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ABSTRACT

The generation of long-wavelength, viscous-inviscid interactive Ggrtler vortices is studied in

the linear regime by numerically solving the time-dependent governing equations. It is found

that time dependent surface deformations, which assume a fixed nonzero shape at large times,

generate steady Ggrtler vortices that amplify in the downstream direction. Thus, the Ggrtler

instability in this regime is shown to be convective in nature, contrary to the earlier findings

of Ruban and Savenkov. The disturbance pattern created by steady and streamwise-elongated

surface obstacles on a concave surface is examined in detail, and also contrasted with the flow

pattern due to roughness elements with aspect ratio of order unity on flat surfaces. Finally, the

applicability of the Briggs-Bers criterion to unstable physical systems of this type is questioned

by providing a counterexample in the form of the inviscid limit of interactive GSrtler vortices.

1This research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665.





1 Introduction

The physical realizability of an unstable equilibriuIn solution corresponding to a nearly }lomo-

geneous shear flow is dependent oil whether or not tile equilibrium state corresponds to tile

time-asymptotic solution of the related unsteady problem. Tile answer to this latter question

can usually be obtained quite easily, provided one has sufficient information to classify the lin-

ear instabilities of this equilibrium state as being of either absolute or convective nature (Briggs

1964, Bers 1975, Huerre and Monkewitz, 1985). Tile presence of an absolute instability means

that any compact unsteady source with a continuous Fourier spectrum will introduce distur-

bances that amplify indefinitely in time at all neighbouring locations, thereby eliminating the

possibility of any time-asymptotic state within the linear framework. In contrast, the response of

a convectively unstable flow to a pulsed source takes the form of an instability-wave packet that

is swept away from the source by the mean flow, thus restoring the original state at sufficiently

large times.

For convectively unstable flows, it is also possible to investigate the response of the flow to

some continuous forcing in a local region, say in the form of a time-harmonic disturbance which

is switched on at a finite time. The time-asymptotic solution to a "signalling" problem of this

type can be obtained either from a superposition of the wave-packet solutions Balsa (1988), or

by directly solving the steady state equations which }lave tile harmonic time dependence built

into them. The overall amount of effort required is perhaps larger in the former case; however,

it automatically ensures the causality of the steady-state response, without any need (as in the

latter case) for extraneous considerations such as the Briggs-Bers criterion in order to specify

the correct streamwise boundary conditions at the upstream and/or downstream ends.

The objective in this paper is to consider the above issues in the context of a centrifugal, i.e.,

the Ggrtler instability of boundary-layer flows over concave surfaces. Experiments have shown

that this instability is usually manifested in the form of steady streamwise vortices which amplify

in the downstream direction, eventually yielding to time-dependent instabilities of a secondary

and tertiary nature. The various experimentally observed features of the linear and nonlinear

development of the GSrtler vortices have also been explained using asymptotic theories (Hall

1982a-b, Hall and Lakin 1988, Hall 1990), and direct numerical simulations (Hall 1988, Sabry

and Liu 1990, Liu and Sabry 1991).

While the occurence of steady unstable vortices is suggestive of a convective nature for the

G6rtler instability, the validity of this assumption had not been addressed until Parks and Huerre

(1988), who examined the special case of an asymptotic suction profile. More recently, Ruban

(1990) (herafter referred to as R) examined the GSrtler instability of an arbitrary profile in the

long-wavelength regime using asymptotic methods in tile limit of a large Reynolds number R, and

a large GSrtler number G. Somewhat surprisingly, he found that the flow is absolutely unstable

to spanwise-periodic perturbations. However, he also examined the disturbances created by an

isolated point source and concluded that tile flow is convectively unstable in this latter case.

Here, tile wave packet, determined through steepest-descent analysis, was found to spread in all

directions including upstream, except for a sector of 60 o directly ahead of the source.

Savenkov (1990) (henceforth, S) applied the same asymptotic framework as Ruban to study

the receptivity problem for tile G6rtler vortices in the long-wavelength regime. He used a residue

analysis in conjunction with Fourier transform methods to compute the approximate temporal

development of the perturbations created by an unsteady wall hump which assumes its final



(nonzero) shapeafter a finite length of time. His results were supportive of the conclusions
in R, in that the steady-statepattern wasfound to be similar in shapeto the time-dependent
wavepacketof R, and no GSrtler vorticesweregenerateddownstreamof the hump. Previously,
Rozhkoct al (1988) (henceforth, RRT) }lad also studied the same problem, albeit by solving the

steady state equations directly in Fourier transform space. Tile disturbance pattern computed

in this manner was also similar to that obtained by S as a limit of tile time-dependent problem.

