeters can be
preprogrammed into the system. PFor example, in docking and
berthing applications the robotic vision/sensing may be needed
within a cone of, say, thirty degrees © a distance of 50 meters.
Beyond this spetial zone, a radar system may be used for the
tracking/motion monitoring. The levels of information depend on
the application involved. As an example in the satellite servicing

~ ares, the vision/sensing system may have to provide the necesaary

information to guide a robov/astrobot to a partcular area, say, an
antenna feed. The satellite could be rotaring and translating simul-
taneously. Purthermore, the antenna could be gimbaling with a cer-
tain motion. In this scenerio the data would not oaly include a 3D

--—dynamic description of the target/object but also its position and

rotstional parameters with respect o the saellite. To accomplish
this, algorithms are needed for the parameter estimation. The
vision/sensing instrumentaiton in this case would not only involve
fixed field of view video systems, but laser/millimeter wave radars
which could be slaved to the antenna feed motion. Doppler signal



processing at microwave or optical frequencies can be used to sense
moving parts within 2 scene. The implication on the vision/sensing
systems is clear; several sensors are needed to complete the basic
information peeded for an autonomous robot. Clearly, for space
applications, the size, speed, and weight parameters are of
paramount importance.

Autonomous robot performance depends crucially on the
vision capabilities. In certain operations, bumans can be surpassed
by robots based on the memory and vision. The use of color and
polarization in future will become increasingly important, since
varistions in these parameters are related to centain scene features.
General application areas for machine vision are given in Table 3
[5].

Measurement Sample

Category Application Thrust
Location Robotics/Ranging Where
Identification  Assembly/Inspection What
Recognition Sorting/Picking Which
Inspection Quality How Good/Accurate
Gauging Industrial Control How Large/Much
Counting Inventory How Many
Motion Ranging When/Where

Table 3. General Application Categories for Machine Vkéon

The vision extention to shadowed and occluded regions is
important in many applications. The illumination intengity varis-
tions along with shadows can, in cerain applications, be used to
determine object shape, a5 well as an estimate for the relative
motion berween the camers and the object. Mathematical models,
coupled with real-time imagery, can be used to derive these parame-
ters. Structured multi-spectral lights can be used to derive the 3-D
description of the target. Associsted with the sensory data is the
need for computer architectures [6] which provide high-speed pro-
cessing, panllel computations/algorithms, associative memories,
and intelligence. The transfer and reduction of the sensor data can
be facilitated with the implementation of a communications subsys-
tem.

The vacuum of space makes the scattering of light more
dependent on the surface geometry and properties. The usual
illumination cansed by diffraction associated with the reflaction of
light from objects on earth is negligible. This phenomenon yields
pronounced shadows and specular points for space-acquired images.
Another detail that should be taken into sccount is the thermal pro-
tection system (e.g., thermal blanket) which obscures direct visual
detzil of electronic and other systems requiring such protection. In
addition to this, occluded areas also exist in the scenes to be sur-
veyed In view of these environmental constraints, space
vision/sensing systems should provide a mode independent of sun-
light To achieve this independence along with penetration, struc-
tured optical illumination and microwave sensors might be con-
sidered. For this mubiple source illumination, the wavelength,
intensity, polarization, field of view, and angies of incidence must
be chosen for a particular scene parameter (Figure 6). These imple-
mentations will ensure sppropriate enchancement of texture and
dependence on scene color necessary for certain robotic tasks.
tations which result in these being unable w0 provide
data/parametets needed for autonomous robots to  have
perception/reasoning. These limitations include problems with sha-
dows, occlusions, high contrast, low resolution, 2-D models, rigid
bodies, and viewing from a fixed viewpoint. In addition to these,
cost-effectiveness, speed, small size, lightweight, high reliability
and flexibility, and ease of operation must be considered.

. Non-Comet Sensors Jor Data Collection
In robotic vision systems elecromagnetic energy emitted or

" reflected by an object is received, converted/mansduced, and finally

processed. Transducing usually converts received energy into
electrical signals, and processing transforms those signals into
parameters needed for perception. This perception then allows the
robot to execute a function. Processing can be accomplished in two
steps: that of preprocessing, which involves
compensation/corrections for various hardware characteristics,
enhancement, selection, and decoding/decompression; and that of
analysis/inzerpretation. The latter step is carried out with specific
algorithms to extract the required information. .

