This microfiche was produced according to ANSI / AllM Standards and meets the quality specifications
contained therein. A poor blowback image
is the result of the characteristics of the original document.

DATA REDUCTION FORMULAS FOR THE 1G-FOOT TRANSONIC TUNNGL NASA LANGLEY RESEARCH CENTER

REVISION 2

Charles E. Mercer
Bobby L. Berrier
Francis J. Capone
Alan M. Grayston

JULY 1992
(NASA-TM-107646) DATA REDUCTION
N92-31900 FORMULAS FOR THE 16-FOOT TRANSONIC TUNNEL: NASA LANGLEY RESEARCH CENTER, REVISION 2 (NASA) 288 p

Unclas

National Aeronautics and Space Administration

Lengey Receeroch Center

Hempton, Virginia 23665-5225
INTRODUCTION 1
WIND TUNNEL PARAMETERS 2
JET EXHAUST MEASUREMENTS 2
SKIN FRICTION DRAG 3
BALANCE LOAD AND MODEL ATTITUDES 3
INTERNAL DRAG (OR EXIT-FLOW DISTRIBUTIONS) 3
PRESSURE COEFFICIENTS AND INTEGRATED FORCES 3
THRUST REMOVAL 4
TURBOPROP OPTIONS 4
INLET DISTORTION 4
APPENDIXES
A Module A, Tunnel Parameters Calculations 5
B Module B, Jet Exhaust Measurements Calculations 14
C Module C, Skin Friction Drag Calculations 44
D Module D, Balance Loads and Model Attitudes 51
Calculations
E Module E, Internal Drag (or Exit-Flow Distributions) 149
F Module F, Pressure Coefficients and Integrated Forces
Calculations 182
G Module G, Thrust Removal Options 191
H Module H, Turboprop Options 237
I Module I, Inlet Distortion 256

INTRODÜCTION

This document describes the Langley Research Center 16-Foot Transonic Tunnel standard set of equations. The engineering units necessary for these equations are computed on site from the raw data millivolts or counts. These quantities with additional constants are used as input to the program for computing the forces and moments and the various coefficients.

This document supersedes NASA Technical Memorandum 86319, Computations for the 16-Foot Transonic Tunnel, Revision 1, January, 1987.

This document is intended to be a companion document to NASA Technical Memorandum 102750, A User's Guide to the Langley 16-Foot Transonic Tunnel, Revision 1, September 1990.

The equations are grouped into modules, so that only the required modules need be used. The modules are as follows:
A. Wind Tunnel Parameters
B. Jet Exhaust Measurements
C. Skin Friction Drag
D. Balance Loads and Model Attitudes
E. Internal Drag (or Exit-Flow Distributions)
F. Pressure Coefficients and Integrated Forces
G. Thrust Removal Options
H. Turboprop Options
I. Inlet Distortion

Individual customizing of these equations for a specific job application is permitted through the use of code constants. These equations do not cover all
possible jobs; however, they are coded so that modifications of selected equations may be easily carried out.

The format of this document is arranged so that the module designations correspond to the Appendix designations in which the respective calculations equations are given.

WIND TUNNEL PARAMETERS

The wind tunnel parameters are computed from the required static and total pressure measurements. The Reynolds number, dynamic pressure and tunnel total temperatures are computed. When the tunnel Mach number is computed, a polynomial fit from the 1990 wind tunnel calibration is used to correct the ratio of static pressure to total pressure used in the Mach number calculation. These wind tunnel parameters are stored for use by other modules. Refer to Appendix 1 for calculations.

JET EXHAUST MEASUREMENTS

Jet exhaust information is calculated for the primary, secondary and tertiary flow conditions.

The primary flow conditions for each engine, up to a maximum of four, are calculated. The various parameters that are computed are mass flow and ideal thrust for each engine. The average nozzle pressure ratio and average total temperature over all the engines is obtained. The total mass flow is derived from chamber, flowmeter, and/or venturi measurements. Discharge coefficients for the total system are computed as well as the ideal thrust. For the primary flows, a dual air supply system is used in providing inputs for the mass flow parameters.

For the secondary and tertiary flows, the mass flows and other parameters are computed. Refer to Appendix B for calculations.

SKIN FRICTION DRAG

The skin friction drag for the model is computed in addition to any empennage skin friction drag. Refer to Appendix \mathbf{C} for calculations. Information from the wind tunnel parameters is used. Drag from the various components as well as total drag is computed.

BALANCE LOAD AND MODEL ATTITUDES

The balance computations for the force and moment coefficients for up to five balances may be computed from this module. Allowances for the method of attaching the balances are made. The measured forces and moments are corrected for balance interactions. Then an allowance is made for high order interactions and momentum tares. The forces and moments are rotated to the desired axis and the final correct coefficients are computed as well as the angle of attack and sideslip angles. Refer to Appendix D for calculations.

INTERNAL DRAG

The internal drag and various forces on the engines are computed using the equations given in Appendix E. The result of these computations are used in the balance computations of module D to correct the force measured by the balances.

PRESSURE COEFFICIENTS AND INTEGRATED FORCES

Pressure coefficients are computed by using the equations given in Appendix F. Various integrated forces due to the pressures are calculated including hinge moment coefficients.

THRUST REMOVAL

Various thrust removal coefficients may be computed according to specified flags which specify the model setup. Various configurations are permitted which may include two balances. Reference Appendix G for calculations.

TUREOPROP OPTIONS

The drag and thrust coefficients due to the propeller and jet engine are computed as well as the combined totals. Horsepower and efficiency of the engines are derived with other quantities. Reference Appendix H for calculations.

INLET DISTORTION

Inlet engine face pressure distortion and mass flow rates are computed by using the equations given in Appendix I. Various profiles or gradient across the engine face which result from the airstream entering into the inlet are determined from the measured pressures and calculated ratios.

APPENDIXA

D

APPENDIXA

Tunnel Parameters

Nomenclature 7
Required Constants 9
Atmospheric Pressure 9
Mach Number 10
Tunnel Static Pressure 10
Tunnel Total Pressure 11
Tunnel Dynamic Pressure 11
Dew Point 12
Tunnel Total Temperature 12
Reynolds Number 12

MODULE A TUNNEL, PARAMETERS

SYMBOL	NOMENCLATURE
MACH	Free stream Mach number.
MCODE	Mach number calculation code.
	=1, PTANKG and PTH are needed.
	=2, PTANKH and PTH are needed.
	=3, PTANKG and PTG are needed.
	=4, PTANKH and PTG are needed.
	=5, PTKSON and PTSON are needed.
PO	Tunnel static pressure, lbs/sq. in.
PO/PTO	Ratio of tunnel static pressure to total pressure.
PTANKG	Tunnel tank pressure measured by gage, lbs/sq. in.
PTANKH	Tunnel tank pressure measured by Ruska, lbs/sq. in.
PTG	Tunnel total pressure measured by gage, lbs/sq. in.
PTH	Tunnel total pressure measured by Ruska, lbs/sq. in.
PTKSON	Tunnel tank pressure measured by Digiquartz, lbs./sq. in.
PTO	Tunnel total pressure, lbs/sq. in.
PTSON	Tunuel total pressure measured by sonar manometer, lbs/sq. in.
Q0	Dynamic pressure, lbs/sq. in.
REFL	Reference length, feet.
RN	Reynolds number based on reference length.
RN/FT	Reynolds number per foot.
RT(J)	Tunnel total temperature measurements, ${ }^{\circ} \mathrm{F}$, where $\mathrm{J}=$ probe number.

SYOBOL

NOMENCLATURE

T(J)TTO
Constants required from project engineer, where $j=$ probe number. If probe is bad or does not exist, then its value should be set to 0.0 . If no correction is made to the temperature probe, then its value should be set to 1.0 . Tunnel total temperature, ${ }^{\bullet} \mathrm{F}$.

APPENDIX A

Module A

Tunnel Parameters

A. Required Constants

1. \quad MCODE (default value $=2$) must be provided if values other than PTANKH and PTH are used to compute Mach number.
2. The constants used in determining tunnel total temperature are T2, T3, T4 and T5 which must equal 0.0 or 1.0 .

One-tunnel temperature measurement
$\mathrm{T} 2=1.0, \mathrm{~T} 3=\mathrm{T} 4=\mathrm{T} 5=0.0$
Two-tunnel temperature measurements
$\mathrm{T} 2=\mathrm{T} 3=1.0, \mathrm{~T} 4=\mathrm{T} 5,=0.0$
Note that the numbers 2 through 5 correspond to resistance thermometer numbers normally used.
3. A reference model length, REFL, must be given in units of feet to compute model Reynolds number.

B. Atmospheric Pressure

Atmospheric pressure calculation may be handled in the standard program for quantities. Its inclusion (if required) and method of obtaining (dialed-in optional digital channel or measured by gage in analog channel) is left optional to the project engineer. However, measuring atmospheric pressure with a gage is recommended rather than entering this pressure reading into an analog channel since it is possible for significant variations to occur during the course of a tunnel run.

C. Mach Number

1. MCODE indicates which measurements are to be used for Mach number calculation (see nomenclature on page A-1). The default value of MCODE is 2. Multiple options are provided to allow for the possibility of instrument failure during a test. If the digital MCODE input is 1 to 5 , then digital value overrides the C-card value. If the digital value is zero, then the " C " value overrides. The reference pressures may also change.

If $\mathrm{MCODE}=1$
$\mathrm{PO} / \mathrm{PTO}=\mathrm{F}(\mathrm{PTANK}(\mathrm{Z} / \mathrm{PTH})$

If $\mathrm{MCODE}=2$
$\mathrm{PO} / \mathrm{PTO}=\mathrm{F}(\mathrm{PTANKH} / \mathrm{PTH})$

If $\mathrm{MCODE}=3$
$\mathrm{PO} / \mathrm{PTO}=\mathrm{F}($ PTANKG/P「G)

If $\mathrm{MCODE}=4$
PO/PTO $=\mathbf{F}($ PTANKH/PTG)

If $\mathrm{MCODE}=5$
PO/PTO = F(PTKSON/PTSON)
where $F(\bullet)$ is the fitted polynomial from the 1990 calibration

D. Tunnel Static Pressure

PO calculation automatically depends on MCODE. No input is required from the project engineer. The normal procedure (internal constant MCODE = 2) uses PTH for computation.

If MCODE ≤ 2

$$
\begin{equation*}
\mathrm{PO}=(\mathrm{PO} / \mathrm{PTO}) \mathrm{PTH} \tag{Eq.A-9}
\end{equation*}
$$

If $\mathrm{MCODE}=3$ or 4 $\mathbf{P O}=(\mathrm{PO} / \mathrm{PTO}) \mathrm{PTG}$

If $\mathrm{MCODE}=5$ $\mathrm{PO}=(\mathrm{PO} / \mathrm{PTO}) \mathrm{PTSON}$

E. Tunnel Total Pressure

P1O to calculation automatically depends on MCODE. No input is required from the project engineer. ie normal procedure (MCODE $=2$) uses PTH.

If MCODE ≤ 2

$$
\begin{equation*}
\mathrm{PTO}=\mathrm{PTH} \tag{Eq.A-12}
\end{equation*}
$$

If $\mathrm{MCODE}=3$ or 4
PTO = PTG

If $\mathrm{MCODE}=5$
PTO = PTSON

F. Tunnel_Dynamic_Pressure

Tunnel dynamic $>$. essure is computed as follows:

If $\mathrm{MACH}<.1$

$$
\begin{equation*}
Q O=P O \tag{Eq.A-15}
\end{equation*}
$$

If $\mathrm{MACH} \geq .1$

$$
\begin{equation*}
\mathbf{Q O}=0.7 * \mathrm{PO}^{*} \mathrm{MACH}^{2} \tag{Eq.A-16}
\end{equation*}
$$

G. Dew Point

Dew point calculation may be handled in the standard program for quantities. Its inclusion, channel location, and name are left optional to the project engineer.

H. Tunnel Total Temperature

1. Provision is made for four individual tunnel total temperature measurements. They may be either thermocouples or resistance thermometers; however, the appropriate equation must be specified for the standard program for quantities. Note that resistance theirnometer one (1) (strut head) should not be used. If resistance thermometers are used, their calibrations are included internal to the program.
2. The constants required from the project engineer are $\mathrm{T} 2, \mathrm{~T} 3, \mathrm{~T} 4$, and T 5 (0.0 or 1.0).

$$
\begin{equation*}
\mathrm{TTO}=\frac{(\mathrm{RT} 2 * \mathrm{~T} 2)+(\mathrm{RT} 3 * \mathrm{~T} 3)+(\mathrm{RT} 4 * \mathrm{~T} 4)+(\mathrm{RT} 5 * \mathrm{~T} 5)}{\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4+\mathrm{T} 5} \tag{Eq.A-17}
\end{equation*}
$$

I. Reynolds Number

1. The constant required from the project engineer is REFL.

$$
\mathrm{RN} / \mathrm{FT}=\frac{1.81193 * 10^{8} * \mathrm{PTO} * \mathrm{MACH}\left(\mathrm{TTO}+658.27+39.72 \mathrm{MACH}^{2}\right)}{(\mathrm{TTO}+459.67)^{2}(1+0.2 \mathrm{MACH})^{2}}
$$

(Eq.A-18)

RN = RN/FT * REFL

The derivation of the formulas in Appendix A can be found in Ames Research Staff, Equations, Tables, and Charts for compressible flow, NACA Report 1135 (1953).

APPENDIXB
APPENDIX B
Jet Exhaust Measurements
Nomenclature 16
Required Constants 25
Test for Exhaust Model 27
Compute Common Constants 27
Individual Engine Measurements 27
Total Exhaust System Properties 33
Secondary Flow Measurements 39
Tertiary Flow Measurements 41

SYMBOL
AENG(I)

AREF
AT(I)
AVRI(L)

C*
CDSI(L)
CFI(M)

CFICHR(M)

FI(M)

FICHR(M)

FIENG(I)

NOMENCLATURE

Flow area to be used for determining each engine mass-flow rate from plenum chamber measurements, where $I=$ engine number. This area is generally based on the area of the plenum orifice nozzles (AENG(I) = (orifice area)/2 for twin engines), sq. in.

Model reference area used for coefficients, sq. in. Throat area of each engine, where $I=$ engine number, sq. in. Area of throat of in-line (not MCV) venturi, where $L=$ venturi number, sq. in.

Critical area, sq. in.
Discharge coefficient, where $\mathrm{L}=$ venturi number.
Ideal thrust coefficient based on mass-flow rate, where $M=$ air system.

Ideal thrust coefficient based on mass-flow rate obtained from plenum chamber measurements, where $M=$ air system. Ideal thrust of total primary exhaust system based on measured mass-flow rate, lbs., where $\mathbf{M}=$ air system.

Ideal thrust of total primary exhaust system based on mass-flow rate obtained from plenum chamber measurements, lbs., where M = air system. Ideal thrust of individual engines (where I = engine number (up to 4)) based on mass-flow rate obtained from individual plenum chamber measurements, lbs.

SYMBOL
FM(M)
NOMENCLATURE
Primary exhaust flow air flowmeter frequency, hertz, where M = air system.

FMS
g
GAMJ
IAIR(I)

ICH(I)

INTFM1(M) Flowmeter number for primary flow air flowmeter, where $\mathrm{M}=$ air system.
INTFMS
KAE(I)

KBL
$\mathrm{KCH}(\mathrm{I})$

KI1
K12
KI3
KJ1
KI2
KJ3
KJ4
Secondary flow air flowmeter frequency, hertz.
Acceleration due to gravity, 32.174 feet per second
Ratio of specific heats for primary exhaust flow.
Air system for each engine, where $I=$ engine number. Must be 1 or 2 , default $=0$.

Intercept to be used for determining each engine mass-flow rate from plenum chamber measurements, where $I=$ engine number. Flowmeter n:mber for secondary flow air flowmeter. Constant used in chamber mass-flow calculation, used if second order curve fit is required, where $I=$ engine number.

If set to 1 , tertiary flow computation is done. If set to 0 , tertiary flow computation is omitted.

Slope to be used for determining each engine mass-flow rate from plenum chamber measurements, where $I=$ engine number. Internally computed constant. Internally computed constant. Internally computed constant. Internally computed constant (function of GAMJ). Internally computed constant (function of GAMJ). Internally computed constant (function of GAMJ). Internally computed constant (function of GAMJ).

KPTBL(J) Constants used to determine average total pressure in tertiary

SYMEOL
KJ5
NCOTE:

KPAV(I)

KPBL(J)
$\mathrm{KPCH}(\mathrm{I})$

KPS
KPS(J)

KPT(I,J)

KPTS(J)
$\mathbf{K R}(\mathbf{I}, \mathrm{J})$

NOMENCLATURE

Internally computed constant (function of GAMJ).
If no correction is to be made to the pressure probe, then its value is set to 1.0. If the probe is faulty or does not exist, then its value is set to 0

Constants used to determine average primary jet total pressure ratio from all eingines, where $I=$ engine number. These constants must equal 0.0 or 1.0. See note.

Constants used to determine average static pressure in tertiary duct, where $J=$ probe number. Must equal 0.0 or 1.0. See note. Break pressure for calculation of WPENG(I) for second order equations, lbs/sq. in.
Secondary flowmeter constant (Internally computed). Constants used to determine average static pressure in secondary air duct, where $J=$ probe number. Must equal 0.0 or 1.0. See note.

Constants used in computing jet total pressure, where $I=$ engine number and $J=$ probe number. These constants must equal 0.0 or 1.0. See note. duct, where $J=$ probe number. Must equal 0.0 or 1.0. See note. Constants used to determine average total pressure in secondary air duct, where $\mathrm{J}=$ probe number. Must equal 0.0 or 1.0 .

See note.
Rake constant for each probe in each engine, where $I=$ engine number and $J=$ probe number. Must be equal to 0.0 or 1.0. See note.

SYMBOL	NOMENCLATURE
KSEC	If set to 1 , secondary flow computation is done. If set to $\mathbf{0}$, secondary flow computation is omitted.
KSW(M)	Switch for chamber, venturi or flowmeter, where M = air system. $=-1$, Multiple Critical Venturi mass-flow calculation. $=0$, Flowmeter mass-flow calculation. $=1$, Chamber mass-flow calculation. =2, In-line (not MCV) venturi mass-flow calculation.
KTAV(1)	Constants used to determine average primary jet total temperature from all engines, where $I=$ engine number. These constants must equal 0.0 or 1.0. See note.
KTT (I, J)	Constants used in determining primary jet total temperature, where $I=$ engine number and $J=$ probe number. These constants must equal 0.0 or 1.0 . See note.
KV	Venturi constant, used to account for different venturi calibrations. It includes venturi throat area and discharge coefficient.
KVA(J,M)	Constants used to determine average static pressure of multiple critical venturi, where $J=$ probe number and $M=$ air system.
KVARI(L)	Constants used in the computation of in-line (not MCV) venturi weight flow rate, where $L=1$ to 4 represents values of $P t / P$ at A/A* of venturi to convert measured static pressure at throat to a total pressure and $\mathrm{L}=5$ to 8 represents averaging factors (must be 0.0 or 1.0).
MBLDOT	Ratio of tertiary weight flow to tertiary ideal weight flow
MCV(M)	Venturi meter number, where $\mathrm{M}=$ air system.

SYMBOL
MDOT(M)

MDOTCH

MSDOT
NPTE(I)

NTTE(I)

NUMENG

PBL(J)

PBLAVE
PCH(I)

PCHOKE
PFM(M)

PFMS
PS(J)

PSEC
PTBL(J)

PTBLAV
MSDOT
NPTE(I)
(1)

NUMENG

PCH(
(

NOMENCLATURE

Primary mass-flow rate as measured by flowmeter, slugz/sec., where $M=$ air system.
Primary mass-flow rate as computed from plenum chamber measurements, slugg/sec.
Secondary flow mass-flow rate, slugg/sec.
Number of total pressure probes in each engine, where I = engine number. (Internally computed).
Number of total temperature probes in each engine, where I = engine number. (Internally computed).
Number of engines in model (maximum of 4). NUMENG $=0$ for aerodynamics model (no other constants required).
Static pressure measurements in the tertiary duct (up to 4), where $\mathrm{J}=$ probe number, $\mathrm{lbs} / \mathrm{sq}$. in.
Average static pressure in the tertiary duct, lbs/sq. in.
Individual engine-plenum-chamber total pressure, $\mathrm{I}=$ engine number, lbs/sq. in.
Primary jet-total-pressure ratio for choked flow.
Pressure measured at primary flow flowneter, lbs/sq. in., where M = air system.
Pressure measured at secondary flow flowmeter, $\mathrm{lbs} / \mathrm{sq}$. in.
Static pressure measurements in the secondary flow duct (up to 4), where $\mathrm{J}=$ probe number, lbs/sq. in.

Average static pressure in the secondary flow duct, lbs/sq. in. Total pressure measurements in the tertiary duct (up to 4), where $\mathrm{J}=$ probe number, lbs/sq. in.
Average total pressure in the teritary duct, lbs/sq. in.

SYMBOL
PTB/PTJ
PTB/PTO
PTENG(I)

PTENGO(I)

PTJ(I, J)

PTJ/PO(M)

PTS(J)

PTS/PTJ Ratio of secondary flow total pressure to primary jet total pressure.
PTS/PTO Ratio of secondary flow total pressure to free-stream total pressure.
PTSEC Average total pressure in the secondary flow duct, lbs/sq. in.
PTV Tertiary venturi total pressure, lbs/sq. in.
PV Tertiary venturi static pressure, lbs/sq. in.
PV1 Averaged multiple critical venturi static pressure upstream of venturi throat, lbs/sq. in.
PV2 Averaged multiple critical venturi static pressure downstrearn of venturi throat, lbs/sq. in.
PV/PTV Ratio of tertiary venturi static pressure to tertiary total pressure.

SYMBOL
PVEN(I,M) Multiple critical static pressure, where I = 1 and 3 are upstream and $\mathrm{I}=2$ and 4 are downstream of venturi throat, lbs/sq. in., where $\mathbf{M}=$ air system.

PVRI(L,M) In-line (not MCV) venturi static pressure, lbs/sq. in., where $L=$ venturi number and $M=$ air system .

RDUCT Venturi throat Reynolds number

RJ
RNMCV(M) Venturi Reynolds number, where M = air system
RS
RV
TCH(I)

TFM(M)
TFMS
THETBL
THETSE
TTBL
TTENG(I)

TTJ(I,J) Individual primary jet total temperature measurements where $I=$ engine number and $J=$ probe number, ${ }^{\circ} F$.

TTlAVG(M) Average primary jet total temperature (all engines), ${ }^{\circ} \mathrm{F}$, where $\mathbf{M}=$ air system.

TTSEC Secondary flow total temperature, ${ }^{\circ} \mathrm{F}$.
TTV
TV(M)
Gas constant for primary flow, ft/degree Rankine.

Gas constant for secondary flow, ft/degree Rankine.
Gas constant for tertiary flow, ft/degree Rankine.
Individual engine-plenum chamber total temperature, $I=$ engine number, ${ }^{\circ} \mathrm{F}$.

Temperature at primary flowmeter, ${ }^{\circ} \mathrm{F}$, where $\mathrm{M}=$ air system.
Temperature at secondary flowmeter, ${ }^{\bullet} \mathrm{F}$.
Tertiary flow corrected mass-flow ratio.
Secondary flow corrected mass-flow ratio.
Total temperature of tertiary flow, ${ }^{\circ} \mathrm{F}$.
Average primary jet total temperature in each engine where $I=$ engine number, ${ }^{\circ} F$.

Temperature at the tertiary venturi, ${ }^{\circ} \mathrm{F}$.
Multiple critical venturi temperature, ${ }^{\bullet} F$, where $M=$ air system.

SYMBOL
TVRI(L,M)

VIS
VRATIO(M) Ratio of multiple critical venturi static pressures (should be less than 0.93), where $M=$ air system number.
WI(M)
Ideal weight flow of primary flow, lbs/sec., where $\mathbf{M}=$ air system number.

WIBL Ideal weight flow of tertiary flow, lbs/sec.
WIETYG(I) Ideal weight flow of each individual engine primary flow, where $\mathrm{I}=$ engine number, $\mathrm{lbs} / \mathrm{sec}$.
WMCV(M) Multiple critical venturi weight flow rate, lbs/sec., where $M=a j$ system.
WMCV/WI(M) Ratio of multiple critical venturi weight flow rate to ideal weight flow rate, where $M=$ air system.
WP(M) Measured weight flow of air primary flow flowmeter or venturi, lbs/sec., where $M=$ air system.
WPBL Tertiary weight flow rate obtained from venturi, lbs/sec.
WPCHR(M) Total primary flow weight flow rate obtained from plenum chamber measurements, $\mathrm{lbs} / \mathrm{sec}$, where $\mathrm{M}=$ air system.
WPCHR/WI(M) Discharge coefficient of total primary flow system as obtained from plenum chamber measurements for entire system, where $\mathbf{M}=$ air system number.
WPENG(I) Primary flow weight flow rate of each engine obtained from
Temperature at the in-line (not MCV) venturi, where $L=$ venturi number, ${ }^{\bullet} F$, and $M=$ air system number.

Free-stream viscosity, lb. sec./sq. ft.
plenum-chamber measurements, where $I=$ engine number, lbs/sec.
WPSEC
Secondary flow weight flow rate, lbs/sec.

SYMBGL

NOMENCLATURE
WP/WI(M) Primary flow discharge coefficient using flowmeter or venturi weight flow rate for entire system, where $\mathbf{M}=$ air system.
WPE/WIE(I) Discharge coefficient of each individual engine as obtained from plenum-chamber measurements, where $I=$ engine number.
WPVRI(M) Sum of in-line (not MCV) venturi weight flow rates, lbs/sec., where $\mathrm{M}=$ air system.
WPVRI/WI(M) Ratio of summation of in-line (not MCV) venturi weight flow rate to ideal weight flow rate, where $M=$ air system.
WVRI(L,M) In-line (not MCV) venturi weight fiow rate, lbs/sec., where $\mathrm{L}=$ venturi number, and $\mathrm{M}=$ air system.
Z
7S Primary flowmeter constant. (Internally computed). Secondary flowmeter constant. (Internally computed).

APPENDIXB
Module B
Jet Exhaust Measurements

A. Required Constants

1. All constante are initialized to a value of zero. The project engineer needs to supply only those constants which are required for the quantities to be computed. In addition, by logical use of combinations of these constants, several options are available to the project engineer. One of these options is discussed later.
2. NUMENG - number of engines in model. NUMENG $=0$ for aerodynamics model (no other consiants are required).
3. $K R(I, J)$-Rake constant for each probe in each engine, where $I=$ engine number and $\mathrm{J}=$ probe number.

If no correction is to be made to the total pressure probe, then its value is set equal to 1.0. If the probe is faulty or does not exist, then its value is set equal to 0.0 .

Example: Two engines; five probes in the first, and three probes in the second.

Engine 1 is corrected to integrated rake values, engine 2 probes are uncorrected.
$\operatorname{KR}(1,1)=1.051$
$\mathrm{KR}(1,2)=.986$
$K R(1,3)=.972$
$\mathrm{KR}(1,4)=.987$

B. Test for Exhaust Model

1. The constant required from the project engineer is NUMENG (0 to 4).

IF NUMENG $=0$, skip module B.
C. Compute Common Constants

1. The constants required from the project engineer are GAMJ and RJ.

$$
\mathrm{KJ} 2=\frac{\mathrm{GAMJ} * 64.348}{(\mathrm{GAMJ}-1) \mathrm{RJ}}
$$

(Eq. B-1)

$$
\mathrm{KJ} 3=\sqrt{\frac{2 *(\mathrm{GAMJ}) *(\mathrm{RJ})}{(\mathrm{GAMJ}-1) * 32.174}}
$$

(Eq. B-2)

$$
\begin{equation*}
\mathrm{KJ} 4=\sqrt{\frac{\mathrm{GAMJ}-1}{\text { GAMJ }}} \tag{Eq.B-3}
\end{equation*}
$$

$$
\mathrm{KJ} 5=\frac{1}{\text { GAMJ }}
$$

(Eq. B-4)

$$
\begin{equation*}
\text { PCHOKE }=\left[1+\left(\frac{\text { GAMJ }-1}{2}\right)\right]^{\frac{\text { GAMJ }}{\text { GAMJ }-1}} \tag{Eq.B-5}
\end{equation*}
$$

D. Individual Encine Measurements

1. This permits compuiation for four separate engines with the following instrumentation in each engine:
a. jet total pressures
b. jet total temperatures
c. chamber pressure
d. chamber temperature
2. Jet total pressure
a. Jet total pressure will always be called $\operatorname{PTJ}(\mathrm{I}, \mathrm{J})$, where $\mathrm{I}=$ engine number and $J=$ probe number.
b. An example of representing the third measurement (probe 3) of jet tota' pressure in engine 2 is named $\mathrm{PTJ}(2.3)$.
c. The constants required from the project engineer are $K R(I, J)$ and KPT(I,J).

$$
\operatorname{PTENG}(\mathrm{I})=\frac{\sum_{\mathrm{J}=1}^{\mathrm{NPTE}(\mathrm{I})} \operatorname{PTJ}(\mathrm{I}, \mathrm{~J}) * \mathrm{KR}(\mathrm{I}, \mathrm{~J})}{\sum_{\mathrm{J}=1}^{\operatorname{NPTE}(\mathrm{I})} \mathrm{KPT}(\mathrm{I}, \mathrm{~J})}
$$

(Eq. B-6)

$$
\begin{equation*}
\operatorname{PTENGO}(\mathrm{I})=\frac{\mathrm{PTENG}(\mathrm{I})}{\mathrm{PO}} \tag{Eq.B-7}
\end{equation*}
$$

3. Jet total temperature
a. Jet total temperature measurements are always called TTJ(I,J), where $I=$ engine number and $J=$ probe number.
b. An example of the first measurement (probe 1) of jet total temperature in engine 3 is named TTJ(3.1).
c. The constants required from the project engineer are KTT($\left.I_{N} J\right)$.

$$
\operatorname{TTENG}(\mathrm{I})=\frac{\sum_{\mathrm{J}=1}^{\mathrm{NTTE}(\mathrm{I})} \operatorname{TTJ} \mathrm{I}(\mathrm{I}, \mathrm{~J}) * \mathrm{KTT}(\mathrm{I}, \mathrm{~J})}{\sum_{\mathrm{J}=1}^{\operatorname{NTME}(\mathrm{I})} \mathrm{KTT}(\mathrm{I}, \mathrm{~J})}
$$

(Eq. B-8)
4. Chamber weight flow for each engine.
a. The constants required from the project engineer are $\mathrm{KCH}(\mathrm{I}), \mathrm{ICH}(\mathrm{I})$, KAE(I), AT(I), AENG(I) and KPCH(I).

$$
\mathrm{KJ} 1=0.5316+(\mathrm{PTENG}(\mathrm{I})+16.9)\left((1.581-0.00834(\mathrm{TTENG}(\mathrm{I})-60)) / 10^{5}\right)^{1}(\mathrm{Eq} . \mathrm{B}-9)
$$

If $\mathrm{PCH}(\mathrm{I})<\mathrm{KPCH}(\mathrm{I})$
then
$\operatorname{WPENG}(\mathrm{I})=\frac{\operatorname{AENG}(\mathrm{I}) * \operatorname{PCH}(\mathrm{I}) * \mathrm{KJ} 1 *\left[\mathrm{ICH}(\mathrm{I})+\mathrm{KCH}(\mathrm{I}) * \mathrm{PCH}(\mathrm{I})+\mathrm{KAE}(\mathrm{I}) * \operatorname{PCH}(\mathrm{I})^{2}\right]}{\sqrt{\mathrm{TCH}(\mathrm{I})+459.67}}$

If $\mathrm{PCH}(\mathrm{I})>\mathrm{KPCH}(\mathrm{I})$ then
$\mathrm{WPENG}(\mathrm{I})=\frac{\operatorname{AENG}(\mathrm{I}) * \operatorname{PCH}(\mathrm{I}) * \mathrm{KJ} 1 *\left[\mathrm{ICH}(\mathrm{I}+4)+\mathrm{KCH}(\mathrm{I}+4) * \operatorname{PCH}(\mathrm{I})+\mathrm{KAE}(\mathrm{I}+4) * \operatorname{PCII}(\mathrm{I}){ }^{2}\right]}{\sqrt{\mathrm{TCH}(\mathrm{I})+459.67}}$
(Eq. B-10)

[^0]5. Ideal weight flow for each engine.
a. The nozzle choke total pressure ratio is calculated internally and is called PCHOKE.
b. The constant required from the project engineer is AT(I).

If PTENGO(I) is greater than FCHOKE, use equation B-11.

$$
\begin{equation*}
\operatorname{WIENG}(\mathrm{I})=\frac{[\mathrm{K} I] *[\operatorname{PTENG}(\mathrm{I})] *[\mathrm{AT}(1)]}{\sqrt{\operatorname{TTENG}(\mathrm{I})+459.67}} \tag{Eq.B-11}
\end{equation*}
$$

If PTENGO(I) is less than or equal to PCHOKE, use equation B-12.

$$
\begin{equation*}
\mathrm{KI} 1=\frac{\mathrm{KJ} 2}{(\mathrm{TTENG}(\mathrm{I})+459.67)}\left[1-\left(\frac{1}{\mathrm{PTENGO}(\mathrm{I})}\right)^{\mathrm{KJ} 4}\right] \tag{Eq.B-12}
\end{equation*}
$$

If KI 1 is less than $0, \mathrm{KI} 1=.0001$
then

$$
\begin{equation*}
\mathrm{WIENG}(\mathrm{I})=\sqrt{\mathrm{KII}} * \operatorname{AT}(\mathrm{I}) * \operatorname{PTENG}(\mathrm{I}) *\left(\frac{1}{\mathrm{PTENGO}(\mathrm{I})}\right)^{\mathrm{KJ5}} \tag{Eq.B-13}
\end{equation*}
$$

Note to the project engineer: If the engine is shrouded, then a local static pressure in the nozzle shroud should be used rather than PO. The engineer must supply a new equation for KI1 and WIENG(I).
6. Discharge coefficient for each engine based on chamber weight flow.

$$
\text { WPE } / \operatorname{WIE}(\mathrm{I})=\frac{\operatorname{WPENG}(\mathrm{I})}{\operatorname{WIENG}(\mathrm{I})}
$$

(Eq. B-14)

If $\mathrm{WIENG}(\mathrm{I})=0, \mathrm{WPE} / \mathrm{WIE}(\mathrm{I})=0$
7. Ideal thrust for each engine based on chamber weight flow.

$$
\begin{equation*}
\mathrm{KI} 2=[\text { TTENG }(\mathrm{I})+459.67] *\left[1-\left(\frac{1}{\text { PTENGO(I) }}\right)^{\mathrm{KJ} 4}\right] \tag{Eq.B-15}
\end{equation*}
$$

If KI 2 is less than $0, \mathrm{KI} 2=.0001$

$$
\begin{equation*}
\operatorname{FIENG}(\mathrm{I})=[\mathrm{KJ} 3] *[\operatorname{WPENG}(\mathrm{I})] *[\sqrt{\mathrm{KI} 2}] \tag{Eq.B-16}
\end{equation*}
$$

8. In-line venturi: weight flow for each Venturi, in each air system. The equations given below are for critical flow venturi and are intended to be very general.

Air system number $=\operatorname{IAIR}(\mathrm{I})=(\mathrm{M})$

$$
\begin{aligned}
\mathrm{A}(\mathrm{I})= & \{\mathrm{VKRI}(4, \mathrm{I}) *(\operatorname{TVRI}(\mathrm{~L}, \mathrm{M})+459.67)+\operatorname{VKRI}(3, \mathrm{I})] *(\mathrm{TVRI}(\mathrm{~L}, \mathrm{M})+459.67)+ \\
& \operatorname{VKRI}(2, \mathrm{I})\} *(\operatorname{TVRI}(\mathrm{~L}, \mathrm{M})+459.67)+\operatorname{VKRI}(1, \mathrm{I})
\end{aligned}
$$

(Eq. B-17)
$A(I)$ where $I=1$ to 4 are constants which go into the compressibility term, C^{*}. As seen, a 3rd order equation capability exists. Values of VKRI(1,I) to

VKRI(4,I) can be input using ' C ' cards to allow use of most any critical venturi.

$$
\begin{equation*}
\mathrm{C}^{*}=[(\mathrm{A}(4) * \operatorname{PVRI}(\mathrm{~L}, \mathrm{M}) \div \mathrm{A}(3)) * \operatorname{PVRI}(\mathrm{~L}, \mathrm{M})+\mathrm{A}(2)] * \operatorname{PVRI}(\mathrm{~L}, \mathrm{M})+\mathrm{A}(1) \tag{Eq.B-18}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{TS}=(\mathrm{TVRI}(\mathrm{~L}, \mathrm{M})+459.67) / 1.2 \tag{Eq.B-19}
\end{equation*}
$$

$$
\text { VIS }=6.086248 * 10^{-8} *(\mathrm{TS})^{1.5} /(\mathrm{TS}+198.6)
$$

$$
\begin{align*}
& \text { Individual venturi mass flow is then computed using } \tag{Eq.B-20}\\
& \operatorname{WVRI}(\mathrm{L}, \mathrm{M})=\frac{\operatorname{PVRI}(\mathrm{L}, \mathrm{M}) * \mathrm{KVARI}(\mathrm{~L}) * \operatorname{AVRJ}(\mathrm{~L}) * \mathrm{~g} * \mathrm{C} * * \mathrm{CDSI}}{\sqrt{\mathrm{~g} * R J *(T V R I(L, M)+459.67)}} \tag{Eq.B-21}
\end{align*}
$$

NOTE: CDSI represents the discharge coefficient of individual venturi. It is obtained using an iterative scheme based on venturi throat Reynolds number. A table of CD versus RDUCT is required for each venturi. RDUCT is computed using
RDUCT = WVRI(L)/(AVRI(L) * VIS)

Because of the complexity of this computation, an example is included. The following information is contained within the data reduction program when using the twin critical venturis which measure total mass flow in the groundstand (B1234).