RRT [lad also found that a crucial difference between tile disturbance patterns on concave and

convex walls corresponds to the presence of all O(1) upstream signature in the former case, as

against a total lack of any upstream influence in the latter case.

Tile above results concerning the absolute nature of the GSrtler instability, as well as the

occurence of an upstream interaction in the concave-wall case, are rather intriguing, the former,

since it casts a doubt oll tile relevance of much of tile previous work oll (;6rtler instability which

was related to steady vortices, and the latter, due to the fact that the steady-state equations

are actually parabolic in nature. In this paper we examine the problems addressed by R, S and

RRT, and demonstrate that the peculiar findings of these investigators are actually a result of

having ignored a fundamental property of the partial differential equations governing the steady

and tnlsteady problems. Specifically, we show that solving the unsteady problem with the

appropriate boundary conditions not only confirms the convective nature of GSrtler instability

in the spanwise-periodic case, but also yields the solution to tile receptivity problem in tile limit

of large times.

Tile problem of tile generation and subsequent linear development of long-wavelength Ggrtler

vortices is formulated in the following section. Although no extra effort is involved in solving

the complete problem related to viscous-inviscid interactive vortices, it is more illustrative to

separately consider the two limiting cases corresponding to the viscous and inviscid w)rtices,

respectively. Both analytical and numerical methods are used towards this purpose; tile analyt-

ical work is presented in Section 2, whilst in Section 3 we present our results. Finally we draw

some conclusions in Section 4.

2 The governing equations for viscous-inviscid interac-

tive longitudinal vortex structures and some analyti-

cal results

L* r) 1/2
At a given value of the curvature parameter, viz. the Ggrtler number G = -_-/1,CL, , tile linear

deveh)pment of steady Ggrtler vortices is determined primarily by the nondimensional wave-
n 112_*. L*length in the spanwise direction, A: = Uec, Tv. Here denotes a typical streamwise length

scale based on the distance between the leading edge and tile location of interest, a* (>> O(L*))

is the radius of curvature of tile surface at this location, and Re.L, (>> 1) is tile Reynolds number

based on the local free-stream speed U_, and the distance L*. The asterisk is used to indicate

the dimensional quantities here, and throughout the rest of this paper.

It was shown independently by Denier, ttall and Seddougui (1990), and Timoshin (1990)

that in tile limit of large GSrtler numbers ((; >> 1) one needs to consider five different asymp-

totic regimes along tlle A_ axis. [n the order of increasing spanwise wavelength, these regimes

correspond to (i) the neutral regime (A: ,,_ (;-_/4), (ii) the most unstable regime (A: --_ C-I/'_),
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(iii) the inviscid regime (At = O(1)), (iv) the long wavelength or viscous-inviscid interactive

regime (Az "-_ G1/7), and finally, (v) the nonparallel regime corresponding to Az = 0((;1/2).

Investigations of the linear and nonlinear stability problems associated with the first three of

these five regimes have been given by Hall (1982a-b), Hall and Lakin (1988), Denier, Hall and

Seddougui (1990), and Timoshin (1990). The viscous-inviscid regime for G6rtler vortices was

first investigated by Rozhko and Ruban (1987) in connection with the disturbances generated

by streamwise-elongated roughness elements over curved surfaces, and subsequently, in the same

context by RRT, R and S, as mentioned already. The fifth regime corresponding to nonparallel

vortices does not appear to have been studied in any detail until now, but see Ha11(1983).

As stated in the Introduction, our concern in this paper is with the generation and linear

amplification of the long wavelength, or viscous-inviscid interactive G&rtler vortices, which are

relevant at locations close to the leading edge. As first shown by RR, the asymptotic scalings

of this regime are fixed by tile condition of viscous-inviscid interaction, plus a balance of the

displacement-induced pressure with the jump in pressure across the main part of the boundary

layer due to centrifugal effects associated with the surface curvature. These balances identify

the spanwise length scale k=, based on the boundary-layer thickness, as being of O(e-_), where

e = G -l/r (<< 1), whereas the streamwise length scale ,_, based on the distance L* from the

leading edge, is determined to be O(e3). In the normal direction, the vortex structure consists

of three distinct subregions, viz. the lower, middle and upper decks, whose thicknesses relative

to that of the boundary layer are of O(e), O(1), and O(e -_ ) respectively. The overall dynamics

of each of the decks, as well as their coupling, is quite analogous to that in the conventional

three-dimensional triple deck problem. The structural similarities between the two problems

lead one to anticipate that the G&rtler vortex problem is also amenable to tile same solution

procedure as that applied in triple-deck problems, and indeed, this was shown to be the case by

RR. Specifically, it is possible to obtain closed form solutions for the perturbations in the middle

and upper decks, and a matching of these two provides tile interactive relationship between tile

pressure and displacement-thickness perturbation, this closes the lower-deck problem governed

by some form of the three-dimensional boundary layer equations.