In the initial vigion systems, NASA anticipates the use of
stereo televisions for label/feature based object recognition [7].
NASA's television program from Apollo through the Space Shuttle
programs has been one of high crew and ground participation and
control. The sophistication of work to be performed either by teleo-
perated or autonomous robots points out several limitations of these
systems. These limitations surfaced during the Solar Max Satellite
repair, when shadowed surface could not be approached, and the
movement and grappling of the Solar Max were severely restricted
because of limitations with the manual television camers light level
controls. Several modifications are now being developed at the
Johnson Space Center (JSC) for future space television syswems.
These include predictive auto focusing, programmable predictive
scene control with auto zoom, gamma, and iris, automated or voice
control pan, tils, and pointing capability. Breadboards of these sys-
tems are currently under evaluaton at JSC [Figures 7, 8]. The
development of illiminarion systems for emhancing image quality
and extracting shape from shading is also being pursued at JSC
[Figure 9). This development is guided by analytcal
methods/algorithms discussed in Section I'V.

One of the problems in accurate recognition of objects in
space is the Earth background. Spewnmmenurememsnkenn
NASA/JSC [Figure 10] show absorpton bands in the near-infrared
region. The unplememon for the video utilized charge injection
devices (CID) w avoid image blooming with optical load compared
to charge coupled devices (CCD). The CID sensor (GE TN2505
camers) has adequate responsivity at the 0.94 um wavelength. This
wavelength provides a water absorption notch. Thus, in space this
sensor will be earth blind. The caiculated attenustion in absorption
for 8 0.04 um band is 21.6 dB. The intended use for this sensor in
space is pointing and following an object in motion. For this pur-
pose an 8-bit microprocessor is used to control the adaptive system
[Figure 11). This unit has only 2 kilobytes of random sccess
memory (RAM) and 2 kilobytes of read only memory (ROM) which
is switchable to 4 kilobytes [8]. The system parameters which can
be varied include camera sensitivity, digital filtering, video thres-
hold, and zoom lens senting. The incoming infrared enhanced video
is compared to an adjusuble threshold, which is varied under the
microprocessor control, 1o generaiz a serial dam stream. An ade-
quate digital filter is used to remove high frequencies from this data
sgeam. The data is then applied to two coulifers: one countet sCtu-
mulates the number of pixels above the threshold, which provides a
measure of the total area of the object; the other counter is used to
count only on the left side of the object in the scene and provides
the .area on the left side of the scanned area. In a similar way the
ares is also measured in the top half of the scanned ares. These
sreas are compared to maintain the object in the ceater of the field
of view. This procedure then resulis in providing commands to the

pan and tilt unit. 'l'hepumnﬂmaﬁacthdynmmdnm:
terisnu of the tracking system can be selected for optimum stability
snd response,

Another advancement in space TV operation incorporated at
ISC is the voice conerol [9). The imitial Voice Control Sysem
(VCS) has the following performance parameters: (1) isolated and
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continuous speech recognition, (2) 200 word vocabulary (at 1.2
sec/word), (3)two person support (3rd optional capability),
(4) user-trained (dependent recognition) for high accuracy, and
(5) syntaxing capability. This system [Figure 12] will be tested
onboard Shuntle and has been made to connect with the Shunle
Audio Distribution System and existing headsets. The system
allows complete hands-off control of CCTV functions including:
(1) monitor selection, (2) camera selection, and (3) pan, tilt, focus,
iris, zoom, and scene track  Puture use of voice for TV sutomation
has been projected for the Extra-Vehicular Activity (EVA)
astonsut. In this application the astronaut can ask for Heads Up
Display (HUD) of vital data from the Shuttle computers. These data
can include system parameters, orbital parameters/location, system
stams, and particular subsystem data [Figure 13]. In the robotics
application, these systems can be incorporated using synthetic voice
commands,

The need for video system data to be able to interface with

digital processors/computers has gives impetus to digizal TV tech-

nology. For greater relisbility, solid state imagers with sensor sizes
512 x 512 and 1024 x 1024 are being designed. Purthermore,
recognition/preprocessing algorithms cap be implemented on the
same electronics chips making the size of these video imagens
l'nnll. These technology innovations are also simed st high resolu-
tion systems. As this technology is moving forward rapidly, the
need for handling and transmission of high data rates is becoming
obvious. For a video system at 5 MHz baseband, an eight bit digiti-
zation would generute 80 MBPS data stream. For color TV imple-
mentation and multiple systems, this bit rae can mulskply
sigmfxcanﬂy. For real time processing of this data, compression
techniques have been proposed. These compression algorithms can
be hardware implemented using VLSI and VHSIC circuitry, The
algorithms must be sutomatic and transparent to users, not desgoy
or discard any relevant information, and compress and decompress
data at speeds significantly higher than sssocisted device data
transfer speeds.