$\operatorname{VKRI}(4,1)=0.0$	$\operatorname{VKRI}(4,3)=0.0$
$\operatorname{VKRI}(3,1)=-1.43545 \mathrm{E}-8$	$\operatorname{VKRI}(3,3)=1.64438 \mathrm{E}-13$
$\operatorname{VIRRI}(2,1)=1.36243 \mathrm{E}-5$	$\operatorname{VKRI}(2,3)=-1.90568 \mathrm{E}-10$
$\operatorname{VKRI}(1,1)=0.68166$	$\operatorname{VKRI}(1,3)=5.4424 \mathrm{E}-8$
$\operatorname{VKRI}(4,2)=0.0$	$\operatorname{VKRI}(4,4)=0.0$
$\operatorname{VKRI}(3,2)=4.49456 \mathrm{E}-10$	$\operatorname{VKRI}(3,4)=0.0$
$\operatorname{VKRI}(2,2)=-6.06496 \mathrm{E}-7$	$\operatorname{VKRI}(2,4)=0.0$
$\operatorname{VKRI}(1,2)=2.14835 \mathrm{E}-4$	$\operatorname{VKRI}(1,4)=0.0$

$$
\begin{array}{lll}
\operatorname{KVARI}(1)=1.0040 & \operatorname{AVRI}(1)=.272009 & \operatorname{KVARI}(5)=1.0 \\
\operatorname{KVARI}(2)=1.0039 & \operatorname{AVRI}(2)=.264481 & \operatorname{KVARI}(6)=1.0
\end{array}
$$

Only the KVARI and AVRI constants are required to be input by an engineer. Both venturis use the same CD versus RDUCT relationship, which is not a table lookup but simply a second order equation. Of course a table lookup could be used in lieu of the equation.

The CDSI equation for twin critical venturis in groundstand:
CDSI $=0.993507+3.5062 \mathrm{E}-4^{*}($ RDUCT $)-1.1269 \mathrm{E}-5 *\left(\mathrm{RDUCT}^{2}\right)$
where RDUCT $=\operatorname{WVRI}(\mathrm{L}, \mathrm{M}) /(\operatorname{AVRI}(\mathrm{L}) *$ VIS * 1.0 E 06$)$

E. Total Exhaust System Properties

1. Average total pressure ratio.
a. The constants required from the prcject engineer are $\mathrm{KPAV}(\mathrm{I})$ and IAIR(I).

$$
(\mathrm{M})=\operatorname{IAIR}(\mathrm{I})
$$

$$
\mathrm{PTJ} / \mathrm{PO}(\mathrm{M})=\frac{\sum_{\mathrm{I}=1}^{\mathrm{NUMENG}}[\mathrm{KPAV}(\mathrm{I}) * \mathrm{PTENGO}(\mathrm{I})]}{\sum_{\mathrm{I}=1}^{\mathrm{NUMENG}} \mathrm{KPAV}(\mathrm{I})}
$$

2. Average total temperature.
a. The constants required from the project engineer are KTAV(I) and IAIR(I).

$$
(M)=\operatorname{IAIR}(I)
$$

$\operatorname{TTJAVG}(\mathrm{M})=\frac{\sum_{\mathrm{I}=1}^{\mathrm{NUMENG}}[\mathrm{KTAV}(\mathrm{I}) * \operatorname{TTENG}(\mathrm{I})]}{\sum_{\mathrm{I}=1}^{\text {NUMENG }} \mathrm{KTAV}(\mathrm{I})}$
(Eq. B-24)
3. Total weight or mass flow.
a. Each air system weight flow is in units of lb/sec.
b. Each air system mass flow is in units of slugs/sec.
c. The constants required from the project engineer are:
(1) INTFM1(M) and MCV(M), where M is air system number.
(2) KSW selects mass flow computation

$$
\begin{aligned}
& =1 ; \text { chamber low } \\
& =0 ; \text { flowmeter } \\
& =-1 ; \text { multiple critical venturi } \\
& =2 ; \text { in-line venturis }
\end{aligned}
$$

If KSW = 1 (chamber mass flow calculation)

$$
(M)=\operatorname{IAIR}(I)
$$

$$
\text { WPCHR }(\mathrm{M})=\underset{\mathrm{I}=1}{\text { NUMENG }} \mathbf{W P E N G}(\mathrm{I})
$$

(Eq. B-25)

$$
\begin{equation*}
\mathrm{MDOTCH}=\frac{\mathrm{WPCHR}(\mathrm{M})}{32.174} \tag{Eq.B-26}
\end{equation*}
$$

If KSW = 0 (air model with flowmeter)
Z and KP are determined from standardized flowmeter tables and from INTFM 1 (M) constant.

$$
\mathrm{WP}(\mathrm{M})=\frac{(\mathrm{FM}(\mathrm{M}))^{*}(\mathrm{PFM}(\mathrm{M}) *(144 .)}{(\mathrm{RJ})^{*}(\mathrm{Z})^{*}(\mathrm{KP})^{*}(\mathrm{TFM}(\mathrm{M})+459.67)}
$$

(Eq. B-27)

$$
\operatorname{MDOT}(\mathrm{M})=\frac{\mathrm{WP}(\mathrm{M})}{32.174}
$$

(Eq. B-28)

If KSW = $\mathbf{- 1}$ (venturi mass flow calculation), the multiple critical venturi code, MCV, is decoded to derive those venturi present

$$
\begin{align*}
& \text { PV1 }=\frac{\text { KVA } 1 * \operatorname{PVEN}(1, \mathrm{M})+\text { KVA } 3 * \operatorname{PVEN}(3, \mathrm{M})}{\text { KVA1 }+ \text { KVA } 3} \\
& \text { PV2 }=\frac{\text { KVA } 2 * \operatorname{PVEN}(2, \mathrm{M})+\text { KVA } 4 * \operatorname{PVFN}(4, \mathrm{M})}{\text { KVA2 }+ \text { KVA } 4} \tag{Eq.B-29}
\end{align*}
$$

$$
\operatorname{VRATIO}(\mathrm{M})=\frac{\mathrm{PV} 2}{\mathrm{PV} 1}
$$

(Eq. B-30)

$$
\mathrm{A}(\mathrm{I})=((\mathrm{VK}(4, \mathrm{I}) * \mathrm{TV}(\mathrm{M})+\mathrm{VK}(3, \mathrm{I})) * \mathrm{TV}(\mathrm{M})+\mathrm{VK}(2, \mathrm{I})) * \mathrm{TV}(\mathrm{M})+\mathrm{VK}(1, \mathrm{I})
$$

(Eq. B-31)

$$
\begin{equation*}
C^{*}=((A(4) * P V 1+A(3)) * P V 1+A(2)) * P V 1+A(1) \tag{Eq.B-32}
\end{equation*}
$$

$\mathrm{TS}=(\mathrm{TV}(\mathrm{M})+459.67) / 1.2$
VIS $\left.=6.086248 * 10^{-8} *(\mathrm{TS})^{1.5 /(T S}+198.6\right)$
$\operatorname{WMCV}(\mathrm{M})=\sum_{\mathrm{I}} \operatorname{PV} 1 * \operatorname{AREAV}(\mathrm{I}) *(\mathrm{C} *) *\left(\frac{32.174}{(\mathrm{TV}(\mathrm{M})+459.67) \mathrm{RJ}}\right)^{1 / 2} * \operatorname{CD}(\mathrm{I})$
(Eq. B-35)

$$
\mathrm{ARMCV}=\sum_{\mathrm{I}} \operatorname{AREAV}(\mathrm{I})
$$

(Eq. B-36)

The above summations are over the venturi present. $\mathrm{CD}(\mathrm{I})$ is computed by linear interpolation from a table of CD vs RNMCV where

$$
\operatorname{RNMCV}(\mathrm{M})=\mathrm{WMCV}(\mathrm{M}) /(\operatorname{ARMCV} * \mathrm{VIS})
$$

(Eq. B-37)
An iterative scheme is used until successive computations of WMCV differ by a desired accuracy.
4. If $\mathrm{KSW}=2$ (in-line venturis)

$$
\begin{equation*}
\mathrm{WPVRI}(\mathrm{M})=\sum_{\mathrm{L}=1}^{4} \mathrm{WVRI}(\mathrm{~L}, \mathrm{M}) * \operatorname{KVARI}(\mathrm{~L}+4) \tag{Eq.B-38}
\end{equation*}
$$

5. Ideal weight flow (total).
a. Ideal weight flow of each air system is computed

$$
\mathrm{WI}(\mathrm{M})=\underset{\sum_{\mathrm{I}=1}^{\text {NUMENG }}}{ } \text { WIENG }(\mathrm{I})
$$

(Eiq. B-39)
6. Discharge coefficient for each air system.
a. The discharge coefficient using weight flow from a flowmeter or a venturi and the discharge coefficient using weight flow from chamber measurements are computed.

If

$$
\begin{array}{ll}
\mathrm{KSW}=2 & \mathrm{WP}(\mathrm{M})=\mathrm{WPVRI}(\mathrm{M}) \\
\mathrm{KSW}=1 & \mathrm{WP}(\mathrm{M})=\mathrm{WPCHR}(\mathrm{M}) \\
\mathrm{KSW}=0 & \mathrm{~W}(M=W P(M) \\
\mathrm{KSW}=-1 & \mathrm{WP}(M)=\mathrm{WMCV}(M) \\
& \\
&
\end{array}
$$

(Eq. B-40)

$$
\begin{equation*}
\mathrm{WP} / \mathrm{WI}(M)=\frac{\mathrm{WP}(M)}{\mathrm{WI}(M)} \tag{Eq.B-41}
\end{equation*}
$$

$$
\begin{equation*}
\text { WPCHR } / \mathrm{WI}(M)=\frac{\text { WPCHR(M) }}{\mathrm{WI}(M)} \tag{Eq.B-42}
\end{equation*}
$$

$$
\mathrm{WMCV} / \mathrm{WI}(\mathrm{M})=\frac{\mathrm{WMCV}(\mathrm{M})}{\mathrm{WI}(\mathrm{M})}
$$

(Eq. B-43)

$$
\mathrm{WPVRI} / \mathrm{WI}(\mathrm{M})=\frac{\mathrm{WPVRI}(\mathrm{M})}{\mathrm{WI}(\mathrm{M})}
$$

(Eq. B-44)

If $\quad \mathrm{WI}(\mathrm{M})=0 ; \mathrm{WP} / \mathrm{WI}(\mathrm{M})=\mathrm{WPCHR}(\mathrm{M}) / \mathrm{WI}(\mathrm{M})=\mathrm{WMCV}(\mathrm{M}) / \mathrm{WI}(\mathrm{M})=$ $\operatorname{WPVRI}(M) / W I(M)=0$
7. Ideal thrust for each air system.
a. The ideal thrust, FICHR(M), and ideal thrust coefficient CFICHR(M) are obtained from chamber weight flow.
b. The ideal thrust, FI(M), and ideal thrust coefficient CFI(M) are obtained from flowmeter or venturi measured weight flow.
c. Note that MACH, PO and QO are from Module A and $\mathrm{M}=$ air system.
d. The constant required from the project engineer is AREF.

$$
\begin{equation*}
\operatorname{FICHR}(\mathrm{M})=\sum_{\mathrm{I}=1}^{\mathrm{NUMENG}} \operatorname{FIENG}(\mathrm{I}) \tag{Eq.B-45}
\end{equation*}
$$

If $\mathrm{MACH}<.1$,

$$
\begin{equation*}
\operatorname{CFICHR}(\mathrm{M})=\frac{\operatorname{FICHR}(\mathrm{M})}{(\mathrm{PO}) *(\mathrm{AREF})} \tag{Eq.B-46}
\end{equation*}
$$

If MACH $\geq .1$,

$$
\operatorname{CFICHR}(\mathrm{M})=\frac{\operatorname{FICHR}(\mathrm{M})}{(\mathrm{QO}) *(\operatorname{AREF})}
$$

$$
\mathrm{Kl} 3=(\mathrm{TTJAVG}+459.67) *\left[1-\left(\frac{1}{\mathrm{PTJ} / \mathrm{PO}(\mathrm{M})}\right)^{\mathrm{K} / 4}\right]
$$

(Eq. B-47)
(Eq. B-48)

If $\mathrm{KI} 3<0 ; \mathrm{KI} 3=.0001$

$$
\mathrm{FI}(\mathrm{M})=(\mathrm{KJ} 3) *(\mathrm{WP}(\mathrm{M})) *(\sqrt{\mathrm{KI} 3})
$$

(Eq. B-49)

If $\mathrm{MACH}<.1$,

$$
\operatorname{CFI}(\mathrm{M})=\frac{\mathrm{FI}(\mathrm{M})}{(\mathrm{PO}) *(\mathrm{AREF})}
$$

(Eq. B-50)

If $\mathrm{MACH} \geq .1$,

$$
\operatorname{CFI}(\mathrm{M})=\frac{\mathrm{FI}(\mathrm{M})}{(\mathrm{QO}) *(\mathrm{AREF})}
$$

F. Secondary Flow Measurements

If $\mathrm{KSEC}=0$, skip equations $\mathrm{B}-52$ through B-58.

1. Secondary passage total pressure.
a. The total pressure measuremerts PTS(J) in the secondary air passage (up to 4) are used to compute the average secondary passage total pressure.
b. The constant required from the project engineer is KPTS(J).

$$
\begin{equation*}
\operatorname{PTSEC}=\frac{\sum_{\mathrm{j}=1}^{\frac{4}{2}} \operatorname{KPTS}(\mathrm{~J}) * \operatorname{PTS}(\mathrm{~J})}{\sum_{J=1}^{4} \operatorname{KPTS}(\mathrm{~J})} \tag{Eq.B-52}
\end{equation*}
$$

2. Secondary passage static pressure.
a. Static pressure measurements $\mathrm{PS}(\mathrm{J})$ in the secondary air passage (up to 4) are used to compute the average static pressure in the secondary air passage.
b. The constant required from the project engineer is KPS(J)

$$
\operatorname{PSEC}=\frac{\sum_{\mathrm{J}=1}^{4} \operatorname{KPS}(\mathrm{~J}) * \operatorname{PS}(\mathrm{~J})}{\sum_{\mathrm{J}=1}^{4} \operatorname{KPS}(\mathrm{~J})}
$$

(Eq. B-53)
3. Secondary duct total temperature
a. The total temperature TTSEC in the secondary duct is handled in the standard program for quantities.
4. Secondary mass flow
a. The constants required from the project engineer are RS, KPS, ZS, INTFMS. KPS and ZS are determined internaliy from INTFMS constant.

$$
\begin{equation*}
\text { WPSEC }=\frac{(\text { FMS }) *(\text { PFMS }) *(144.0)}{(\mathrm{RS}) *(\mathrm{ZS}) *(\mathrm{KPS}) *(\mathrm{TFMS}+459.67)}, \mathrm{lbs} / \mathrm{sec} \tag{Eq.B-54}
\end{equation*}
$$

$$
\begin{equation*}
\text { MSDOT }=\frac{\text { WPSEC }}{32.174}, \text { slugs } / \mathrm{sec} \tag{Eq.B-55}
\end{equation*}
$$

5. Pumping characteristics

$$
\begin{equation*}
\mathrm{PTS} / \mathrm{PTJ}=\frac{\mathrm{PTSEC}}{(\mathrm{PTJ} / \mathrm{PO}(\mathrm{M})) *(\mathrm{PO})} \tag{Eq.B-56}
\end{equation*}
$$

$$
\begin{equation*}
\text { PTS } / \text { PTO }=\frac{\text { PTSEC }}{\text { PTO }} \tag{Eq.B-57}
\end{equation*}
$$

6. Corrected mass flow ratio

$$
\begin{equation*}
\text { THETSE }=\frac{\text { MSDOT }}{\operatorname{MDOT}(M)} \sqrt{\frac{(T T S E C+459.67) * R S}{(T T J A V G(M)+459.67) * R J}} \tag{E'q.B-58}
\end{equation*}
$$

G. Tertiary Flow Measurements

If $\mathrm{KBL}=0$, skip equations B-59 through B-64.

1. Tertiary duct total pressure.
a. The total pressure measurements $\operatorname{PBL}(\mathrm{J})$ in the tertiary duct (up to 4)
are used to compute the average tertiary duct total pressure.
b. The constant required from the project engineer is KPTBL(J).

$$
\begin{equation*}
\text { PTBLAV }=\frac{\sum_{\mathrm{J}=1}^{4} \operatorname{KPTBL}(\mathrm{~J}) * \operatorname{PTBL}(\mathrm{~J})}{\sum_{\mathrm{J}=1}^{4} \operatorname{KPTBL}(\mathrm{~J})} \tag{Eq.B-59}
\end{equation*}
$$

2. Tertiary duct static pressure.
a. Static pressure measurements PBL(J) in the tertiary duct (up to 4) are used to compute the average static pressure in the tertiary duct.
b. The constant required from the project engineer is KPBL(J).

(Eq. B-60)
3. Tertiary duct total temperature.
a. Total temperature in the tertiary duct TTBL is handled in the standard program for quantities.
4. Tertiary mass flow.
a. Venturi total pressure, PTV, and venturi static pressure, PV, are required.
b. Tertiary weight flow is in units of lbs/sec.
c. Tertiary mass flow is in units of slugs $/ \mathrm{sec}$.
d. The constants required from the project engineer are RV, KV.

$$
\mathrm{PV} / \mathrm{PTV}=\frac{\mathrm{PV}}{\mathrm{PTV}}
$$

$$
\mathrm{WPBL}=0.13594[(\mathrm{PTV}-\mathrm{PV}) /(\mathrm{PTV} / 14.696)]^{0.48117} *(\mathrm{PTV} / 14.696) / \sqrt{\frac{T T V+459.67}{518.7}}
$$

(Eq. B-61)
$\mathrm{WIBL}=0.72167 *(\mathrm{PV} / \mathrm{PTV})^{0.857143} * \sqrt{(\mathrm{PV} / \mathrm{PTV})^{0.2857}-1} * \mathrm{PTV} / \sqrt{\mathrm{TTV}+459.67}$
(Eq. B-62)

MBLDOT = WPBL/WIBL

(Eq. B-63)
5. Pumping characteristics.

$$
\mathrm{PTB} / \mathrm{PTJ}=\frac{\mathrm{PTBLAV}}{(\mathrm{PTJ} / \mathrm{PO}(\mathrm{M})) *(\mathrm{PO})}
$$

(Eq. B-64)
$\mathrm{PTB} / \mathrm{PTO}=\frac{\mathrm{PTBLAV}}{\mathrm{PTO}}$
(Eq. B-65)

APPENDIXC

APPENDIX C

Skin Friction Drag
Nomenclature 46
Required Constants 48
Test for Skin Friction Calculation 49
Fuselage Skin Friction Drag 49
Empennage Skin Friction Drag 50
Total Skin Friction Drag 50

MODULE C SKIN FRICTION DRAG

SYMBQL	NOMENCLATURE
AREF	Model reference area used for coefficients, sq. in. If module B is used, this constant is already specified.
AWET(I)	Model wetted areas, sq. in.
	Where AWET(1) = total fuselage wetted area.
	AWET(2) = fuselage wetted area up to metric break
	AWET(3) = fuselage wetted area up to nozzle connect station.
	AWET(4) = wing wetted area.
	AWET(5) = vertical tail wetted area.
	AWET(6) = horizontal tail wetted area.
	AWET(7) = optional, for additional body.
CDF	Total skin friction drag coefficient.
CDFAFT	Afterbody plus nozzle skin friction drag coefficient.
CDFF	Total fuselageawkin friction drag coefficient.
CDFHT	Horizontal tails (canards) skin friction drag coefficient.
CDFNOZ	Nozzle skin friction drag coefficient.
CDFR(I)	Individual skin friction drag coefficients calculations.
CDFVT	Vertical tails(s) skin friction drag coefficient.
CDFW	Wing skin friction drag coefficient.
FL(I)	Model reference lengths, feet.
	Where $\mathrm{FL}(1)=$ fuselage length .
	FL(2) = fuselage length up to metric break.
	FL(3) = fuselage length up to nozzle connect station.
	FL(4) = wing mean aerodynamic chord.

SXMBOL NOMENCLATURE

FL(5) = vertical tail mean aerodynamic chord.
FL(6) = horizontal tail mean aerodynamic chord.
$F L(7)=$ optional.
FORMF(I) Form factors
Where $\operatorname{FORMF}(1)=$ fuselage .
FORMF(2) = wing.
FORMF(3) = vertical tail.
FORMF(4) = horizontal tail.
FORMF(5) = optional.
KFAFT Constant used to inciude proper terms in total skin friction drag term, CDF. Must equal 0.0 or 1.0. If the relevant term is to be incorporated to the total skin friction drag, set to 1.0; otherwise, set to 0.0.

KFF See KFAFT.
KFNOZ See KFAFT.

APPENDIX C
 Module C

 Skin Friction Drag

 Skin Friction Drag}

Skin friction drag is computed by the method of Frankl and Voishel ${ }^{2}$ for compressible, turbulent flow on a flat plate.

A. Required Constants

All constants are initialized to a value of 0.0 except FORMF(I) which is initialized to a value of 1.0 .

1. AWET(I)
2. FORMF(I)

Form factors may be obtained from LWP - 1120.
Fuselage: $\operatorname{FORMF}(\mathrm{I})=1.0+1.5(\mathrm{~d} / 1)^{1.5}+7(\mathrm{~d} / 1)^{3}$
(Eq. C-1)
Empennage: $\operatorname{FORMF}(\mathrm{I})=1.0+1.44(t / \mathrm{c})+2(\mathrm{t} /)^{2}$
3. The model reference lengths (FL(I)), are given in the nomenclature section.
4. The model reference area (AREF) is used for coefficients, sq. in. If jet exhaust measurements are used, this constant is already specified.

[^1]5. The constants (KFF, KFAFT, KFNOZ) used to include proper terms in total skin friction drag term, CDF', must equal 0 or 1.

B. Test for Skin Friction Calculation

If AWET $(1)=0$, skip the calculations for the skin friction drag in this module.

C. Euselage Skin Friction Drag

1. The constants required from the project engineer are AWET(1), AWET(2), AWET(3), FL(1), FL(2), FL(3), AREF, and FORMF(1).
$\mathrm{J}=3$
If AWET(2) $=0$ and $\operatorname{AWET}(3)=0, J=1$
If AWET $(2) \neq 0$ and $\operatorname{AWET}(3)=0, J=2$
Calculate CDFR(I) for $I=1, \mathrm{~J}$

$$
\begin{equation*}
\operatorname{CDFR}(\mathrm{I})=\frac{.472 * \operatorname{AWET}(\mathrm{I}) * \text { FORMF }(1)}{\left(1+.2 \mathrm{MACH}^{2}\right)^{.467} *\left\{\log _{10}[(\mathrm{RN} / \mathrm{FT}) * \mathrm{FL}(\mathrm{I})]\right\}^{2.58} * \text { AREF }} \tag{Eq.C-3}
\end{equation*}
$$

$$
\begin{aligned}
\text { If } \mathrm{MACH} & <.1, \operatorname{CDFR}(\mathrm{I})=0.0 \\
\mathrm{CDFF} & =\operatorname{CDFR}(1)
\end{aligned}
$$

If AWET $(2) \neq 0$,
CDFAFT $=\operatorname{CDFR}(1)-\operatorname{CDFR}(2)$

If AWET(3) $\neq 0$,
CDFNOZ $=\operatorname{CDFR}(1)-\operatorname{CDFR}(3)$

D. Empennage_Skin Friction Drag

1. The constants required from the project engineer are AWET(4), AWET(5), AWET(6), FL(4), FL(5), FL(6), AREF, FORMF(2), FORMF(3), FORMF(4), KFF, KFAFT, and KFNOZ.

Calculate $\operatorname{CDFR}(I)$ for $I=4,7$

$$
\mathrm{J}=\mathrm{I}-2
$$

$$
\operatorname{CDFR}(\mathrm{I})=\frac{.472 * \operatorname{AWET}(\mathrm{I}) * \operatorname{FORMF}(\mathrm{~J})}{\left(1+.2 \mathrm{MACH}^{2}\right)^{.467} *\left\{\log _{10}[(\mathrm{RN} / \mathrm{FT}) * \mathrm{FL}(\mathrm{I})]\right\}^{2.58} * \mathrm{AREF}}
$$

(Eq. C-7)

IF $\mathrm{MACH}<.1, \operatorname{CDFR}(\mathrm{I})=0$

CDFW = CDFR(4)

CDFVT = $\operatorname{CDFR}(5)$

CDFHT = CDFR(6)

E. Total Skin Eriction Drag

1. Skin friction drag of the entire model is computed.
$\mathrm{CDF}=(\mathrm{KFF} * \mathrm{CDFF})+(\mathrm{KFAFT} * \mathrm{CDFAFT})+($ KFNOZ * CDFNOZ $)+$ CDFW + CDFVT + CDFHT + CDFR(7)
(Eq. C-8)

APPENDX D

(1)

APPENDIX D
\section*{Balance Loads and Model Attitudes Calculations}

Nomenclature 55
Required Constants 72
Test for Balance Loads and Model Attitudes 77
Balance Component Naming System 78
Uncorrected Balance Quantities 78
Tunnel Support Pitch Angle 80
Balance Quantities Corrected for Interactions, Weight Tares and Momentum Tares. 80
Balance Quantities Corrected for Method of Attachment 91
Angle of Attack and Sideslip Angle. 92
Body Axis Components; Rotation and Translation from Balance-to Model Axis 95
Pressure Corrections to Body Axis Components 97
Stability Axis Components. 99
Wind Axis Components. 100
Alternate Reference Axis Components. 101
Base Force and Moment Tare Coefficients 103
Base Pressure Coefficients. 104
Model (Body) Axis Coefficients 105
Stability Axis Coefficients 105
Wind Axis Coefficients 106
Alternate Reference Axis Coefficients. 107
Miscellaneous Equations. 107
Calculation of Initial Weight Tares and Attitude Load Constants. 108
Calculation oí Initial Weight Tares and Attitude Load Tares
(Strain Gage Balance) 108
Calculation of Attitude Load Constants by Method I. 112
Calculation of Attitude Load Constants by Method II 118
Balances Without Six Components 119
Initial Weight Tare Calculations. 120
New Values of Initial Weight Tares 120
Point Calculations 120
Eigures
D-1 Definition of gravity and balance axes showing positive directions and rotation angles for gravity-to-b alance transformations 122
D-1(a) Gravity-to-tunnel support axes 122
D-1(b) Tunnel support to undeflected balance axes 123
D-1(c) Ilustrations of knuckle angles. 124
D-1(d) Undeflected balance-to-balance axes 125
D-1(e) Final balance orientation; gravity-to-balance axes 126
D-1(f) Illustration of primary balance to undeflected secondary balance rotations 127
D-1(g) Definition of initial or wind-off balance attitude 128
D-2 Model-balance orientation stings 129
D-2(a) Case 1, normal balance arrangement 129
D-2(b) Case 1A, case 1 held by opposite end 130
D-2(c) Case 2, balance rolled 90° (clockwise). 131
D-2(d) Case 2A, same as case 2 held by opposite end 132
D-2(e) Case 3, balance rolled 180 (inverted) 133
D-2(f) Case 3A, case 3 held by opposite end 134
D-2(g) Case 4, balance rolled 90° (counterclockwise) 135
D-2(h) Case 4, held by opposite end 136
D-2(i) Case 5, balance yawed 180° or (pitched 180° and rolled 180°) - reversed 137
D-2(j) Case 5A, case 5 held by opposite end 138
D-2(k) Case 6, balance yawed 180° and rolled 90° clockwise (reversed and rolled 90° clockwise), or pitched 180° and rolled 90° counterclockwise 139
D-2(1) Case 6A, case 6 held by opposite end 140
D-2(m) Case 7, balance yawed 180° and rolled 180° (reversed and inverted), or pitched 180° 141
D-2(n) Case 7A, case 7 held by opposite end 142
D-2(o) Case 8, balance yawed 180° and rolled 90° counter- clockwise (reversed and rolled 90° counter-clockwise), or pitched 180° and rolled 90° clockwise 143
D-2(p) Case 8A, case 8 held by opposite end 144
D-3 Definition of gravity and wind axes showing positive directions and rotation angles for wind-to-gravity transformations 145
D-4 Definition of balance and body axes showing positive directions and rotation angles for balance-to-model (body) transformations 146
D-4(a) Rotation 146
D-4(b) Translation 146
D-5 Definition of angle of attack and angle of sideslip 148

MODULE D BALANCE LOADS AND MODEL ATTITUDES

SYMBOL

NOMENCLATURE

The arrays F0 through F20 are forces and moments whose units are lbs and in. lbs.

AF(I, J)	Axial force, lbs., where $I=$ balance number and $\mathbf{J}=$ correction number.
AFO(I)	Initial axial load, lbs., where $\mathrm{I}=$ balance number.
AFT(I)	Total axial load, lbs., where $I=$ balance number.
AFTARE(I)	Axial weight tares, lbs., where $\mathrm{I}=$ balance number.
ALPHA	Model angle of attack, degrees.
AMOM(I)	Axial force momentum correction, lbs., where $I=$ balance number.
ARB(II,K)	Areas or moment arms * areas used with PBASE(II) for computing base force and base moment tares. Care should be used to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. Second balance, sq. in., where $K=$ component number and II = orifice number.
ARP(II,K)	Areas or moment arms * areas used with PBASE(II) for computing base force and base moment tares. Care should be used to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. Third balance, sq.

SYMBOL

ARPB(II,K) Areas or moment arms * areas used with PBASE(II) for computing base force and base moment tares. Care should be used to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. First balance sq. in., where $K=$ component number and II = orifice number.
$\operatorname{CABASE}(\mathrm{I}) \quad$ Base axial force coefficient, where $\mathrm{I}=$ balance number.
$\operatorname{CAREF}(\mathrm{I}) \quad$ Axial force coefficient in the reference axis, where $\mathrm{I}=$ balance number.
NOMENCLATURE
in., where $\mathrm{K}=$ component number and II = orifice number

Initial balance loads, axial force, lbs. (Weight Tares)
Balance component quantity corrected for high interactions coupled with high model restraints, axial force, lbs. (Weight Tares)

Balance component quantities corrected for balance orientation to gravity axis, axial force, lbs. (Weight Tares) Angle of sideslip, degrees. Roll and yaw moments reference length. Normally wing span, inches, where $I=$ balance number.

Axial force coefficient in the body axis, where $I=$ balance number.

Crosswind coefficient in the wind axis, where $I=$ balance number.

SYMBOL NOMENCLATURE
$\mathrm{CD}(\mathrm{I}) \quad$ Drag coefficient in the wind axis, where $\mathrm{I}=$ balance number.

CDBASE(I) Base drag coefficient, where I = balance number.
CDS(I) Drag coefficient in the stability axis, where $\mathrm{I}=$ balance number.

CHORD(I) Pitching moment reference length. Normally wing mean aerodynamic chord, inches, where $I=$ balance number.

CL(I) Lift coefficient in the wind axis, where $\mathrm{I}=$ balance number.

CLS(I) Lift coefficient in the stability axis, where $I=$ balance number.

CLSQR(I) Lift coefficient squared, where I = balance number.
CMX(I) Rolling moment coefficient in the body axis, where $\mathrm{I}=$ balance number.

CMXREF(I) Rolling moment coefficient in the reference axis, where $I=$ balance number.

CMXS(I) Rolling moment coefficient in the stability axis, where $\mathrm{I}=$ balance number.

CMXW(I) Rolling moment coefficient in the wind axis, where $\mathrm{I}=$ balance number.

CMY(I) Pitching moment coefficient in the body axis, where $I=$ balance number.

CMYREF(I) Pitching moment coefficient in the reference axis, where $I=$ balance number.

CMYS(I) Pitching moment coefficient in the stability axis, where $I=$ balance number.

SXMBOL NOMENCLATURE
CMYW(I) Pitching moment coefficient in the wind axis, where $\mathrm{I}=$ balance number.

CMZ(I) Yawing moment coefficient in the body axis, where I = balance number.

CMZREF(I) Rolling moment coefficient in t'se reference axis, where I = balance number.

CMZS(I) Yawing moment coefficient in the stability axis, where $\mathrm{I}=$ balance number.

CMZW(I) Yawing moment coefficient in the wind axis, where I = balance number.

CN(I) Normal force coefficient in the body axis, where $\mathrm{I}=$ balance number.

CNBASE(I) Base normal force coefficient, where $\mathrm{I}=$ balance number.
CNREF(I) Normal force coefficient in the reference axis, where $\mathrm{I}=$ balance number.

CPBASE(II) Base pressure coefficient, where II = orifice number.
CPMBASE $I_{\text {I }}$ Base pitching moment coefficient, where $\mathrm{I}=$ balance number.

CRMBASE(I) Base rolling moment coefficient, where I = balance number.
CY(I) \quad Side force coefficient in the body axis, where $\mathrm{I}=$ balance number.

CYBASE(I) Base side force coetficient, where $\mathrm{I}=$ balance number.
CYMBASE(I) Base yawing moment coefficient, where I = balance number.

SYMBOL	NOMENCLATURE
CYREF(I)	Side force coefficient in the reference axis, where $\mathrm{I}=$ balance number.
CYS(I)	Side force coefficient in the wind axis, where $I=$ balance number.
C1	Linear balance interactions.
C2	Nonlinear balance interactions.
$\Delta \mathbf{A}$	W(AF), axial force weight tares, lbs.
Δl_{1}	WY(RM), rolling moment weight tares, in. lb.
$\Delta \ell_{2}$	WZ(RM), rolling moment weight tares, in. lb.
$\Delta \mathrm{m}_{1}$	WX(PM), pitching moment weight tares, in. lb.
Δm_{2}	WZ(PM), pitching moment weight tares, in. lb.
$\Delta \mathrm{N}$	W(NF), normal force weight tares, lbs.
$\Delta \mathrm{n}_{1}$	WX(YM), yawing moment weight tares, in. lb.
$\Delta \mathrm{n}_{2}$	WY(YM), yawing moment weight tares, in. lb.
DPBASE(II)	Differential base pressures, where II = orifice number.
$\Delta W(I)$	Half weight of balance, lbs., where $I=$ balance number. Used in weight tares program. If $\Delta W(I)$ is zero and DELW is non- zero from the balance interaction deck, then $\Delta W(I)$ is set equal to DELW.
ΔY	W(SF), side force weight tares, lbs.
FA	Axial force, lbs.
FA(I)	Final body axis axial force, lbs., where I = balance number.
FA(I,L)	Balance axial force roteted $(L=1)$ and translated $(L=2)$ to body axis, lbs., where $I=$ balance number.
FABASE(1)	Base axial force, lbs., where $\mathrm{I}=$ balance number.

SYMBOL NOMENCLATURE

FAMAX Maximum absolute value of axial force, lbs.
FAMOM(I) Axial force due to momentum of flow, lbs., where
$\mathrm{I}=$ balance number.
FAREF'(I) Axial force rotated to reference axis, lbs., where $\mathrm{I}=$ balance number.

FAREF(I)

FC(I)

FD(I)

FDS(I)

FL(1)

FLS(I)

FN
FN(I)

FN(L,I)

FNBASE(I)
FNMAX Maximum absolute value of normal force, lbs.
FNREF'(I) Normal force rotated to reference axis, lbs., where I = balance numbe .

SYMBOL
FNREF(I)

FP
FT
FTARE
FUT
FY
FY(I) Final body axis side force, lbs., where $I=$ balance number.
FY(I,L) Balance side force rotated ($\mathrm{L}=1$) and translated ($\mathrm{L}=2$) to body axis, lbs., where $I=$ balance number.
FYBASE(I) Base side force, lbs., where $I=$ balance number.
FYMAX Maximum absolute value of side force, lbs.
FYREF'(I) Side force rotated to reference axis, lbs., where I = balance number.
FYREF(I) Side force translated to reference axis, lbs., where $\mathrm{I}=$ balance number.
FYS(I) Side force in the stability axis, lbs., where $\mathrm{I}=$ balance number.
F0 Initial loads.
F1 Uncorrected balance quantities.
F2 Balance component quantities corrected for interactions.
F3 Balance component quantities corrected for high interactions coupled with high model restraints.
F4 Balance quantities corrected for balance orientation to gravity axis, attitude loads, and weight tares.
F5 Balance quantities corrected for method of attachment.

SYMBOL

HIRXX(I) Corrections for the effect of having a model with high restraints coupled with high interactions, where XX is the balance component (AF, SF, NF, RM, PM, YM) and $I=$ balance number.
IGRND(I) Grounding of balance, where I = balance number.
KMOM
NOMENCLATURE
Balance components rotated to the model (body) axis.
Balance components rotated and translated to the model (body) axis.

Differential base pressure forces.
Base force and moment tares.
Final body axis components.
Stability axis components.
Wind axis components.
Rotation from body axis to reference axis.
Alternate reference axis coefficients.
Reference axis coefficients.
Base force and moment tare coefficients.
Base pressure coefficients.
Model (body) , uxis coefficients.
Stability axis cuefficients.
Wind axis coefficients.
$=0$, no correction.
$=1$, applies nonblowing correction only and automatically computes FAMOM(I)
= 2, applies nonblowing and blowing corrections

SXMBOL	NOMENCLATURE
KPP	A units conversion factor, initialized at 1 . If PBASE is in PSF and PO is in PSI, KPP = 144.0 If PBASE is in PSI and PO is in PSF, KPP $=0.00694$ If PBASE is differential $($ PBASE-PO), $K P P=0.0$ If PBASE is absolute, $K P P=1.0$ (Standard).
KSIGN(I)	Constant for correcting balance quantities for grounding by wrong end, where $I=$ balance number. KSIGN $=1$ for normal balance attachment. KSIGN $=-1$ for grounding balance by wrong end.
$\mathbf{K}_{\mathbf{A}, 1}$	COS(THETA0) * COS(PHIO)
$\mathrm{K}_{\mathrm{A}, 2}$	SIN(THETA0)
$\mathrm{K}_{\mathrm{A}, 3}$	COS(THETA0) * SIN(PHIO)
$\mathrm{L} / \mathrm{D}(\mathrm{I})$	Lift over drag ratio in the wind axis, where $I=$ balance number.
LS/DS(I)	Lift over drag ratio in stability axis, where $I=$ balance number.
ℓ_{0}	Initial balance loads, roll moment, in. lb.
ℓ_{3}	Balance component quantity corrected for high interactions coupled with high model restraints, roll moment, in. lb.
ℓ_{4}	Balance component quantities corrected for balance orientation to gravity axis, roll moment, in. lb.
METHOD	Method to be used in the weight tares program.
MX(I)	Final body axis rolling moment, in. lb., where I = balance number.