For the sake of definiteness, consider the same problem as that studied by both R and S,

viz., the disturbance pattern produced by an unsteady wall-hump with an arbitrary but specified

shape that can be expressed as the coordinate surface

r=o, (2.1)

corresponding to the Prandtl-transposed coordinate within the lower deck, Y = e -1 Re_12k4/ry*/L *-

h F(X,Z,T), where X = e-aJS/rx*lL * and Z = eRc_/.eAt°lrz*lL * are local coordinates in the

streamwise and spanwise directions respectively, T = (2Re_/.2.X-s/ru_I*/L * is the nondimen-

sional time, and h (<< 1) and F(X,Z,T)are, respectively, tile normalized height parameter

and shape function characterizing tile wall-hump geometry (see Fig. 1). For reasons which will

be obvious later, it is appropriate to only consider tile type of hump geometries which have a

definite streamwise origin, i.e., F(X, Z, T) = 0 for X less than some finite value X0, which will

be assumed to be the origin, X = 0, without ally loss of generality. The paraineter A is used

to denote the wall shear corresponding to the incoming boundary-layer profile just upstream of

the roughness element.
u* v* w* P*-P*oo )

Introducing the expansions (too'z* u* , t_, _.u-Ya_--J= (Y + ehA-3/rU, e-_ne_l_hA-4/r( FT +



YFx + V), e-3Re[_/'2hA2/rW, e-6Re-[2hA4/rP) for the lower deck variables, one finds that

tile leading-order perturbations (U, V, W, P) are governed by the linearized, three-dimensional

boundary-layer equations

Ox (f + Or V + OzW = O,

and

(Or + v Ox)U+ v = #u,

(2.2a)

(OT + YOx)W=-OzP+O_W, (2.2c)

without any pressure gradient along the streamwise direction. Since the surface deformation

due to the unsteady huinp has been assumed to originate at a finite time, the disturbance field

may be taken to be zero at the initial instant of time. Similarly, it can be assumed that the

surface obstacle will not produce any disturbances sufficiently far upstreo, m, and also that the

disturbance motion either decays, or remains bounded, as IZ{ --+ oo, depending on whether

F(X,Z,T) has a compact or noncompact support in the spanwise direction. The boundary

conditions in the normal direction are given by

U= V=W=0 at Y=0, (2.3a-c)

and

U + F(X,Z,T)- A(X,Z,T), 14/" + 0 as Y + _, (2.ad, e)

where the displacement-thickness perturbation A(X, Z, T) is related to the pressure perturbation

P(X, Z, T) via the interactive relationship (RR)

OzP = -sign(G)OzA +l_Tr/+5 0_A--(A_ _¢)d_, (2.3f)

which reflects the simultaneous balance between the lower-deck pressure, the curvature-induced

pressure within the middle deck and the displacement-induced pressure inside the upper deck.

In {2.3f), the sign of the G6rtler number has been assumed to be positive for concave surfaces,

and negative for convex ones. Moreover, one may also obtain results for the case of an underlying

surface that is flat, or has an asymptotically small curvature, by setting sign(G) = 0 in (2.3f).

In that case, the small parameter e is to be interpreted as a measure of the aspect ratio of the

planfornl of the surface obstacle.

It is worth mentioning that apart from the absence of a streamwise pressure gradient term in

equations (2.2a-c), which follows as a consequence of the length-scale disparity in the streamwise

and spanwise directions, the problem of viscous-inviscid interactive vortices differs from the

three-dimensional triple-deck problem in two other aspects which are related to properties of the

middle and upper decks, and thus, are manifested through the interactive relationship (2.af).

Firstly, the role of the main deck is no longer just a passive one, corresponding to a direct

transmission of the outer pressure to the lower deck, since the centrifugal effects in tim middle

deck now substantially alter the pressure gradient imposed on the lower deck. As seen from

equation (2.3f), the pressure jump across the middle deck turns out to be independent of the

details of the incoming boundary-layer profile, being equal to just the normalized displacement-

thickness A in terms of its magnitude. For this reason, the equation set (2.2-2.3) is a canonical

one and, indeed, after some additional analysis, it can be shown to be valid at both subsonic and
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supersonicspeeds.The other source of differences between the GSrtler-vortex and triple-deck

problems is related to the behaviour in the upper deck where, due to the negligible pressure

gradient in the streamwise direction, the secondary flow in the cross-flow plane is decoupled

from the local streamwise motion, in a manner somewhat analogous to slender body theory. As

a result, the upper deck motion is elliptic only within the cross-flow (Y - Z) plane and, thus,

cannot exert an O(1) upstream influence on the lower deck motion via the pressure-displacement

relation (2.3f).