Fourier optical processing offers a method of high spesd paral-
lelglomsingofdmneededmaxpponnmmm'onmdmbodu
_apphcaxions [Figure 14]. The inherently parallel nsture of optical
information processing, coupied with the easy and natural opticsl
_Fourier transform and the programmable masks, can obviate mumer-
ical processing for many applications. The masks are used to modu-
late the optical Fourier transform of an input scene [Figure 14]; an
optical retransform then sliows direct detection of, say, the
mathematical correlation between the viewed scene and the refer-
ence image, the mask of which is placed at the location of the opti-
cal Fourier transform. In this manner any image computation that
can be cast in the form of correlation or convolution between object

and reference images can be approached with optical processing.
Programmable masks are yet in the rudimenary state. Texas Instru-
mexnts, under joint sponsorship by NASA/ISC and the Armry Missile
Command, has fabricated a Deformable Mimmor Device (DMD)
which is under test and further development at this time. The per-
formance degradation caused by optics and diffraction/scantering
effects is being studied, and i to compensate thege
effects are being developed. Another ares of extendon is fiering
with a coatrolled amount of scale and rotation invariance for use in
the control/docking spplications. Furthermore, Johnson Space
Center has designed a high-speed special-purpose geometrical
remapping image processor. The device is in manufacture by Texas
Instruments; delivery is expected in Fall 1987. Insensitivity to scale
and rowtion of a viewed object will be the resuit of one form of
mapping, allowing one to use only spatial displacement in tracking
the object. The elimination of scale and rotation dependence greatly
increases the speed of the vision system for its use in a control net-
work. Experiments with various mappings will result in the design
of VLSI cameras whose receptor panterns are best suited to drive a

subsequent optical correlator.

For the 3-D vision, laser scanning devices providing range at
each point of the target are being explored at NASA/JSC. A matrix
of angles/position and ranges within the field of view provides
depth/height profile of the object. These measurements can be com-
bined with the video reflectance measurements o yield a 3-D real
time visual definition of the target Two technology implementa-
tions of this solid state laser vision device currently available are
those using mechanical motion of the mirrored surfaces, and those
that involve an inertialess change in the optical properties of a tran-
sparent medium. The lanter class includes diffraction of light from
an acoustically generated periodic strucrure. Phased-array solid
state scanning devices are currently being developed. These devices
can provide fast, sccurste, and lightweight laser vision. The data
from laser vision devices can also be used for automatic zoom/focus
control of video systems.

The lager vision measurements are dependent on the intensity
of reflected radiation. If coherent radiation is used in order to gen-
erate an image of the object information from the amplitudes, as
well as the phases of the scattered radiation, a 3-D reconstruction of
the object can be made. Such devices are known as holographic
devices. The source of coherent radiation can be a solid state laser
that can in principle provide a resolution of the order of about 1 um.
Parnt of the radiared beam is deflected toward the detector [Figure
15}, where it interferes with the backscattered light from the object.
The hologram can then be genersied using known reproduction
processes, or a three dimensional description of the object such as a
Fast Fourier Transform (FFT). Several applications of holographic
scanness have been discussed by Sincerbox [10). Some of these are
directly applicable o space robotics systems.

Microwave systems have been used to detect relative speed of
objects and their range in many applications. Their use in space
robotics applications is being smdied at NASA/JSC. In particular,
millimeter wave radars provide auractive performance parameters,
in addidon to their small size. The possibility of broader beam than
laser systems makes these sensors annactive for initial acquisition of
moving objects. A radar st 100 GHz has been developed st
NASA/JISC {11]. This particular system is for use on a Man
Maneuverable Unit (MMU) to provide relative range and velocity to
the object [Figure 16]. The radar is designed to operate over the
range of speeds from 0.1 to 2.0 fps. This type of radar, operating at
seven carrier frequencies, can be used o measure backscaumering
coefficients for various polarizstion combinstions. These
coefficients are object structure dependent There is also possibility
of penetration through thermal protection and obscuration caused by
ponmetallic objects. This data can be utilized in an iterative manner
with that of the video systems o provide scene
definition/parsmeters in certain situstions/scenerios.