SYMBOL NOMENCLATURE

MX(I,L) Balance rolling moment rotated ($\mathrm{L}=1$) and translated $(\mathrm{L}=2)$ to body axis, in. lb., where $\mathrm{I}=$ balance number.

MXREF'(I) Rolling moment rotated to reference axis, in. lb., where $\mathrm{I}=$ balance number.

MXREF(I) Rolling moment translated to reference axis, in. lb., where $\mathrm{I}=$ balance number.

Rolling moment in the stability axis, in. lb., where $\mathrm{I}=$ balance number.

MXW(I) Rolling moment in the wind axis, in. lb., where $\mathrm{I}=$ balance number.

MY(I)

MY(I,L)

MYREF'(I) Pitching moment rotated to reference axis, in. lb., where I = balance number.

MYREF(I) Pitching moment translated to reference axis, in. lb., where $\mathrm{I}=$ balance number.

MYS(I) Pitching moment in the stability axis, in. lb., where $\mathrm{I}=$ balance number.

MYW(I) Pitching moment in the wind axis, in. lb., where $\mathrm{I}=$ balance number.

MZ(I)
Final body axis yawing moment, in. lb., where $\mathrm{I}=$ balance number.

SYMBOL	NOMENCLATURE
MZ(I,L)	Balance yawing moment rotated $(\mathrm{L}=1)$ and translated $(\mathrm{L}=2)$ to body axis, in. lb ., where $\mathrm{I}=$ balance number.
MZREF'(${ }^{(1)}$	Yawing moment rotated to reference axis, in. lb., where $\mathrm{I}=$ balance number.
MZREF(I)	Yawing moment translated to reference axis, in. lb., where $\mathrm{I}=$ balance number .
MZS(I)	Yawing moment in the stability axis, in. lb., where $I=$ balance number.
MZW(I)	Yawing moment in the wind axis, in. lb., where $\mathrm{I}=$ balance number.
m_{0}	Initial balance loads, pitch moment, in. lb.
m_{3}	Balance component quantity corrected for high interactions coupled with high model restraints, pitch moment, in. lb.
m_{4}	Balance component quantities corrected for balance orientation to gravity axis, pitch moment, in. lb.
NF(I,J)	Normal force, lbs., where $I=$ balance number and $J=$ correction number.
NFO(I)	Initial normal load, lbs., where I = balance number.
NFT(1)	Total normal load, lbs., where I = balance number.
NFTARE(I)	Normal weight tares, lbs., where I = balance number.
NUBAL	Number of balances in the model, (max 5).
n_{0}	Initial balance loads, yaw moment, in. lb.
\mathbf{n}_{3}	Balance component quantity corrected for high interactions coupled with high model restraints, yaw moment, in. lb.

SYMBOL	NOMENCLATURE
n_{4}	Balance component quantities corrected for balance orientation to gravity axis, yaw moment, in. lb.
N_{0}	Initial balance loads, normal force, lbs.
N_{3}	Balance component quantity corrected for high interactions coupled with high model restraints, normal force, lbs.
N_{4}	Balance component quantities corrected for balance orientation to gravity axis, normal force, lbs.
PBASE(II)	Base pressure, lbs/sq. in., where $I I=$ orifice number.
PHI	Model Euler roll angle, degrees.
PHIB	Euler roll rotation angle between primary balance and model, degrees.
PHIB2	Euler roll rotation angle between secondary balance and model, degrees.
PHIB3	Euler roll rotation angle between tertiary balance and model, degrees.
PHID	Roll deflection of primary balance, degrees.
PHID2	Roll deflection of secondary balance, degrees.
PHID3	Roll deflection of tertiary balance, degrees.
PHIDX(I)	Deflection roll angle constants, where X is balance component (A, S, N, R, P, Y) and $I=$ balance number.
PHIK	Euler roll angle to account for knuckle and/or primary balance angles in relation to tunnel support, degrees.
PHIK2	Euler roll angle to account for orientation of undeflected secondary balance in relation to primary balance, degrees.

SYMBOL	NOMENCLATURE
PHIK3	Euler roll angle to account for knuckle and/or tertiary balance angles in relation to tunnel support, degrees.
PHIR	Euler roll rotation angle between model (body) axis and reforence axis, positive in same direction as PHIB , degrees.
PHIS	Strut roll angle, degrees.
PHI0,I	Wind off zero attitude of each balance, degrees, where $I=$ balance number.
PM	Pitching moment, in. lb.
PM(I,J)	Pitching moment, in. lb., where $I=$ balance number and $\mathrm{J}=$ correction number.
PMBASE(I)	Base pitching moment, in. lb., where $\mathrm{I}=$ balance number.
PMMAX	Maximum absolute value of pitch moment, in. lb.
PM0(I)	Initia' pitching moment, in. lb., where $I=$ balance number.
PMT(I)	Total pitching moment, in. lb., where $\mathrm{I}=$ balance number.
PMTAREI	Pitching weight tares, in. lb., where $I=$ balance number.
PSI	Model yaw angle, degrees.
PSIB	Euler yaw rotation angle between primary balance and model, degrees.
PSIB2	Euler yaw rotation angle between secondary balance and model, degrees.
PSIB3	Fuler yaw rotation angle between tertiary balance and model, degrees.
PSID	Yaw deflection of primary balance, degrees.
PSID2	Yaw deflection of secondary balance, degrees.

SYMBOL NOMENCLATURE

SYMBOL NOMENCLATURE
SAREA(I) Reference area for balance coefficients. Normally wing area, sq. in., where $I=$ balance number.
$\mathrm{SF}(\mathrm{I}, \mathrm{J}) \quad$ Side force, lbs., where $\mathrm{I}=$ balance number and $\mathrm{J}=$ correction number.

Initial side load, lbs., where $\mathrm{I}=$ balance number.
SFT(I)
Total side load, lbs., where $\mathrm{I}=$ balance number.

SFTARE(I)
TAREA
TAREN
TAREP
TARER
TARES
TAREY
THEDX(I)

THETA
THETAB Euler pitch rotation angle between primary balance and model, degrees.
THETAB2 Euler pitch rotation angle between secondary balance and model, degrees.

THETAB3 Euler pitch rotation angle between tertiary balance and model, degrees.
THETAD
THETAD2
THETAD3

Pitch deflection of primary balance, degrees.
Pitch deflection of secondary balance, degrees.
Pitch deflection of tertiary balance, degrees.

SYMBOL	NOMENCLATURE
THETAK	Euler pitch angle to account for knuckle and/or primary balance angles in relation to tunnel support, degrees.
THETAK2	Euler pitch angle to account for orientation of undeflected secondary balance in relation to primary balance, degrees.
THETAK3	Euler pitch angle to account for knuckle and/or tertiary balance angles in relation to tunnel support, degrees.
THETAR	Euler pitch rotation angle between model (body) axis and reference axis, positive in same direction as THETAB, degrees.
THETAS	Strut pitch angle, degrees.
THETAU	Tunnel upflow angle, degrees.
THETA0,(I)	Wind off zero attitude of each balance, degrees, where $\mathrm{I}=$ balance number.
W	Weight tares.
x	Distance of center of gravity to balance center, inches.
XBAR(I)	Moment transfer distance measurec in the body force axis system from the balance moment center to the desired moment center, positive in the direction of positive model thrust, side and normal force respectively, inches, where $\mathrm{I}=$ balance number.
XICH(I)	Intercept for momentum term, where $I=$ balance number.
XK	Constants used in calculating momentum correction terms.
XKCH(1)	Slope for momentum term, where $\mathrm{I}=$ balance number.

SYMBOL	NOMENCLATURE
XREF	Moment transfer distance. Measured relative to and in the same direction as XBAR, inches.
y	Distance of center of gravity to balance center, inches.
YBAR(I)	See XBAR.
Y M	Yawing moment, in. lb.
YM(I,J)	Yawing moment, in. lb., where $I=$ balance number and $\mathrm{J}=$ correction number.
YMBASE(I)	Base yawing moment, lbs., where $\mathrm{I}=$ balance number.
YMMAX	Maximum absolute value of yaw moment, in. lb .
YM0(I)	Initial yawing moment, in. lb., where I = balance number.
YMT(I)	Total yawing moment, in. lb ., where $\mathrm{I}=$ balance number.
YMTARE(I)	Yawing weight tares, in. lb., where $\mathrm{I}=$ balance number.
YREF	Moment transfer distance. Measured relative to and in the same convention as YBAR, inches.
Y_{0}	Initial balance loads, side force, lbs.
\mathbf{Y}_{3}	Balance component quantity corrected for high interactions coupled with high model restraints, side force, lbs.
Y_{4}	Balance component quantities corrected for balance orientation to gravity axis, side force, lbs.
2	Distance of center of gravity to balance center, inches.
2BAR(I)	See XBAR.
ZREF	Moment transfer distance. Measured relative to and in the same convention as ZBAR, inches.

APPENDIX D

Module D
Balance Loads and Model Attitude

A. Required Constants

Required constants are defined in the nomenclatures.

1. Primary balance deflection constants - Δ angle/ Δl load

PSIDA1	$=\Delta \operatorname{PSID} / \triangle A F(1,3)$	
THEDA1	$=\Delta T H E T A D / \Delta A F(1,3)$	See related
PHIDA1	$=\Delta \mathrm{PHID} / \triangle \mathrm{AF}(1,3)$	items 2. and 3.
PSIDN1	$=\Delta \mathrm{PSID} / \triangle \mathrm{NF}(1,3)$	
THEDN1	$=\Delta \mathrm{THETAD} / \Delta \mathrm{NF}(1,3)$	
etc.		

2. Primary balance deflection angle names - PSID, THETAD, PHID. These names are optional as shown in item 3. However, they are suggested and extreme care should be used if changed since this is based on these names. No values are required for these angles since they are computed internally from the constants supplied under item 1 as follows:

$$
\begin{aligned}
\text { PSID }= & (\text { PSIDA1 }) \mathrm{AF}(1,3)+(\operatorname{PSIDN} 1) \mathrm{NF}(1,3) \\
& +(\operatorname{PSIDS} 1) \mathrm{SF}(1,3)+(\operatorname{PSIDR} 1) \mathrm{RM}(1,3) \\
& +(\operatorname{PSIDP} 1) \operatorname{PM}(1,3)+(\operatorname{PSIDY} 1) \mathrm{YM}(1,3) \quad(\text { Eq. D-1 })
\end{aligned}
$$

$$
\begin{equation*}
\text { THETAD }=(\text { THEDA } 1) \text { AF }(1,3)+\ldots . \tag{Eq.D-2}
\end{equation*}
$$

$$
\begin{equation*}
\text { PHID }=(\text { PHIDA1 }) A F(1,3)+\ldots . . \tag{Eq.D-3}
\end{equation*}
$$

3. Input of items 1 and 2 -Deflection angle names and constants are input from C-card images (which may be modified) stored on magnetic storage disks. A maximum of six deflections is permitted.

Therefore, the six values assigned in the yaw plane (PSI) for example are PSIDA1, PSIDS1, PSIDN1, PSIDR1, PSIDP1, and PSIDY1 as defined in item 1.
4. Input of rotations from gravity to primary balance - Order of rotations from gravity to primary balance axis system (see Figure D-1(a) to D-1(e)) are input from the R -card image names stored on magnetic storage disks.
5. Secondary balance deflection constants - Δ angle/ $\Delta l o a d$

PSIDA2	$=\Delta \mathrm{PSID} 2 / \Delta \mathrm{AF}(2,3)$	
THEDA2	$=\Delta \mathrm{THETAD} / \triangle \mathrm{AF}(2,3)$	See related
PHIDA2	$=\Delta \mathrm{PHID} 2 / \Delta \mathrm{AF}(2,3)$	Items 6. and 7.
PSIDN2	$=\Delta \mathrm{PSID} 2 / \Delta \mathrm{NF}(2,3)$	
THEDN2	$=\Delta \mathrm{THETAD} / \Delta \mathrm{NF}(2,3)$	
etc.		

6. Secondary balance deflection angle names - PSID2, PSID3, THETAD2, PHID2. These names are optional as shown in item 7. However, they are suggested and extreme care should be used if changed since this description is based on these names. No values are required for these angles since they are computed internally from the constants supplied under item 5 as follows:

$$
\begin{align*}
\text { PSID2 }= & (\text { PSIDA2)AF }(2,3)+(\text { PSIDN2 }) \text { NF }(2,3) \\
& +(\text { PSIDS2 SF }(2,3)+(\text { PSIDR2 }) R M(2,3) \tag{Eq.D-4}\\
& +(\text { PSIDP2 }) \text { PM }(2,3)+(\text { PSIDY2 }) \mathrm{YM}(2,3) \\
\text { THETAD2 }= & (\text { THEDA2 }) \text { AF }(2,3)+\ldots . . \tag{Eq.D.6}\\
\text { PHID2 }= & \text { (PHIDA2)AF }(2,3)+\ldots . .
\end{align*}
$$

7. Input of items 5. and 6. - Deflection names and constants are input from C-card image names stored on magnetic disks. Six is the maximum number of deflections permitted.
8. Tertiary balance deflection angles are handled in a manner similar to primary and secondary balance constants.
9. Input of rotations (THETAK2, PSIK2, THETAD2, etc.) from primary balance to secondary balance - Order of rotations from the primary balance to the secondary balance are input from R-card images stored on magnetic disks. See Figure D-1(f).
10. Wind-off-zero attitude of each balance - Input PHIO, THETA0, from card images stored on magnetic disks for each balance. This option is normally used as a result of problems associated with option 2. It is also used when data zeros are not used in the force data reduction scheme. If data zeros are not taken and values are not input from the disk, PHIO $=$ THETA0 $=0$ is assumed. See Figure D-1(g).
11. Weight tares and attitude loads - Tares are determined automatically from a 700 series weight-shift run made immediately before each model configuration tunnel run. Do not input $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}(\mathrm{AF}), \mathrm{W}(\mathrm{SF}), \ldots$. . etc.
12. HIRAFI, HIRNFI, HIRSFI, HIRPMI, HIRYMI, HIRRMI where I $=$ balance number - These constants correct for the effect of having a model with high restraints (HIR) coupled with a balance with high interactions (AF, NF, etc.). Thus, the name HIRAFI, HIRNFI, etc. These constants are obtained for each balance component by the following equation.

$$
\operatorname{HIR}_{--}^{\mathrm{xx}}(\mathrm{I})=\frac{\text { Tunnel balance } \mathrm{xx} \text { calibration }}{\mathrm{xx} \text { span check }}-1
$$

(Eq. D-7)
where $\mathrm{xx}=$ balance component
Note that when this conection is applied, the balance spans should be used in the standard program for quantities (EU) and not intunnel calibration. These constants are input from the C-card images stored on the magnetic disks for each balance.
13. KSIGN(I) - Constant for correcting balance quantities for grounding by the wrong end, where $I=$ balance number. As shown in Fig, ure D-2, grounding the balance by the wrong end ("A" cases) rather than the taper end results in a change of each balance component sign. Therefore

KSIGN(I) $=\mathbf{1}$ for normal balance attachment KSIGN(I) $=-1$ for grounding balance by wrong end.
14. THETAU - Tunnel upflow angle, see Figure D-3.
15. PSIU - Tunnel sideflow angle, see Figure D-3.
16. Input of items 14. and 15. - THETAU and PSIU are the required rotations for the wind-to-gravity transformation and are input from the T-card images (tables as function of MACH) stored on magnetic disks.
17. Euler yaw, pitch and roll rotation angles (PSIB, THETAB, PHIB) between balance and model, are shown in Figure D-4(a).
18. Input of - PSIB(I), THETAB(I), and PHIB(I) - Required rotations for the balance-to-model transformation are input from C-card images stored on magnetic disks.
19. $\operatorname{XBAR}(\mathrm{I}), \mathrm{YBAR}(\mathrm{I}), \operatorname{ZBAR}(\mathrm{I})$ - Moment transfer distances are measured in the body force axis system from the balance moment center to the desired moment center, positive in the direction of positive model thrust, side and normal force, respectively (see Figure D-4(b)). Input from C-card images stored on magnetic disks, where $I=$ balance number.
20. ARPB(II,K) - Areas or momentum arms * areas used with PBASE(II) for computing base force and base moment tares, where

II = orifice number. Use care to insure proper tare force signs.
Area and arm units must be consistent with units of base pressures and balance components. ARB(II,K) is the same but for the second balance. ARP(II,K) is the same but for the third balance.
21. Input of item 20. - Areas and arm x areas are input from C-card images stored on magnetic disks. A maximum of 20 may be used.
22. KPP - Units conversion factor, initialized at 1.

If PBASE is in PSF and PO is in PSI, KPP $=144$
If PBASE is in PSI and PO is in PSF, $\mathrm{KPP}=.0069444$
If PBASE is differential (PBASE-PO), $\mathrm{KPP}=0$
If PBASE is absolute, $\mathrm{KPP}=\mathbf{1}$ (standard)
Input from C-card images stored on magnetic disks if not equal to 1.0 .
23. Input of items - PSIR, THETAR, and PHIR are the required rotations for the model (body) to reference axis transformation and are input from C-card images stored on magnetic disks.
24. XREF, YREF, ZREF - Moment transfer distances are measured relative to and in the same convention as XBAR, YBAR and ZBAR. Input from C -card images stured on magnetic disks.

B. Test for Balance Loads and Model Attitudes

If $\operatorname{NUBAL}=0$, skip module D.

C. Balance Component Naming_System

1. In general, the balance component naming system follows the format of WX(Y,Z), where

WX = component name is as follows:
$A F=$ Axial force
NF = Normal force
SF = Side force
$\mathrm{PM}=$ Pitching moment
YM = Yawing moment
RM = Rolling moment
$Y=$ balance number associated with component
$1=1$ st balance
2 = 2nd balance
etc.
$\mathrm{Z}=$ number of corrections applied to component
(uncorrected quantity $=1$).

D. Uncorrected Balance Quantities

1. Signs on component quantities are uncorrected and thus are a strict function of model-balance orientation and the manner in which the model-balance attachment is made. Figure D-2 provides sketches showing the eight most frequent cases of model-balance orientation and the corresponding component signs. Each case is shown for grounding the balance taper end and for grounding the balance opposite end ("A" cases).
2. For normal NASA type balances, the component quantities are obtained directly from the standard program for quantities. The balance components for this type of balance are always named as follows:
$\left[\begin{array}{ll}\text { Axial force } & - \text { AF }(\mathrm{I}, 1) \\ \text { Normal force } & -\mathrm{NF}(\mathrm{I}, 1) \\ \text { Sideforce } & -\mathrm{SF}(\mathrm{I}, 1) \\ \text { Pitch moment-PM(I, 1) } \\ \text { Yawmoment }-\mathrm{YM}(\mathrm{I}, 1) \\ \text { Roll moment } & -\mathrm{RM}(\mathrm{I}, 1)\end{array}\right]=[\mathrm{F} 1]$
(Eq. D-8)
where $\mathrm{I}=$ balance number
3. For TASK type balances, the component quantities are also obtained directly from the standard program for quantities (EU), but additional equations must be supplied since axial force and rolling moment are generally the only two components obtained directly with TASK type balances. The following equations and names are suggested for the engineering units program. The following equations assume the axes origin is at the center of the balance.

$$
\begin{align*}
& \mathrm{NF}(\mathrm{I}, 1)=\mathrm{N} 1(\mathrm{I}, 1)+\mathrm{N} 2(\mathrm{I}, 1) \tag{Eq.D-9}\\
& \mathrm{PM}(\mathrm{I}, 1)=\mathrm{N} 1(\mathrm{I}, 1)-\mathrm{N} 2(\mathrm{I}, 1) \tag{Eq.D-10}\\
& \mathrm{SF}(\mathrm{I}, 1)=\mathrm{S} 1(\mathrm{I}, 1)+\mathrm{S} 2(\mathrm{I}, 1) \tag{Eq.D-11}\\
& \mathrm{M}(\mathrm{I}, 1)=\mathrm{S} 1(\mathrm{I}, 1)-\mathrm{S} 2(\mathrm{I}, 1)
\end{align*}
$$

(Eq. D-12)

The names shown for the final quantities are mandatory.

E. Gravity to Balance Transformation Angles

The tunnel support pitch, roll and yaw angles are used in gravity to balance transformations.

Tunnel Support Pitch Angle

1. The tunnel support pitch angle is THETAS. See Figure D-1(a).
2. THETAS is computed in the engineering units program. It may be obtained from the strut encoder or from a "dangle" meter in the model.

Tunnel Support Roll Angle

1. The tunnel support roll angle is PHIS. See Figure D-1(a).
2. PHIS is obtained from the engineering units program. It is obtained from the strut encoder.

Tunnel Support Yaw Angle

1. The tunnel support yaw angle is PSIS. See Figure D-1(a)
2. PSIS is obtained from the engineering units program.

F. Balance Quantities Corrected for Interactions. Weight Tares and Momentum Tares

1. Balance component quantities corrected for interactions are named as follows:
$\left[\begin{array}{llr}\text { Axial force } & - & A F(I, 2) \\ \text { Normal force } & - & \mathrm{NF}(\mathrm{I}, 2) \\ \text { Side force } & - & \mathrm{SF}(\mathrm{I}, 2) \\ \text { Pitch moment } & - & \mathrm{PM}(\mathrm{I}, 2) \\ \text { Yaw moment } & - & \mathrm{YM}(\mathrm{I}, 2) \\ \text { Roll moment } & - & \mathrm{RM}(\mathrm{I}, 2)\end{array}\right]=[\mathrm{F} 2]$
(Eq. D-13)
2. Balance component quantities corrected for high interactions coupled with high model restraints are named as follows:
$\left[\begin{array}{llr}\text { Axial force } & - & \text { AF (I,3) } \\ \text { Normal force } & - & \mathrm{NF}(I, 3) \\ \text { Side force } & - & \mathrm{SF}(I, 3) \\ \text { Pitch moment } & - & \mathrm{PM}(\mathrm{I}, 3) \\ \text { Yaw moment } & - & \mathrm{YM}(I, 3) \\ \text { Roll moment } & - & R M(I, 3)\end{array}\right]=[F 3]$
(Eq. D-14)
3. Balance component quantities corrected for the attitude loads and weight tares are named as follows:
$\left[\begin{array}{llr}\text { Axial force } & - & \text { AF (I,4) } \\ \text { Normal force } & - & \mathrm{NF}(\mathrm{I}, 4) \\ \text { Side force } & - & \mathrm{SF}(\mathrm{I}, 4) \\ \text { Pitch moment } & - & \mathrm{PM}(\mathrm{I}, 4) \\ \text { Yaw moment } & - & \mathrm{YM}(\mathrm{I}, 4) \\ \text { Roll moment } & - & \mathrm{RM}(\mathrm{I}, 4)\end{array}\right]=[\mathrm{F4]}$
(Eq. D-15)
4. Initial balance loads or weight tares are named as follows: where $\mathrm{I}=$ balance number.

$$
\left[\begin{array}{l}
\mathrm{AFO}(\mathrm{I}), \mathrm{NFO}(\mathrm{I}), \mathrm{SFO}(\mathrm{I}) \\
\mathrm{PMO}(\mathrm{I}), \mathrm{YMO}(\mathrm{I}), \mathrm{RMO}(\mathrm{I})
\end{array}\right]=[\mathrm{FO}]
$$

(Eq. D-16)
5. Total bsilance loads (AF(I,1) + AFO(I), $\mathrm{NF}(\mathrm{I}, 1)+\mathrm{NFO}(\mathrm{I})$, etc. are named as follows:

$$
\left[\begin{array}{l}
\operatorname{AFT}(\mathrm{I}), \operatorname{NFT}(\mathrm{I}), \mathrm{SFT}(\mathrm{I}) \\
\operatorname{PMT}(\mathrm{I}), \mathrm{YMT}(\mathrm{I}), \mathrm{RMT}(\mathrm{I})
\end{array}\right]=[\mathrm{FT}]
$$

(Eq. D-17)
6. First order interactions are represented by a matrix C 1 ; second order interactions are represented by a matrix $C \cap$.
7. Attitude weight tares are named as follows:

$$
\left[\mathrm{F}_{\text {TARE }}\right]=\left[\begin{array}{l}
\text { AFTARE }(\mathrm{I}), \mathrm{NFTARE}(\mathrm{I}), \mathrm{SFTARE}(\mathrm{I}) \tag{Eq.D-18}\\
\text { PMTARE }(\mathrm{I}), \mathrm{YMTARE}(\mathrm{I}), \mathrm{RMTARE}(\mathrm{I})
\end{array}\right]
$$

8. Constants required from the project engineer are:
a. For gravity-to-primary-balance rotations, see Figure D-1(e). For gravity-to-tunnel-strut rotation, see Figure D-1(a).

THETAS, PHIS, and PSIS are supplied from Section E.
For tunnel strut-to-undeflected-primary balance rotations, see Figure D-1(b) and D-i(c).

PSIK, THETAK, PHIK

For undeflected balance-to-deflected-balance rotations, see Figure D-1(d).

PSIDA1, THEDA1, PHIDA1
PSIDS1, THEDS1, PHIDS1
PSIDN1, THEDN1, PHIDN1
PSIDR1, THEDR1, PHIDR1
PSIDP1, THEDP1, PHIDP1
PSIDY1, THEDY1, PHIDY1
b. Primary-to-secondary-balance rotations

For primary balance-to-undeflected-secondary balance rotations, see Figure D-1(f).

PSIK2, THETAK2, PHIK2

Undeflected secondary balance-to-deflected-secondary balance rotations (with respect to primary balance).

PSIDA2, THEDA2, PHIDA2
PSIDS2, THEDS2, PHIDS2
PSIDN2, THEDN2, PHIDN2
PSIDR2, THEDR2, PHIDR2
PSIDP2, THEDP2, PHIDP2
PSIDY2, THEDY2, PHIDY2

The third to fifth balance is similar to the above but with the number 3 to 5 replacing the number 2 in the second balance.

For wind-off-zero attitude of each balance (See Figure D-1(a))

PHIO, I; THETAO, I,
c. High restraint and interaction constants

HIRAFI, HIRNFI, HIRSFI
HIRPMI, HIRYMI, HIRRMI
9. The following description on correcting balance quantities for interactions and weight tares does not provide the exact equations for computing corrected balance quantities. The PAB balance check point program or the contractor's user manual must be consulted for these. However, this does provide the general outline for computing corrected balance quantities.

Determine uncorrected total loads,

$$
[F \mathrm{FT}]\left[=[\mathrm{F} 1]+[\mathrm{F} 0]=\left[\begin{array}{l}
\mathrm{AF}(\mathrm{I}, 1)+\mathrm{AFO}(\mathrm{I}) \\
\mathrm{SF}(\mathrm{I}, 1)+\mathrm{SFO}(\mathrm{I}) \\
\mathrm{NF}(\mathrm{I}, 1)+\mathrm{NFO}(\mathrm{I}) \\
\mathrm{RM}(\mathrm{I}, 1)+\mathrm{RMO}(\mathrm{I}) \\
\mathrm{PM}(\mathrm{I}, 1)+\mathrm{PMO}(\mathrm{I}) \\
\mathrm{YM}(\mathrm{I}, 1)+\mathrm{YMO}(\mathrm{I})
\end{array}\right]\right.
$$

(Eq. D-19)

Correct for interactions ${ }^{3}$

[^2]a. $[\mathrm{FUT}]=\left[\mathrm{C}_{1}\right] *[\mathrm{FT}]+\left[\mathrm{C}_{2}\right] *[\mathrm{FP}]$
(Eq. D-20)
where $\left[C_{1}\right]$ and $\left[C_{2}\right]$ are balance interaction constants
b. Therefore
(Eq. D-21)
$$
[F T]=\left[\mathrm{C}_{1}\right]^{-1} *[\mathrm{FUT}]-\left[\mathrm{C}_{1}\right]^{-1} *\left[\mathrm{C}_{2}\right] *[\mathrm{FP}]
$$

Compute corrected delta balance loads,

$$
[F 2]=[F T]-[F 0]=\left[\begin{array}{l}
A F(I, 2) \\
\mathrm{SF}(\mathrm{I}, 2) \\
\mathrm{NF}(\mathrm{I}, 2) \\
\mathrm{RM}(\mathrm{I}, 2) \\
\mathrm{PM}(\mathrm{I}, 2) \\
\mathrm{YM}(\mathrm{I}, 2)
\end{array}\right]=\left[\begin{array}{l}
\mathrm{AFT}(\mathrm{I})-\mathrm{AFO}(\mathrm{I}) \\
\mathrm{SFT}(\mathrm{I})-\mathrm{SFO}(\mathrm{I}) \\
\mathrm{NFT}(\mathrm{I})-\mathrm{NFO}(\mathrm{I}) \\
\mathrm{RMT}(\mathrm{I})-\mathrm{RMO}(\mathrm{I}) \\
\mathrm{PMT}(\mathrm{I})-\mathrm{PMO}(\mathrm{I}) \\
\mathrm{YMT}(\mathrm{I})-\mathrm{YMO}(\mathrm{I})
\end{array}\right]
$$

(Eq. D-22)
10. Correct forces and moments for high model restraints coupled with high balance interactions

$$
[\mathrm{F} 3]=[\mathrm{F} 2]+\mathrm{K}[\mathrm{~F}]]=\left[\begin{array}{c}
A F(\mathrm{I}, 3) \\
\mathrm{SF}(\mathrm{I}, 3) \\
\mathrm{NF}(\mathrm{I}, 3) \\
\mathrm{RM}(\mathrm{I}, 3) \\
\mathrm{PM}(\mathrm{I}, 3) \\
\mathrm{YM}(\mathrm{I}, 3)
\end{array}\right]=\left[\begin{array}{l}
A F(\mathrm{I})+(\operatorname{HIRAF}) \mathrm{AF}(\mathrm{I}, 1) \\
\mathrm{SF}(\mathrm{I})+(\mathrm{HIRSF}) \mathrm{SF}(\mathrm{I}, 1) \\
\mathrm{NF}(\mathrm{I})+(\mathrm{HIRNF}) \mathrm{NF}(\mathrm{I}, 1) \\
\mathrm{RM}(\mathrm{I})+(\mathrm{HIRRM}) \mathrm{RM}(\mathrm{I}, 1) \\
\mathrm{PM}(\mathrm{I})+(\mathrm{HIRPM}) \mathrm{PM}(\mathrm{I}, 1) \\
\mathrm{YM}(\mathrm{I})+(\mathrm{HIRYM}) \mathrm{YM}(\mathrm{I}, 1)
\end{array}\right]
$$

(Eq. D-23)
11. Depending on the value of the constant KMOM, balance components are further corrected for balance/bellows interactions and momentum flow effects.

If $\mathrm{KMOM}=0$, no further balance corrections are applied and equations D-26 to D-33 are skipped.

If $\mathrm{KMOM}>\mathbf{0}$
$\left[\begin{array}{l}\mathrm{AF} \\ \mathrm{SF} \\ \mathrm{NF} \\ \mathrm{RM} \\ \mathrm{PM} \\ \mathrm{YM}\end{array}\right]=\left[\begin{array}{l}\mathrm{AF}(\mathrm{I}, 3) \\ \mathrm{SF}(\mathrm{I}, 3) \\ \mathrm{NF}(1,3) \\ \mathrm{RM}(\mathrm{I}, 3) \\ \mathrm{PM}(\mathrm{I}, 3) \\ \mathrm{YM}(\mathrm{I}, 3)\end{array}\right]$
(Eq. D-24)

Balance/bellows interactions and nomentum flow effects on the balance are computed after high restraint corrections.

PTZERO = PTANKG if MCODE = 1 or 3
PTZERO $=$ PTANKH if MCODE $=2$ or 4
PTZERO $=$ PTKSON if MCODE $=5$

DELP $=\mathrm{PCH}(1)-\mathrm{PTZERO}$
(Eq. D-25)

If PTJZPO is less than or equal to 1.2 then DELP $=0.0$

Where PTJZPO is the weighted average of the nozzle pressure ratios for the primary air system. (Normally air syste in number 1.)