Applying a Fourier transform in the spanwise direction (Z _ k), and denoting the trans-

formed variables using an overbar, the governing equations can be rewritten as

and

Oxf] + Orf/ + ikW = o,

(aT + Y ax)fJ + f/ =

(OT + Y Ox)12V = -ikP + O_W,

along with the boundary conditions

(f = 9"=l_=0atY=0,

(J = F( X, Z, T) - /t( X, Z, T), l_ = 0 as Y ---* oo,

and

(2.4a)

(z4b)

(2.4c)

kP = -sign(G)kffI -d-sign(k)Axx, (2.5f)

obtained from (2.3a-f), plus the homogeneous initial conditions in X and T.

In the following section, we present numerical solutions to the unsteady problem posed above

for the case of spanwise-periodic perturbations, and confirm the lack of any absolute instability

by demonstrating the appearance of an unstable, spatially-growing GSrtler vortex at large times.

It is also possible to obtain closed-form, analytical solutions by taking the appropriate transform

along the streamwise direction. For instance, RRT, R and S used a two-sided Fourier transform

in their work; but, one should note that using a Fourier transformation along the streamwise

direction in unstable physical systems is not always a straightforward matter, although fairly

standardized recipes, such as the Briggs-Ders criterion (see Briggs 1964, Bers 1975), are now

available to treat this issue in the case of streamwise elliptic systems. Now, due to a lack of the

streamwise pressure gradient as well as streamwise diffusion terms, the system (2.2-2.3) is not

elliptic in X and Y. In fact, in the limit of very long wavelength vortices, it can be easily shown

to be parabolic in the streamwise direction; refer to the discussion following Eq. (2.12d). Noting

the failure of RRT, R, and S in accounting for this anticipated lack of upstream influence in

the concave-wall case, it would seem that a straightforward application of the Fourier transform

technique in non-elliptic unstable systems may lead to physically unacceptable results; In Section

3.1 below, we will also consider the short-wavelength (or inviscid) limit of the problem, and

illustrate the inapplicability of Briggs-Bers criterion towards predicting the nature of instability

in that case.

Thus, consider the Laplace transform solution to the problem posed by equations(2.4-2.5),

which is given by

t35/3Ai'( (°) fi'( °" /3 ) (2.6a)
fl(fl, k, er) = J35/3Ai'((o) + [sign(G) k_ - ]k[fl2] f_ Ai(() d('



(2.6b)

-k_p {Y_0Ai(_) d_ ai(C0)
(f - /35/3 Ai'(_o) + _-[Gi(_') Ai(¢o)Ai(_')]}' (2.6c)

-ikrcP Gi(_o) i (2.6d)
W -- /32/3 [Gi(_) _ A (C)],

and I7 follows from tile X-momentuln equation, (2.4b). Here _r and /3 denote the transform

variables corresponding to the time T, and the streamwise coordinate X respectively, while _ is

defined as

= 31/3 y ___ ¢0, _0 = /3_/3 , (2.6e, f)

The dispersion relationship corresponding to the GSrtler vortex instability modes is then given

by

/35/3Ai'(¢o)
D(_,/3;_,)- = . + ._i_,_(a)_'_- Ikl/__= 0, (2.7o)

f¢o Ai(_)d_

which further reduces to

(L) (M) (U)

3Ai'(0)[45/3 + sign(G)k 2 -lkl/32 = 0, (2.7b)

for the case of steady vortices (a = 0), which are apparently more important in practice than

the unsteady ones. An interesting property of the steady dispersion relation (2.7b) is that it

possesses a unique root in the complex/3 plane for any given (real) spanwise wavenumber k, and

moreover, this root always lies on the real, positive/3 axis, implying that the steady vortices

exhibit a purely exponential growth in the streamwise direction. A plot of the stationary growth

rate/3 as a function of the spanwise wavenumber k is shown by the solid curve in Fig. 2, where

the large and small k asymptotes, given by (2.8b) and (2.9b) below, are also indicated by the
two dashed curves.