IV. Algorithms for Information Processing

Robotic vizion, a3 it is generally applied at present, is mainly
based on video-scquired data. The acquisition of this data wkes
plweinthefomofﬁmewquneuofimngaobninedbyoneor
more vidicon or solid state camerss. In this process, A/D conver-
sion, image arithmetic (e.g., addition/subtraction of two successive
images), and formation of pixel space constitute steps usually taken.
Both 8-bit gray level and 8x8x8 bit color systems are commonly
used. However, the resolution and linearity achieved by the state-
of-the-ant camers are somewhat limited. To compensate for this,
many cameras are needed in some industrial applications. PFor
example, one sheet metal side rail inspection system uses over three
hundred camerss [S]. The corresponding images are patched
together into a super pixel space. :

Image scquisition is followed by several stages of informa-
tion processing, namely (i) image preprocessing (filtering,



restoration, and enhancement), (ii) feature extraction (e.g., extrac-
tion of centroids, perimeters, and areas of paiches in the image,
Gaussian curvature from the shading on these patches, min/max dis-
tances, edges, corners); (iii) Object recognition/classification ; (iv)
estimation of motion paramesers of these objects (position, velocity,
attitude, and awitude rae), and (v) image undersiandingiscene
interpretation

Active research in vision information processing is being pur-
sued at various cenmers in this country, and has been widely docu-
mented in the literature (see, e.g., [12]-[17], [30] and the references
therein). In what follows, we highlight the basic philosophy and
thrust of some of the algorithmic work currently in progress at Rice
University. This work is being carried out at the Computer Vision
Research Laboratory. The equipment used in this research includes
a sysem of solid state cameras such as the Hitachi KP232 with
acoessories, connected to Series 100 Imaging Technology circuit
boards, and from these to a SUN Microsystems 3/160 color works-
tation and a VAX 11/750 minicomputer with several peripherals.
Cardboard and plastic models of space objects, such as satellites, the
shuttle, and parts of the space station (see Fig.17) are being used in
a studio eavironment, under controfled illumination conditions, for
generating the laboratory data needed to provide insights for algo-
rithmic development. The final testing of the developed algorithms
will be carried out on the computer vision testbed (Fig. 9) at the
NASA/Johnson Space Center menrioned earlier.

The main points of view on which the algorithmic work at
Rice is based as well as some of the developing results are now
listed below:

(i) Model-Based Approach: In most space scenarios 85 well as
in industrial environments, the objecs being viewed are unlabeled
objects from a library of known and precisely defined objects. So in
our algorithmic work, we assume this to be the case, and attempt o
capitalize on it to reduce the hardware requirements and the compu-
tational effort needed to execute of the 3D vision functions
executed by a robot, as indicated in (ii),(v) and (vi) below.

(ii) The FIAG and MIAG Representations of 3D Objects:
We define a rigid 3D object n by the surface S(n) bounding it
We assume S(n) to be piecewise smooth and satisfying conditions
which permit it w be represented a5 2 union of smooth surface
paiches or “faces” F, F3, .., Fy. (See Fig 18 .) The boundary
of each face F; consists of & closed contour C; , the umion [ C;

of all such contours constituting what we call the "3D wireframe”
of the object 7. This allows the symbolic representation of the
object N by an auributed graph G(n) (which wraps around S(n)
), the podes N;,i=1,.., n, and the links ¢;,imi,j=1,.., &,

of G(n) the connectivity between adjoining faces F; and F;. Let

an m-vector liw col(l{,..,1%) mepresent a set of atributes
(features) associsted with the face F; which are invarian: under
3D uanslation, scaling, and rotation. Examples of such /' are the
ses of numbers expreasing the Gsussian curvature of mean curva-
wre of F;. We call the atributed graph G (n) obeained from
G(n) by asaigning to the nodes N;,i=1, .., n, respectively, the
awribute vectors /i, the FIAG (Festure-Invasians/Attributed-
Graph) representation of the object m. A special case of this
representation is the MIAG (Moment-Invarianty/ Anributed-Graph)
representation of polyhedral objects proposed in [18], in which n
constitutes 8 set of 2D moment invariants of F; (these being
ipvariant with regard to 3D transiation, scaling, and translation).
(See Figure 19).