DELSQ	$=$ DELP * DELP
AREA	$=\mathrm{XK}(8,3) / 12.0$
ASQ	$=\quad$ AREA * AREA
FNO	$=\mathrm{XK}(6,3) / 12.0$
PMO	$=\mathrm{XK}(7,3) / 12.0$
XNSQ	$=$ FNO * FNO
XPSQ	$=$ PMO * PMO

$$
\begin{align*}
\operatorname{TAREN}= & \mathrm{XK}(1,1)+\mathrm{XK}(2,1) * \mathrm{FN}+\mathrm{XK}(3,1) * \mathrm{PM}+\mathrm{XK}(4,1) * \mathrm{RM}+\mathrm{XK}(5,1) * \mathrm{YM} \\
& +\mathrm{XK}(6,1) * \mathrm{SF}+\operatorname{DELP} *(\mathrm{XK}(46,1)+\mathrm{XK}(47,1) * \mathrm{FN}+\mathrm{XK}(48,1) * \mathrm{PM} \\
& +\mathrm{XK}(49,1) * \mathrm{RM}+\mathrm{XK}(50,1) * \mathrm{YM}+\mathrm{XK}(51,1) * \mathrm{SF}+\mathrm{FNO} * \mathrm{XK}(52,1) \\
& +\mathrm{XNSQ} * \mathrm{XK}(53,1)+\operatorname{PMO} * \mathrm{XK}(54,1)+\mathrm{XPSQ} * \mathrm{XK}(55,1)+\operatorname{AREA} *(\mathrm{XK}(56,1) \\
& +\mathrm{XK}(57,1) * \mathrm{FN}+\mathrm{XK}(58,1) * \operatorname{PM}+\mathrm{XK}(59,1) * \mathrm{PM}+\mathrm{XK}(60,1) * \mathrm{YM} \\
& +\mathrm{XK}(61,1) * \mathrm{SF})+\operatorname{ASQ}(\mathrm{XK}(62,1)+\mathrm{XK}(63,1) * \mathrm{FN}+\mathrm{XK}(64,1) * \mathrm{PM} \\
& +\mathrm{XK}(65,1) * \mathrm{RM}+\mathrm{XK}(66,1) * \mathrm{YM}+\mathrm{XK}(67,1) * \mathrm{SF})) \tag{Eq.D-26}
\end{align*}
$$

$\begin{aligned} \text { TAREA }= & \mathrm{XK}(7,1)+\mathrm{XK}(8,1) * \mathrm{FN}+\mathrm{XK}(9,1) * \mathrm{PM}+\mathrm{XK}(10,1) * \mathrm{RM}+\mathrm{XK}(11,1) * \mathrm{YM} \\ & +\mathrm{XK}(12,1) * \mathrm{SF}\end{aligned}$
(Eq. D-27)

Then for PTJZPO greater than or equal to 1.2, the value of PTIZPO is the weighted average value of the nozzle pressure ratios for the primary air system.

$$
\begin{aligned}
\text { TAREA }= & \operatorname{TAREA}+\operatorname{XK}(37,1)+\operatorname{XK}(38,1) * \operatorname{DELP}+\operatorname{XK}(39,1) * \operatorname{DELSQ}+\text { AREA * } \\
& (X K(40,1)+\operatorname{XK}(41,1) * \operatorname{DELP}+\operatorname{XK}(42,1) * \operatorname{DELSQ})+\operatorname{ASQ} *(\operatorname{XK}(43,1) \\
& +\operatorname{XK}(44,1) * \operatorname{DELP}+\operatorname{XK}(45,1) * \operatorname{DELSQ})
\end{aligned}
$$

(Eq. D-28)

$$
\begin{aligned}
\operatorname{TAREP}= & \mathrm{XK}(13,1)+\mathrm{XK}(14,1) * \mathrm{FN}+\mathrm{XK}(15,1) * \mathrm{PM}+\mathrm{XK}(16,1) * \mathrm{RM}+\mathrm{XK}(17,1) * \mathrm{YM} \\
& +\mathrm{XK}(18,1) * \mathrm{SF}+\mathrm{DELP} *(\mathrm{XK}(68,1)+\mathrm{XK}(69,1) * \mathrm{FN}+\mathrm{XK}(70,1) * \mathrm{PM} \\
& +\mathrm{XK}(71,1) * \mathrm{RM}+\mathrm{XK}(72,1) * \mathrm{YM}+\mathrm{XK}(73,1) * \mathrm{SF}+\mathrm{FNO} * \mathrm{XK}(74,1) \\
& +\mathrm{XNSQ} * \mathrm{XK}(75,1)+\mathrm{PMO} * \mathrm{XK}(1,2)+\mathrm{XPSQ} * \mathrm{XK}(2,2)+\mathrm{AREA} *(\mathrm{XK}(3,2) \\
& +\mathrm{XK}(4,2) * \mathrm{FN}+\mathrm{XK}(5,2) * \mathrm{PM}+\mathrm{XK}(6,2) * \mathrm{RM}+\mathrm{XK}(7,2) * \mathrm{YM}+\mathrm{XK}(8,2) * \mathrm{SF}) \\
& +\mathrm{ASQ} *(\mathrm{XK}(9,2)+\mathrm{XK}(10,2) * \mathrm{FN}+\mathrm{XK}(11,2) * \mathrm{PM}+\mathrm{XK}(12,2) * \mathrm{RM} \\
& +\mathrm{XK}(13,2) * \mathrm{YM}+\mathrm{XK}(14,2) * \mathrm{SF}))
\end{aligned}
$$

(Eq. D-29)

$$
\begin{aligned}
\mathrm{TARER}= & \mathrm{XK}(19,1)+\mathrm{XK}(20,1) * \mathrm{FN}+\mathrm{XK}(21,1) * \mathrm{PM}+\mathrm{XK}(22,1) * \mathrm{RM}+\mathrm{XK}(23,1) * \mathrm{YM} \\
& +\mathrm{XK}(24,1) * \mathrm{SF}+\mathrm{DELP} *(\mathrm{XK}(15,2)+\mathrm{XK}(16,2) * \mathrm{FN}+\mathrm{XK}(17,2) * \mathrm{PM} \\
& +\mathrm{XK}(18,2) * \mathrm{RM}+\mathrm{XK}(19,2) * \mathrm{YM}+\mathrm{XK}(20,2) * \mathrm{SF}+\mathrm{FNO} * \mathrm{XK}(21,2) \\
& +\mathrm{XNSQ} * \mathrm{XK}(22,2)+\mathrm{PMO} * \mathrm{XK}(23,2)+\mathrm{XPSQ} * \mathrm{XK}(24,2)+\mathrm{AREA} *(\mathrm{XK}(25,2) \\
& +\mathrm{XK}(26,2) * \mathrm{FN}+\mathrm{XK}(27,2) * \mathrm{PM}+\mathrm{XK}(28,2) * \mathrm{RM}+\mathrm{XK}(29,2) * \mathrm{YM} \\
& +\mathrm{XK}(30,2) * \mathrm{SF})+\mathrm{ASQ} *(\mathrm{XK}(31,2)+\mathrm{XK}(32,2) * \mathrm{FN}+\mathrm{XK}(33,2) * \mathrm{PM} \\
& +\mathrm{XK}(34,2) * \mathrm{RM}+\mathrm{XK}(35,2) * \mathrm{YM}+\mathrm{XK}(36,2) * \mathrm{SF}))
\end{aligned}
$$

(Eq. D-30)

$$
\begin{aligned}
\text { TAREY }= & \mathrm{XK}(25,1)+\mathrm{XK}(26,1) * \mathrm{FN}+\mathrm{XK}(27,1) * \mathrm{PM}+\mathrm{XK}(28,1) * \mathrm{RM}+\mathrm{XK}(29,1) * \mathrm{YM} \\
& +\mathrm{XK}(30,1) * \mathrm{SF}+\mathrm{DELP} *(\mathrm{XK}(37,2)+\mathrm{XK}(38,2) * \mathrm{FN}+\mathrm{XK}(39,2) * \mathrm{PM} \\
& +\mathrm{XK}(40,2) * \mathrm{RM}+\mathrm{XK}(41,2) * \mathrm{YM}+\mathrm{XK}(42,2) * \mathrm{SF}+\mathrm{FNO} * \mathrm{XK}(43,2) \\
& +\mathrm{XNSQ} * \mathrm{XK}(44,2)+\mathrm{PMO}^{*} \mathrm{XK}(45,2)+\mathrm{XPSQ} * \mathrm{XK}(46,2)+\mathrm{AREA} *(\mathrm{XK}(47,2)
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{XK}(48,2) * \mathrm{FN}+\mathrm{XK}(49,2) * \mathrm{PM}+\mathrm{XK}(50,2) * \mathrm{RM}+\mathrm{XK}(51,2) * \mathrm{YM} \\
& +\mathrm{XK}(52,2) * \mathrm{SF})+\operatorname{ASQ} *(\mathrm{XK}(53,2)+\mathrm{XK}(54,2) * \mathrm{FN}+\mathrm{XK}(55,2) * \mathrm{PM} \\
& +\mathrm{XK}(56,2) * \mathrm{RM}+\mathrm{XK}(57,2) * \mathrm{YM}+\mathrm{XK}(58,2) * \mathrm{SF}))
\end{aligned}
$$

(Eq. D-31)

$$
\begin{aligned}
\text { TARES }= & \mathrm{XK}(31,1)+\mathrm{XK}(32,1) * \mathrm{FN}+\mathrm{XK}(33,1) * \mathrm{PM}+\mathrm{XK}(34,1) * \mathrm{RM}+\mathrm{XK}(35,1) * \mathrm{YM} \\
& +\mathrm{XK}(36,1) * \mathrm{SF}+\mathrm{DELP} *(\mathrm{XK}(59,2)+\mathrm{XK}(60,2) * \mathrm{FN}+\mathrm{XK}(61,2) * \mathrm{PM} \\
& +\mathrm{XK}(62,2) * \mathrm{RM}+\mathrm{XK}(63,2) * \mathrm{YM}+\mathrm{XK}(64,2) * \mathrm{SF}+\mathrm{FNO} * \mathrm{XK}(65,2) \\
& +\mathrm{XNSQ} * \mathrm{XK}(66,2)+\mathrm{PMO} * \mathrm{XK}(67,2)+\mathrm{XPSQ} * \mathrm{XK}(68,2)+\mathrm{AREA} *(\mathrm{XK}(69,2) \\
& +\mathrm{XK}(70,2) * \mathrm{FN}+\mathrm{XK}(71,2) * \mathrm{PM}+\mathrm{XK}(72,2) * \mathrm{RM}+\mathrm{XK}(73,2) * \mathrm{YM} \\
& +\mathrm{XK}(74,2) * \mathrm{SF})+\mathrm{ASQ} *(\mathrm{XK}(75,2)+\mathrm{XK}(1,3) * \mathrm{FN}+\mathrm{XK}(2,3) * \mathrm{PM} \\
& +\mathrm{XK}(3,3) * \mathrm{RM}+\mathrm{XK}(4,3) * \mathrm{YM}+\mathrm{XK}(5,3) * \mathrm{SF}))
\end{aligned}
$$

(Eq. D-32)

$$
[\mathrm{F} 3]=\left[\begin{array}{l}
\mathrm{AF}(\mathrm{I}, 3) \\
\mathrm{SF}(\mathrm{I}, 3) \\
\mathrm{NF}(\mathrm{I}, 3) \\
\mathrm{RM}(\mathrm{I}, 3) \\
\mathrm{PM}(\mathrm{I}, 3) \\
\mathrm{YM}(\mathrm{I}, 3)
\end{array}\right]=\left[\begin{array}{l}
\mathrm{AF}(\mathrm{I}, 3)-\mathrm{TAREA} \\
\mathrm{SF}(\mathrm{I}, 3)-\mathrm{TARES} \\
\mathrm{NF}(\mathrm{I}, 3)-\mathrm{TAREN} \\
\mathrm{RM}(\mathrm{I}, 3)-\text { TARER } \\
\mathrm{PM}(\mathrm{I}, 3)-\mathrm{TAREP} \\
\mathrm{YM}(\mathrm{I}, 3)-\mathrm{TAREY}
\end{array}\right]
$$

(Eq. D-33)
12. Perform gravity-to-balance transformations.

Let $\left[R_{1}\right]$ denote specific Euler transformation matrixes

$$
\begin{aligned}
{\left[F_{\text {bal }}\right] } & =\left[R_{\text {strut }}\right]\left[R_{\text {knuckle }}\right]\left[R_{\text {deflections }}\right]\left[F_{g}\right] \\
& =\left[R_{G B}\right]\left[F_{g}\right]
\end{aligned}
$$

(Eq. D-34)
where
[$F_{\text {bal }}$] = vector representing balance quantities in balance axis.
$\left[F_{g}\right]=$ vector representing balance quantities in gravity axis.
[F_{GB}] $=$ gravity-to-balance axis transformation matrix.
13. Determine weight tares (attitude loads)

$$
\left[\begin{array}{l}
\text { AFTARE } \\
\text { SFTARE } \\
\text { NFTARE } \\
\text { RMTARE } \\
\text { PMTARE } \\
\text { YMTARE }
\end{array}\right]=\left[\begin{array}{l}
\mathrm{w}\left(\sin \theta_{\mathrm{g}}-\sin \theta_{\mathrm{o}}\right) \\
\mathrm{w}\left(\cos \theta_{\mathrm{g}} \sin \phi_{\mathrm{g}}-\cos \theta_{0} \sin \phi_{0}\right) \\
-\mathrm{w}\left(\cos \theta_{\mathrm{g}} \cos \phi_{\mathrm{g}}-\cos \theta_{\mathrm{o}} \cos \phi_{\mathrm{o}}\right) \\
\operatorname{SFTARE}(\mathrm{Z})-\operatorname{NFTARE}(\mathrm{Y}) \\
\operatorname{AFTARE}(\mathrm{Z})+\operatorname{NFTARE}(\mathrm{X}) \\
\operatorname{SFTARE}(\mathrm{X})+\operatorname{AFTARE}(\mathrm{Y})
\end{array}\right]
$$

(Eq. D-35)
Correct for weight tares (attitude loads)

$$
[F 4]=[F 3]-[\text { FTARE }]=\left[\begin{array}{l}
A F(I, 4) \tag{Eq.D-36}\\
\mathrm{SF}(\mathrm{I}, 4) \\
\mathrm{NF}(\mathrm{I}, 4) \\
\mathrm{RM}(\mathrm{I}, 4) \\
\mathrm{PM}(\mathrm{I}, 4) \\
\mathrm{YM}(\mathrm{I}, 4)
\end{array}\right]=\left[\begin{array}{l}
\text { AF(I,3)-AFTARE }(\mathrm{I}) \\
\mathrm{SF}(\mathrm{I}, 3)-\operatorname{SFTARE}(\mathrm{I}) \\
\mathrm{NF}(\mathrm{I}, 3)-\operatorname{NFTARE}(\mathrm{I}) \\
\mathrm{RM}(\mathrm{I}, 3)-\operatorname{RMTARE}(\mathrm{I}) \\
\mathrm{PM}(\mathrm{I}, 3)-\operatorname{PMTARE}(\mathrm{I}) \\
\mathrm{YM}(\mathrm{I}, 3)-\operatorname{YMTARE}(\mathrm{I})
\end{array}\right]
$$

If $\mathrm{KMOM}=1$,
nonblowing balance corrections $a_{2} \cdot e$ applied and FAMOM(I) is automatically computed along with the values of PTJ/PO and FI, the weighted average values of each air system.
$\mathrm{APCH}=0.0$
$\mathrm{AMOM}(\mathrm{I})=0.0$
FJCON/Fi - f(PTJ/PO) Table lookup and linear interpolation. FAMOMi(I)=[AF(I,4)]-FI[FJCON/FI]
(Eq. D-37)

The values of FJCON/FI are obtained from an input table which results from averaged Stratford choke nozzle data obtained over many years. Typical table values are given below:

PTJ/PO	FJCON/FI	PTJ/PO	FJCON/FI
1.0	0.0	5.0	0.9700
1.3	0.9820	6.0	0.9600
1.5	0.9905	7.0	0.9500
2.0	0.9960	8.0	0.9425
3.0	0.9920	10.0	0.9300
4.0	0.9815	14.0	0.9125
4.5	0.9760		

A maximum of 15 values can be input ts the computer as a T table.

G. Balance Quantities Corrected for Method of Attachment

1. Balance component quantities corrected for method of attachment are named as follows:

$$
[F 5]=\left[\begin{array}{l}
\mathrm{AF}(1,5) \\
\mathrm{SF}(\mathrm{I}, 5) \\
\mathrm{NF}(\mathrm{I}, 5) \\
\mathrm{RM}(I, 5) \\
\mathrm{PM}(\mathrm{I}, 5) \\
\mathrm{YM}(I, 5)
\end{array}\right]
$$

(Eq. D-38)

Where $\mathrm{I}=$ balance number.
2. The constant required from the project engineer is KSIGN(I).

$$
[\mathrm{F} 5]=\mathrm{KSIGN} *[F 4]=\left[\begin{array}{c}
\mathrm{AF}(\mathrm{I}, 5) \\
\mathrm{SF}(\mathrm{I}, 5) \\
\mathrm{NF}(\mathrm{I}, 5) \\
\mathrm{RM}(\mathrm{I}, 5) \\
\mathrm{PM}(\mathrm{I}, 5) \\
\mathrm{YM}(\mathrm{I}, 5)
\end{array}\right]=\left[\begin{array}{l}
\mathrm{KSIGN}(\mathrm{I}) * \mathrm{AF}(\mathrm{I}, 4) \\
\mathrm{KSIGN}(\mathrm{I}) * \mathrm{SF}(\mathrm{I}, 4) \\
\mathrm{KSIGN}(\mathrm{I}) * \mathrm{NF}(\mathrm{I}, 4) \\
\mathrm{KSIGN}(\mathrm{I}) * \mathrm{RM}(\mathrm{I}, 4) \\
\mathrm{KSIGN}(\mathrm{I}) * \mathrm{PM}(\mathrm{I}, 4) \\
\mathrm{KSIGN}(\mathrm{I}) * \mathrm{YM}(\mathrm{I}, 4)
\end{array}\right]
$$

(Eq. D-39)

H. Angle of Attack and Sideslip Angle

1. The following definitions denote various transformation matrixes which are obtained from given orders of Euler rotation angles.
$\left[R_{W G}\right]=$ vind-axis-to gravity-axis transformation matrix

$$
\left[R_{G B}\right]=\text { gravity-axis-to-balance-axis transformation }
$$ matrix. This matrix is established from rotation angles supplied in section F, therefore

$\left[\mathrm{R}_{\mathrm{GB}}\right]=$ [Rstrut] [Rknuckle] [Rdeflection]
$\left[R_{B M}\right]=$ balance-axis-to-model axis transformation matrix
2. The constants required from the project engineer are THETAU, PSIU, PSIBI, THETABI and PHIBI.

For wind-to-gravity rotation angles, see Figure D-3.

For balance-to-model rotation angles, see Figure D-4(a).

The matrix $\left[\mathrm{R}_{\mathrm{GB}}\right.$], which transforms a vector in the gravity axis system to the balance axis system, may now be computed by a yaw, pitch, and roll rotation.

$$
\begin{gathered}
{\left[R_{G B}\right]=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]} \\
{\left[R_{G B}\right]=\left[R_{Z}(\phi)\right]\left[R_{Y}(\theta)\right]\left[R_{X}(\psi)\right]}
\end{gathered}
$$

(Eq. D-40)

$$
\begin{align*}
& {\left[R_{\mathrm{GB}}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
-\sin \phi \sin \theta & \cos \phi & -\sin \phi \sin \theta \\
\cos \phi \sin \theta & \sin \phi & \cos \phi \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-\sin \phi \sin \theta \cos \psi+\cos \phi \sin \psi & \sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi & -\sin \phi \cos \theta \\
\cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi & -\cos \phi \sin \theta \sin \psi+\sin \phi \cos \psi & -\cos \phi \cos \theta
\end{array}\right] \tag{Eq.D-41}
\end{align*}
$$

where θ is pitch angle, ϕ is roll angle, and ψ is yaw angle.

For wind-to-gravity rotation angles, see Figure D-3.

For balance-to-model rotation angles, see Figure D-4(a).

The matrix $\left[\mathrm{R}_{\mathrm{GB}}\right.$], which transforms a vector in the gravity axis system to the balance axis system, may now be computed by a roll, yaw, and pitch rotation. The result is the final rotation matrix from the wind axis to model axis.

$$
\begin{gathered}
{\left[R_{W M}\right]=\left[R_{B M}\right]\left[R_{G B}\right]\left[R_{W G}\right]=\left[\begin{array}{lll}
W_{11} & W_{12} & W_{13} \\
W_{21} & W_{22} & W_{23} \\
W_{31} & W_{32} & W_{33}
\end{array}\right]} \\
{\left[R_{W M}\right]=\left[R_{y}(\theta)\right]\left[R_{Z}(\psi)\right]\left[R_{X}(\phi)\right]}
\end{gathered}
$$

(Eq. D-42)
$\left[R_{W M}\right]=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]\left[\begin{array}{ccc}\cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right]$
Performing the matrix multiplcations
$\left[R_{W M}\right]=\left[\begin{array}{llc}\cos \theta \cos \psi & -\cos \theta \sin \psi \cos \phi-\sin \phi \sin \phi & \cos \theta \sin \psi \sin \phi-\sin \theta \cos \phi \\ \sin \psi & \cos \psi \cos \phi & -\cos \psi \sin \phi \\ \sin \theta \cos \psi & -\sin \theta \sin \psi \cos \phi+\cos \theta \sin \phi & \sin \theta \sin \psi \sin \phi \cos \theta \cos \phi\end{array}\right]$
(Eq. D-43)

A discussion of these matricas is in Gainer, Thomas G. and Hoffman, Sherwood, Summary of Transformation Equations and Equations of Motion Used in Free-flight and Wind-tunnel Data Reduction and Analysis, NASA SP-3070.

Using the definitions shown in Figure D-5 and the above information

$$
\mathrm{ALPHA}=\mathrm{TAN}^{-1}\left(\frac{\mathrm{~W}_{31}}{\mathrm{~W}_{11}}\right)
$$

(Eq. D-44)

Note that for $\phi=0^{\circ}, \alpha=\theta$

$$
\begin{equation*}
\mathrm{PSI}=\operatorname{SIN}^{-1}\left(\mathrm{~W}_{21}\right) \tag{Eq.D-45}
\end{equation*}
$$

BETA $=-$ PSI
THETA $=\operatorname{SIN}^{-1}\left(-\mathrm{R}_{13}\right)$
$\mathrm{PHI}=\mathrm{TAN}^{-1}\left(-\frac{\mathrm{R}_{23}}{\mathrm{R}_{33}}\right)$
I. Body Axis Components; Rotation and Translation from Balance-to-

Model_Axis

1. Balance components rotated to the model (body) axis are named as follows:

Axial	$-\mathrm{FA}(1, \mathrm{I})$
Side	$-\mathrm{FY}(1, \mathrm{I})$
Normal	$-\mathrm{FN}(1, \mathrm{I})$
Roll	$-\mathrm{MX}(1, \mathrm{I})$
Pitch	$-\mathrm{MY}(1, \mathrm{I})$
Yaw	$-\mathrm{MZ}(1, \mathrm{I})$

2. Balance components rotated and translated to the model (body) axis are named as follows:

Axial	$-\operatorname{FA}(2, \mathrm{I})$
Side	$-\mathrm{FY}(2, \mathrm{I})$
Normal	$-\mathrm{FN}(2, \mathrm{I})$
Roll	$-\mathrm{MX}(2, \mathrm{I})$
Pitch	$-\mathrm{MY}(2, \mathrm{I})$
Yaw	$-\mathrm{MZ}(2, \mathrm{I})$

3. The constants required from the project engineer are XBAR, YBAR and 7BAR. (See Figure D-4.(b).)

The matrix is used to transform the components in the balance axis to the model (body) axis aystem as follows:

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathrm{FA}(1, \mathrm{I}) \\
\mathrm{FY}(1, \mathrm{I}) \\
\mathrm{FN}(1, \mathrm{I})
\end{array}\right]=\left[\mathrm{R}_{\mathrm{BM}}\right]\left[\begin{array}{l}
\mathrm{AF}(\mathrm{I}, 5) \\
\mathrm{SF}(\mathrm{I}, 5) \\
\mathrm{NF}(\mathrm{I}, 5)
\end{array}\right]} \\
\text { and } \\
{\left[\begin{array}{l}
-\mathrm{MX}(1, \mathrm{I}) \\
\mathrm{MY}(1, \mathrm{I}) \\
-\mathrm{MZ}(1, \mathrm{I})
\end{array}\right]=\left[\mathrm{R}_{\mathrm{BM}}\right]\left[\begin{array}{l}
-\mathrm{RM}(\mathrm{I}, 5) \\
\mathrm{PM}(\mathrm{I}, 5) \\
-\mathrm{YM}(\mathrm{I}, 5)
\end{array}\right]}
\end{gathered}
$$

(Eq. D-49)
or

FA(1,I)	$\mathrm{b}_{11} \mathrm{AF}(1,5)+\mathrm{b}_{12} \mathrm{SF}(1,5)+\mathrm{b}_{13} \mathrm{NF}(1,5)$
FY(1,I)	$b_{21} \mathrm{AF}(1,5)+\mathrm{b}_{22} \mathrm{SF}(1,5)+\mathrm{b}_{23} \mathrm{NF}(1,5)$
FN(1,1)	$b_{31} A F(I, 5)+b_{32} \mathrm{SF}(1,5)+b_{33} \mathrm{NF}(1,5)$
MX(1, I)	$\mathrm{b}_{11} \mathrm{RM}(1,5)-\mathrm{b}_{12} \mathrm{pm}(1.5)+\mathrm{b}_{13} \mathrm{YM}(1.5)$
MY(1,I)	$-b_{21} R M(1,5)+b_{22} \mathrm{PM}(1,5)-\mathrm{b}_{23} \mathrm{YM}(1,5)$
MZ(1,I)	$\mathrm{b}_{31} \mathrm{RM}(1,5)-\mathrm{b}_{32} \mathrm{PM}(1,5)+\mathrm{b}_{33} \mathrm{YM}(1,5)$

(Eq. D-50)

The components are then translated as follows:
$\left[\begin{array}{l}F A(2, I) \\ F Y(2, I) \\ F N(2, I) \\ M X(2, I) \\ M Y(2, I) \\ M Z(2, I)\end{array}\right]=\left[\begin{array}{l}F A(1, I) \\ F Y(1, I) \\ F N(1, I) \\ M X(1, I)+F N(1, I) * Y B A R-F Y(1, I) * \text { ZBAR } \\ M Y(1, I)-F N(1,1) * X B A R-F A(1, I) * \text { ZBAR } \\ M Z(1, I)-F Y(1, I) * X B A R-F A(1, I) * Y B A R\end{array}\right]$
(Eq. D-51)

J. Pressure Corrections to Body Axis Components

1. Base and/or cavity pressures are obtained from the standard program for quantities and are named PBASE(II). Where II = orifice number.
2. Tunnel static pressure it computed in module A and is named $P O$.
3. Base force and moment tares are named as follows:

Axial - FABASE(I)
Side - FYBASE(I)
Normal - FNBASE(I)
Roll - RMBASE(I)

Pitch	PMBASE(I)
Yaw	YMBASE(I)

4. Final body axis components, corrected for base tares, are named as follows:

Axial	$-\mathrm{FA}(\mathrm{I})$
Side	$-\mathrm{FY}(\mathrm{I})$
Normal	$-\mathrm{FN}(\mathrm{I})$
Roll	$-\mathrm{MX}(\mathrm{I})$
Pitch	$-\mathrm{MY}(\mathrm{I})$
Yaw	$-\mathrm{MZ}(\mathrm{I})$

Note that axial force is not corrected for internal (duct) axial force.
5. The constants required from the project engineer are ARPB(II,K) and KPP.

To determine differential base and cavity pressures

$$
\triangle \operatorname{PBASE}(\mathrm{II})=\operatorname{PBASE}((\mathrm{II})-[(\mathrm{PO} *(\mathrm{KPP}))],
$$

(Eq. D-52)
Noting that a positive differential pressure acting on the base of a model causes a thrust, then base pressure force and moment tares are defined as follows:

$$
\begin{equation*}
\operatorname{FABASE}(\mathrm{I})=-\sum_{\mathrm{II}=1}^{n}[\operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 1)] \tag{Eq.B-53}
\end{equation*}
$$

$$
\operatorname{FYBASE}(\mathrm{I})=-\sum_{\mathrm{II}=1}^{\mathrm{n}}[\operatorname{PBBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 2)]
$$

(Eq. B-54)
$\operatorname{FNBASE}(\mathrm{I})=-\sum_{\mathrm{II}=1}^{\mathrm{n}}[\operatorname{APBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 3)]$
(E'q. B-55)
$\operatorname{RMBASE}(\mathrm{I})=-\sum_{\mathrm{II}=1}^{\mathrm{n}}[\Delta \mathrm{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 4)]$
(Eq. B-56)

$$
\operatorname{PMBASE}(\mathrm{I})=-\sum_{\mathrm{II}=1}^{\mathrm{n}}[\Delta \mathrm{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 5)]
$$

(Eq. B-57)
$\operatorname{YMBASE}(\mathrm{I})=-\sum_{\mathrm{II}=1}^{\mathrm{n}}[\triangle \operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 6)]$
(Eq. B-58)
$\left[\begin{array}{l}F A(1) \\ F Y(I) \\ F N(I) \\ M X(I) \\ M Y(I) \\ M Z(I)\end{array}\right]=\left[\begin{array}{l}F A(2, I) \\ F Y(2, I) \\ F N(2, I) \\ M X(2, I) \\ M Y(2, I) \\ M Z(2, I)\end{array}\right]-\left[\begin{array}{l}\text { FABASE(I) } \\ \text { FYBASE(I) } \\ \text { FNBASE(I) } \\ \text { RMBASE(I) } \\ \text { PMBASE(I) } \\ \text { YMBASE(I) }\end{array}\right]$
(Eq. D-59)

K. Stability Axis Components

1. Force and moment components in the stability axis are called

$$
\begin{aligned}
& \text { Drag - FDS(I) } \\
& \text { Side - FYS(I) } \\
& \text { Lift - FLS(I) } \\
& \text { Roll - MXS(I) } \\
& \text { Pitch - MYS(I) } \\
& \text { Yaw - MZS(I) }
\end{aligned}
$$

where $I=$ balance number.

Note that drag is not corrected for internal (duct) drag.

```
FDS(I) = [FA(I)] * [COS(ALPHA)] +[FN(I)] * [SIN(ALHPHA)] (Eq. D-60)
FYS(I) = FY(I)
(Eq. D-61)
FLS(I) = [FN(I)] * [COS(ALPHA)] - [FA(I)] *[SIN(ALPA)]
(Eq. D-62)
MXS(I) =[MX(I)]*[COS(ALPHA)] + [MZ(I)]*[SIN(ALPHA)] (Eq. D-63)
MYS(I) = MY(I)
    (Eq. D-64)
MZS(I) =[MZ(I)] * [COS(ALPHA )] - [MX(I)] * [SIN(ALPHA)]
(Eq. D-65)
```


L. Wind_Axis Components

```
1. Force and moment components in the wind axis are called
Drag - FD(I)
Crosswind - FC(I)
```

Lift	- FL(I)
Roll	$-M X W(I)$
Pitch	$-M Y W(I)$
Yaw	$-M Z W(I)$

Note that drag is not correct for internal (duct) drag.

$$
\begin{align*}
& \mathrm{FD}(\mathrm{I})=[\mathrm{FDS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})] \cdot[\mathrm{FYS}(\mathrm{I})] *[\mathrm{SIN}(\mathrm{BETA})] \tag{Eq.D-66}\\
& \mathrm{FC}(\mathrm{I})=[\mathrm{FYS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})]+[\mathrm{FDS}(\mathrm{I})] *[\mathrm{SIN}(\mathrm{BETA})] \tag{Eq.D-67}\\
& \mathrm{FL}(\mathrm{I})=\operatorname{FIS}(\mathrm{I}) \tag{Eq.D-68}\\
& \mathrm{MXW}(\mathrm{I})=[\mathrm{MXS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})]+[\mathrm{MYS}(\mathrm{I})] *[\mathrm{SIN}(\mathrm{BETA})] \tag{Eq.D-69}\\
& \mathrm{MYW}(\mathrm{I})=[\mathrm{MYS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})] \cdot[\mathrm{MXS}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{BETA})] \tag{Eq.D-70}\\
& \mathrm{MZW}(\mathrm{I})=\operatorname{MZS}(\mathrm{I}) \tag{Eq.D-71}
\end{align*}
$$

M. Alternate Reference Axis Components

1. Body axis components rotated and translated to an arbitrary reference axis system are called

Axial - FAREF(I)
Side - FYREF(I)
Normal - FNREF(I)
Roll - MXREF(I)

$$
\begin{array}{ll}
\text { Pitch } & - \text { MYREF(I) } \\
\text { Yaw } & - \text { MZREF(I) }
\end{array}
$$

where $\mathrm{I}=$ balance number.

Note that axial force is corrected for internal (duct) axial force.
2. The transformation matrix for model axis to reference axis rotations is defined as $\left[R_{M R}\right]$.
3. The constants required from the project engineer are PSIR, THETAR, PHIR, XREF, YREF, ZREF and SAREAI where I = balance number for model-(body)-to-reference axis rotations.
4. CAI is from module E.

The matrix $\left[R_{M R}\right.$] is used to transform the components in the model (body) axis to a reference axis system as follows:

$$
\begin{equation*}
\mathrm{FA}(\mathrm{I})^{\prime}=\mathrm{FA}(\mathrm{I})-\mathrm{CAI} * \mathrm{QO} * \mathrm{SAREA}(\mathrm{I}) \tag{Eq.D.72}
\end{equation*}
$$

$\left[\begin{array}{l}\text { FAREF }(\mathrm{I})^{\prime} \\ \mathrm{FYREF}(\mathrm{I})^{\prime} \\ \mathrm{FNREF}(\mathrm{I})^{\prime}\end{array}\right]=\left[\mathrm{R}_{\mathrm{MR}}\left[\begin{array}{l}\mathrm{FA}(\mathrm{I})^{\prime} \\ \mathrm{FY}(\mathrm{I}) \\ \mathrm{FN}(\mathrm{I})\end{array}\right]\right.$
(Eq. D-73)
and

$$
\left[\begin{array}{l}
-\mathrm{MXREF}(\mathrm{I})^{\prime} \\
\operatorname{MYREF}(\mathrm{I})^{\prime} \\
-\mathrm{MXREF}(\mathrm{I})^{\prime}
\end{array}\right]=\left[\mathrm{R}_{\mathrm{MR}}\left[\begin{array}{l}
-\mathrm{MX}(\mathrm{I}) \\
\mathrm{MY}(\mathrm{I}) \\
-\mathrm{MZ}(\mathrm{I})
\end{array}\right]\right.
$$

(Eq. D-74)
or
$\left[\begin{array}{l}\mathrm{FAREF}(\mathrm{I})^{\prime} \\ \mathrm{FYREF}(\mathrm{I})^{\prime} \\ \mathrm{FNREF}(\mathrm{I})^{\prime} \\ \mathrm{MXREF}(\mathrm{I})^{\prime} \\ \operatorname{MYREF}(\mathrm{I})^{\prime} \\ \operatorname{MZREF}(\mathrm{I})^{\prime}\end{array}\right]=\left[\begin{array}{l}\mathrm{m}_{1 i} \mathrm{FA}(\mathrm{I})^{\prime}+\mathrm{m}_{12} \mathrm{FY}(\mathrm{I})+\mathrm{m}_{13} \mathrm{FN}(\mathrm{I}) \\ \mathrm{m}_{21} \mathrm{FA}(\mathrm{I})^{\prime}+\mathrm{m}_{22} \mathrm{FY}(\mathrm{I})+\mathrm{m}_{23} \mathrm{FN}(\mathrm{I}) \\ \mathrm{m}_{31} \mathrm{FA}(\mathrm{I})^{\prime}+\mathrm{m}_{32} \mathrm{FY}(\mathrm{I})+\mathrm{m}_{33} \mathrm{FN}(\mathrm{I}) \\ \mathrm{m}_{11} \mathrm{MX}(\mathrm{I})-\mathrm{m}_{12} \mathrm{MY}(\mathrm{I})+\mathrm{m}_{13} \mathrm{MZ}(\mathrm{I}) \\ -\mathrm{m}_{21} \mathrm{MX}(\mathrm{I})+\mathrm{m}_{22} \mathrm{MY}(\mathrm{I})-\mathrm{m}_{23} \mathrm{MZ}(\mathrm{I}) \\ \mathrm{m}_{31} \mathrm{MX}(\mathrm{I})-\mathrm{m}_{32} \mathrm{MY}(\mathrm{I})+\mathrm{m}_{33} \mathrm{MZ}(\mathrm{I})\end{array}\right]$

The components are now translated as follows:

(Eq. D-76)

N. Base Ferce and Moment Tare Coefficients

1. Base force and moment tare coefficients are called

$$
\begin{array}{ll}
\text { Axdal } & \text { - CABASE(I) } \\
\text { Side } & \text { - CYBASE(I) } \\
\text { Normal } & \text { - CNBASE(I) } \\
\text { Roll } & \text { - CRMBASE(I) } \\
\text { Pitch } & \text { - CPMBASE(I) } \\
\text { Yaw } & \text { - CYMBASE(I) }
\end{array}
$$

where $I=$ balance number.
2. Free-stream dynamic pressure is defined in module A and is called QO.
3. The constants required from the project engineer are SAREA(I), CHORD(I), and BSPAN(I).