As described earlier, both the unsteady as well as steady dispersion relations represent a

balance between the effects of viscosity in the lower deck (L), destabilizing centrifugal forces

in the middle deck (M), and the viscous-inviscid interaction via the upper deck (U). However,

in the limit of large spanwise wavenumbers (k >> 1), and commensurably larger frequencies

([a] >> 1), the dominant balance shifts to just the inviscid terms (M-U) in (2.7a,b) together

with the large _r form of (L), and is given by

-_/3 + ._ig,(c;)k_-[kl/_' = 0, (2.8a)

in the unsteady case. For the steady problem (L) is negligible and we obtain

_i_,,(a)k _ -Ikl/3 _ = o, (2.sb)

6



which matcheswith the dispersionrelation in the main inviscid regimecorrespondingto sta-
tionary vortices with spanwisewavelengthscomparableto the boundary-layer thickness; see
Denier, Hall and Seddougui(1990), and also Timoshin (1990). In contrast, the opposite limit
of extra-long spanwisewavelengths(k << 1), which was the focusof the work by RRT, R and

S, leads to the purely noninteractive, viscous-centrifugal (L-M) balances

% ' * 2flS/3Ai'(¢°) + ._,9,_(c_)a,= 0,
f_ Ai(¢)d_

(2.9a)

and

aAi'(O)fl s/a + ._i(q,,.(a)_: 2 = O,

in the unsteady and steady cases, respectively.

Finally, setting sign(G) = 0 in (2.7a) yields the interactive, flat-surface limit,

(2.9b)

flS/aAi'(('°) -[klfl '2 = 0, (2.10)
f_ ai(_)d_

which corresponds to very oblique Tolhnien-Schlichting waves (Hall and Morris 1991 ), and could

also have been obtained by taking the appropriate limit of tile full three-dimensional triple deck

equations. Since our primary interest lies in the C,6rtler vortex type of instabilities, the limits

(2.8) and (2.9) are more relevant to us than (2.10), and therefore, we shall choose to concentrate

on these two cases in the remaining part of this paper. Of particular interest will be the extra-

long wavelength problem which is exemplified by the dispersion relationships (2.9a,b) and, was

also considered by RRT, R, and S. For this case, it is possible to further substantiate the lack

of any upstream influence in a manner described below.

Basically, further manipulation of equations (2.4) leads to a single partial differential equation

for the vertical velocity perturbation,

[o_ -(o_ + YO_)lO_V= o, (2.11)

which, together with tile boundary conditions

12=0rIT'=0atY=0, (2.12a - b)

0_9(_) = 0, (2.12_)

and

OxO_v(o) + ,i9,_(6')/c2[0_,9(_) + Ox,e(x, Z,T)] = 0,, (2.12d)

and the homogeneous initial conditions in X and T directions, can be viewed as a one parameter

(viz. Y) family of linear advection equations in the X - T space with a positive senti-definite

range of convection velocities, the member equations being coupled via normal diffusion, and the

integral evolutionary constraint (2.12d). The nature of these advection equations lends further

support to our previous argument concerning the lack of any upstream influence in tile problem.

Since the propagation of disturbances in tile upstream direction is prohibited, the homogeneous
initial condition in the streamwise direction can be imposed just upstream of tile origin of the

surface nonuniformity, i.e. at X + 0-. One should also note that the above classification of



the governingpartial differential equationsis independentof tile sign,or the magnitude,of tile
curvature parameter C, since it only appears through the coefficient of a zeroth-order derivative

term in (2.12d). Tile only difference between tile convex and concave cases corresponds to tile

existence of a G6rtler instability in tile latter case, which leads to disturbance amplification in

the downstream direction. This aspect appears to have been overlooked by RRT, R and S, who

utilized a two-sided Fourier transforln ill the streamwise direction without accounting for tile

properties of the governing differential equations.

3 Numerical Results

Ill this section we present tile numerical solutions to the set of governing equations corresponding

to (2.2) and (2.3). The case of spanwise periodic perturbations is examined first in Section a.1,
followed 1)y the case of all isolated surface excrescence, which is discussed in Section 3.2. In both

cases, spectral discretizations, Chebyshev and Fourier, respectively, were utilized along tile Y and

Z directions, whereas a second-order accurate backward difference scheme was used to compute

tlle vor.tex evolution in space (X) and time (T). Since both the U and W perturbations approach

their limiting values at infinity (corresponding to equations 2.5d,e) rather slowly, the usage of

higher order" boundary conditions obtained through asymptotic considerations was found to be

imperatiw_ in maintaining the spectral accuracy in the Y-direction. Overall, this numerical

scheme combines a robust marchiug procedure with a strong coupling in the secondary-flow

t)lane, the latter" being especially desirable for solving vortex-flow problems. The accuracy of

the numerical results was verified by, grid-resolution checks, as well as through comparisons with
analytical solutions, as discussed below.

3.1 Unsteady Evolution of Spanwise Periodic Perturbations

We will first discuss tlle results pertaining to the limit of the extra-long wavelength viscous

vortices. We recall that this case has been considered by R. As pointed out in that paper,

and as carl be seen directly fi'om tile dispersion relation (2.93), this regime admits a silnilarity

l)ehaviour of the type X ... Z 6/5 and, T .-_ Z s/4, and hence, it is sufficient to consider the

unsteady evolution of just a single Fourier mode in the spanwise direction; this we take to be

k = 1 without any loss in generality. The real and imaginary parts of tile spatial (fl) root of

this unsteady dispersion relation are shown in Fig. 3 for real values of the frequency w(- io').