(iil) Wireframe Extraction: For the utilization of the FIAG
and MIAG representations (see (v) and (vi)), it is necessary to
exmact the 2D-wirgframe W (f (M) =W (f) of the image J of
n. W(n) is made up of the set of edges in f . In order to extract
W(n) , & number of operations have to be performed on the aw

image data. These are Gaussian 2D fileering (to remove noise),
edge detection by application of a (3 x 3) Sobel operator followed
by thresholding (horizontal and vertical), median filtering (to delete
spurious edges), edge thinning, and model-based reconstruction to
recover missing segments in W (n).

(iv) Wireframe Labeling and Its Anributed Graph Represen-
tation: W(n) is labeled by an algorithm [19] in which each mesh
of ML of W(n) is traversed clockwise and the outer loop counter-
clockwise. This algorithm also determines the adjacency of the
regions R; enclosed by the meshes M; . The regions R; defined
by W{n) correspond respectively to the visible faces F; oo S(n).
Also, in the polyhedral case, the moment invariants of R; are the
same as those of F;. Thus, in this case, a MIAG representation
G(f) can be obuined for f, based on W(f), and cleadly G (f)
is a subgraph of G (n).

(v) 3D Object Identification from a Single Image: It follows
from lhe preceding that the identification of an unlabeled object 1
from its image f is achieved by obtaining G(f )and marching
G(f) t a subgraph of one of the graphs G (n'),i=1,.., N, ina
library of models jn‘ } by a subgraph isomorphism algorithm [18].

(vi) Motion Parameter Estimation with a Single Caméra:
Using sppropriate camera calibration, all the motion parameters,
except for a scaling factor, can be measured by means of s single
high precision camera. For this purpose, there are basically rwo
model-based methods available: One, based on the contraction of
the moment tensors of a surface pawch of the model and its image,
determine;s the amtitudes vector @ (raw, pitch, and yaw) and amitude
velocity 8. (See [18] and [20] for dexails.) The other, based on the
comrespondence (assumed known) of eight points on the image f
and eight points on the mode! 1‘ (assumed located and oriented in
a standard position), yields all the motion parameters (position,
velocity, attitude, and attitude vector) except for a scaling parame-
ter. This second method has been extensively discussed by
Longuet-Higgins{21], Huang[22], Hamalick[23] and others. Our
contribution to the second approach is the ability o establish the
point corres, needed for it by obtaining G(f) from f and
matching G(f) to a subgraph of G (n) along the lines indicated
earlier.

(vi) Application 1o Stereovision: The approach just men-
tioned can also be used to establish the point correspondence needed
for stereovision. .. . B

The model-based approach proposed in the above paragraphs,
even though not fully investigated, appears to offer two advantages:
First, it reduces the hardware by using oaly a single camena for
identification and for most of the motion parameter estimation of &

moving object. Secondly, the stributed graph representation and
subgraph matching proposed here avoids the computational effort
and problems inherent in the probablistic search associated with the
nmchéng at the feature level [30].

(vii) Hlumination: Shape from shading algorithms are
expected to play a significant role in the analysis of space scenes
becauge light scanering from space objects strongly depends on
their surface due 10 the prevailing vacyuum. The characteristic strip
expansion methods [16,24] have sevenal shortcomings, including

sensitivity to measurement noise and a tendency of adjscent charse-
teristic strips to cross over each other, due to accumulation of small
mumerical errors. Finally, the procedure is not amenable to imple-
mentation in parallel form. The variational method [24] that uses an
object’s occluding boundaries as cues to the recovery of its shape
from shading alleviates these limitations. The blending of concepts
from variational calculus with those from the best approximation
theory can lead to spline-based solutions for the gradient functions
determining the local surface shape orientation, as obtained in [25].
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(viii) Surface Reconstruction: Algorithms for surface recon-
struction from sparse range data can be of value in providing vision
to teleoperators. The reconstruction of a surface can also be used as
an intermediate step in extracting surface features for machine
recognition. Mathematical analysis [26], differential geometry in
particular, as well as formal language theory (in syntactic/semantic
shape description) can play a significant role in surface reconstruc-
tion algorithms a5 indicated in [27].