[CABASE(I)		FABASE(I)
CYBASE(I)		FYBASE(I)
CNBASE(I)	1	FNBASE(I)
CRMBASE(I)	[QO * SAREA(I)]	[RMBASE(I) / BSPAN(I)]
CPMBASE(1)		[PMBASE(I)/CHORD(I)
CYMBASE(1)		[YMBASE(I) / BSPAN(I)

(Eq. D-77)
O. Base Pressure Coefficients

1. Base pressure coefficients are called CPBASE(II)
(Eq. D-78)

CPBASE(II) $=\frac{1}{\text { QO }}[\triangle$ PBASE(II)
where II = orifice number.
P. Model (Body) Axis Coefficients

1. Model (body) axis coefficients are called

Axial	$-\mathrm{CA}(\mathrm{I})$
Side	$-\mathrm{CY}(\mathrm{I})$
Normal	$-\mathrm{CN}(\mathrm{I})$
F $^{\prime \prime}$	$-\mathrm{CMX}(\mathrm{I})$
Pit.	$-\mathrm{CMY}(\mathrm{I})$
Yaw	- CMZ(I)

$$
\text { where } I=\text { balance number. }
$$

2. CAI is from module E .
$\left[\begin{array}{l}\mathrm{CA}(\mathrm{I}) \\ \mathrm{CY}(\mathrm{I}) \\ \mathrm{CN}(\mathrm{I}) \\ \mathrm{CMX}(\mathrm{I}) \\ \mathrm{CMY}(\mathrm{I}) \\ \mathrm{CMZ}(\mathrm{I})\end{array}\right]=\frac{1}{[Q \mathrm{Q} * \operatorname{SAREA}(\mathrm{I})]}\left[\begin{array}{l}\mathrm{FA}(\mathrm{I}) \\ \mathrm{FY}(\mathrm{I}) \\ \mathrm{FN}(\mathrm{I}) \\ {[\mathrm{MX}(\mathrm{I}) / \operatorname{BSPAN(I)]}} \\ {[\mathrm{MY}(\overline{\mathrm{I}}) / \mathrm{CHORD}(\mathrm{I})]} \\ {[\mathrm{MZ}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})}\end{array}\right]-\left[\begin{array}{l}\mathrm{CAI} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
(Eq. D-79)

Q. Stability Axis Coefficients

1. Stability axis coefficients are called

$$
\begin{array}{ll}
\text { Drag } & \text { - CDS(I) } \\
\text { Side } & - \text { CYS(I) } \\
\text { Lift } & \text { - CLS(I) } \\
\text { Roll } & \text { - CMXS(I) } \\
\text { Pitch } & - \text { CMYS(I) } \\
\text { Yaw } & \text { - CMZS(I) }
\end{array}
$$

where $I=$ balance number.
2. CDiS is from module E.
$\left[\begin{array}{l}\operatorname{CDS}(\mathrm{I}) \\ \operatorname{CYS}(\mathrm{I}) \\ \operatorname{CLS}(\mathrm{I}) \\ \operatorname{CMXS}(\mathrm{I}) \\ \operatorname{CMYS}(\mathrm{I}) \\ \mathrm{CMZS}(\mathrm{I})\end{array}\right]=\frac{1}{[Q \mathrm{O} * \operatorname{SAREA}(\mathrm{I})]}\left[\begin{array}{l}\mathrm{FDS}(\mathrm{I}) \\ \mathrm{FYS}(\mathrm{I}) \\ \mathrm{FLS}(\mathrm{I}) \\ {[\mathrm{MXS}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})]} \\ {[\mathrm{MYS}(\mathrm{I}) / \operatorname{CHORD}(\mathrm{I})]} \\ {[\mathrm{MZS}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})}\end{array}\right]-\left[\begin{array}{l}\mathrm{CAI} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
(Eq. D-80)

R. Wind Axis Coefficients

1. Wind axis coefficients are named

Drag	-	CD(I)
Crosswind	CC(I)	
Lift	-	CL(I)
Roll	-	CMXW(I)
Pitch	-	CMYW(I)
Yaw	-	CMZW(I)

where $I=$ balance number.
2. CDI is from module E.
$\left[\begin{array}{l}\mathrm{CD}(\mathrm{I}) \\ \mathrm{CC}(\mathrm{I}) \\ \mathrm{CL}(\mathrm{I}) \\ \mathrm{CMXW}(\mathrm{I}) \\ \mathrm{CMYW}(\mathrm{I}) \\ \mathrm{CMZW}(\mathrm{I})\end{array}\right]=\frac{1}{[Q \mathrm{QO} * \operatorname{SAREA}(\mathrm{I})]}\left[\begin{array}{l}\mathrm{FD}(\mathrm{I}) \\ \mathrm{FC}(\mathrm{I}) \\ \mathrm{FL}(\mathrm{I}) \\ {[\mathrm{MXW}(\mathrm{I}) / \operatorname{BSPAN(I)]}} \\ {[\mathrm{MYW}(\mathrm{I}) / \operatorname{CHORD}(\mathrm{I})]} \\ {[\mathrm{MZW}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})}\end{array}\right]-\left[\begin{array}{l}\mathrm{CDI} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
(Eq. D-81)

S. Alternate Reference Axis Coefficients

1. Reference axis coefficients are named

Axial	- CAREF(I)
Side	- CYREF(I)
Normal	- CNREF(I)
Roll	- CMXREF(I)
Pitch	- CMYREF(I)
Yaw	- CMZREF(I)

where $I=$ balance number.
$\left[\begin{array}{l}\operatorname{CAREF}(\mathrm{I}) \\ \operatorname{CYREF}(\mathrm{I}) \\ \operatorname{CNREF}(\mathrm{I}) \\ \operatorname{CMXREF}(\mathrm{I}) \\ \operatorname{CMYREF}(\mathrm{I}) \\ \operatorname{CMZREF}(\mathrm{I})\end{array}\right]=\frac{1}{[\mathrm{QO} * \operatorname{SAREA}(\mathrm{I})]}\left[\begin{array}{l}\mathrm{FAREF}(\mathrm{I}) \\ \mathrm{FYREF}(\mathrm{I}) \\ \mathrm{FNREF}(\mathrm{I}) \\ {[\mathrm{MXREF}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})]} \\ {[\mathrm{MYREF}(\mathrm{I}) / \operatorname{CHORD}(\mathrm{I})]} \\ {[\mathrm{MZREF}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})}\end{array}\right]$
(Eq. D-82)
T. Miscellaneous Equations

1. Base drag coefficient is called CDBASE(I). Where $\mathrm{I}=$ balance number.
$\operatorname{CDBASE}(\mathrm{I})=[\operatorname{CABASE}(\mathrm{I})] *[\operatorname{COS}(A L P H A)]+[\operatorname{CNBASE}(\mathrm{I})] *$
[SIN)(ALPHA)]
(Eq. D-83)
2. Lift-over-drag ratio in the stability axis is called LS/DS(I).
LS/DS(I) = CLS(I)/CDS(I)
3. Lift-over-drag ratio in the wind axis is called $\mathrm{L} / \mathrm{D}(\mathrm{I})$.

$$
\begin{equation*}
\mathrm{L} / \mathrm{D}(\mathrm{I})=\mathrm{CL}(\mathrm{I}) / \mathrm{CD}(\mathrm{I}) \tag{Eq.D-85}
\end{equation*}
$$

4. Lift coefficient squared is called CLSQR(I).

$$
\begin{equation*}
\operatorname{CLSQR}(\mathrm{I})=[\mathrm{CLS}(\mathrm{I})] *[\operatorname{CLS}(\mathrm{I})] \tag{Eq.D-86}
\end{equation*}
$$

U. Calculation of Initial Weight Tares and Attitude Load Constants

1. The initial weight tares and attitude load constants may be obtained by either of three methods for each strain gage balance.
a. Method I - Data obtairied at an arbitrary series of pitch angles (2 \leq number of pitch angles ≤ 30). This method cannot be used with a balance without an axial force component.
b. Method II - Data obtained at an arbitrary series of roll angles (4 \leq number of roll angles ≤ 30). Normally, the roll angles will be 0°, $90^{\circ}, 180^{\circ}$, and 270°. The roll angle must be specified in a digital channel with name PHIK or with PHIS. (Note that this method must be used for balances without an axial force component). This method cannot be used with a balance that does not have a rolling moment coefficient.
c. Method III - Data obtained at an arbitrary series of roll and pitch angles, (number of angles ≤ 30)

V. Calculation of Initial Weight Tares and Attitude Load Tares (Strain Gage Balance)

1. Calculate
a. $K_{A, 1}=\cos \phi_{\cdot} \cos \theta_{\text {。 }}$
b. $\quad \mathrm{K}_{\mathrm{A}, 2}=\sin \theta$.
c. $\mathrm{K}_{\mathrm{A}, 3}=\sin \phi \cdot \cos \theta$.
2. Determine from balance deck number of components and what these components are.
3. Determine maximum value of each equipment over entire tare run.
a. $\quad \operatorname{FNMAX}(\mathrm{I})=\operatorname{ABS}(\mathrm{NF}(\mathrm{I}, 1))_{\max }$
(Eq. D-90)
b. \quad FAMAX $(I)=\operatorname{ABS}(\operatorname{AF}(1,1))_{\max }$
(Eq. D-91)
c. $\operatorname{FYMAX}(\mathrm{I})=\operatorname{ABS}(\mathrm{SF}(\mathrm{I}, 1)) \max$
(Eq. D-92)
d. $\operatorname{PMMAX}(I)=\operatorname{ABS}(\operatorname{PM}(I, 1)) \max$
(Eq. D-93)
e. $\operatorname{PMMAX}(\mathrm{I})=\operatorname{ABS}(\operatorname{RM}(1,1)) \max$
(Eq. D-94)
f. $\operatorname{YMMAX}(\mathrm{I})=\operatorname{ABS}(\operatorname{YM}(1,1)) \max$
(Eq. D-95)
4. Initialize inicial weight tares and attitude load constants.
a. Set $\Delta A=\Delta N=\Delta Y=0$

$$
\begin{align*}
& \Delta m_{1}=\Delta m_{2}=\Delta n_{1}=\Delta n_{2}=\Delta \ell_{1}=\Delta \ell_{2}=0 \\
& x=y=z=0 \tag{Eq.D-96}
\end{align*}
$$

b. Assume $\operatorname{NFO}(\mathrm{I})=\operatorname{AFO}(\mathrm{I})=\mathrm{PM} 0(\mathrm{I})=\mathrm{RM} 0(\mathrm{I})=\mathrm{YMO}(\mathrm{I})=$ $\mathrm{SFC}(\mathrm{I})=0$.
5. For each data point correct balance quantities for interactions.

Determine uncorrected total loads, [FUT]

$$
[F U T]=[F 1]+[F O]=\left[\begin{array}{l}
A F(1,1)+A F O(I) \\
S F(1,1)+S F \cap^{\prime}(\mathrm{I}) \\
\mathrm{NF}(\mathrm{I}, 1)+\mathrm{NFO}(\mathrm{I}) \\
\mathrm{RM}(\mathrm{l}, 1)+\mathrm{RMO}(\mathrm{I}) \\
\mathrm{PM}(\mathrm{I}, 1)+\mathrm{PMO}(\mathrm{I}) \\
\mathrm{YM}(\mathrm{l}, 1)+\mathrm{YMO}(\mathrm{I})
\end{array}\right]
$$

(Same as Eq. D-19)

Correct for interactions (see footnote 3)
a. $[\mathrm{FUT}]=\left[\mathrm{C}_{\mathbf{1}}\right] *[\mathrm{FT}]+\left[\mathrm{C}_{\mathbf{2}}\right] *[\mathrm{FP}]$
(Same as Eq. D-20)
where $\left[\mathrm{C}_{1}\right]$ and $\left[\mathrm{C}_{2}\right]$ are balance interaction constants
b. Therefore

$$
[\mathrm{FT}]=\left[\mathrm{C}_{1}\right]^{-1} *[\mathrm{FUT}]-\left[\mathrm{C}_{1}\right]^{-1} *\left[\mathrm{C}_{2}\right] *[\mathrm{FP}]
$$

(Same as Eq. D-21)

Compute corrected delta balance loads, [F2]

$$
[F 2]=[F T]-[F 0]=\left[\begin{array}{l}
A F(I, 2) \\
S F(I, 2) \\
N F(I, 2) \\
R M(I, 2) \\
\operatorname{PM}(I, 2) \\
Y M(I, 2)
\end{array}\right]=\left[\begin{array}{l}
A F T(I)-A F 0(I) \\
\mathrm{SFT}(\mathrm{I})-\mathrm{SFO}(\mathrm{I}) \\
\mathrm{NFT}(\mathrm{I})-\mathrm{NFO}(\mathrm{I}) \\
\mathrm{RMT}(\mathrm{I})-\mathrm{RMO}(\mathrm{I}) \\
\mathrm{PMT}(\mathrm{I})-\mathrm{PMO}(\mathrm{I}) \\
\mathrm{YMT}(\mathrm{I})-\mathrm{YMO}(\mathrm{I})
\end{array}\right]
$$

(Same as Eq. D-22)

Correct forces and moments for high model restraints coupled with high balance interactions

$$
[\mathrm{F} 3]=[\mathrm{F} 2]+\mathrm{K}[\mathrm{~F} 1]=\left[\begin{array}{l}
A F(\mathrm{I}, 3) \\
\mathrm{SF}(\mathrm{I}, 3) \\
\mathrm{NF}(\mathrm{I}, 3) \\
\mathrm{RM}(\mathrm{I}, 3) \\
\mathrm{PM}(\mathrm{I}, 3) \\
\mathrm{YM}(\mathrm{I}, 3)
\end{array}\right]=\left[\begin{array}{l}
\mathrm{AF}(\mathrm{I}, 2)+(\operatorname{HIRAF}) \mathrm{AF}(\mathrm{I}, 1) \\
\mathrm{SF}(\mathrm{I}, 2)+(\mathrm{HIRSF}) \mathrm{SF}(\mathrm{I}, 1) \\
\mathrm{NF}(\mathrm{I}, 2)+(\mathrm{HIRNF}) \mathrm{NF}(\mathrm{I}, 1) \\
\mathrm{RM}(\mathrm{I}, 2)+(\mathrm{HIRRM}) \mathrm{RM}(\mathrm{I}, 1) \\
\mathrm{PM}(\mathrm{I}, 2)+(\mathrm{HIRPM}) \mathrm{PM}(\mathrm{I}, 1) \\
\mathrm{YM}(\mathrm{I}, 2)+(\mathrm{HIRYM}) \mathrm{YM}(\mathrm{I}, 1)
\end{array}\right]
$$

(Same as Eq. D-23)
6. Determine balance rotation from gravity axis.
a. Determine rotation matrix for each matrix. See first part of this module.
b. Determine $\left[\mathrm{R}_{\mathrm{GB}}\right]=$ product of each individual rotation
c. Then:
$\mathbf{R}_{\mathrm{GB}}=\left[\begin{array}{ccc}\cos \theta \cos \psi & -\sin \psi \cos \theta & -\sin \theta \\ -\sin \phi \sin \theta \cos \psi+\cos \phi \sin \psi & \sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi & -\sin \phi \cos \theta \\ \cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi & +\cos \phi \sin \theta \sin \psi+\sin \phi \cos \psi & -\cos \phi \cos \theta\end{array}\right]$
(Eq. D-98)
d.

$$
\left[R_{G B}\right]=\left[\begin{array}{lll}
R(1,1) & R(1,2) & R(1,3) \\
R(2,1) & R(2,2) & R(2,3) \\
R(3,1) & R(3,2) & R(3,3)
\end{array}\right]
$$

(Eq. D-99)
e. calculate

$$
\begin{aligned}
& \text { THETA }=\operatorname{SIN}^{-1}(-\mathrm{R}(1,3)) \\
& \mathrm{PHI}=\mathrm{TAN}^{-1}\left(-\frac{\mathrm{R}(2,3)}{\mathrm{R}(3,3)}\right)
\end{aligned}
$$

(Same as Eq. D-46 thru Eq. D-47)

W. Calculation of Attitude Load Constants by Method I

1. Solve following matrix equation using a least squares technique (MINFIT ${ }^{4}$ routine) for $\triangle A$.

$$
\left\{\begin{array}{c}
\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{1} \\
\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{\mathrm{k}}
\end{array}|\Delta \mathrm{~A}|=\left|\begin{array}{c}
\left(\mathrm{A}_{3}\right)_{1} \\
\left(\mathrm{~A}_{3}\right)_{2} \\
\bullet \\
\cdot \\
\bullet \\
\left(\mathrm{~A}_{3}\right)_{\mathrm{k}}
\end{array}\right|\right.
$$

(Eq. D-100)
where k is the number of data points ≤ 30
2. $\Delta \mathbf{N}=\Delta \mathbf{A}+\Delta \mathbf{w}$
$\Delta Y=\Delta N$
(Eq. D-101)
where Δw is obtained from balance interaction deck
3. If $\operatorname{PMMAX}(\mathrm{I})>\operatorname{YMMAX}(\mathrm{I})$ and $>\operatorname{RMMAX}(\mathrm{I})$
a. Solve following matrix equation using least squares technique for $\Delta \mathrm{m}_{1}$ and $\Delta \mathrm{m}_{2}$.
${ }^{4}$ Golub, G. H. and Reinsch, C. Nuiner: Singular Value Decomposition and Least Squares Solutions. Math 14 403-420 (1970) Reprinted in Wilkinson, J. H. and Reinsch, C., Linear Algebra, Springer Verlag, Berlin, (1971).

$$
\left|\begin{array}{c}
\left(\mathrm{K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{1}\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{1} \\
\left(\mathrm{~K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{2}\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{2} \\
\bullet \\
\bullet \\
\left(\mathrm{~K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{\mathrm{k}}\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{\mathrm{k}}
\end{array}\right|\left|\Delta \mathrm{m}_{1}\right|=\left|\begin{array}{c}
\left(\mathrm{m}_{3}\right)_{1} \\
\left(\mathrm{~m}_{3}\right)_{2} \\
\bullet \\
\bullet \\
\cdot \\
\left(\mathrm{~m}_{3}\right)_{\mathrm{k}}
\end{array}\right|
$$

(Eq. D-102)
b. $x=\frac{\Delta \mathrm{m}_{1}}{\Delta \mathrm{~N}}$
(Eq. D-103)
c. $z=\frac{\Delta \mathrm{m}_{2}}{\Delta \mathrm{~A}}$
(Eq. D-104)
d. $\Delta \ell_{2}=\Delta \mathrm{m}_{2}$
(Eq. D-105)
e. $\Delta n_{1}=\Delta m_{1}$
(Eq. D-106)
f. If $\operatorname{YMMAX}(\mathrm{I})>\operatorname{RMMAX}(\mathrm{I})$ solve the following equation for $\Delta \mathrm{n}_{2}$ and $\Delta \ell_{1}$.

$$
\left|\begin{array}{c}
\left(-R(1,3)-K_{A, 2}\right)_{1} \\
\left(-R(1,3)-K_{A, 2}\right)_{2} \\
\bullet \\
\bullet \\
\left(-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right|-\Delta n_{2}\left|=\left|\begin{array}{c}
\left(n_{3}+\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right)_{1} \\
\left(n_{3}+\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right)_{2} \\
\bullet \\
\bullet \\
\left(n_{3}+\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right)_{k}
\end{array}\right|\right.
$$

(Eq. D-107)
and $\Delta \ell_{1}=\Delta n_{2}$
g. If RMMAX(I) $>$ YMMAX(I), solve the following equations for $\Delta \ell_{1}$ and $\Delta \mathbf{n}_{2}$

$$
\left|\begin{array}{c}
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{1} \\
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{2} \\
\bullet \\
\bullet \\
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{\mathrm{k}}
\end{array}\right| \Delta \ell_{1}\left|=\left|\begin{array}{c}
\left.+\ell_{3}+\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)\right]_{1} \\
\left.+\ell_{3}+\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)\right]_{2} \\
\bullet \\
\bullet \\
\left.+\ell_{3}+\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)\right]_{\mathrm{k}}
\end{array}\right|\right.
$$

(Eq. D-108)

$$
\text { and } \Delta n_{2}=\Delta \ell_{1}
$$

h. $y=+\frac{\Delta n_{2}}{\Delta A}$
(Eq. D-109)
4. If $\operatorname{YMMAX}(\mathrm{I})>\operatorname{PMMAX}(\mathrm{I})$ and $>\operatorname{RMMAX}(\mathrm{I})$
a. Solve following matrix equation using a least square technique for Δn_{1} and Δn_{2}

$$
\left(\begin{array} { c c }
{ (- \mathrm { R } (2 , 3) - \mathrm { K } _ { \mathrm { A } , 3 }) _ { 1 } } & { (- \mathrm { R } (1 , 3) - \mathrm { K } _ { \mathrm { A } , 2 }) _ { 1 } } \\
{ (- \mathrm { R } (2 , 3) - \mathrm { K } _ { \mathrm { A } , 3 }) _ { 2 } } & { (- \mathrm { R } (1 , 3) - \mathrm { K } _ { \mathrm { A } , 2 }) _ { 2 } } \\
{ \bullet } & { \bullet } \\
{ \bullet } & { \bullet } \\
{ \bullet } & { \bullet } \\
{ (- \mathrm { R } (2 , 3) - \mathrm { K } _ { \mathrm { A } , 3 }) _ { \mathrm { k } } } & { (- \mathrm { R } (1 , 3) - \mathrm { K } _ { \mathrm { A } , 2 }) _ { \mathrm { k } } }
\end{array} \left|\left|\Delta \mathrm{n}_{1}\right|=\left|\begin{array}{c}
\left(\mathrm{n}_{3}\right)_{1} \\
\left(\mathrm{n}_{3}\right)_{2} \\
\bullet \\
\bullet \\
\Delta \mathrm{n}_{2} \\
\bullet \\
\left(\mathrm{n}_{3}\right)_{\mathbf{k}}
\end{array}\right|\right.\right.
$$

(Eq. D-110)
b. $x=+\frac{\Delta n_{1}}{\Delta Y}$
(Eq. D-111)
c. $y=+\frac{\Delta n_{2}}{\Delta A}$
(Eq. D-112)
d. $\Delta \ell_{1}=\Delta n_{2}$
e. $\Delta m_{2}=\Delta n_{1}$
f. If PMMAX $(1)>$ RMMAX (I), solve the following equation for $\Delta \mathbf{m}_{\mathbf{2}}$ and $\Delta \ell_{2}$

$$
\left|\begin{array}{c}
\left(-R(1,3)-K_{A, 2}\right)_{1} \\
\left(-R(1,3)-K_{A, 2}\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\left.\bullet-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right| \Delta m_{2} \left\lvert\,=\left[\left.\begin{array}{c}
{\left[m_{3}-\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]_{1}} \\
{\left[m_{3}-\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]_{2}} \\
\bullet \\
\bullet \\
\bullet \\
\left.m_{3}-\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]_{k}
\end{array} \right\rvert\,\right.\right.
$$

(Eq. D-115)
and $\Delta \boldsymbol{\ell}_{1}=\Delta \mathrm{m}_{2}$
g. If $\operatorname{RMMAX}(\mathrm{I})>\operatorname{PMMAX}(\mathrm{I})$, solve following equations for $\Delta \ell_{2}$ and $\Delta \mathrm{m} 2$

$$
\left(\left.\begin{array}{c}
\left(\mathrm{R}(2,3)-\mathrm{K}_{\mathrm{A}, 3}\right)_{1} \\
\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\left(-\mathrm{R}(1,3)-\mathrm{K}_{\mathrm{A}, 2}\right)_{\mathrm{k}}
\end{array}\left|\Delta \ell_{2}\right|=\begin{array}{c}
\left.+\ell_{3}-\ell_{1}\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)\right]_{1} \\
\left.+\ell_{3}-\ell_{1}\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)\right]_{2} \\
\bullet \\
\bullet \\
\bullet \\
\left.+\ell_{3}-\ell_{1}\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)\right]_{\mathrm{k}}
\end{array} \right\rvert\,\right.
$$

(Eq. D-116)
and $\Delta \mathrm{m}_{2}=\Delta \ell_{2}$
h. $z=+\frac{\Delta m_{2}}{\Delta A}$
(Eq. D-117)
5. If RMMAX(I) $>\operatorname{PMMAX}(\mathrm{I})$ and $>\operatorname{YMMAX}(\mathrm{I})$
a. Solve the following matrix equation using a least squares technique for $\Delta \ell_{1}$ and $\Delta \ell_{2}$.

$$
\left|\begin{array}{cc}
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{1} & -\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)_{1} \\
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{2} & -\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)_{2} \\
\bullet & \bullet \\
\bullet & \bullet \\
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A} .1}\right)_{\mathrm{k}} & -\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)_{\mathrm{k}}
\end{array}\right| \Delta \boldsymbol{\Lambda}_{1}\left|=\left|\begin{array}{c}
+\left(\ell_{3}\right)_{1} \\
+\left(\ell_{3}\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
+\left(\ell_{3}\right)_{\mathbf{k}}
\end{array}\right|\right.
$$

(Eq. D-118)
b. $\mathrm{y}=\frac{\Delta \ell_{1}}{\Delta \mathrm{~N}}$
(Eq. D-119)
c. $\mathrm{z}=\frac{\Delta \ell_{2}}{\Delta Y}$
(Eq. D-120)
d. $\Delta n_{2}=\Delta \ell_{1}$
e. $\Delta \mathrm{m}_{2}=\Delta \boldsymbol{l}_{2}$
(Eq. D-122)
f. If PMMAX(I) $>\operatorname{YMMAX}(\mathrm{I})$, solve the following equation for $\Delta \mathrm{m}_{1}$ and Δn_{1}.

$$
\left|\begin{array}{c}
\left(K_{A, 1}-R(3,3)\right)_{1} \\
\left(K_{A, 1}-R(3,3)\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\left(K_{A, 1}-R(3,3)\right)_{k}
\end{array}\right| \Delta m_{1}\left|=\left|\begin{array}{c}
\left.m_{3}-\Delta m_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{1} \\
\left.m_{3}-\Delta m_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{2} \\
\bullet \\
\bullet \\
\left.m_{3}-\Delta m_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{k}
\end{array}\right|\right.
$$

(Eq. D-123)

$$
\text { and } \Delta n_{1}=\Delta \mathrm{m}_{1}
$$

g. If $\operatorname{YMMAX}(\mathrm{I})>\operatorname{PMMAX}(\mathrm{I})$, solve the following equations for $\Delta \mathrm{n}_{1}$ and $\Delta \mathrm{m}_{1}$.

$$
\left|\begin{array}{c}
-\left(R(2,3)+K_{A .3}\right)_{1} \\
-\left(R(2,3)+K_{A .3}\right)_{1} \\
\bullet \\
\bullet \\
\bullet\left(R(2,3)+K_{A .3}\right)_{k}
\end{array}\right| \Delta n_{2} \left\lvert\,=\left[\begin{array}{l}
{\left[\begin{array}{c}
{\left[n_{3}-\Delta n_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{1}} \\
{\left[n_{3}-\Delta n_{2}\left(-R(1,3)-K_{A .2}\right)\right]_{2}} \\
\bullet \\
\bullet \\
\bullet \\
{\left[n_{3}-\Delta n_{2}\left(-R(1,3)-K_{A .2}\right)\right]_{k}}
\end{array}\right]}
\end{array}\right.\right.
$$

(Eq. D-124)

$$
\text { and } \Delta \mathrm{m}_{1}=\Delta \mathrm{n}_{1}
$$

h. $x=\frac{\Delta \mathrm{m}_{1}}{\Delta \mathrm{~N}}$
(Eq. D-125)

X. Calculation of Attitude Load Constants by Method II

1. If $\operatorname{FNMAX}(\mathrm{I})>\operatorname{FYMAX}(\mathrm{I})$, solve the following equations for ΔN and ΔY.

$$
\left|\begin{array}{c}
\left(\mathrm{K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{1} \\
\left(\mathrm{~K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\left(\mathrm{~K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{\mathrm{k}}
\end{array}\right||\Delta \mathrm{N}|=\left|\begin{array}{c}
\left(\mathrm{N}_{3}\right)_{1} \\
\left(\mathrm{~N}_{3}\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\left(\mathrm{~N}_{3}\right)_{\mathrm{k}}
\end{array}\right|
$$

(Eq. D-126)
and $\Delta \mathbf{Y}=\Delta \mathbf{N}$
2. If $\operatorname{FYMAX}(I)>$ FNMAX, solve the following equations for ΔY and $\Delta \mathrm{N}$.

$$
\left.\left|\begin{array}{c}
-\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)_{1} \\
-\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)_{1} \\
\bullet \\
\bullet \\
\bullet\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)_{\mathrm{k}}
\end{array}\right| \Delta \mathbf{Y} \right\rvert\,=\left[\begin{array}{c}
\left(\mathrm{Y}_{3}\right)_{1} \\
\left(\mathrm{Y}_{3}\right)_{2} \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\left(\mathrm{Y}_{3}\right)_{\mathrm{k}}
\end{array}\right]
$$

(Eq. D-127)
and $\Delta N=\Delta Y$
3. $\Delta \mathbf{A}=\Delta \mathbf{N}-\Delta \mathbf{w}$
4. Determine $\Delta \mathrm{m}_{1}, \Delta \mathrm{~m}_{2}, \Delta \mathrm{n}_{1}, \Delta \mathrm{n}_{2}, \Delta ?_{1}, \Delta \ell_{2}, \mathrm{x}, \mathrm{y}$, and z by calculation procedure given in Subsection W., item 3.

Y. Balances Without Six Components

1. For balances that do not have six components, set the appropriate attitude tare constant to zero as indicated below.
a. If balance does not have a normal-force component: $\Delta \mathbf{N}=0$
b. If balance does not have an axial-force component: $\Delta \mathrm{A}=0$
c. If balance does not have a side-force component: $\Delta Y=0$
d. If balance does not have a pitching-moment component:

$$
\Delta \mathrm{m}_{1}=\Delta \mathrm{m}_{2}=0
$$

e. If balance does not have a rolling-moment component:

$$
\Delta \ell_{1}=\Delta \ell_{2}=0
$$

f. If balance does not have a yawing moment component:

$$
\Delta \mathrm{n}_{1}=\Delta \mathrm{n}_{2}=0
$$

Z. Initial Weight Tare Calculations

1. Calculate initial weight tares
a. $\quad N_{0}=-\Delta N K_{A, 1}$

NFO
(Eq. D-129)
b. $\quad \mathbf{A}_{0}=-\Delta \mathbf{A} K_{A, 2}$

AFO
(Eq. D-130)
c. $m_{0}=-\Delta m_{1} K_{A, 1}+\Delta m_{2} K_{A, 3} \quad$ PM0
(Eq. D-131)
d. $\ell_{0}=\Delta \ell_{1} \mathrm{~K}_{\mathrm{A}, 1}+\Delta \ell_{2} \mathrm{~K}_{\mathrm{A}, 3} \quad$ RM0
(Eq. D-132)
e. $n_{0}=\Delta n_{1} K_{A, 3}+\Delta n_{2} K_{A, 2}$

YM0
(Eq. D-133)
f. $y_{0}=\Delta Y K_{A, 3}$

SFO
(Eq. D-134)

AA. New Values of Initial Weight Tares

1. Go to Subsection V., item 5. and repeat the calculation using new values of initial weight tares. Repeat iteration procedure until initial weight tares repeat to following accuracy.

$$
\varepsilon=\frac{\text { New }- \text { Old }}{\text { New }}<0.005
$$

(Eq. D-135)

BB. Point Calculations

1. For each point, calculate:
a. $\mathbf{N}_{4}=N_{3}-\left[\Delta N\left(K_{A, 1}-R(3,3)\right)\right]$
(Eq. D-136)
b. $\mathbf{A}_{4}=A_{3}-\left[\Delta A\left(-R(1,3)-K_{A, 2}\right)\right]$
(Eq. D-137)
c. $m_{4}=m_{3}-\left\{\left[\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]-\left[\Delta m_{2}\left(R(1,3)+K_{A, 2}\right)\right]\right\}$
d. $\ell_{4}=\ell_{3}-\left\{\left[\Delta \ell_{1}\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)\right]-\left[\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)\right]\right\}$
(Eq. D-139)
e. $\mathrm{n}_{4}=\mathrm{n}_{3}-\left\{\left[\Delta \mathrm{n}_{1}\left(\mathrm{R}_{1}, 2,3\right)+\mathrm{K}_{\mathrm{A}, 3}\right)_{j}-\left[\Delta \mathrm{n}_{2}\left(\mathrm{R}(1,3)+\mathrm{K}_{\mathrm{A}, 2}\right)\right]\right\}$
(Eq. D-140)
f. $Y_{4}=Y_{3}+\left[\Delta Y\left(R(2,3)+K_{A, 3}\right)\right]$
(Eq. D-141)

THETAS (θ_{s}) is measured in the tunnel or grovity $\mathrm{X}-\mathrm{Z}$ plane. ($\psi_{s}=0$).
θ_{s} is generally termed tunnel pitch angle.
PHIS (Φ_{s}) is measured in the tunnel or gravity $\mathrm{Y}-\mathrm{Z}$ plane. ϕ_{s} is generaily termed tunnel roll angle.
PSIS (X_{s}) is measured in
the tunnel or gravity $X-Y$ plane. χ_{s} is generally termed tunnel yaw angle.
(a) Grovity to tunnel support axes.

Figure D-1. Definition of gravity and balance axes showing positive directions and rotation angles for gravity to balance tronsformations.
(A)
$\psi_{k}-0^{\circ}, \theta_{k}-0^{\circ}, \phi_{k}-0^{\circ}$
(B)
$\psi_{k}-0^{\circ}, \theta_{k}-K^{0}, \phi_{k}-0^{\circ}$

©
$\phi_{k}-0^{\circ}, \theta_{k}-0^{\circ}, \phi_{k}-180^{\circ}$
(1)
$\psi_{\mathbf{k}}-0^{\circ}, \theta_{\mathrm{k}}-180^{\circ}, \phi_{\mathrm{k}}-0^{\circ}$

(E)
$\psi_{\mathbf{k}}-0^{\circ}, \theta_{\mathbf{k}}-180^{\circ}+\mathrm{K}^{\circ}, \phi_{\mathrm{k}}-180^{\circ}$
$\psi_{1}-180^{\circ}, \theta_{k} \cdots K^{0}, \phi_{k}-0^{\circ}$
$\theta_{\mathbf{a}}-K^{\circ}, \psi_{\mathbf{k}}-\frac{\mathrm{or}}{180^{\circ}}, \phi_{k}=0^{\circ}$

(c) Illustrations of knuckle angles.

Figure D-1. Continued.

(e) rinal balance orientation; gravity to balance axes.

Figure D-1. Continued.

$$
\begin{aligned}
& (\Delta) \\
& \Psi_{K 2}-0^{\circ}, \theta_{K 2}-0^{\prime \prime}, \phi_{N_{2}}-0^{\circ}
\end{aligned}
$$


```
(B)
\mp@subsup{\psi}{k2}{}}=18\mp@subsup{0}{}{\circ},\mp@subsup{0}{k2}{}-\mp@subsup{0}{}{\circ},\mp@subsup{\phi}{k2}{\prime}=\mp@subsup{0}{}{\circ
```


(0)
$\psi_{K 2}=1800^{\circ}, 0_{K 2}-00^{\circ}, \phi_{\mathrm{K} 2}-0^{\circ}$

(1)
$\Psi_{K_{2}}-0^{\circ}, \theta_{K_{2}}-180^{\circ}, \phi_{K^{\prime}}-0^{\circ}$

(E)

$$
\theta_{\mathbf{K}_{2}}-\mathrm{K}^{\circ}, \boldsymbol{v}_{\mathrm{K} 2}-180^{\circ}, \phi_{K 2}-0^{\circ}
$$

(4) Illustration ef primary balance to undeflected securdary balance rototions.

Figure D-1. Continued.

(q) Definition of initial or wind-off balance attitude. rigure $\mathrm{D}-1$. Concluded.

(a) Cose ${ }^{1}$. Normal balanco arrangement.
Figure $\mathrm{D}-2$. Modol-balance orientation stings.
positive toward right)
(positive right wing bock
Roll $+{ }^{+}$(positive nght wing down)
9

> gs For positi loods oct on these componer
(d) Case 2A, Same as case 2 hold by opposite end.

Bolance readings

(e) Case 3. Bolance rolled 180° (inverted).

Normal Balance rooding
Axial $\frac{+}{-}$
Pitch $\frac{+}{+}$
Side $\frac{+}{+}$
Yow
Roll

Bolance reodings
(g) Case 4, Balance rolled 90° (counterclockwise).

(i) Cose 5, Bolance yawed 180° or (pitchod 180° and rollod 180°) - reversed.
Aerc m=ce
137
84

(k) Case 6. Balonce yowed 180° and rollod 90° clockwies (roversod and rollod 90°
Flgure D-2. Continuaci.

(m) Case 7. Bolence yawed 180° and rolled 180° (reversed and inverted) or pitched 180°

The orgies described by this sketch are generally referred
to as upflow ((u) and sideflow
(Ψu) angles. These angle are
generally so small, that they
con be assumed to be in the
$X-Z$ ard $X-Y$ planes respectively.

Figure D-J. Definition of gravity and wind axes showing wind to gravity transformations.
Note: This figure assumes body axis

(b) Translation.

Figure D-4. Concluded.

Figure D-5. Definition of angle of attack
and angle of sideslip.
$1=\hat{z}$ component of relative wind
$\because=Y$ component of relative wind
$w=2$ component of relative wind

APPENDIXE

APPENDIXE
Internal Drag (or Exit-Flow Distributions)

Nomenclature 152
Required Constants 156
Test for Module E Computations 157
Rake Total Pressure 157
Rake Static Pressures 158
Rake Total Pressure/Static Pressure Assignments 159
Duct Flow Static-to-Total-Pressure Ratio 160
Correct for Supersonic Duct Mach Numbers 160
Compute Subsonic Duct Mach Numbers 161
Compute Average Duct Pressure Ratios 162
Mass-Flow Rates 163
Mass-Flow Ratio 164
Free-Stream Velocity 165
Average Exit Mach Number 16
Internal Axial Force 166
Internal Normal Force 167
Internal Side Force 169
Flow-Through Pressure Ratio 170
Internal Drag 171
Internal Lift 172
Internal Drag and Axial Force Tables 172
Internal Drag from Internal Static Pressures 172

Eigures

E-1 Definition of thrust angles 180
E-2 Definition of Euler angles and directions 181

MODULE E INTERNAL DRAG (OR EXIT-FLOW DISTRIBUTIONS)

SYMBOL
AEXIT1 Exit areas for duct 1, sq. in. Not required for IRAKE =2 or 3.
AEXIT2 Exit areas for duct 2, sq. in. Not required for IRAKE = 2 or 3 .
ARAKE(I) Exit area assigned to each rake total pressure PROBE(I), sq. in.
Not required for IRAKE = 2 or 3.
CAI Total internal axial force coefficient.
CAI1 Internal axial force coefficient for duct 1.
CAI2 Internal axial force coefficient for duct 2.
CDI Total internal drag coefficient in the wind axis.
CDIS Total internal drag coefficient in the stability axis.
CLI Total internal lift coefficient.
CNI Total internal normal force coefficient.
CYI Total internal side force coefficient.
FTMDOT1 Mass flow rate at exit of duct 1, slugs/sec.
FTMDOT2 Mass flow rate at exit of duct 2, slugs/sec.
FTPR1 Ratio of nozzle exit total pressure to free stream static pressure for duct 1 .

FrPIR2 Katio ol nozzle exit total pressure to free stream static pressure ior duct 2.

INDX(I,J) Table of values used to assign rake total pressures to specific static pressures, where $1=$ static pressure probes assigned to $J=$ table position. Not required for IRAKE $=2$ or 3.

IRAKE RAKE code.
$=0$, set $\mathrm{CAI}=\mathrm{CDIS}=\mathrm{CDI}=0.0$ and skip module 5.
$=1$, computes internal drag.

SYMBOL

KPR(I)

MEXIT1 Average exit mach number for duct 1.
MEXIT2
MODOT1

MODOT2 Mass flow rate based on free-stream conditions for duct 2, slugs/sec.

M/M01 Mass flow ratio for duct 1.
M/M02 Mass flow ratio for duct 2.
NPR1 Number of static pressure probes on the rake for duct 1.
Maximum of 10. Not required for IRAKE $=3$.
NPR2

NPTR1

NOMENCLATURE

$=2$, measures exit flow distribution only.
$=3$, obtains internal drag from a given table.
$=4$, obtains internal drag from a row of internal static pressures.
$=5$, inlet distortion with rotating rake.
$=6$, inlet distortion with nonrotating rake.
Needed to correct for bad rake static pressure probes, where $I=s t a t i c$ pressure probe. Not required for IRAKE $=2$ or 3 . If no correction is to be made to the pressure probe, then its value is set to 1.0. If the probe is faulty or does not exist, then its value is set to 0.0 .

Mass flow rate based on free-stream conditions for duct 1 , slugs/sec.

Number of static pressure probes on the rake for duct 2 .
Maximum of $10-$ NPR1. Not required for IRAKE $=3$.
Number of total pressure probes on the rake for duct 1 . Maximum of 50 . Not required for IRAKE $=3$.

SYMBOL
N1'TR2

PI) $1 /{ }^{1} 10$

PII2/ITI ()

PRAKE(I)
$\mathrm{PR} \mathrm{I}^{\mathrm{r}} \mathrm{PO}(\mathrm{I}) \quad$ Ratio of rake static pressure to frec-stream total pressure, where I = probe number.
PSIN 1 'I'hrust axis yaw angle (degrees) for duct 1 . Not required for IRAKE = 2 or 3.

PSIN2 'I'hrust axis yaw angle (degrees) for duct 2. Not required for $\mathrm{IRAKE}=2$ or 3.
$\left[\begin{array}{ll} \\ \Gamma\end{array}\right] / I^{2} \Gamma^{\prime}$ (Ratio of the average duct total pressure to free-stream total pressure for duct 1.
$\left.P^{P} \Gamma^{\prime}\right) 2 / I^{\prime} \Gamma^{\prime}($ Ratio of the average duct total pressure to free-stream total pressure for duct 2.

I'TRAKE(I) Rake total pressure, where $I=$ probe number.
$\mathrm{P}^{\prime} \mathrm{I}^{\prime} \mathrm{K} / \mathrm{P}^{\prime} \mathrm{l}^{\prime}(1)$ Ratio of rake total pressure to free-stream total pressure, where $1=$ probe number.

RHOE Free-stream density.
SCAP' Inlet capture area for duct 1, sq. in. Not required for IRAKE $=2$ or 3.

SC:Al'2 Inlet capture area for duct 2, sq. in. Not required for IRAKE = 2 or 3.

SYMBOL	NOMENCLATURE
THETAN1	Thrust axis Euler pitch angle (degrees), with respect to body axis for duct 1. Not required for IRAKE $=2$ or 3.
THETAN2	Thrust axis Euler pitch angle (degrees), with respect to body axis for duct 2. Not required for IRAKE $=2$ or 3.