Ilnlike the case of cross-flow vortices, where tile most unstable modes are usually time dependent,

here the steady Ggrtler vortex (w = 0) is found to have the largest growth rate for any given

spanwise wavenumber. This, along with the fact that a class of i)otentially dominant receptivity

mechanisms preferentially excite the steady vortices as compared to unsteady ones (Choudhari

and Streett, 1990), would help explain the observed dominance of steady G6rtler vortices in

laboratory experiments.

As shown in Fig. 3, the spatial growth rate decreases monotonically with frequency. A
1 w__3/2

neutral point exists at _o = 2.298 whilst in addition there is the asymptote Re(fl) _ --_= as

# ---+ oc, with d2(_ -3.2482) being tile second zero of Ai'(Co) on tile negative real G axis. On

the other hand, the imaginary part of fl is zero at _o = 0, implying a purely exponential growth

I)y the stationary vortex, as mentioned previously; but lm(fl) increases nearly monotonically as



cois increased,leadingto all asymptotic behaviourof Ira(.3) '-., -1 _, 3/2_77_ at large frequencies. One
may also observe that, since tile growth rate curve is locally stationary near its maxinmm at

.d_, corresponding to tile group velocity of tile stationary vorticesco = 0, tile derivative cg x - z-d-j,
in the streamwise direction, is purely real and positive, equal to about 1.5 as seen from the

dash-dot curve in Fig. 3. Of course, the behaviour of G_rtler vortices is far from that of the

mainly-oscillatory instability modes of the Tollmien-Schlichting or Rayleigh type, and hence,

the notion of group velocity is not expected to be physically relevant in this case, especially for

the co = O(1) modes where the real and imaginary parts of %x are comparable to each other.

Nevertheless, it is interesting to note that the real part of tile group velocity in the X-direction

is always positive, and less than its value for stationary vortices. Furthermore, the imaginary

part of the group velocity is bounded for all spatial modes. Therefore, one might expect an

impulsive source to generate a wavepacket with both ends propagating at finite speeds. This

was indeed found to be the case in the numerical solutions, which are presented below.

For the purpose of simulating the transient waveI)acket problem, we considered a humt) shape

of the form

F(X,Z,T) = (1 -cos(2a-X))(1-cos(4rcT)) cos(2a-Z) It(X,O, 1)R(T,O,O.5), (3.1a)

where /_(q, qi, q f) denotes the restriction operator in the q space, being equal to unity for qi <

q < qf, and zero elsewhere. Similarly, in order to obtain the steady hump solution in a causal

manner, an unsteady hump shape of the form

F(X,Z,T) = (1 - (1 R(X, O,J), (3.1 b)

was also considered.

For both these geometries, we have shown the behaviour of the displacement function

A(X, Z,T) along the vortex boundary Z = 0 as a function of X at selected instants of time in

Figs. 4a and 4b respectively. Figure (4a) shows that tile transient surface deformation generates

a vortex patch downstream which increases in its streamwise extent, and in amplitude, with an

increase in time. One may note that between 0 < X < 1, the displacement fimction conforms

quite closely to the humt)-shape during the l)eriod 0 < T < 1 when it is nonzero. Significantly

the vortex pattern displays no oscillations in the streamwise direction at all. Thus, the bound-

ary layer experiences a positive displacement at all times along the vortex boundary Z = 0,

and a negative displacement along the centreline Z = _r. As a result of the amplification with

the passage of time, one would observe an increasingly stronger streaky structure corresponding

to an alternate pattern of boundary layer upliftment (i.e. deceleration) and an equally strong

attachment (i.e. acceleration) with a constant spacing along the streamwise direction. It will,

of course, be very interesting to see how nonlinearity modifies this behaviour, and this will be

the topic of a forthcoming paper. Finally, but most importantly, the convective nature of the

spanwise periodic perturbations is seen very clearly from the downstream movement of the tail

of the vortex patch; see, especially, the curves marked 12 through 15.