(ix) Sensor Fusion: The fusion of data from more than one
type of sensors can be of value when any one sensor cannot capture
the full information needed. Algorithms for fusion of microwave
and video data introduce significantly the wave equation scattering
theory into robot vision [28].

(x) High level processing: Apart from techniques based on
geometric models, which have been discussed in the previous sec-
tion, current efforts on machine vision explore Al techniques.
These are based on symbolic scene descripdon. Such a descriprion
ensbles one to transform the image into kmowledge which can be
utilized in the conditioning of the action and the behavior of a robot.
Thus scene understanding can be viewed as & reasoning process
based on visual data. This can consist of common sense
reasoning, for which the knowledge is wide and shallow, and expert
reasoning, based on the narrow and deep kmowledge of expers. A
recent effort has been directed toward a frame-based approach to
model common sense reasoning [29). Object-oriented programming
is partcularly suited for implementing such an spproach. In addi-
tion, parallelizing the frame manipulation in image understanding
appears to be promising for a real-time solution and it is under
investigation.

V. Proposed Future Developments

As was mentioned earlier, the interaction of natural light with
the objects in space has to be accounted for in the algorithms.
Furthermore, methods for antificial lighting have © be developed
which can provide structured (known distribution) light across the
object. The pronounced shadows and specular points due to the
vacuum and smooth parts of the object, provide s large dynamic
range of the reflected/scantered signal. The intensity changes can be
in the 10' range. The addition of aricifial illumination provides
the opporwnity to control imensity, wavelength, polarization, and
orientation with attendant advantages of increased recognition and
shape estimation capabilities. Additionally, color will be another
discriminant involved in the algorithms. Analytical studies in these
areas should lead to the design of illumination systems for space
applications.

The use of laser vision and microwave scattering instruments
crestes another area of future development  Fast
scamning/holographic lasers provide a depth perception of objects,
which is quite complex. This depth data can be utilized to iters-
tively provide a 3-D image of the object by weighting video-
acquired image data appropriately. These weights will depend on
the surface curvatures as they project in the incidence direction of
the laser beam. Both empirical and snalytical studies are noeded.
The microwave backscattering can provide another independent set
of data. The shape of certain objects can be directly deduced from
this data. In many inspection tasks in which a nonmetallic shielding
has obscured the view, such sensing will be mandatory. In other
situations the microwave data can be iteratively used with that of
TV w amrive at a more definitive descripdon of the object. At the
expensé of complexity, doppler processing of microwave data can
yield the shape of a distant object. The advantages of such a vision
are that it is independent of sunlight and it provides s direct mearure
of range and relative velocity of the object.

Another area of endeavor should be near-field sensing. In this

mode s micTowave sensor can be very close to the object. A sharp

pulse transmitted yields & unique description of the object This
time demain reflectometery is evolving rapidly. Another mode of
the system can utlize reflectivity data in the near-field. These tech-
niques have not beer explored for the robotic vision applications.

Finally, further research and development is needed in the area
of multisensor coordination and fusion. The recognition algorithms
are to be extended to include interrelating data from several cam-
eras, laser scannen/holographic systems, and microwave sensors.
These algorithms shouid include motion, fotation, and object
changes as functions of space and time. In additon to this,
“environmental” data, pertzining to the events/objects and their
status, has to be included These aspects, along with rational
models, incorporate artificial intelligence techniques in the scene
analysis, driven by common-sense systems and expert systems.

VI. Conclusions

This paper is simed at providing a review of some of the
efforts in progress at NASA/JSC and Rice University. The design
and development of a vision system for space applications needs
several considerations which make them different compared to
those used in ground applications. The concerns for space-unique
vision systems have been elaboraied. Several efforts which need w0
be undertaken have been discussed. Considerable work has to be
sccomplished in order to provide robust, lightweight, real-ime
{fast), and small size vision systems for specific space applications.
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Fig.17 Laboratory models of the Space Shuttle and part of the Space Station

Fig.19 Moment Invariants for one face of the simulated object
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