APPENDIXE

Module E

Internal Drag (or Exit Flow Distributions)

A. Required Constants

The constants for internal drag calculations are given in the nomenclatures. All constants are initialized to a value of 0.0 .

(Eq. E-1)

$$
\sum_{I=N I T R 1+1}^{\text {NPTR2 }} A R A K E(I)=\text { total exit area for duct } 2
$$

2. SCAP1, SCAP2 -
inlet capture area, where SCAP1 is for duct 1 and SCAP2 is for duct 2. Not required for IRAKE = 2 or 3.
3. AEXIT1, AEXIT'2 - exit areas for ducts 1 and 2, respectively. Not required for IRAKE = 2 or 3 .
4. PSIN1, PSIN2 -

Thrust axiz yaw angle, with respect to body axis, for ducts 1 and 2, respectively. Positive direction is shown on Figure E-1. Not required for IRAKE $=2$ or 3.
5. THETAN1, THETAN2 - Thrust axis Euler pitch angles, with respect to body axis, for ducts 1 and 2, respectively, deg. Positive direction is shown on Figure E-1. Figure E-1 also gives relations to obtain the Euler angle if not known directly. Not required for IRAKE = 2 or 3.
6. AREF -

Model reference area used for coefficients, sq. in. If Module B or C is used, this constant is already specified. Not required for IRAKE = 2 or 3.

B. Test for Module E Computations

IF $\operatorname{IRAKE}=0$, skip module E .
IF IRAKE $=3$, do section T only.
IF IRAKE $=4$, do section U only.
IF IRAKE = 5 or 6, do Module I

C. Rake Total Pressure

1. Rake total pressures are called PTRAKE(I). Note that provisions are made to survey two exits at one time; however probes are numbered consecutivoly (max. of 50). For example, probes in the first exit may be numbered 1
through 30; probes in the second exit must start with number 31. Where $I=$ probe numbel .
2. The ratio of rake total pressure to free-stream total pressure is called PTR/PTO(I), where PTO is from module A.
3. The constants required from the project engineer are NPTR1, and NPTR2.

Calculate PTR/PTO(1) for I = 1, NPTR1 + NPTR2

$$
\begin{equation*}
\operatorname{PTR} / \mathrm{PTO}(\mathrm{I})=\frac{\text { PTRAKE }(\mathrm{I})}{\text { PTO }} \tag{Eq.E-3}
\end{equation*}
$$

D. Rake Static Pressures

1. Rake static pressures are called PRAKE(I). Comments C.1. above apply except that the maximum number of probes is 10 .
2. The ratio of rake static pressure to free-stream total pressure is called PR/PTO(I). PTO is from module A.
3. The constants required from the project engineer are NPR1, and NPR2.

If NPR1 $=0$, skip this part.

Calculate $\mathrm{PR} / \mathrm{PTO}(\mathrm{I})$ for $\mathrm{I}=1, \mathrm{NPR} 1+\mathrm{NPR} 2$

$$
\begin{equation*}
\mathrm{PR} / \mathrm{PTO}(\mathrm{I})=\frac{\mathrm{PTRAKE}(\mathrm{I})}{\mathrm{PTO}} \tag{Eq.E-4}
\end{equation*}
$$

E. Rake Total Pressure/Static Pressure Assignments

1. If internal drag is to be computed, the project engineer must assign specific total pressure measurement to each static pressure measurement.

INDX(I,J) This is the index of the total rake pressure PTRAKE that goes with the static rake pressure, PRAKE. The array INDEX has two indices, I,J. The value of $\operatorname{INDEX}(\mathrm{I}, \mathrm{J})$ contains the index of the total pressure that goes with the Ith static pressure. The value of J starts at one (1) and increments by 1 until the vaiue of $\operatorname{INDEX}(\mathrm{I}, \mathrm{J})$ is zero or if other values of I or J exceed limits.

Example: To assign PRAKE3 to PTRAKE24

$$
\begin{array}{ll}
\operatorname{INDEX}(3, \mathrm{~J})=24 & \text { where } \mathrm{J} \text { is table position } \\
& \text { starting at } 1 .
\end{array}
$$

2. For example:

$$
\begin{array}{ll}
\mathrm{J}=1 & \mathrm{I}=1,2,3,4 \\
\mathrm{~J}=2 & \mathrm{I}=5,9,11 \\
\mathrm{~J}=3 & \mathrm{I}=6,7,8,10
\end{array}
$$

$$
\mathrm{J}=\mathrm{NPR} 1+\mathrm{NPR} 2
$$

$$
\mathrm{I}(\mathrm{Max})=\mathrm{NPTR} 1+\mathrm{NPTR} 2
$$

3. The constants required from the project engineer are from the I, J table.

If $\operatorname{IRAKE}=2$, skip this section.

F. Duct Flow Static-to-Total-Pressure Ratio

1. The ratio of duct flow static pressure to duct flow total pressure is called PR/PTR(J,I), where J and I are the combinations supplied in section E above. For the example shown in E., values of PR/PTR(J,l) are obtained for:

PR/PTR1,1
PR/PTR1,2
PR/PTR1,3
PR/PTR1,4
PR/PTR2,5
PR/PTR2,9
PR/PTR2,11
PR/PTR3,6
PR/PTR3,7
etc.

If IRAKE $=2$, skip this section.
Do the following calculation for $\mathrm{J}=1$, NPR1 + NPR2

Do the following calculation for $I=$ those values assigned

$$
\mathrm{PR} / \mathrm{PTR}(\mathrm{~J}, \mathrm{I})=\frac{\mathrm{PR} / \mathrm{PTO}(\mathrm{~J})}{\mathrm{PTR} / \operatorname{PTO}(\mathrm{I})}
$$

G. Correct for Supersonic Duct Mach Numbera

1. Local duct Mach number is called $\mathrm{MD}(\mathrm{I})$. Where $\mathrm{I}=$ total pressure probe number on which local Mach number is based.

If $\operatorname{IRAKE}=2$, skip this section.

Do the following calculation for $\mathrm{J}=1, \mathrm{NPR} 1+\mathrm{NPR} 2$

Do the following calculation for $I=$ those values assigned

If PR/PTR $(J, I)<0.5283$, calculate $\mathrm{MD}(\mathrm{I})$ using the Newton Raphson method with an initial assumption of $\mathrm{MD}(\mathrm{I})=1.0001$ and correct the total pressure ratio for normal shock.

$$
\mathrm{MD}(\mathrm{I})=\sqrt{\frac{5}{6} *\left[\frac{7 \mathrm{MD}(\mathrm{I})^{2}-1}{6}\right]^{5 / 7} *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\mathrm{PR} / \mathrm{PTO}(\mathrm{~J})}\right]^{2 / 7}}
$$

(Eq. E-6)

$$
\operatorname{PTR} / \operatorname{PTO}(\mathrm{I})=\operatorname{PR} / \operatorname{PTO}(\mathrm{J}) *\left(1+\frac{\mathrm{MD}(\mathrm{I})^{2}}{5}\right)^{7 / 2}
$$

(Eq. E-7)

H. Compute Subsonic Duct Mach Numbers

1. This calculation is made for those I, J combinations for which PR/PTR $(\mathrm{J}, \mathrm{I})>0.5283$.

If IRAKE $=2$, skip this section.

Do the following calculation for $\mathrm{J}=1$, NPR1 + NPR2
Do the following calculation for $\mathrm{I}=$ those values assigned

If PR/PTR(J,I) >0.5283, calculate $\mathrm{MD}(\mathrm{I})$

$$
\mathrm{MD}(\mathrm{I})=\sqrt{5 *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\mathrm{PR} / \mathrm{PTO}(\mathrm{~J})}\right]^{2 / 7}-5}
$$

(Eq. E-8)

I. Compute Average Duct Pressure Ratios

1. The ratio of the average duct total pressure to free-stream total pressure is called PTD1/PTO for duct 1 and PTD2/PTO for duct 2.
2. The ratio of the average duct static pressure to free-stream total pressure is called PD1/PTO for duct 1 and PD2/PTO for duct 2.
3. The c instants required from the project . ngineer are ARAKE(I), KPR(I), NPTR1, NPTR2, NPR1, and NPR2

$$
\begin{align*}
& \text { PTD } 1 / \mathrm{PTO}=\frac{\sum_{\mathrm{l}=1}^{\mathrm{NPTR} 1} \operatorname{ARAKE}(\mathrm{I})[\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})]}{\sum_{\mathrm{I}=1}^{\mathrm{NPTR} 1} \mathrm{ARAKE}(\mathrm{I})} \\
& \text { If } \sum_{\mathrm{I}=1}^{\mathrm{NPTR} 1} \mathrm{ARAKE}(\mathrm{I})=0.0 \text {, then PD } 1 / \mathrm{PTO}=10 \tag{Eq.E-9}
\end{align*}
$$

$$
\mathrm{PD} 1 / \mathrm{PTO}=\frac{\sum_{\mathrm{I}=1}^{\mathrm{NPR} 1} \mathrm{KPR}(\mathrm{I})[\mathrm{PR} / \mathrm{PTO}(\mathrm{I})]}{\sum_{\mathrm{I}=1}^{\mathrm{NPR1}} \mathrm{KPR}(\mathrm{I})}
$$

$$
\text { If } \sum_{\mathrm{l}=1}^{\mathrm{NPTR} 1} \mathrm{KPR}(\mathrm{I})=0.0, \text { then PD1 } / \mathrm{PTO}=1.0
$$

If NPTR2 $=0.0$, skip equations $\mathrm{E}-11$ and $\mathrm{E}-12$.

(Eq. Fr 11)

$\operatorname{PD} 2 /$ PTO $=\frac{\sum_{1=N P R 1+1}^{N P R 2} K P R(I)[P R / P T O(I)]}{\sum_{1=N P R 1+1}^{N P R 2} K P R(I)}$
(Eq. E-12)

If $\underset{\mathrm{I}=\mathrm{NPR} 1+1}{\mathrm{NPR} 2} \mathrm{KPR}(\mathrm{I})=0$, then $\mathrm{HD} 2 / \mathrm{PTO}=10$

J. Mass-Flow Rates

1. Mass-flow rate at the duct exit is called FTMDOT1 for duct 1 and FTMDOT2 for duct 2.
2. Mass-flow rate based on free-stream conditions is called MODOT1 for duct 1 and MODOT2 for duct 2.
3. TTO, MACH, and PO come from the tunnel parameters, module A.
4. The constants required from the project engineer are ARAKE(I), SCAP1, SCAP2, NPTR1, and NPTR2.

If $\operatorname{IRAKE}=2$, skip equations $\mathrm{E}-13, \mathrm{E}-14, \mathrm{E}-15$ and $\mathrm{E}-16$.

FTMDOT $1=\frac{0.028563}{\sqrt{T T O+459.67}} * \sum_{\mathrm{I}=1}^{\operatorname{NPTR} 1} \operatorname{ARAKE}(\mathrm{I}) * \operatorname{PRAKE}(\mathrm{~J}) *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\mathrm{PR} / \mathrm{PTO}(\mathrm{J})}\right]^{1 / 7} * \operatorname{MD}(\mathrm{I})$
(Eq. E-13)
where J corresponds to I from E.1. above.

MODOT $1=\frac{(0.028563) *(\mathrm{SCAP} 1) *(\mathrm{MACH}) *(\mathrm{PO})}{\sqrt{\mathrm{TTO}+459.67}} *[1+0.2(\mathrm{MACH})]^{2 / 2}$
(Eq. E-14)

If NPTR2 $=0$, skip equations $\mathrm{E}-15$ and $\mathrm{E}-16$.

FTMODOT2 $=\frac{(0.028563)}{\sqrt{T T O+459.67}} * \sum_{\mathrm{I}=\mathrm{NPTR} 1+1}^{\mathrm{NPTR2}} \operatorname{ARAKE}(\mathrm{I}) * \operatorname{PRAKE}(\mathrm{~J}) *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\operatorname{PR} / \operatorname{PTO}(\mathrm{J})}\right]^{1 / 7} * \mathrm{MD}(\mathrm{I})$
(Eq. E-15)
where J corresponds to I from E.1. above.

MODOT2 $=\frac{(0.028563) *(\mathrm{SCAP} 2) *(\mathrm{MACH}) *(\mathrm{PO})}{\sqrt{\mathrm{TTO}+459.67}} *\left[1+0.2(\mathrm{MACH})^{2}\right]^{1 / 2}$
(Eq. E-16)

K. Mass-Flow Ratio

1. Mass-flow ratio for duct 1 is called M/M01. Mass-flow ratio for duct 2 is called M/M02.

If $\operatorname{IRAKE}=2$, skip the remainder of this section.

$$
\mathrm{M} / \mathrm{MO} 1=\frac{\text { FTMDOT1 }}{\text { MODOT1 }}
$$

(Eq. E-17)

If $\mathrm{MODOT} 1=0.0, \mathrm{M} / \mathrm{M} 01=0.0$

If NPTR2 $=0$, skip equation $\mathrm{E}-18$.

$$
\mathrm{M} / \mathrm{MOL}=\frac{\text { FTMDOT2 }}{\text { MODOT2 }}
$$

(Eq. E-18)
L. Eree-Stream Velocity

1. Free-stresm velocity is called VO.
2. TTO and MACH are from module A.

$$
\mathrm{VO}=\frac{49.021179 \sqrt{\mathrm{TTO}+459.67}}{\sqrt{1+0.2(\mathrm{MACH})^{2}}}
$$

(Eq. E-19)
M. Average Exit Mach Number

1. The average exit Mach number for duct 1 is always called MEXIT1. The average exit Mach number for duct 2 is always called MEXIT2.

If $\operatorname{IRAKE}=2$, skip the remainder of this section.

$$
\operatorname{MEXIT} 1=\sqrt{5 *\left[\frac{\mathrm{PTD} 1 / \mathrm{PTO}}{\mathrm{PD} 1 / \mathrm{PTO}}\right]^{2 / 7}-5}
$$

(Eq. E-20)

If NPTR2 $=0$, skip equation E-21.

$$
\text { MEXIT2 }=\sqrt{5 *\left[\frac{\mathrm{PTD} 2 / \mathrm{PTO}}{\mathrm{PD} 2 / \mathrm{PTO}}\right]^{2 / 7}-5}
$$

(Eq. E-21)
N. Internal Axial Force

1. The internal axial force is called AI1 and AI2 for ducts 1 and 2, respectively.
2. The internal axial force coefficient is called CAI1 and CAI2 for ducts 1 and 2 , respectively.
3. The total internal axial force coefficient is called CAI.
4. PTO, PO, and QO are from the tunnel parameters, module A.
5. PSI and THETA are from the balance and weight tare calculations, module D. Positive directions for PSI and THETA are shown on Figure E- 2.
6. The constants required from the project engineer are AEXIT1, AEXIT2, PSIN1, PSIN2, THETAN1, THETAN2, AREF, and NPTR2.

If $\operatorname{IRAKE}=\mathbf{2}$, skip the remainder of this section.

$$
\begin{gathered}
\mathrm{AI} 1=[(\mathrm{FTDOT} 1) * \mathrm{VO} * \mathrm{COS}(\mathrm{PSI}) * \operatorname{COS}(\mathrm{THETA})] \\
-\{[1.4 *(\mathrm{PD} 1 / \mathrm{PTO}) * \mathrm{PTO} *(\mathrm{MEXIT} 1) 2]+[((\mathrm{PD} 1 / \mathrm{PTO}) * \mathrm{PTO}) \cdot \mathrm{PO}]\} \\
*(\mathrm{AEXIT} 1) * \operatorname{COS}(\mathrm{PSIN} 1) * \operatorname{COS}(\mathrm{THETAN} 1)
\end{gathered}
$$

(Eq. E-22)

$$
\begin{equation*}
\mathrm{CAI} 1=\frac{\mathrm{Al} 1}{(\mathrm{QO}) *(\mathrm{AREF})} \tag{Eq.E-23}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CAI}=\mathrm{CAI} 1 \tag{Eq.E-24}
\end{equation*}
$$

If NPTR2 $=0$, skip equations $\mathrm{E}-25, \mathrm{E}-26$ and $\mathrm{E}-27$.

$$
\mathrm{AI} 2=[(\mathrm{FTMDOT} 2) * \mathrm{VO} * \operatorname{COS}(\mathrm{PSI}) * \operatorname{COS}(\mathrm{THETA})]
$$

$$
-\left(\left[1.4 *(\mathrm{PD} 2 / \mathrm{PTO}) * \mathrm{PTO} *(\mathrm{MEXIT} 2)^{2}\right]+[((\mathrm{PD} 2 \mathrm{PTO}) * \mathrm{PTO})-\mathrm{PO}]\right)
$$

$$
\begin{equation*}
\text { * (AEXIT2) } * \operatorname{COS}(\text { PSIN2 }) * \operatorname{COS}(\text { THETAN2 }) \tag{Eq.E-25}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CAI} 2=\frac{\mathrm{AI} 2}{(\mathrm{QO}) *(\mathrm{AREF})} \tag{Eq.E-26}
\end{equation*}
$$

$$
\mathrm{CAI}=\mathrm{CAI} 1+\mathrm{CAI} 2
$$

(Eq. F-27)

O. Internal Normal Force

1. The internal normal force is called NI1 and NI2 for ducts 1 and 2, respectively.
2. The internal normal force coefficient is called CNI1 and CNI.2 for ducts 1 and 2, respectively.
3. The total internal normal force coefficient is called CNI.
4. PTO, PO, and QO are from the tunnsl parameters, module A.
5. PSI, THETA. and PHI are from the balance and weight tare calculations, module D. Positive directions are shown on Figure E-2.
6. The constants required from the project enginetr are AEXIT1, AEXIT2, THETAN1, THETAN2, AREF, and NPTR2.

If IRAKE $=2$, skip the remainder of this section.

```
NI1 ={(FTMDOTI) * VO * [COS(PHI) *SN(THETA) * COS(PSI) + SIN(PHI) + SIN(PSI)]}
+||.4 * (PD1/PTO) * PTO *(MEXIT1)2] +[((PD1/PTO) * PTO) - PO|)
* (AEXIT1)*SIN(THETAN1)
```

(Eq. E-28)

$$
\mathrm{CNI} 1=\frac{\mathrm{NI} 1}{(\mathrm{QO}) *(\mathrm{AREF})}
$$

(Eq. E-29)

$$
\begin{equation*}
\mathrm{CNI}=\mathrm{CNI} 1 \tag{Eq.E-30}
\end{equation*}
$$

If N.TR2 $=0$, skip equations $E-31, E-32$ and $E-33$.

```
\(\mathrm{NI} 2=\|\) FTMDOT2 \() * \mathrm{VO} *[\operatorname{COS}(\mathrm{~F} \mathrm{HI}) * \operatorname{SIN}(\mathrm{THETA}) * \operatorname{COS}(\mathrm{PSI})+\mathrm{SIN}(\mathrm{PHI})+\operatorname{SIN}(\mathrm{PSI})]\)
\(+\left[\left(1.4\right.\right.\) * (PD2/PTO) * PTO * (MEXIT2) \(\left.{ }^{2}\right]+\) [(PD2/PTO) \(*\) PTO) - PO] \()\)
* (AEXIT2) * SIN(THETAN2)
```

(Eq. E-31)

$$
\begin{equation*}
\mathrm{CNI} 2=\frac{\mathrm{NI} 2}{(\mathrm{QO}) *(\mathrm{AREF})} \tag{Eq.E-32}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CNI}=\mathrm{CNI} 1+\mathrm{CNI} 2 \tag{Eq.E-33}
\end{equation*}
$$

P. Internal Side Force

1. The internal side force is called YI1 and YI2 for ducts 1 and 2, respectively.
2. The internal side force coefficient is called CYI1 and CYI2 for ducts 1 and 2 , respectively.
3. The total internal side force coefficient is called CYI.
4. PTO, PO, and QO are from the tunnel parameters, module A.
5. PSI, THETA, and PHI are from the balance and weight tares calculations, module D.
6. The constants required from the project engineer are AEXIT1, AEXIT2, THETAN1, THETAN2, PSIN1, PSIN2, AREF, and NPTR2.

If $\operatorname{IRAKE}=\mathbf{2}$, skip the remainder of this section.

YII $=\{(\operatorname{FTMDOT} 1) * \mathrm{VO} *[\operatorname{SIN}(\mathrm{PHI}) * \operatorname{SIN}(\mathrm{THETA}) * \operatorname{COS}(\mathrm{PSI})-\operatorname{COS}(\mathrm{PHI}) * \operatorname{SIN}(\mathrm{PSI})\}$

* (AEXIT1) * COS(THETAN1) * SIN(PSIN1)

$$
\begin{equation*}
\mathrm{CYII}=\frac{\mathrm{YI} 1}{(\mathrm{QO}) *(\mathrm{AREF})} \tag{Eq.E-35}
\end{equation*}
$$

CYI = CYII

If NPTR2 $=0$, skip equations E-37, E-38 and E-39.

```
YI2 = {(FTMDOT2) * VO * [SIN(PHI) *SIN(THETA) * COS(PSI) - COS(PHI) * SNN(PSI)]}
+[[1.4 * (PD2/PTO) * PTO * (MEXIT2)}\mp@subsup{)}{}{2}]+[((PD2/PTO) * PTO) - PO]
* (AEXIT2) * COS(THETAN2) * SIN(PSIN2)
```

(Eq. E-37)

$$
\begin{equation*}
\mathrm{CYI} 2=\frac{\mathrm{YI} 2}{(\mathrm{QO}) *(\mathrm{AREF})} \tag{Eq.E-38}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CYI}=\mathrm{CYI} 1+\mathrm{CYI} 2 \tag{Eq.E-39}
\end{equation*}
$$

Q. Elow-Through Pressure Ratio

1. The nozzle exit (flow-through) total pressure in ratio to free-stream static pressure is called PTD1/PO and PTD2/PO for ducts 1 and 2, respectively.
2. PTO and PO are from tunnel parameters, module A.

If $\operatorname{IRAKE}=2$, skip the remainder of this section.

$$
\mathrm{PTD} 1 / \mathrm{PO}=\frac{(\mathrm{PTD} 1 / \mathrm{PTO}) *(\mathrm{PTO})}{\mathrm{PO}}
$$

(Eq. E-40)

If NPTPR $2=0$, skip equation $\mathrm{E}-41$.

$$
\begin{equation*}
\mathrm{PTD2} / \mathrm{PO}=\frac{(\mathrm{PTD} 2 / \mathrm{PTO}) *(\mathrm{PTO})}{\mathrm{PO}} \tag{Eq.E-41}
\end{equation*}
$$

R. Internal Drag

1. The internal drag coefficient based on the stability axes is called CDIS1 and CDIS2 for ducts 1 and 2, respectively.
2. The total internal drag coefficient in the stability axia is called CDIS.
3. ALPHA is from the balance and weight tares computations, module \mathbf{D}.
4. The internal drag coefficient based on the wind axis is called CDI1 and CDI2 for ducts 1 and 2, respectively.
5. The total internal drag coefficient in the wind axis is called CDI.
6. BETA is from module D.

If IRAKE $=2$, skip the remainder of this section.
CDIS1 $=($ CNI1 $) * \operatorname{SIN}($ ALPHA $)+($ CAI1 $) * \operatorname{COS}(A L P H A)$
CDI1 $=(\mathrm{CDIS} 1) * \operatorname{COS}(\mathrm{BETA})-(\mathrm{CYI} 1) * \operatorname{SIN}(\mathrm{BETA})$
CDIS $=$ CDIS1
$\mathrm{CDI}=\mathrm{CDI} 1$

If NPTR2 $=0$, skip equations $\mathrm{E}-46, \mathrm{E}-47, \mathrm{E}-48$ and $\mathrm{E}-49$.

CDIS2 $=($ CNI2 $) * \operatorname{SIN}($ ALPHA $)+($ CAI2 $) * \operatorname{COS}(A L P H A)$
CDI2 $=($ CDIS2 $) * \operatorname{COS}($ BETA $)-(C Y I 2) * \operatorname{SIN}(B E T A)$
CDIS $=$ CDIS1 + CDIS2
$\mathrm{CDI}=\mathrm{CDI} 1+\mathrm{CDI} 2$

S. Internal Lift

1. The internal lift coefficient based on stability axis (also wind axis) is called CLI1 and CLI2 for ducts 1 and 2, respectively.
2. The total internal lift coefficient is called CLI.
3. ALPHA is from the balance and weight tares computations in module D.

If IRAKE $=2$, skip the remainder of this section.

CLI1 $=(\mathrm{CNI} 1) * \operatorname{COS}(\mathrm{ALPHA})-(\mathrm{CAI} 1) * \operatorname{SIN}(\mathrm{ALPHA})$
$\mathrm{CLI}=\mathrm{CLI} 1$

If NPTR2 $=0$, skip equations E-52 and E-53.
$\mathrm{CLI} 2=(\mathrm{CNI} 2) * \operatorname{COS}(\mathrm{ALPHA}) \cdot(\mathrm{CAI} 2) * \operatorname{SIN}(A L P H A)$
$\mathrm{CLI}=\mathrm{CLI} 1+\mathrm{CLI} 2$
Eq. E-53)
T. Internal Drag and Axial Force Tajoles

If IRAKE $\neq 3$, skip this section.

CAI, CDSI, and CDI are supplied in tables as functions of MACH, ALPHA and PSI.

U. Interinal Drag from Internal Static Pressures

If IRAKE is 4, the following formulas are used. When the Mach number, MACH, is less than 0.1 , then

CAI1 $=\mathrm{CNI} 1=\mathrm{CAI}=\mathrm{CNI}=\mathrm{CDIS}=\mathrm{CDI}=\mathrm{CLI}=\mathrm{CYI}^{1}=\mathrm{CY} 1=$
MPM01 $=$ MEXIT $=$ MODOTI $=$ FTMDOT1 $=0.0$
(Eq. E-54)

For the Mach number, MACH, greater than 0.1, the following formulas are used.

The area, AEXIT1, is used to interpolate R vs. Z to obtain YM.

Then the average pressure, PL, is the average of the static pressures

$$
\mathrm{PL}=\frac{\sum_{\mathrm{I}=1}^{\mathrm{NPR}} \operatorname{PRAKE}(\mathrm{I})}{\mathrm{NPR} 1}
$$

(Eq. E-55)

When PL is greater than PTO, then go to equation (54).

The Mach number, ML, is computed as

$$
\mathrm{ML}=\sqrt{5\left(\left(\frac{\mathrm{PTO}}{\mathrm{PL}}\right)^{2 / 7}-1\right)}
$$

(Eq. $\mathrm{F}-56$)

The ratio, BRATIO, becomes

$$
\mathrm{BRATIO}=\frac{1.728 \mathrm{ML}}{\left(1+0.2 \mathrm{ML}^{2}\right)^{3}}
$$

(Eq. E-57)

Then the area, ASTAR, is

$$
\text { ASTAR }=\Pi * \mathrm{YM}^{2} * \text { BRATIU }
$$

The Mach number ratio, MFR, is

$$
\mathrm{MFR}=\frac{\mathrm{ML}}{\mathrm{MACH}}\left(\frac{\left(1+0.2 \mathrm{MACH}^{2}\right)}{1+0.2 \mathrm{ML}^{2}}\right)^{3}\left(\frac{\mathrm{YM}}{\mathrm{R}(1)}\right)^{2}
$$

(Eq. E-59)
The drag coefficients are now computed.

The ratio value, BRATIO, is computed

$$
\mathrm{BRATIO}=\frac{\mathrm{ASTAR}}{\Pi \mathrm{R}(\mathrm{I})^{2}}
$$

(Eq. E-60)

The value of the Mach number, M, is computed which satisfies

$$
\begin{equation*}
1.728 \mathrm{M} /\left(1+0.2 \mathrm{M}^{2}\right)^{3}-\text { BRATIO }=0 \tag{Eq.E-61}
\end{equation*}
$$

The static pressure, PL, is then computed

$$
\mathrm{PL}=\frac{\mathrm{PTO}}{\left(1+0.2 \mathrm{M}^{2}\right)^{7 / 2}}
$$

(Eq. E-62)

The pressure coefficient, $\mathrm{CP}(\mathrm{I})$, is

$$
\begin{equation*}
\mathrm{CP}(\mathrm{I})=(\mathrm{PL}-\mathrm{PO}) / \mathrm{QO} \tag{Eq.E-63}
\end{equation*}
$$

The dynamic pressure, $\mathbf{Q}(\mathrm{I})$, is

$$
\begin{equation*}
\mathrm{Q}(\mathrm{I})=0.7 * \mathrm{PL} * \mathrm{M}^{2} \tag{Eq.E-64}
\end{equation*}
$$

The slope, SLOPE, is

$$
\text { SLOPE }=\operatorname{TAN}^{-1}((\mathrm{R}(\mathrm{I})-\mathrm{R}(\mathrm{I}-1)) /(\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{I}-1)))
$$

(Eq. F-65)
The value of SL becomes

$$
\left.S L=\Pi\left(K^{\prime} I\right)+R(I-1)\right) \sqrt{(R(I)-R(I-1))^{2}+(Z(I)-Z(I-1))^{2}}(M)
$$

(Eq. E-66)

The value of SWET is

$$
\text { SWET }=\sum_{i=1}^{\text {NPRI }} \operatorname{SL} \operatorname{COS}(\mathrm{SLOPE}) / \text { AREF }
$$

(Eq. E-67)

The value of QRATIO is

$$
\begin{equation*}
\text { QRATIO }=\sum_{\mathrm{l}=1}^{\mathrm{NPRI}} \frac{(\mathrm{Q}(\mathrm{I})+\mathrm{Q}(\mathrm{I}-1)) \mathrm{SL} * \operatorname{COS}(\mathrm{SLOPE})}{2 \mathrm{QS}} \tag{Eq.E-68}
\end{equation*}
$$

The value of CDPA is

$$
\mathrm{CDPA}=-\sum_{\mathrm{I}=1}^{\mathrm{NPR} 1} \frac{\Pi}{\mathrm{AREF}}(\mathrm{R}(\mathrm{I}) \mathrm{CP}(\mathrm{I})+\mathrm{R}(\mathrm{I}-1) \operatorname{CP}(\mathrm{I}-1))(\mathrm{R}(\mathrm{I})-\mathrm{R}(\mathrm{I}-1))
$$

(Eq. E-69)

The Mach number, MEFF, is computed to satisfy

$$
\left(\frac{\text { MEFF }}{\mathrm{MACH}}\right)^{2}\left(\frac{\left(1+0.2 \mathrm{MACH}^{2}\right)}{\left(1+0.2 \mathrm{MEFF}^{2}\right)}\right)^{7 / 2}-\text { QRATIO }=0
$$

(Eq. E-70)
The static temperature, TE, is

$$
\mathrm{TE}=\frac{\mathrm{TTO}+459.67}{1+0.2 \mathrm{MEFF}^{2}}
$$

The density, RHOE, is

$$
\text { RHOE }=\frac{144.0 * \mathrm{PO}}{1716.4829 \mathrm{TE}}
$$

(Eq. E-72)

The viscosity, VISE, is

$$
\begin{equation*}
\text { VISE }=\frac{2.27 * 10^{-8} * \mathrm{TE} * \sqrt{\mathrm{TE}}}{\mathrm{TE}+198.6} \tag{Eq.E-73}
\end{equation*}
$$

The free-stream velocity is

$$
\begin{equation*}
\mathrm{UE}=49.021179 * \mathrm{MEFF} * \sqrt{\mathrm{TE}} \tag{Eq.E-74}
\end{equation*}
$$

The local Reynolds number is

$$
\text { RNA }=\frac{\text { RHOE } * \text { UE } * \mathrm{Z}(\mathrm{NPRT} 1)}{12 * \mathrm{VISE}}
$$

(Eq. E-75)

When the Reynolds number is positive and nonzero

$$
\mathrm{CF} 0=\frac{0.472}{\left.\left(\mathrm{LOG}_{10}(\mathrm{RNA})\right)^{2.58}(1+0.2 \mathrm{MEFF})^{2}\right)^{0.467}}
$$

(Eq. E-76)

Then

$$
\begin{equation*}
\text { COF }=\text { CF0 } * \text { QRATIO } * \text { SWET } \tag{Eq.E-77}
\end{equation*}
$$

The pre-entry drag, CDPRE, is

$$
\begin{gathered}
\mathrm{CDHRE}=-\left(2 \mathrm{MFR}\left(\frac{\left.\mathrm{M}^{\prime}!\right)}{\mathrm{MACH}} \sqrt{\frac{1+0.2 \mathrm{MACH}^{2}}{1+0.2 \mathrm{M}^{2}}-\operatorname{COS}(\mathrm{ALPHA})}\right)+\mathrm{CP}(\mathrm{I})\right) \\
\\
* \frac{\Pi R(1)^{2}}{\mathrm{AREF}}
\end{gathered}
$$

(Eq. E-78)

$$
\text { CAI1 }=\text { CDPRE }+(\text { CDPA }+ \text { COF }) \text { COS (PSIN) COS (THETAN) }
$$

(Eq. E-79)

The internal normal force coefficient is

$$
\mathrm{CAI} 1=2 * \mathrm{MFR} * \frac{\Pi \mathrm{R}()^{2}}{\mathrm{AREF}} \mathrm{SIN}(\mathrm{ALPHA})+(\mathrm{CDPA}+\mathrm{COF}) \operatorname{SIN}(\text { IHETAN })
$$

The total axial force coefficient is

$$
\begin{equation*}
\mathrm{CAI}=\mathrm{NPRT} 2 * \mathrm{CAI} 1 \tag{Eq.E-81}
\end{equation*}
$$

The total normal force coefficient is

$$
\begin{equation*}
\text { CNI }=\text { NPRT2 } * \text { CNI1 } \tag{Eq.E-82}
\end{equation*}
$$

The total internal drag force coefficient in the stability axis is

$$
\begin{equation*}
\text { CDIS }=\text { CNI } * \operatorname{SIN}(A L P H A)+\text { CAI } * \operatorname{COS}(A L P H A) \tag{Eq.E-83}
\end{equation*}
$$

The total internal drag force coefficient in the wind axis is

$$
\begin{equation*}
\mathrm{CDI}=\mathrm{CDIS} * \operatorname{COS}(\mathrm{BETA}) \tag{Eq.E-84}
\end{equation*}
$$

The total internal lift coefficient is

$$
\begin{equation*}
\mathrm{CLI}=\mathrm{CNI} * \operatorname{COS}(A L P H A-\mathrm{CAI} * \operatorname{SIN}(A L P H A) \tag{Eq.E--85}
\end{equation*}
$$

The total internal side force coefficient is

The total internal side force coefficient is

$$
\begin{equation*}
\mathrm{CYI}=\mathrm{CYI}=0.0 \tag{Eq.E-86}
\end{equation*}
$$

The mass flow ratio is
M/M01 = MFR
(Eq. E-87)

The average exit Mach number is
MEXIT1 = ML(NPRT1)

The mass flow rate based on free-stream conditions is

$$
\text { MODOT } 1=0.028563 * \mathrm{SCAP}^{*} \mathrm{MACH}^{*} \mathrm{PO}^{*} \sqrt{1+0.2 \mathrm{MACH}^{2}}
$$

(Eq. E-89)

The mass flow ratio at exit is

$$
\text { FTMDOT1 = MFR } * \text { MODOT1 }
$$

(Eq. E-90)

Figure $\mathrm{E}-1$. Definition of thrust angles.

$$
\begin{array}{r}
\text { PSI }=\psi=\text { Eulor yow angle }=\angle A S C \\
\text { THETK }=\theta=\text { Euler pitch angle }=\angle C E D \text { [Note: } \theta=\alpha \text { unless } \phi=0^{\circ} \text {] } \\
\text { PHI }=\phi=\text { Euler roll ongie }=\angle C D E \text {. } \begin{array}{r}
\text { Note: Line DE is not in } \\
\text { plone of paper, but } \\
\text { rotated about line BD] }
\end{array}
\end{array}
$$

ALPHA $=\alpha=$ cngle of ottcck $=\angle$ DBE

Fiqure fl? Definition of fuler anglos and directions.

APPENDIX F

D

APPENDIXE

Pressure Coefficients and Integrated Forces

Nomenclatures 184
Required Constants 188
Test For Module F Computations 188
Free-Stream Static and Dynamic Pressures. 188
Coefficient Calculations 189
Total Pressure Drag Coefficient 190
Internal Static Pressure Ratio 190

MODULE F PRESSURE COEFFICIENT AND INT.GGRATED FORCES

SYMBOL

NOMENCLATURE

ARAAU(I) ARABU(I) ARADU(I) ARAFU(I) ARAGU(I)
 Axial
 ARAHU(I) ARANU(I) ARASU(I)

AREF

ARHAU(I)
ARHBU(I)
ARHDU'(I) ARHFU(I) ARHGU(I) ARHHU(I) ARHNU(I) ARHSU(I)

Hinge Areas times moment arm to be used with pressure Moment groups to compute integrated forces, where $I=$ orifice number, sq. in.

ARNAU(I)
ARNBU(I)
ARNDU(I) ARNFU(I) ARNGU(I) ARNHU(I) ARNNU(I) ARNSU(I)

Normal Areas to be used with pressure groups to compute Force integrated forces, where $I=$ orifice number, sq. in.

ARPAU(I) ARPBU(I)
ARPDU(I) ARPFU(I)
ARPGU(I)
ARPHU(I)
ARPNU(I) ARPSU(I)

Pitch Area times moment arm to be used with pressure Moment groups to compute integrated moments, $I=$ orifice number, sq. in.

CBAR

CDAUN(I) CDBUN(I) CDDUN(I) CDFUT(I) CDGUN(I) CDHUN(I) CDNUN(I) CDSUN(I)

CDPR
CFAUN(I) CFBUN(I) CFDUN(I) CFFUN(I) CFGUN(I) CFHUN(I) CFNUN(I) CFSUN(I)

CHMAUN(I) CHMBUN(I) CHMDUN(I) CHMFUN(I) CHMGUN(I) CHMHUN(I) CHMNUN(I) CHMSUN(I)

CLAUN(I) CLBUN(I) CLDUN(I) CLFUN(I) CLGUN(I) CLHUN(I) CLNUN(I) CLSUN(I)

Pitching moment reference length module D , in.