Figure 4b shows how the steady, spanwise-periodic vortex pattern gets established as the

hump is brought to its final shape over a period of time. Again, one may note the monotonic

behaviour of the displacement function A(X, Z = 0, T) in the region downstream of the hump

at each instant of time. In the vicinity of the hump, again, the displacement function closely

resembles the instantaneous hump shape, as in the case of Fig. 4a. For small X, this latter



behaviourcanalso bepredictedusingtile closedform solution (2.6) above,which further shows
that for X << 1, the wall-shear perturbations 0"(0) and I_'(0) are considerably smaller than

tile displacement-thickness perturbation, being of O(X 4/a) and O(X1/a), respectively, relative

to A. Furthermore, tile viscous layer begins to grow at the usual rate of Y _ X l/a near X << 1,

thus suggesting a further split within the lower deck corresponding to Y _ X l/a and Y = O(1).
The wall-shear scalings for small X show that tile flow near tile front end of the obstacle is

nearly in tile spanwise direction; however, contrary to what one's intuition might suggest, this

flow is found to be converging towards the obstacle instead of spreading out along the spanwise

direction. A physical explanation for this observation is provided in Section 3.2 below. The

unstable, GSrtler vortex part of tile steady-state solution can be shown to be

A = 3/3of'(/3o, k)ea°x;. /%= (-3Ai'(O)) a/s, (3.2)
;)

which is shown via symbols in Fig. (4b). It may be seen that the numerical solution is in

excellent agreelnent with the instability-mode part of it for nearly all locations downstream of

the hump. Since the algebraically decaying part of the solution appears to be dominated so

quickly by the unstable eigenfunction part, this suggests thai, experimental measurements of

GS,'tler vortices need not only be carried out far downstream of the region where the vortices
are induced.

Finally, let us briefly consider the inviscid limit corresponding to the dispersion relation

(2.8a). It is easy to show that the corresponding differential equation for, say, the displacement
function A is given by

Ox(Ox + Ikl0r)A - k2A = 0, (3.3)

which is hyperl)olic in the X - T space on tile basis of the standard classification of second

order partial differential equations. The two families of characteristic curves corresponding to
equation (3.::I) are given by

T = constant and X -I/,'IT = co,,stant, (3.4a, b)

respectively. This suggests that the Cauchy problem should be posed at some initial station

X = 0, and if the Cauchy data has a finite nonzero limit as T --+ oc, one duly obtains the unstable

GSrtler vortex growing in the downstream direction as part of tile causal steady solution. In

contrast, if one traces tile trajectories of both roots of tile dispersion relation (2.8a) in the

complex !¢ plane as cr moves from positive infinity to zero along the real axis (Fig. 5), then

application of the Briggs-Bers criterion would imply that the root corresponding to the unstable

vortex ought to appear on the upstream side. The reason behind this failure appears to be

linked to the infinite-speed characteristic (3.4a), which leads to a solution that does not decay

rapidly enough in X at any instant of time, thereby disallowing tile usage of the imaginary/3

axis as the inversion contour for a two-sided Laplace transform in X even for small values of T.

Since the Briggs-Bers criterion is based on the assumption of a spatially compact disturbance at

small enough times, it seems reasonable to expect that that it may not provide reliable results

in this particular case. This peculiar behaviour of the instability in question is also reflected

in tile dispersion relation (2.8a), which predicts purely dispersive behaviour for real streamwise

wavenumbers (i.e. neutral behaviour in the sense of a temporal instability), but predicts unstable

roots for real frequencies (i.e. spatial instability), in particular, tile stationary GSrtler vortex at
_-) = 0.
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3.2 Unsteady and Steady Disturbance Patterns due to Localized

Surface Irregularities

In view of the order of magnitude increase in tile computational effort required for this case,

only one specific situation, corresponding to

F(X,Z,T)=(1-cos(2_rX))(1-eos(47rT))e -z2/9 R(X,O, 1)R(T,O,O.5), (3.5)

was considered for tile purpose of numerically calculating the disturbance pattern due to an

unsteady, localized wall hump. Here, the Caussian drop-off in the spanwise spectrum was chosen

in order to offset tile ill-posedness of the steady dispersion relationship (2.9b). The contours of

constant (instantaneous) displacement in the X - Z plane for this case have been shown for a few

selected values of time in Figs. (6a-e). Due to the spanwise symmetry of the surface obstacle,

only positive values of the spanwise coordinate Z have been included in the plot. Results for

negative values of Z can be obtained through a reflection of the contour about the horizontal

(X) axis. Figures 6a-e clearly indicate that a vortex pattern is established downstream of the

source, and that as time passes, this pattern is convected downstream, also gaining in amplitude

at the same time. This further demonstrates the convective nature of Ggrtler instability in the

case of disturbances with a continuous spectrum of spanwise wavenumbers. Thus, it would be

possible to study the disturbances produced by a steady wall hump by a direct solution of the

steady form of the governing equations.

For the purpose of the steady calculation, we considered the hump shape given by

F(x,z) = (1 R(x,o, 1). (a.6)

The constant displacement contours corresponding to the disturbance pattern produced by this

hump are shown in Fig. 7a. One m%v observe that the confocal ellipses near the inflow boundary

conform rather closely with the obstacle shape, similar to that in the spanwise-periodic case

discussed in Section 3.1 above. Thus, over a major part of the hump, the boundary layer is

simply lifted up by the amount of the local obstacle height, although in the downward sloping

portion of the hump, there are regions of small negative displacement at sufficiently large values

of the spanwise coordinate Z. Figure 7a also indicates the presence of a streamwise corridor just

downstream of the hump (corresponding to curve 6 closest to the X-axis), which separates the

region of large (positive) displacement from the relatively less disturbed region outside. This

feature was also noted by Smith et al (1977) in the solution to a three-dimensional triple deck

problem. The most striking feature in Fig. 7a, however, is the gradual emergence of a vortex

structure downstream of the hump, which corresponds to alternating regions of positive and

negative displacement, separated by the contours marked as "6". At each streamwise station,

the innermost vortex is the strongest one, with the amplitude falling off rather rapidly away

from the centreline, thus leading to a vortex pattern with a roughly parabolic shape. The

orientations of the centrelines of different vortices, corresponding to zero displacement contours

(marked as "6" in the figure), indicate that all of the vortices are present at locations just

downstream of the hump; however, since their amplitudes are inversely proportional to the

distance away from the axis (Z = 0), the more distant vortices become noticeably large only

at increasingly larger distances, thereby creating the illusion that additional vortices are being

created as one moves downstream. The qualitative resemblance between the vortex patch of

11



Fig. (Ta) and that computednumerically for the caseof G = O(1) and A: = O(1), Deifier, Hall

and Seddougui (1990), where no asymptotic approximations were involved, indicates that tile

presence of spanwise diffusion terms in the governing equations is not a prerequisite to obtain a

slowly spreading pattern of streamwise vortices.

The contours of constant axial and spanwise shear stresses (not shown here) also bear some

similarities to the triple deck situation, excepting the lack of upstream influence, and the presence

of the GSrtler vortex pattern. However, an examination of the secondary flow within the X - Z

plane reveals an important difference between the disturbance patterns in these two cases.

Specifically, the results of Smith ct al (1977) show that on the forward face of the hump, the

fluid is pushed out in the spanwise direction within the lower deck, although it converges again

towards the obstacle inside the middle deck, thus creating a recirculating secondary-flow pattern.

This pattern is reversed on the backward face of the hump, whereby the fluid is drawn together

in the lower deck, but pushed out within the middle-deck. Contrary to this, as well as to one's

intuitive expectations, it is found that in tile case of an obstacle over a concave surface, the fluid

moves towards the obstacle on both the forward, as well as rear faces of the bump. This spanwise

convergence of the fluid, which continues across the middle deck as well, is accompanied by an

upwelling near the axis (Z = 0), thereby setting up an outflux into the upper deck, where the

fluid is pushed out again; see Fig. (7t)). The counterrotating vortices generated in this manner

become especially prominent farther downstream of the obstacle, and one observes tile distinct

pattern of alternate regions of upwelling and downwelling, with the strength of this pattern

decreasing quite rapidly away from the axis.

These differences between tile two problems call be easily traced to the nature of the re-

spective relationships between the pressure and the displacement-thickness perturbations. In

the case of an obstacle with triple-deck scalings over a fiat surface, the distribution of pressure

is controlled by the streamwise slope of the displacement function, whereas in the case of a

streamwise elongated hump over a concave wall, the pressure is equal to tile negative of the

displacement, as seen from the viscous limit of the interactive relationship (2.3f). Therefore, the

decreasing displacement away from the centreline in Fig. 7a translates into a negative pressure

perturbation of decreasing magnitude away from tile axis, Z = 0. In other words, the displace-

ment pattern of Fig. 7a induces a favorable pressure gradient towards tile centreline, which

would explain the sink-like effect the obstacle has ell the flow within the bomldary layer.

4 Conclusions

We have investigated the unsteady spatial evolution of long wavelength Ggrtler vortices in a

boundary layer. The viscous-inviscid interactive regime we have considered is appropriate to

situations when the Ggrtler number is large but any perturbations in the flow have spanwise

wavelength much larger than the boundary layer thickness. In particular it follows that our

work is relevant to flows near tile leading edge of highly curved boundary layers of the type one

might find for example on a turbine blade.

We have shown that the G6rtler mechanism in this regime is a convective rather than absolute

instability. This result contradicts previous work on the G6rtler problem in this part of the

Ggrtler-wavenumber space. Perhaps the main conclusion to be drawn from our work is that

in general it is sufficient to study only the steady G&rtler problem. However we must bear in

12



mind that our analysisis restricted to the small wavenumberregimesothat it is alwayspossible
that absolute instabilities might occur at larger wavenumt)ers. The fact, that experimental
observationsall indicate that GSrtler vorticesareconvectivelyunstable,suggeststhat tile latter
scenariois unlikely.
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