Integrated pressure drag coefficients.

Total integrated drag coefficient.

Integrated pressure axial force coefficients.

Integrated pressure hinge moment coefficients.

Integrated pressure lift coefficients.

CLPR
CNAUN(I)
CNBUN(I)
CNDUN(I)
CNFUN(I)
CNGUN(I)
CNHUN(I)
CNNUN(I)
CNSUN(I)
CPMAUN(I)
CPMBUN(I)
CPMDUN(I)
CPMFUN(I)
CPMGUN(I)
CPMHUN(I)
CPMNUN(I)
CPMSUN(I)
CPMPR
KCDA
KCDB
KCDD
KCDF
KCDG
KCDH
KCDN
KCDS

PAUN(I)
PBUN(I)
PDUN(I)
PFUN(I)
PGUN(I)
PHUN(I)
PNUN(I)
PSUN(I)

Total integrated lift coefficient.

Integrated pressure normal force coefficients.

Integrated pressure pitching moment coefficients.

Total integrated pitching moment coefficient. Constants provided by the engineer. (See note) Constants provided by the engineer. (See note)

Individual pressures to be used with each type of pressure coefficient for computation of integrated forces and moments. Maximum number of each type is 125.

NOTE: Enter 1.0 if term is to be included in the total pressure drag coefficient, or 0.0 if it is to be excluded.

APRENDIX F

Module F

Pressura Coefficients and Integrated Forces

Eight groups of pressure soefficients may be computed under this module.
Names assigned to eacin group are arbitrary. Final names may be inserted with finalized data printcut headers. These groups are PAUN, PBUN, PDUN, PFUN, PGUN, PHUN, PNUN, and PSUN.

A. Required Constants

The required constants for module F are given in the nomenclatures.

1. All constants are initialized to a value of zero. The project engineer need only supply those constants which are required for those quantities to be computed.
2. KAUN, KBUN, KDUN, KFUN, KGUN, KHUN, KNUN, KSUN number of individual pressures to be used with each type of pressure coefficient for computation of integrated forces and moments. (125 maximum for each type)
H. Test for Module F Computations

If $\mathrm{KPRESS}=0$, skip this module .
If KPRESS = 1 performs calculations as listed in module along with ratio of engine static pressure to engine total pressure.

If KPRESS $=2$ performs calculations as listed in module along with ratio of engine static pressure to free stream total pressure.
C. Free-Stream Static and Dynamic Pressures

Free-stream static and dynamic pressures to be used for computing pressure coefficients are obtained from module A; however, for individual pressure transducers, an average value is used.

D. Coefficient Calculations

$$
\text { CPSUN }(\mathrm{I})=(\operatorname{PSUN}(\mathrm{I})-\mathrm{PO}) / \mathrm{QO}
$$

(Eq. F-1)

$$
\text { CFSUN }=\sum_{\mathrm{I}=1}^{\mathrm{KSUN}} \operatorname{CPSUN}(\mathrm{I})^{*} \operatorname{ARASU}(\mathrm{I}) / \text { AREF }
$$

(Eq. F-2)

$$
\text { CNSUN }=\sum_{\mathrm{I}=1}^{\text {KSUN }} \operatorname{CPSUN}(\mathrm{I})^{*} \text { ARASU(I) } / \text { AREF }
$$

(Eq. F-3)

$$
\text { CPMSUN }=\sum_{\mathrm{I}=1}^{\mathrm{KSUN}} \operatorname{CPSUN}(\mathrm{I}) * \operatorname{ARPSU}(\mathrm{I}) / \text { AREF } * \text { CBAR }
$$

(Eq. F-4)

$$
\begin{equation*}
\text { CHMSUN }=\sum_{\mathrm{I}=1}^{\mathrm{KSUN}} \text { CPSUN(I)*ARHSU(I)/AREF*CBAR } \tag{Eq.F-5}
\end{equation*}
$$

$$
\begin{equation*}
\text { CDSUN }=\text { CFSUN } * \operatorname{COS}(\text { ALPHA })+\text { CNSUN } * \operatorname{SIN}(A L P H A) \tag{Eq.F-6}
\end{equation*}
$$

CLSUN = CNSUN * COS (ALPHA) - CFSUN * SIN (ALPHA)

> (Eq. F-7)

These equations are the same for all pressure groups.

E. Total Pressure Drag Coefficient

CDPRessure $:=\mathrm{KCDS} * \mathrm{CDSUN}+\mathrm{KCDA} * \mathrm{CDAUN}+\mathrm{KCDB} * \mathrm{CDBUN}+\mathrm{KCDN} *$ CDNUN + KCDD * CDDUN + KCDF * CDFUN + KCDG * CDGUN + KCDH * CDHUN
(Eq. F-8)
where KCDS, KCDB, KCDA, KCDN, KCDD, KCDF, KCDG, KCDH are constant inputs, 1.0 if term is to be included in the total pressure drag coefficient, or 0.0 if it is to be excluded.
F. Internal Static Pressure Ratio

If KPRESS = 1
$\operatorname{PRATI}(\Pi)=\operatorname{PGUN}(\Pi) /$ PTENG1
(Eq. F-9)

If $\mathrm{KPRESS}=2$
PRATI(II) $=$ PGUN (II)/PTO
(Eq. F-10)

NOTE: In addition to the pressure coefficients, this ratio is for PGUN measurements only.

APPENDIXG

APPENDIX G

Thrust Removal Options

Nomenclature 193
General Information 198
Required Constants 198
Quantities Required 198
Compute Thrust and Static Thrust Terms
IF $=1$ 199
Single Balance/All Metric IF1 = 1 206
Single Balance/Afterbody Metric IF2 = 1 209
Two-Balance/Afterbody Metric IFAF1 = 1 212
Two-Balance/Afterbody Metric IFAF2 $=1$ 215
Two-Balance/Afterbody Metric IFAFN1 $=1$ 218
Two-Balance/Afterbody Metric IFAFN2 $=1$ 221
Single Balance, Thrust Removal All
Components IFAF $=1$ 224
When IFAFN = 1 229
Bifurcate Support Mode Two Balance/Afterbody
Metric IDN $=1$ 231
Other Options. 236

MODULE G THRUST REMOVAL OPTIONS

SYMBOL
EX
CAAERO Thrust removed axial force coefficient.
CASCADE Resultant angle of jet exhaust, degrees.
CDAERO Thrust removed drag coefficient.
CDNOZ
C(F-ANOZ)
C(F-DNOZ) Thrust minus nozzle drag coefficient.
CDSAER
CDWAER
CF
CF/CFI
CF
CFJC
CFJET
C(FA)
C(FD)
ClaRO
CULET
CLNOZ
CLNOZT
CLSAER
CLWAER
CMAERO
CMJ

NOMENCLATURE

Nozzle exit area.

Nozzle drag.
Thrust minus nozzle axial force coefficient.

Thrust removed stability axis drag coefficient.
Thrust removed wind axis drag crefficient.

Jet axial force coefficient.
Computed jet axial force coefficient.
Jet reaction axial force coefficient.
Thrust minus axial force coefficient.
Thrust minus drag coefficient.
Thrust removed lift coefficient.
Jet reaction lift coefficient.
Thrust removed nozzle lift.
Nozzle lift plus thrust.
Thrust removed stability axis lift coefficient.
Thrust removed wind axis lift coefficient.
Thrust removed pitching moment coefficient.
Jet pitching moment coefficient.

Jet axial force coefficient (from balance and pressures).
Ratio of thrust (from balance and pressures) to ideal thrust.

CMJC
CMJET
CMNOZ
CMNOZT
CMSAER
CMWAER
CNAERO
CNJ
CNJC
CRAERO
CRJC
CRJET
CRSAER
CRWAER
CSAERO
CS.JC
CSJET
CSSAER
CSWAER
CT
CTS

CTST
CTSY

Computed jet pitching moment coefficient. Jet reaction pitching moment coefficient.

Thrust removed nozzle pitching moment. Nozzle pitching moment plus lift.

Thrust removed stability axis pitching moment coefficient.
Thrust removed wind axis pitching moment coefficient.
Thrust removed normal force coefficient.
Jet normal force coefficient.
Computed jet normal force coefficient.
Thrust removed rolling moment coefficient.
Computed jet rolling moment coefficient.
Jet reaction rolling moment coefficient.
Thrust removed stability axis rolling moment coefficient.
Thrust removed wind axis rolling moment coefficient.
Thrust removed side force coefficient.
Computed jet side force coefficient.
Jet reaction side force coefficient.
Thrust removed stability axis side force coefficient.
Thrust removed wind axis side force coetficient.
Computed resultant thrust coefficient about pitch axis.
Resultent static thrust coetficient, main balance, about pitch axis.

Resultant static thrust coefficient, main balance.
Resultant static thrust coefficient, main balance, about yaw axis.

SYMBOL

CTS2

CTS2T
CTS2Y

CTT
CTY
CYAERO
CYJC
CYJET
CYSAER
CYWAER
DELTA
DELTAY
DELTA1

DELTA2

DELTIY

DELT2Y

ETAABS
(F-A)/FI
(F-ANOZ)/FI
FGT/FI
FGT2/FI
FGY/FI

Resultant static thrust coefficient, second balance, about pitch axis.

Resultant static thrust coefficient, second balance.
Resultant static thrust coefficient, second balance, about yaw axis.

Computed resultant thrust coefficient.
Computed resultant thrust coefficient about yaw axis.
Thrust removed yawing moment coefficient.
Computed jet yawing moment coefficient.
Jet reaction yawing moment coefficient.
Thrust removed stability axis yawing moment coefficient.
Thrust removed wind axis yawing moment coefficient.
Computed thrust vector angle about pitch axis, degrees.
Computed thrust vector angle about yaw axis, degrees.
Static thrust vector angle, main balance, about pitch axis, degrees.

Static thrust vector angle, second balance, about pitch axis, degrees.

Static thrust vector angle, main balance, about yaw axis, degrees.

Static thrust vector angle, second balance, about yaw axis, degrees.

Isentropic vacuum or stream thrust coefficient.
Ratio of thrust minus axial force to ideal thrust.
Ratio of thrust minus nozzle axial force to ideal thrust.
Total static resultant thrust ratio, main balance.
Total static resultant thrust ratio, second balance.
Static resultant thrust ratio, main balance, about yaw axis.

SXMBOL NOMENCLATURE

FG2/FI

> FG2Y/FI

FJ1/FI
FJ2/FI
(F-D)/FI
(F-DNOZ)/FI
FN/FI
FT/FI
F/FI
IDA
InN
IF
IF1
IF2
IFAF
IFAF1
IFAF2
IFAFN
IFAFN1
IFAFN2
LENGTH(I)
PM/FI
RM/FI
SF/FI

Static resultant thrust ratio, main balance, about pitch axis.
Static resultant thrust ratio, second balance, about pitch axis.
Static resultant thrust ratio, second balance, about yaw axis.
Static thrust ratio, main balance.
Static thrust ratio, second balance.
Ratio of thrust minus drag to ideal thrust.
Ratio of thrust minus nozzle drag to ideal thrust.
Ratio of normal force to ideal thrust.
Total resultant thrust ratio.
Ratio of thrust to ideal thrust.
Engineer's option.

Future option.

Computes thrust and static thrust terms when $\mathrm{IF}=1$.
Computes single balance/all metric when IF1=1.
Computes single balance/afterbody metric when IF2=1.
Single balance, thrust removal from all components.
Computes two balances/afterbody metric when IFAF1=1.
Computes two balances/afterbody metric when IFAF2=1.
Future option.
Computes two balances/afterbody metric when IFAFN1=1.
Computes two balances/afterbody metric when IFAFN2=1.
Lengths for transferring moments to relative station.
Ratio of pitching moment to ideal thrust.
Rat:o of rolling moment to ideal thrust.
Ratio of side force to ideal thrust.

SYMBOL

SPLAY
SPLAY1
YM/FI

NOMENCLATURE

Projected roll angle of jet exhaust, degrees.
Projected roll angle of jet exhaust, degrees.
Ratio of yawing moment to ideal thrust.

APPENDIX G
 Module G
 Thrust Removal Options

A. General Information

The following options are used to remove thrust and to obtain various aerodynamic and aeropropulsion parameters usually required for most $16-\mathrm{Ft}$. Transonic Tunnel investigations. The various constants are keyed to typical balance arrangements used and may be used for most test setups. This section requires computed inputs from modules A, B, C, D and F. The engineer should refer to each module for exact definition of the computed quantity. These options will work for both fully and partially metric models for both longitudinal and lateral data.

B. Required Constants

1. IF, IF1, IF2, IFAF, IFAF1, IFAF2, IFAFN, IFAFN1, IFAFN2, ID and IDN.
C. Quantities Required
2. MODULE A
a. P $\sim \& Q_{0}$
3. MODULEB
a. NPR
b. CFI
4. MODULEC
a. CDFAFT - afterbody + nozzle skin friction
b. CDFNOZ - nozzle skin friction
5. MODULE D
6. ALPHA
7. CN1, CA1, CMY1

CY1, CMX1, CMZ1 MAIN BALANCE
3. CDS1, CLS1
4. CN2, CA2, CMY2

CY2, CMX2, CMZ2 SECOND BALANCE (2)
5. CDS2, CLS2
5. MODULEF

1. CFSUN, CNSUN, CPMSUN
2. CDSUN, CLSUN

AFTERBODY PRESSURE FORCES
3. CFBUN, CNBUN, CPMBUN
4. CDBUN, CLBUN

NOZTLLE PRESSURE FORCES
D. Compute Thrust and Static Thrust Terms IF $=1$

1. Compute Thrust

The value of NPR is the average nozzle pressure ratio from each air system.
a. IF NPR $\leq 1.2, \mathrm{CFJ}=\mathrm{CMJ}=0=\mathrm{CRJ}=\mathrm{CYJ}=\mathrm{CSJ}$
b. The computed jet axial force coefficient is

$$
\mathrm{CFJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCFJ}(\mathrm{NPR})+\mathrm{ICFJ}]
$$

(Eq. G-1)
c. The computed jet normal force coefficient is

$$
\mathrm{CNJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCNJ}(\mathrm{NPR})+[\mathrm{ICNJ}]
$$

d. The computed jet pitching moment coefficient is

$$
\mathrm{CMJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCMJ}(\mathrm{NPR})+\mathrm{ICMJ}]
$$

(Eq. G-3)
e. The computed jet rolling moment coefficient is

$$
\mathrm{CRJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCRJ}(\mathrm{NPR})+\mathrm{ICRJ}]
$$

f. The computed jet yawing moment coefficient is

$$
\mathrm{CYJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCYJ}(\mathrm{NPR})+\mathrm{ICYJ}]
$$

(Eq. G-5)
g. The computed jet side force coefficient is

$$
\begin{equation*}
\mathrm{CSJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCSJ}(\mathrm{NPR})+\mathrm{ICSJ}] \tag{Eq.G-6}
\end{equation*}
$$

h. Table input is as follows: (Need six tables) Up to five values per table may be used.
NPR.Range
Slope
Intercept
2. Compute Static Thrust Terms
a. The resultant static thrust coefficient about the pitch axis for the main balance is

$$
\mathrm{CTS}=\sqrt{\mathrm{CN} 1^{2}+\mathrm{CA} 1^{2}}
$$

(Eq. G-7)
b. The resultant static thrust ratio about the pitch axis for the main balance is, where CFI is the average of each air system

$$
\mathrm{FG} / \mathrm{FI}=\mathrm{CTS} / \mathrm{CFI}
$$

c. The static thrust ratio for the main balance is

$$
\mathrm{FJ} 1 / \mathrm{FI}=-\mathrm{CA} 1 / \mathrm{CFI}
$$

d. The static thrust vector angle about the pitch axis for the main balance is

$$
\begin{equation*}
\text { DELTA1 }=\text { TAN }^{-1}(-\mathrm{CN} 1 / \mathrm{CA} 1) \tag{Eq.G-10}
\end{equation*}
$$

e. The resultant static thrust coefficient about the yaw axis for the main balance is

$$
\begin{equation*}
C T S Y=\sqrt{\mathrm{CYI}^{2}+\mathrm{CAl}}{ }^{2} \tag{Eq.G-11}
\end{equation*}
$$

f. The resultant static thrust ratio about the yaw axis for the main balance is
FGY/FI = CTSY/CFI
(Eq. G-12)
g. The static thrust vector angle about the yaw axis for the main balance is

$$
\begin{equation*}
\text { DELTA1Y }=\text { TAN }^{-1}(-C Y 1 / C A 1) \tag{Eq.G-13}
\end{equation*}
$$

h. The resultant static thrust coefficient for the main balance is (Eq. G-14)

$$
\mathrm{CTST}=\sqrt{\mathrm{CNl}^{2}+\mathrm{CAl}^{2}+\mathrm{CY}{ }^{2}}
$$

i. The total resultant static thrust ratio for the main balance is

$$
\mathrm{FGT} / \mathrm{FI}=\mathrm{CTST} / \mathrm{CFI}
$$

(Eq. G-15)
j. The isentropic vacuum thrust or stream thrust coefficient.

Specific equations to be supplied when required by test hardware.
k. The nozzle exit Mach number ME is computed from

$$
\begin{equation*}
\mathrm{AS} / \mathrm{AEX}=\frac{216}{125} \mathrm{ME}\left(1+0.2 \mathrm{ME}^{2}\right)^{-3} \tag{Eq.G-16}
\end{equation*}
$$

where $\operatorname{AS}=\mathrm{WPWITO}(\mathrm{M}) * \operatorname{AT}(1)$.
and the nozzle exit pressure ratio is from

$$
\mathrm{PE} / \mathrm{PTJ}=\left(1+0.2 \mathrm{ME}^{2}\right)^{-7 / 2}
$$

(Eq. G-17)

1. The resultant static thrust coefficient about the pitch axis for the second balance is

$$
\mathrm{CTS} 2=\sqrt{\mathrm{CN} 2^{2}+\mathrm{CA}^{2}}
$$

(Eq. G-18)
m . The resultant static thrust ratio about the pitch axis for the second balance is

$$
\begin{equation*}
\mathrm{FG} 2 / \mathrm{FI}=\mathrm{CTS} 2 / \mathrm{CFI} \tag{Eq.G-19}
\end{equation*}
$$

n. The ctatic thrust ratio for the second balance is

$$
\begin{equation*}
\mathrm{FJ} 2 / \mathrm{FI}=-\mathrm{CA} 2 / \mathrm{CFI} \tag{Eq.G-20}
\end{equation*}
$$

o. The static thrust vector angle about the pitch axis for the second balance is

$$
\begin{equation*}
\text { DELTA2 }=\text { TAN }^{-1}(-\mathrm{CN} 2 / \mathrm{CA} 2) \tag{Eq.G-21}
\end{equation*}
$$

p. The reaultant static thrust coefficient about the yaw axis for the second balance is

$$
\begin{equation*}
\mathrm{CTS} 2 \mathrm{Y}=\sqrt{\mathrm{CY}^{2}+\mathrm{CA2}^{2}} \tag{Eq.G-22}
\end{equation*}
$$

q. The resultant static thrust ratio about the yaw axis for the second balance is
FG2Y/FI = CTS2Y/CFI
(Eq. G-23)
r. The static thrust vector angle about the yaw axis for the second balance is

$$
\text { DELTA2Y }=\text { TAN }^{-1}(-C Y 2 / C A 2)
$$

(Eq. G-24)
s. The resultant static thrust coefficient for the second balance is

$$
\mathrm{CTS} 2 \mathrm{~T}=\sqrt{\mathrm{CY}^{2}+\mathrm{CA2}^{2}+\mathrm{CY}^{2}}
$$

(Eq. G-25)
t. The total resultant static thrust ratio for the second balance is
FGT2 = CTS2T/CFI
(Eq. G-26)
u. The splay angle is
SPLAY = ATAN(CY1/CN1)
(Eq. G-27)
v. The cascade angle is

$$
\text { CASCADE }=\operatorname{TAN}^{-1}\left(\frac{\operatorname{TAN}(\text { DELTA1 })}{\sqrt{1+\operatorname{TAN}^{2}(\text { SPLAY }) * \operatorname{TAN}^{2}(\text { DELTA1 })}}\right)
$$

(Eq. G-28)
w. The ratio of normal force to ideal thrust is

$$
\mathrm{FN} / \mathrm{FI}=\mathrm{CN} 1 / \mathrm{CFI}
$$

(Eq. G-29)
x. The ratio of side force to ideal thrust is

$$
\mathrm{SF} / \mathrm{FI}=\mathrm{CY} 1 / \mathrm{CFI}
$$

(Eq. G-30)
y. The ratio of rolling moment to ideal thrust is

$$
\mathrm{RM} / \mathrm{FI}=\mathrm{CMX1} \text { (CFI } * \text { LENGTH1 })
$$

(Eq. G-31)
2. The ratio of pitching moment to ideal thrust is

$$
\text { PM/FI }=\mathrm{CMY1/(CFI} * \text { LENGTH2) }
$$

(Eq. G-32)
aa. The ratio of yawing moment to ideal thrust is
YM/FI = CMZ1/(CFI * LENGTH3)

E. Single Balance/All Metric $I F 1=1$

1. The resultant thrust coefficient about the pitch axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
$$

(Eq. G-34)
2. The thrust vector about the pitch axis is

$$
\begin{equation*}
\text { DELTA }=\text { TAN }^{-1}(\text { CNJC/CFJC }) \tag{Eq.G-35}
\end{equation*}
$$

3. The jet reaction lift coefficient is
CLJET = CT [SIN (ALPHA + DELTA)]
4. The jet reaction axial force coefficient is

$$
\text { CFJET = CT [COS (ALPHA + DELTA })]
$$

(Eq. G-37)
5. The thrust removed lif coefficient is
CLAERO = CLS1 - CLJET
6. The thrust removed drag coefficient is

$$
\mathrm{CDAERO}=\mathrm{CDS} 1+\mathrm{CFJET}
$$

(Eq. G-39)
7. The thrust removed pitching moment coefficient is
CMAEKO = CMYS1 - CMJC
8. The thrust minus axial force coetficient is

$$
\begin{equation*}
C(F-A)=-C A 1 \tag{Eq.G-41}
\end{equation*}
$$

9. The thrust minus drag coeificient is

$$
\begin{equation*}
C(F-D)=-C D S 1 \tag{Eq.G-42}
\end{equation*}
$$

10. The ratio of thrust minus axial force to ideal thrust is

$$
\begin{equation*}
(F-A) / F I=C(F-A) / C F I \tag{Eq.G-43}
\end{equation*}
$$

11. The ratio of thrust minus drag to ideal thrust is

$$
\begin{equation*}
(F-D) / F I=C(F-D) / C F I \tag{Eq.G-44}
\end{equation*}
$$

12. The ratio of thrust to ideal thrust is

$$
\mathrm{F} / \mathrm{FI}=\mathrm{CFJC} / \mathrm{CFI}
$$

(Eq. G-45)
13. The thrust minus nozzle drag coefficient is

$$
\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})=\mathrm{CFJET}-\mathrm{CDBUN}
$$

(Eq. G-46)
14. The ratio of thrust minus nozzle drag to ideal thrust is

$$
(\mathrm{F}-\mathrm{DNOZ}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ}) / \mathrm{CFI}
$$

(Eq. G-47)

F. Single Balance/Afterbody Metric IF2 = 1

1. The resultant thrust coefficient about the pitch axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
$$

(Same as Eq. G-34)
2. The thrust vector angle about the pitch axis is

$$
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJC/CFJC})
$$

(Same as Eq. G-35)
3. The jet reaction lift coefficient is
CLJET = CT [SIN (ALPHA + DELTA)]
(Same as Eq. G-36)
4. The jet reaction axial force coefficient is

$$
\text { CFJET }=\text { CT [COS (ALPHA + DELTA) }]
$$

(Same as Eq. G-37)
5. The thrust removed lift coefficient is
CLAERO = CLS1 - CLJET
(Same as Eq. G-38)
6. The thrust removed drag coefficient is
CDAERO = CDS1 + CFJET
(Same as Eq. G-39)
7. The thrust removed pitching moment coefficient is

$$
\text { CMAERO = CMYS } 1-\text { CMJC }
$$

8. The thrust minus axial force coefficient is

$$
\mathrm{C}(\mathbf{F}-\mathbf{A})=-\mathrm{CA} 1
$$

(Same as Eq. G-41)
9. The thrust minus drag coefficient is

$$
C(F-D)=-C D S 1
$$

10. The ratio of thrust minus axial force to ideal thrust is

$$
(F-A) / F I=C(F-A) / C F I
$$

(Same as Eq. G-43)
11. The ratio of thrust minus drag to ideal thrust is

$$
(F-D) / F I=C(F-D) / C F I
$$

(Same as Eq.G-44)
12. The thrust minus nozzle drag coefficient is

$$
\begin{equation*}
C(F-D N O Z)=C(F-D)+(C D F A F T-C D F N O Z) \tag{Eq.G-48}
\end{equation*}
$$

13. The ratio of thrust minus nozzle drag to ideal thrust is

$$
(F \cdot D N O Z) / F I=C(F-D N O Z) / C F I
$$

(Eq. G-49)
14. The ratio of thrust to ideal thrust is

$$
\mathrm{F} / \mathrm{FI}=[\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})+\mathrm{CDFNOZ}+\mathrm{CDBUN}] \mathrm{CFI}
$$

(Eq. G-50)

G. Two-Balance/Afterbody Metric IFAF1 $=1$

1. The jet axial force coefficient is

$$
\mathrm{CFJ}=\mathrm{CA} 2-\mathrm{CA} 1
$$

(Eq. G-51)
2. The jet normal force coefficient is

$$
\mathrm{CNJ}=\mathrm{CN} 1-\mathrm{CN} 2
$$

(Eq. G-52)
3. The jet pitching moment coefficient is
CMJ = CMY1 - CMY2
4. The resultant thrust coefficient about the pitch axis is

$$
C T=\sqrt{C F J^{2}+\mathrm{CNJ}^{2}}
$$

(Eq. G-54)
5. The thrust vector angle about the pitch axis is

$$
\begin{equation*}
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ}) \tag{Eq.C-55}
\end{equation*}
$$

6. The thrust removed lift coefficient is
CLAERO = CLS2
(Eq. G-56)
7. The thrust removed drag coefficient is
CDAERO = CDAS2
(Eq. G-57)
8. The thrust removed pitching moment coefficient is
CMAERO = CYMS2
9. The thrust minus axial force coefficient is

$$
\mathbf{C}(F-A)=-C A 1
$$

10. The thrust minus drag coefficient is

$$
C(F-D)=-C D S 1
$$

(Same as Eq. G-42)
11. The ratio of thrust minus axial force to ideal thrust is

$$
(F-A) / F I=C(F-A) / C F I
$$

(Same as Eq. G-43)
12. The ratio of thrust minus drag to ideal thrust is

$$
(F-D) / F I=C(F-D Y / C F I
$$

(Same as Eq. G-44)
13. The thrust minus nozzle drag coefficient is

$$
\mathrm{C}(\mathrm{~F} \cdot \mathrm{DNOZ})=\mathrm{C}(\mathrm{~F}-\mathrm{D})+(\mathrm{CDFAFT}-\mathrm{CDFNOZ})+\mathrm{CDSUN}
$$

(Eq. G-59)
14. The ratio of thrust minus nozzle drag to ideal thrust is

$$
(\mathrm{F}-\mathrm{DNOZ}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F} \cdot \mathrm{DNOZ}) / \mathrm{CFI}
$$

(Same as Eq. G-49)
15. The ratio of thrust to ideal thrust is

$$
\mathrm{F} / \mathrm{FI}=\mathrm{CFJ} / \mathrm{CFI}
$$

(Eq. G-60)
16. The jet reaction lift coefficient is

$$
\text { CLJET = CT [SIN(ALPHA + DELTA })]
$$

(Eq. G-61)
17. The jet reaction axial force coefficient is

$$
\text { CFJET = CT [COS(ALPHA + DELTA })]
$$

(Eq. G-62)

H. Two-Balance/Afterbody Metric IFAE2 = 1

1. The thrust removed lift coefficient is
CLAERO = CLS2
2. The thrust removed drag coefficient is

CDAERO = CDS2

3. The thrust removed pitching moment coefficient is
CMAERO = CYMS2
4. The thrust minus axial force coefficient is

$$
\mathrm{C}(\mathrm{~F}-\mathrm{A})=-\mathrm{CA} 1
$$

(Same as Eq. G-41)
5. The thrust minus drag coefficient is

$$
C(F \cdot D)=-C D S 1
$$

(Same as Eq. G-42)
6. The ratio of thrust minus axial force to ideal thrust is

$$
(F-A) / F I=C(F-A) / C F I
$$

(Same as Eq. G-43)
7. The ratio of thrust minus drag to ideal thrust is

$$
(F-D) / F I=C(F-D) / C F I
$$

(Same as Eq. G-44)
8. The thrust minus nozzle drag coefficient is

$$
C(F-D N O Z)=C(F-D)+C D S 2
$$

(Eq. G-63)
9. The jet axial force coefficient is

$$
\mathrm{CFJ}=\mathrm{C}(\mathrm{~F} \cdot \mathrm{DNOZ})+(\mathrm{CDFNOZ}+\mathrm{CDBUN})
$$

(Eq. G-64)
10. The jet normal force coefficient is

$$
\mathrm{CNJ}=\mathrm{CN} 1-\mathrm{CN} 2-\mathrm{CNBUN}
$$

(Eq. G-65)
11. The jet pitching moment coefficient is
CMJ = CMY1 - CMY2 - CPMBUN
(Eq. G-66)
12. The resultant thrust coefficient about the pitch axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CFJ}^{2}+\mathrm{CNJ}^{2}}
$$

(Same as Eq. G-54)
13. The thrust vector angle about the pitch axis is

$$
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ})
$$

14. The jet reaction lift coefficient is
CLJET = CT [SIN(ALPHA + DELTA)]
(Same as Eq. G-61)
15. The jet reaction axial force coefficient is
CFJET = CT [COS(ALPHA + DELTA)]
(Same as Eq. G-62)

I. Two-Balance/Afterbody Metric IFAFN1 = 1

1. The jet axial force coefficient is

$$
\mathrm{CFJ}=-\mathrm{CA} 2
$$

(Eq. G-67)
2. The jet normal force coefficient is

$$
\mathrm{CNJ}=\mathrm{CN} 2
$$

(Eq. G-68)
3. The jet pitching moment coefficient is

$$
\mathrm{CMJ}=\mathrm{CMY2}
$$

(Eq. G-69)
4. The resultant thrust coefficient about the pitch axis is

$$
\mathrm{CT}=\sqrt{C F J^{2}+C N J^{2}}
$$

(Same as Eq. (T-54)
5. The thrust vector angle about the pitch axis is

$$
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ})
$$

(Same as Eq. G-55)
6. The jet reaction lift coefficient is

$$
\text { CLJET = CT [SIN(ALPHA + DELTA })]
$$

(Same as Eq. G-61)
7. The jet reaction axial force cuefficient is

$$
\text { CFJET }=\text { CГ }[\text { COS(ALPHA }+ \text { DELTA })]
$$

(Same as Eq. G-62)
8. The thrust minus axial force coefficient is

$$
C(F-A)=-C A 1
$$

(Same as Eq. G-41)
9. The thrust minus drag coefficient is

$$
C(F-D)=-C D S 1
$$

10. The ratio of thrust minus axial force to ideal thrust is

$$
(F-A) / F I=C(F-A) / C F I
$$

(Same as Eq. G-43)
11. The ratio of thrust minus drag to ideal thrust is

$$
(F-D) / F I=C(F-D) / C F I
$$

(Same as Eq. G-44)
12. The thrust removed lift coefficient is
CLAERO = CLS1 - CLS2
(Eq. G-70)
13. The thrust removed drag coefficient is

$$
\begin{equation*}
\text { CDAERO }=\text { CDS1 }- \text { CDS2 } \tag{Eq.G-71}
\end{equation*}
$$

14. The thrust removed pitching moment coefficient is
CMAERO = CMYS1 - CMYS2
15. The thrust minus nozzle drag coefficient is

$$
\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})=\mathrm{C}(\mathrm{~F}-\mathrm{D})+(\text { CDFAFT }- \text { CDFNOZ })+\mathrm{CDSUN}
$$

J. Two-Balance/Afterbody Metric IFAFN2 $=1$

1. The jet axial force coefficient is

$$
\mathrm{CFJ}=(\mathrm{CDFNOZ}+\mathrm{CFBUN}) \cdot \mathrm{CA} 2
$$

(Eq. G-73)
2. The jet normal force coefficient is
CNJ = CN2 - CNBUN
(Eq. G-74)
3. The jet pitching moment coefficient is
CMJ = CMY2 - CPMBUN
(Eq. G-75)
4. The resultant thrust coefficient about the pitch axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CFJ}^{2}+\mathrm{CNJ}^{2}}
$$

(Same as Eq. G-54)
5. The thrust vector about the pitch axis is

$$
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ})
$$

(Same as Eq. G-55)
6. The jet reaction lift coefficient is

$$
\text { CLaIET = CT * [SIN(ALPHA + DELTA) }]
$$

(Same as Eq. G-61)
7. The jet reaction axial force coefficient is

$$
\text { CFJET }=\mathrm{CT} *[\mathrm{COS}(A L P H A+\text { DELTA })]
$$

(Same as Eq. G-62)
8. The thrust minus axial force coefficient is

$$
C(F-A)=-C A 1
$$

9. The thrust minus drag coefficient is

$$
\mathbf{C}(\mathbf{F}-\mathrm{D})=-\mathrm{CDS} 1
$$

(Same as Eq. G-42)
10. The ratio of thrust minus axial force to ideal thrust is

$$
(\mathbf{F}-\mathbf{A}) / F I=C(F-A) / C F I
$$

(Same as Eq. G-43)
11. The ratio of thrust minus drag to ideal thrust is

$$
(F-D) / F I=C(F-D) / C F I
$$

(Same as Eq. G-44)
12. The thrust removed lift coefficient is
CLAERO = CLS1 - CLS2
(Same as Eq. G-70)
13. The thrust removed drag coefficient is

CDAERO $=\mathbf{C D S} 1 \cdot \operatorname{CDS} 2$
(Same as Eq. G-71)
14. The thrust removed pitching moment coefficient is
CMAERO = CMYS1 - CMYS2
15. 'The thrust minus nozzle drag coefficient is

$$
\mathrm{C}(\mathrm{~F} \cdot \mathrm{DNOZ})=-\mathrm{CDS} 2
$$

(Eq. G-76)

K. Single Balance. Thrust Removal All Components IFAF $=1$

1. The thrust removed normal force coefficient is
CNAERO = CN1 - CNJC
2. The thrust removed axial fcrce coefficient is
CAAERO = CA1 + CFJC
3. The thrust removed pitching moment coefficient is
CMAERO = CMY1 - CMJC
(Eq. G-79)
4. The thrust removed rolling moment coefficient is
CRAERO = CMX1 - CRJC
(Eq. G-80)
5. The thrust removed yawing moment coefficient is
CYAERO = CMZ1-CYJC
6. The thrust removed side force coefficient is
CSAERO = CY1 - CSJC
(Eq. G-82)
7. The thrust removed lift coefficient is

$$
\text { CLAERO }=\text { CNAERO } * \operatorname{COS}(A L P H A)-\text { CAAERO } * \operatorname{SIN}(A L P H A)
$$

(Eq. G-83)
8. The thrust removed drag coefficient is

$$
\begin{equation*}
\text { CDAERO }=\text { CAAERO } * \operatorname{COS}(A L P H A)+\text { CNAERO } * \text { SIN(ALPHA }) \tag{Eq.G-84}
\end{equation*}
$$

9. The resultant thrust coefficient about the pitch axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
$$

(Same as Eq. G-34)
10. The thrust vector angle about the pitch axis is

$$
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJC} / \mathrm{CFJC})
$$

(Same as Eq. G-35)
11. The jet reaction lift coefficient is

$$
\begin{equation*}
\text { CLJET }=\mathrm{CNJC} * \operatorname{COS}(A L P H A)+C F J C * \operatorname{SIN}(A L P H A) \tag{Eq.G-85}
\end{equation*}
$$

12. The jet reaction axial force coefficient is

$$
\begin{equation*}
\text { CFJET }=\text { CFJC } * \operatorname{COS}(A L P H A)-\text { CNJC } * \text { (ALPHA }) \tag{Eq.G-86}
\end{equation*}
$$

13. The jet reaction side force coefficient is
CSJET = CSJC
(Eq. G-87)
14. The jet reaction pitching moment coefficient is
CMJET = CMJC
(Eq. G-88)
15. The jet reaction rolling moment coefficient is

$$
\text { CRJET }=\text { CRJC } * \operatorname{COS}(A L P H A)+C Y J C * \operatorname{SIN}(A L P H A)
$$

(Eq. G-89)
16. The jet reaction yawing moment coefficient is

$$
\text { CYJET }=\text { CYJC } * \operatorname{COS}(\text { ALPHA })-\mathrm{CRJC} * \operatorname{SIN}(A L P H A)
$$

(Eq. G-90)
17. The splay angle is

$$
\text { SPLAY1 }=\mathrm{TAN}^{-1}(\mathrm{CSJC} / \mathrm{CNJC})
$$

(Eq. G-91)
18. The thrust minus axial force coefficient is

$$
\mathbf{C}(F-A)=-C A 1
$$

19. The thrust minus drag coefficient is

$$
C(F-D)=-C D S 1
$$

(Same as Eq. G-42)
20. The ratio of thrust minus axial force to ideal thrust is

$$
(F-A) / F I+C(F-A) / C F I
$$

(Eq. G-92)
21. The ratio of thrust minus drag to the ideal thrust is

$$
(F-D) / F I=C(F-D) / C F I
$$

(Eq. G-93)
22. The ratio of thrust to the ideal thrust is

$$
\mathrm{F} / \mathrm{FI}=\mathrm{CFJC} / \mathrm{CFI}
$$

23. The resultant thrust coefficient about the yaw axis is

$$
C T Y=\sqrt{\mathrm{CSJC}^{2}+\mathrm{CFJC}^{2}}
$$

(Eq. G-94)
24. The thrust vector angle about the yaw axis is

$$
\text { DELTAY }=\text { TAN }^{-1} \text { (CSJC/CFJC) }
$$

(Eq. G-95)
25. The total resultant thrust coefficient is

$$
\mathrm{CTT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}+\mathrm{CSJC}^{2}}
$$

(Eq. G-96)
26. The total resultant thrust ratio is

$$
\mathrm{FT} / \mathrm{FI}=\mathrm{CTT} / \mathrm{CFI}
$$

(Eq. G-97)
27. The thrust minus nozzle axial force coefficient is

$$
\mathrm{C}(\mathrm{~F} \cdot \mathrm{ANOZ})=\mathrm{C}(\mathrm{~F} \cdot \mathrm{~A})+(\mathrm{CDFAFT}-\mathrm{CDFNOZ})+\mathrm{CFSUN})
$$

(Eq. G-98)
28. The ratio of thrust minus nozzle axial force to the ideal thrust is

$$
\mathrm{F} \cdot \mathrm{ANOZ} / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{ANOZ}) / \mathrm{CFI}
$$

(Eq. G-99)
29. The thrust minus nozzle drag coefficient is

$$
\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})=\mathrm{C}(\mathrm{~F}-\mathrm{D})+(\mathrm{CDFAFT}-\mathrm{CDFNOZ})+\mathrm{CDSUN}
$$

(Same as Eq. G-59)
30. The nozzle drag coefficient is
CDNOZ = CDAERO - (CDFAFT - CDFNOZ) - CDSUN
(Eq. G-100)
31. The ratio of thrust minus nozzle drag to the ideal thrust is

$$
(F-D N O Z) / F I=C(F-D N O Z) / C F I
$$

32. The thrust coefficient (from balance and pressures) is

$$
\begin{equation*}
\text { CF }=(\text { F }- \text { ANOZ })+\text { CDFNOZ }+ \text { CFBUN } \tag{Eq.G-101}
\end{equation*}
$$

33. The ratio of thrust (from balance and pressures) to the ideal thrust is

$$
\mathrm{CF} / \mathrm{CFI}=\mathrm{CF} / \mathrm{CFI}
$$

L. When IFAFN $=1$

1. The thrust removed stability axis lift coefficient is
CLSAER = CLAERO
2. The thrust removed stability axis drag coefficient is
CDSAER = CDAERO
(Eq. G-104)
3. The thrust removed stability axis side force coefficient is
CSSAER = CSAERO
(Eq. G-105)
4. The thrust removed stability axis pitching moment coefficient is
CMSAER = CMAERO
(Eq. G-106)
5. The thrust removed stability axis rolling moment coefficient is CRSAER $=$ CRAERO $*[\operatorname{COS}(A L P H A)]+$ CYAERO $*[S I N(A L P H A)]$
(Eq. G-107)
6. The thrust removed stability axis yawing moment coefficient is CYSAER $=$ CYAERO $*$ [COS(ALPHA) - CRAERO * [SIN (ALPHA)]
(Eq. G-108)
7. The thrust removed wind axis drag coefficient is CDWAER $=$ CDSAER * COS(BETA) - CSSAER * SIN (BETA)
(Eq. G-109)
8. The thrust removed wind axis side force coefficient is

$$
\begin{equation*}
\text { CSWAER }=\text { CSSAER } * \operatorname{COS}(B E T A)+\text { CDSAER } * \text { SIN }(B E T A) \tag{Eq.G-110}
\end{equation*}
$$

9. The thrust removed wind axis lift coefficient is
CLWAER = CLSAER
(Eq. G-111)
10. The thrust removed wind axis rolling moment coefficient is CRWAER $=$ CRSAER * COS (BETA $)+$ CMSAER * SIN (BETA)
(Eq. G-112)
11. The thrust removed wind axis pitching moment coefficient is
CMWAER = CMSAER * COS(BETA) - CRSAER * SIN (BETA)
(Eq. G-113)
12. The thrust removed wind axis yawing moment coefficient is
CYWAER = CYSAER
(Eq. G-114)

M. Bifurcate Support Mode Two Balance/Afterbody Metric IDN $=1$

1. The axial force coefficient is modified

$$
\mathrm{CA} 1=\mathrm{CA} 1-0.0004
$$

(Eq. G-115)
2. The drag coefficient in the stability axis is modified

$$
\text { CDS1 = CDS1 }-0.0004
$$

(Eq.G-116)
3. The thrust removed normal force coefficient is
CNAERO = CN1 - CNJC
(Same as Eq. G-77)
4. The thrust removed axial force coefficient is
CAAERO = CA1 + CFJC
(Same as Eq. G-78)
5. The thrust removed pitching moment coefficient is
CMAERO = CMY1 - CMJC
6. The thrust removed rolling moment coefficient is
CRAERO = CMX1 - CRJC
(Same as Eq. G-80)
7. The thrust removed yawing moment coefficient is
CYAERO = CMZ1 - CYJC
(Same as Eq. G-81)
8. The thrust removed side force coefficient is
CSAERO = CY1 - CSJC
9. The thrust removed lift coefficient is

$$
\text { CLAERO }=\text { CNAERO } * \operatorname{COS}(A L P H A)-\text { CAAERO } * \operatorname{SIN}(A L P H A)
$$

(Same as Eq. G-83)
10. The thrust removed drag coefficient is CDAERO $=$ CAAERO $* \operatorname{COS}(A L P H A)+$ CNAERO $* \operatorname{SIN}(A L P H A)$
(Same as Eq. G-84)
11. The computed resultant thrust about the pitch axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
$$

(Same as Eq. G-34)
12. The computed thrust vector angle about the pitch axis is

$$
\text { DELTA }=\text { TAN }^{-1}(\mathrm{CNJC/CFJC})
$$

(Same as Eq. G-35)
13. The jet reaction lift coefficient is
CLNET = CT [SIN (ALPHA + DELTA)
(Same as Eq. G-36)
14. The jet reaction axial force coefficient is

$$
\text { CFJET }=\text { CT [COS (ALPHA + DELTA) }]
$$

(Same as Eq. G-37)
15. The thrust minus axial force coefficient is

$$
C(F-A)=-C A 1
$$

(Same as Eq. G-41)
16. The thrust minus drag coefficient is

$$
C(F \cdot D)=-C D S 1
$$

(Same as Eq. G-42)
17. The ratio of thrust minus axial force to ideal thrust is

$$
(F-A) / F I=C(F-A) / C F I
$$

(Same as Eq. G-43)
18. The ratio of thrust minus drag to ideal thrust is

$$
(F-D) / F I=C(F \cdot D) / C F I
$$

(Same as Eq.G-44)
19. The ratio of thrust to ideal thrust is

$$
\mathrm{F} / \mathrm{FI}=\mathrm{CFJC} / \mathrm{CFI}
$$

(Same as Eq. G-45)
20. The computed resultant thrust coefficient about the yaw axis is

$$
\mathrm{CT}=\sqrt{\mathrm{CSJC}^{2}+\mathrm{CFJC}^{2}}
$$

(Same as Eq. G-94)
21. The computed thrust vector angle about the yaw axis is

$$
\text { DELTAY }=\mathrm{TAN}^{-1}(\mathrm{CSJC} / \mathrm{CFJC})
$$

(Same as Eq. G-95)
22. The computed resultant thrust coefficient is

$$
\mathrm{CTT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}+\mathrm{CSJC}^{2}}
$$

(Same as Eq. G-96)
23. The total resultant thrust ratio is

$\mathrm{FT} / \mathrm{FI}=\mathrm{CTT} / \mathrm{CFI}$

(Same as Eq. G-97)
24. The thrust minus nozzle drag coefficient is

$$
\begin{equation*}
C(D-F N O Z) / F I=C D S 2-C D S 1 \tag{Eq.G-117}
\end{equation*}
$$

25. The ratio of thrust minus nozzle drag to ideal thrust is

$$
\begin{equation*}
(F-F N O Z) / F I=C(D-F N O Z ? C F I \tag{Eq.G-118}
\end{equation*}
$$

26. The nozzle lift plus thrust coefficient is
CLNOZT = CLS1 • CLS2
(Eq. G-119)
27. The nozzle pitching moment plus lift coefficient is
CMNOZT = CMYS1 - CMYS2
(Eq. G-120)
28. The nozzle drag coefficient is
CDNOZ = CDAERO - CDS2
(Eq. G-121)
29. The thrust removed nozzle lift coefficient is
CLNOZ = CLAERO - CLS2
(Eq. G-122)
30. The thrust removed nozzle pitching moment coefficient is
CMNOZ = CMAERO - CMYS2
(Eq. G-123)
N. Other Options
31. ID - Engineer's option
a. If $\mathrm{ID}=1$, the engineer may write his own option with the following restrictions:
(1) Names must be identical to those already used.
(2) No more terms may be added to the output.

APPENDLK H

APPENDDXH

Turboprop Options

Nomenclature 239
Introduction 242
Test for Air Turbine Simulator 243
Compute Common Constant 243
Individual Engine Measurements. 245
Propeller Coefficient Calculations 245
Exhaust Calculations. 250

MODULE H TURBOPROP OPTIONS

SYMBOL
AD(J)
AE(J)
ALPHAP(J)
ARATIO(J)
AT(J)
CDP(J)
CDTP
CE
CO
CHPROP(J)
CMPROP(J) Pitching moment coefficient of propeller J.
CNPROP(J) Normal force coefficient of propeller J.
CPPROP(J) Power coefficient of propeller J.
CTPROP(J) Thrust coefficient of propeller J.
DIAP(J) Diameter of propeller J, feet.
ETA(J) Efficiency for motor J, per cent.
$\operatorname{ETAP}(J) \quad E f f i c i e n c y$ for propeller J, per cent.
FAPT
FNPT Total propeller normal force coefficient.
FTE(J) Propeller thrust plus jet thrust due to exhaust flow for motor J, lbs.

FTGE(J) Total system thrust of motor J, lbs.
JP(J)

NOMENCLATURE

Area at rake in exhaust duct J , sq. in.
Exhaust area for exhaust duct J , sq. in.
Angle of attack at propeller J, degrees.
Area ratio for motor J .
Throat area of exhaust duct J , sq. in.
Propeller drag coefficient for motor J.
Total propeller drag coefficient.
Exhaust sonic velocity, feet per second.
Sonic velocity, feet per second.
Chord length at 75 percent radius of propeller J .

Total system thrust in streamwise direction, lbs.

Advance ratio of propeller J.

KPINM(I,J) Constant for input drive pressure tap I and motor J, (must be 0.0 or 1.0).

KPOUTM(I,J) Constant for output drive pressure tap I and motor J , (must be 0.0 or 1.0).

KPST(I,J) Constant for rake static pressure tap I and motor J, (must be 0.0 or 1.0).

KPW Power coefficient constant.
KTINM (I,J) Constant for input motor temperature tap I and motor J, (must be 0.0 or 1.0).

KTOUTM(I,J) Constant for output motor temperature tap I and motor J, (must be 0.0 or 1.0).

MD(J) Rake mach number for motor J .
ME(J) Exhaust mach number for motor J.
MTIP(J) Mach number of propeller tip J.
MYPT Total propeller pitching moment.
NPROP(J) Revolutions per second of propeller J.
NSAME(J) Constant of propeller J set equal to 0.0 or 1.0 .
PDRIVE Pressure drop through air turbine motor, lbs/sq. in.
PE(d) Exhaust static pressure for motor J, lbs/sq. in.
PHIANG
PINM(I,J) Motor input static pressure for motor J and pressure tap I, lbs/sq. ir.
$\operatorname{PITCH}(\mathrm{J}) \quad$ Measured value of geometric pitch of propeller J .
POUTM(I,J) Motor output static pressure for motor J and pressure tap I, lbs/sq. in.
PR/PTR Ratio of static to total pressures.
$\operatorname{PST}(\mathrm{I}, \mathrm{J}) \quad$ Static pressure for motor J and pressure tap I at rake, lbs/sq. in.

SXMBOL

PSTATC(J) Average static pressure at rake for motor J, lbs/sq. in.
PW1(J) Horsepower output by motor J with ideal gas calculations, HP.

RHO
RPS
TDRIVE(J)
TE(J)
TINM(I,J) Input temperature for motor J and temperature tap $I,{ }^{\circ} \mathrm{F}$.
TOUTM(I,J) Output temperature for motor J and temperature tap $\mathrm{I},{ }^{\bullet} \mathrm{F}$.
TSPROP(J)
TO
VE(J)
VIS

Vo
VRES(J)
VRN
Rotational tip speed of propeller J , feet per second.
Tunnel static temperature, ${ }^{\circ} R$.
Exhaust velocity in motor J, feet per second.
Free-stream air viscosity based on tunnel air static temperature, lbs., sec./sq. ft.

Free-stream velocity, feet per second.
Total velocity of propeller tip J , feet per second.
Total velocity at 75 percent of propeller radius (for Reynolds

PW2(J) number), feet per second.

APPENDIX H

Module H

Turboprop Options

A. Introduction

1. Module B with its constants must be run first. All constants are to be initialized to a value of zero. The project engineer must supply only those constants which are required for those quantities to be computed. In addition, by logical use of combinations of these constants, several options are available to the project engineer.
2. Set $\operatorname{NSAME}(\mathrm{J})=1$ if $\operatorname{POUTM}(\mathrm{I}, \mathrm{J})=\operatorname{PST}(\mathrm{I}, \mathrm{J})$, and $\operatorname{TOUTM}(I, \mathrm{~J})=\operatorname{TTJ}(\mathrm{I}, \mathrm{J})$
where $\mathrm{J}=$ engine number $\mathrm{I}=$ probe number
3. Set the constant, $\operatorname{KTINM}(1, J)$, equal to 1.0 for the temperature measuring probe. If the temperature probe is defective or does not exist, set the constant equal to 0.0 . Use only a maximum of six probes per engine.
4. The meaning of the values of $\operatorname{KTOUTM}(I, J)$ is the same as $\operatorname{KTINM}(1, J)$.
5. Set the constant, KPINM(I,J) equal to 1.0 for the pressure measuring probe. If the probe is defective or does not exist, set the constant equal to 0.0 . The pressure probes may be weighted using this constant, if desired. Use only a maximum of 12 probes per engine.
6. The meaning of the values of $\operatorname{KPOUTM}(I, J)$ is the same as $\operatorname{KPINM}(I, J)$.
7. Set the constant, $\operatorname{KPST}(\mathrm{I}, \mathrm{J})$, equal to 1.0 for the pressure measuring probe. If the probe is defective or does not exist, set the constant equal to 0.0 . The pressure probes may be weighted using this constant, if desired. Use only a maximum of 12 probes per engine.
8. AE(J) is equal to AT(J) for a converging nozzle. Both constants are required. Values of $\operatorname{AT}(J)$ come from Module B.

B. Test for Air Turbine Simulator

1. The constant required from the project engineer input at Module B is NUMENG (0 to 4).

If NUMENG $=\mathbf{0}$, skip module H .

C. Compute Common Constant

1. The constants required from the proj :ct engineer input at Module B are GAMJ and RJ.

$$
\mathrm{KJ} 1=\left(\frac{2}{\mathrm{GAMJ}+1}\right)^{\frac{\mathrm{GAMJ}+1}{2(\mathrm{GAMJ}-1)}} \sqrt{\frac{\mathrm{GAMJ} * 32.174}{\mathrm{RJ}}}
$$

(Same as Eq. B-1)

$$
K J 2=\frac{G A M J * 64.348}{(G A M J-1) R J}
$$

(Same as Eq. B-2)

$$
K J 3=\sqrt{\frac{2(G A M J)(R J)}{(G A M J-1) 32.174}}
$$

$$
\mathrm{KJ} 4=\frac{\mathrm{GAMJ}-1}{\text { GAMJ }}
$$

(Same as Eq. B-4)

$$
K J 5=\frac{1}{\text { GAMJ }}
$$

(Same as Eq. B-5)
2. To continue, the equations are given to show calculations for other constants.
a. The static temperature is

$$
\mathrm{TO}=(\mathrm{TTO}+459.67)\left(1.0+0.2 * \mathrm{MACH}^{2}\right)
$$

(Eq. H-1)
b. The free-stream density is

$$
\mathrm{RHO}=\mathrm{PO} * 144.0 /(1716.4829 * \mathrm{TO})
$$

(Eq. H-2)
c. The viscosity is

$$
\text { VIS }=2.270 * 10^{-8} * \mathrm{TO} * \sqrt{\mathrm{TO} /(\mathrm{TO}+198.6)}
$$

(Eq. H-3)
d. The free-stream velocity of sound is

$$
\mathrm{CO}=49.021179 * \sqrt{\mathrm{TO}}
$$

(Eq. H-4)
e. The free-stream velocity is

$$
\mathrm{VO}=\mathrm{CO} * \mathrm{MACH}
$$

(Eq. H-5)

D. Individual Engine_Measurements

1. This module provides the computations for four separate engines with the following instrumentation in each engine.
a. Input pressure to engine
*b. Output pressure of engine
c. Input temperature to engine
*d. Output temperature of engine
e. Static exhaust pressure at rake
f. Revolutions per second indicator
g. Geometric pitch of propeller

E. Propeller Coefficient Calculations

1. The tip speed of propeller is

$$
\operatorname{TSPROP}(\mathrm{J})=3.14159 * \operatorname{DIAP}(\mathrm{~J}) * \operatorname{NPROP}(\mathrm{~J})
$$

(Eq. H-6)
2. The advance ratio of propeller is

$$
\begin{equation*}
\mathrm{JP}(\mathrm{~J})=\mathrm{VO} /(\operatorname{NPROP}(\mathrm{J}) * \operatorname{DIAP}(\mathrm{~J})) \tag{Eq.H-7}
\end{equation*}
$$

[^3]3. The angle of attack of the propeller is the geometric pitch of the propeller at the $3 / 4$ chord, in degrees, minus the resultant angle between the freestream velocity and rotational velocity.
\[

$$
\begin{equation*}
\text { ALPHAP(J) }=\operatorname{PITCH}(\mathrm{J})-\text { PHIANG } \tag{玉q.H-8}
\end{equation*}
$$

\]

where

$$
\text { PHIANG }=\text { TAN }^{-1}(\text { VONROT })
$$

(Eq. H-9)
and
VROT = (3/4) TSPROP(J)
(Eq. H-10)
4. The Reynolds number for the propeller is calculated at the $3 / 4$ chord.

$$
\begin{equation*}
\operatorname{RNPROP}(J)=\text { VRN } * \mathrm{RHO} * \operatorname{CHPROP}(\mathrm{~J}) / \mathrm{NIS} \tag{Eq.H-11}
\end{equation*}
$$

where

VRN = Resultant velocity at the $3 / 4$ chord

$$
=\sqrt{\left(\mathrm{VROT}^{2}+\mathrm{VO}^{2}\right)}
$$

VIS = Free-stream air viscosity calculated by Ames table equation, based on tunnel air static temperature
5. The Mach number of the propeller tip is

$$
\operatorname{MTIP}(J)=V R E S / C O
$$

(Eq. H-12)
where

$$
\operatorname{VRES}=\sqrt{\mathrm{VO}^{2}+\operatorname{TSPROP}(J)^{2}}
$$

(Eq. H-13)
6. Calculate the thrust coefficient of the propeller and hub using

$$
\operatorname{SCALE}=\operatorname{RHO} * \operatorname{NPROP}(J)^{2} * \operatorname{DIAP}(J)^{4}
$$

(Eq. H-14)
CTPROP(J) = FAREF1/SCALE
where

FAREF1 comes from Equation D-76 for $\mathrm{J}+1$ balances
7. Calculate the normal force coefficient of the propeller and hub using

$$
\operatorname{CNPROP}(J)=\text { FNREF1/SCALE }
$$

(Eq. H-16)
where

FNREF1 comes from Equation D-76 for $\mathrm{J}+1$ balances
8. Calculated the pitching moment coefficient of the propeller and hub using

$$
\operatorname{CMPROP}(J)=\operatorname{MYREF} 1(\operatorname{SCALE} * \operatorname{DIAP}(J) * 12.0)
$$

where

MYREF1 comes from Equation D-76 for J + 1 balances
9. If NSAME(J) equals 1 , then
POUTM(I,J) = PST(I,J)
and
TOUTM(I,J) = TTJ(I,J)
(Eq. H-19)
10. Calculations for the power coefficient of the propeller and hub are:
a. Turbine inlet temperature

$$
\begin{equation*}
\operatorname{TIN}(\mathrm{J})=\frac{\sum \operatorname{TTNM}(\mathrm{I}, \mathrm{~J}) * \operatorname{KTINM}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KTINM}(\mathrm{I}, \mathrm{~J})} \tag{Eq.H-20}
\end{equation*}
$$

b. Turbine outlet temperature

$$
\operatorname{TOUT}(\mathrm{J})=\frac{\sum \operatorname{TOUTM}(\mathrm{I}, \mathrm{~J}) * \operatorname{KTOUTM}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KTOUTM}(\mathrm{I}, \mathrm{~J})}
$$

(Eq. H-21)
c. Turbine inlet pressure

$$
\operatorname{PIN}(\mathrm{J})=\frac{\sum \operatorname{PINM}(\mathrm{I}, \mathrm{~J}) \cdot \operatorname{KPINM}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KPINM}(\mathrm{I}, \mathrm{~J})}
$$

(Eq. H-22)
d. Turbine outlet pressure

$$
\operatorname{POUT}(\mathrm{J})=\frac{\sum \operatorname{POUTM}(\mathrm{I}, \mathrm{~J}) * \operatorname{KPOUTM}(\mathrm{I}, \mathrm{~J})}{\sum \mathrm{KOUTM}(\mathrm{I}, \mathrm{~J})}
$$

(Eq. H-23)
e. The drive pressure across the air turbine engine is

$$
\text { PDRIVE(J) }=\operatorname{PIN}(J)-\operatorname{POUT}(J)
$$

(Eq. H-24)
f. The drive temperature across the air turbine engine is

$$
\operatorname{TDRIVE}(J)=\operatorname{TIN}(J)-\operatorname{TOUT}(J)
$$

(Eq. H-25)
g. The engine's revolutions per second are

$$
\begin{equation*}
\operatorname{RPS}=\operatorname{NPROP}(\mathrm{J}) / \sqrt{(\operatorname{TIN}(J)+459.67) / 518.7} \tag{Eq.H-26}
\end{equation*}
$$

h. Calculate the horsepower output from the air turbine engine using

$$
\begin{align*}
\operatorname{PW} 1(\mathrm{~J})= & (6006.0 *(\text { WPENG }(\mathrm{J}) / 32.174) * \operatorname{TDRIVE}(\mathrm{~J}) / 550) * \\
& ((\mathrm{KPW} 13 * \operatorname{PIN}(\mathrm{~J})+\mathrm{KPW} 12 * \mathrm{RPS}+\mathrm{KPW} 11) * \mathrm{RPS}+\mathrm{KPW} 10) \tag{Eq.H-27}
\end{align*}
$$

$$
\begin{aligned}
\text { PW2 }(\mathrm{J})= & (6006.0 *(\text { WPENG }(\mathrm{J}) / 32.174) \\
& *(\operatorname{TIN}(\mathrm{~J})+459.67)
\end{aligned}
$$

* (1.0-(POUT(J)/PIN(J) $\left.)^{2 / 7}\right)$
* ETA(J)/550
(Eq. H-28)
where

ETA(J) is determined by linear interpolation from a table.
i. The power coefficient of the propeller and hub is

$$
\begin{gathered}
\operatorname{CPPROP}(\mathrm{J})=\mathrm{PW} /\left(\mathrm{RHO} * \operatorname{NPROP}(\mathrm{~J})^{3} * \operatorname{DIAP}(\mathrm{~J})^{5}\right) \\
\mathrm{PW}=\operatorname{PW}(\mathrm{J}) \text { IF KPW }=0 \\
\mathrm{PW}=\operatorname{PW}(\mathrm{J}) \text { IF KPW }=1
\end{gathered}
$$

(Eq. H-29)
j. The propeller efficiency is

$$
\operatorname{ETAP}(\mathrm{J})=\operatorname{CTPROP}(\mathrm{J}) * \mathrm{JP}(\mathrm{~J}) / \operatorname{CPROP}(\mathrm{J})
$$

(Eq. H-30)

F. Exhaust Calculations

1. Calculate the exhaust duct Mach number (rake position) using
a. Duct static pressure

$$
\operatorname{PSTATIC}(\mathrm{J})=\frac{\sum \operatorname{PST}(\mathrm{I}, \mathrm{~J}) * \operatorname{KPST}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KPST}(\mathrm{I}, \mathrm{~J})}
$$

b. The pressure ratio at the duct rake is
PR/PTR(J) = PSTATIC(J)/PTENG(J)
c. If PR/PTR $(J)=$ PSTATIC $(J)<0.5283$, use the Newton Raphson method for $\mathrm{MD}(\mathrm{J})$.

$$
M D(J)=\sqrt{\frac{5}{6} *\left(\frac{7 * M D(J)^{2}-1}{6}\right)^{5 / 7} *\left(\frac{P R}{\operatorname{PTR}(\mathrm{~J})}\right)^{-2 / 7}}
$$

(Eq. H-33)
d. If PR/PTR(J) >0.5283, use this calculation of subsonic duct Mach numbers for $\mathbf{M D}(\mathbf{J})$.

$$
\operatorname{MD}(J)=\sqrt{5 *(\operatorname{PR} / \operatorname{PTR}(J))^{-2 / 7}-5}
$$

(Eq. H-34)
2. The ratio of A^{*} to Area at the rake position and at the exit is
a. Calculate A^{*} / A at the rake station usins

$$
\operatorname{ASTR} / A=(1.728 * \operatorname{MD}(J)) *\left(1+\frac{M D(J)^{2}}{5}\right)^{-3}
$$

(Eq. H-35)
b. Calculate A^{*} / A of the exhaust exit using

$$
\operatorname{ARATIO}(J)=\operatorname{ASTR} / A * \operatorname{AD}(J) / \operatorname{AE}(J)
$$

(Eq. H-36)
3. Calculate the exhaust Mach number at the exit using an iteration technique on the formula

$$
\operatorname{ME}(J)=\frac{125}{216} *(\operatorname{ARATIO}(J)) *\left(1+\frac{\operatorname{ME}(J)}{5}\right)^{2}
$$

(Eq. H-37)
4. The exhaust static temperature calculation is

$$
\mathrm{TE}=(\operatorname{TTENG}(\mathrm{J})+459.67) *\left(1.0+\frac{\mathrm{ME}(\mathrm{~J})^{2}}{5}\right)^{-1}
$$

(Eq. H-38)
where

TTENG(J) comes from Equation B-9.
5. The exhaust sonic velocity is

$$
\mathrm{CE}=49.021179 \cdot \sqrt{\mathrm{TE}}
$$

(Eq. H-39)
6. The exhaust velocity is

$$
\operatorname{VE}(J)=\operatorname{ME}(J) * \operatorname{CE}
$$

(Eq. H-40)
7. The exhaust static pressure is

$$
\operatorname{PE}(J)=\operatorname{PTENG}(J) \cdot\left(1+\frac{\operatorname{ME}(J)^{2}}{5}\right)^{-7 / 2}
$$

(Eq. H-41)
8. The total propeller pitching moment is

$$
M Y P T=\Sigma M Y_{i}
$$

(Eq. H-42)
9. The total propeller normal force is

$$
\text { FNPT }=\sum_{i=1}^{\text {NUMENG }} \mathrm{NF}_{1}
$$

(Eq. H-43)
10. The total propeller axial force is

$$
\mathrm{FAPT}=\sum_{\mathrm{i}=1} A F_{\mathrm{i}}
$$

(Eq. H-44)
11. The axial force coefficient in the body axis with propeller and jet thrust removed is
CAPRS = CAAERO + FAPT
(Eq. H-45)
12. The drag coefficient in the stability axis with propeller and jet thrust removed is

CDPRS = CAPRS [COS (ALPHA)] + CNAERO [SIN (ALPHA)]
(Eq. H-46)
13. The side force coefficient in the stability axis with propeller and jet thrust removed is
14. The lift coefficient in the stability axis with propeller and jet thrust removed is

```
CLPRS = CNAERO [COS (ALPHA)] - CAPRS [SIN (ALPHA)]
```

(Eq. H-48)
15. The rolling moment coefficient in the stability axis with propeller and jet thrust removed is
CRPRS = CRAERO [COS (ALPHA)] + CYAERO [SIN (ALPHA)]
16. The pitching moment coefficient in the stability axis with propelier and jet exhaust removed is
CMPRS = CMAERO
17. The yawing moment coefficient in the stability axis with propeller and jet exhaust thrust removed is
CYPRS = CYAERO [COS (ALPHA)] - CRAERO [SIN (ALPHA)]
18. The drag coefficient in the wind axis with propeller and jet thrust removed is
(Eq. H-52)
19. The side force coefficient in the wind axis with propeller and jet thrust removed is

CDPRW = CSPRS [COS (BETA)] + CDPRS [SIN (BETA)]
(Eq. H-53)
20. The lift coefficient in the wind axis with propeller and jet exhaust thrust removed is

CLPRW = CLPRS
(Eq. H-54)
21. The rolling moment coefficient in the wind axis with propeller and jet exhaust thrust removed is
CRPRW = CRPRS [COS (BETA)] + CMPRS [SIN (BETA)]
22. The pitching moment coefficient in the wind axis with propeller and jet exhaust thrust removed is
CMPRW = CMPRS [COS (BETA)] - CRPRS [SIN (BETA)]
(Eq. H-56)
23. The yawing moment coefficient in the wind axis with propeller and jet exhaust thrust removed is

CYPRW = CYPRS
(Eq. H-57)

APPENDIXI

APPENDIXI

Module I

Inlet Distortion

Nomenclature 258
Required Constants 269
Calculation of inlet weight flow/mass flow 269
Engine face data 273
Bleed flow computations 276
Calculation of bypass weight flow/mass flow 278
Total airflow 282
Bad tube substitution scheme 282

ADBPS(J)	Inlet bypass flow controller steady state distortion, where $J=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
ADPS(J)	Inlet engine face static pressure distortion, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
AFBSD(J)	Engine bypass controller steady state distortion, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
AFSD(J)	Engine face steady state distortion index, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
AMFD(J)	Inlet mass flow plug choked flow effective area, sq. in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
AMFDB(J)	Engine bypass controller plug choked flow effective area, sq in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
APBR(J)	Engine bypass controller plug effective area, sq. in., where $\mathbf{J}=$ left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
APR(J)	Mass flow plug effective area, sq. in., where $J=1$ for left engine and $\mathrm{J}=2$ for right engine.
ARXT(J)(N)	Engine area of extent, sq. in., where $\mathrm{J}=1$ is left engine, $\mathrm{J}=\mathbf{2}$ is right engine, and N is the ring number.
AS(J)	Engine face Mach number, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
ASB(J)	Bypass instrumentation plane Mach number, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
CAEFT	Total engine face axial force coefficient, CAEF1+CAEF2.
CAEF(J)	Engine face axial force coefficient, where $J=1$ is left engine $J=2$ is right engine.

SYMBOL
 NOMENCLATURE

C(M) Constants to be used in mass flow/weight flow calculation. Where M is the constant number, $M=1$ to 25 for the left engine; $M=26$ to 50 for the right engine; $M=51$ to 56 choked flow for the left engine; $\mathrm{M}=57$ to 62 choked flow for the right engine.
$\mathrm{CB}(\mathrm{M})$

CE(M)

C(I)(M) Constants for computing bleed mass flow, where I is bleed number and M is a constant number of 1 to 5 for each bleed.
$\operatorname{DCI}(\mathrm{J})(\mathrm{N}) \quad$ Inlet circumferential distortion intensity, where $\mathrm{J}=1$ is left engine, $J=2$ is right engine, and N is the ring number
DPRS(J) Engine loss in surge pressure ratio, where $J=1$ for left engine and $\mathrm{J}=2$ for right engine.
$\operatorname{DRI}(J)(N) \quad$ Engine radial distortion intensity, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and N is ring number.
$\operatorname{EXT}(\mathrm{J})(\mathrm{N}) \quad$ Engine theta value of extent, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=\mathbf{2}$ for right engine, and N is ring number.
$\mathrm{KC}(\mathrm{N}) \quad$ Engine circumferential distortion constant, where N is ring number.
$\operatorname{KR}(N) \quad$ Engine radial distortion constant, where N is ring number.

SYMBOL NOMENCLATURE

$\mathrm{K}(\mathrm{N})$
Engine constant, where N is ring number.
$\operatorname{KERAK}(L) \quad$ Constant used to compute engine face static pressure, where L is tap number; default is $\mathbf{0 . 0}$.

KEXIT(L) Constant used to compute flow plug exit static pressures, where L is tap number; default is $\mathbf{0 . 0}$.

KPPBS(L) Constant used to compute bypass flow plug exit static pressure, where L is tap number; default is 0.0 .

KPPBT(L) Constant used to compute bypass flow plug exit total pressure, where L is probe number; default is 0.0 .

KPPT(L) Constant used to compute flow plug exit total pressure, where L is probe number; default is $\mathbf{0 . 0}$.

KPRMS(L) Constant used to compute flow RMS pressure, where L is probe number; default is 0.0 .

KPSB(L) Constant used to compute bleed flow exit static pressure, where L is tap number, default is 0.0 .

KPTB(L) Constant used to compute bleed flow exit total pressure, where L is probe number; default is 0.0 .

KPTRK(L) Constant used to compute bypass instrumentation plane total pressure, where L is probe number; default is 0.0 .

KTERK(L) Constant used to compute engine face total pressure, where L is probe number; default is 0.0 .

KTTB(J)(L) Constant used to compute bypass flow plug exit total temperature, where L is probe number; default is 0.0 : where $J=1$ for left engine and $\mathrm{J}=2$ for right engine.

SYMBOL NOMENCLATURE

KTTP(L) Constart used to compute flow plug exit total temperature, where L is probe number; default is 0.0 .

MFLB Bypass controller flow calculation flag, where $0=$ no bypass flow, $1=$ mass flow computation, and $2=$ weight flow computation.

MFLO Inlet flow calculation flag, where $0=$ weight flow and $1=$ mass flow.
$\mathrm{M} / \mathrm{MOB}(\mathrm{J})(\mathrm{I}) \quad$ Bleed mass flow ratio, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.

M/MOBI(J) Bypass flow plug mass flow ratio based on instrumentation plane pressure ratio, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

M/MOBP(J) Bypass flow plug nozzle mass flow ratio, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
M/MOI(J) Engine mass flow ratio based on engine face pressure ratio, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

M/MOP(J) Inlet mass flow plug nozzle mass flow ratio, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
M/MOT(J) Inlet total mass flow ratio, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
$\operatorname{MPR}(J)(N) \quad$ Engine multiples per revolution, where $J=1$ for left engine, $J=2$ for right engine, and N is ring number.
$\operatorname{NBLD}(J) \quad$ Number of bleeds in engine, where $J=1$ for left engine and $J=2$ for right engine.

NBS(J)(I) Number of static pressures in engine bleed, where $J=1$ for left engine, $J=2$ for right engine, and I is the bleed number.

SYMBOL NOMENCLATURE

NBT(J)(I) Number of total pressures in engine bleed, where $\mathrm{J}=1$ for left engine, $J=2$ for right engine, I is the bleed number.

NPPBS(J) Number of bypass flow plug exit static pressures, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=2$ for right engine.

NPPBT(J) Number of bypass flow plug exit total pressures, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

NPPS(J) Number of exit static pressures on left mass flow plug rake, where $\mathrm{J}=1$ for left engine and $J=2$ for right engine.

NPPS1+NPPS2 maximum of 20
NPPT(J) Number of total pressures on mass flow plug rake, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine. NPPT1+NPP「2 maximum of 100 .

NPRING Number of total pressures per ring at engine face.
$\operatorname{NPRMS}(J) \quad$ Number of engine face RMS pressures, where $J=1$ for left engine and $\mathrm{J}=2$ for right engine. NPRMS1+NPRMS2 max of 80 .

NPSEF(J) Number of static pressures on engine face rake, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine. NPSEF1+NPSEF2 maximum of 80 .

NPTB(J) Number of bypass instrumentation plane total pressures, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine. NPTB1+NPTB2 maximum of 80 .
NPTEF(J) Number of total pressures on engine face rake, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=2$ for right engine. NPTEF1+NPTEF2 maximum of 100.

SYMBOL NOMENCLATURE

NPTT(J) Number of total temperature probes at mass flow plug, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine. NPTT1 + NPTT2 maximum of 12 .
$\operatorname{PAFSD}(\mathrm{J}) \quad$ Mass flow plug steady state distortion index, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=2$ for right engine.

PALWR(J)(N) Average engine face low pressure ratio used to compute distortion, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and N is ring number.

PAVR(J)(N) Engine face average total pressure per ring, lbs./sq. in., where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and N is ring number.
$\operatorname{PB}(J)(L) \quad$ Engine bleed static pressure, lbs./sa in., where $J=1$ for left engine, $\mathrm{J}=2$ for right engine, and L is the tap number.
PB(J)/ Ratio of average bleed static pressure to average bleed total
PTB(J (I) pressure, where $J=1$ for lefî engine, $J=2$ for right engine, and I is the bleed number.

PEFRMSA(J) Engine face average RMS pressure, lbs./sq. in., where $\mathrm{J}=1$ for left engine and $J=2$ for right engine.
PEFRMS(L) Engine face RMS pressure, lbs./sq. in., where L is probe number with a maximum of 40 .

PERAKE,(L) Engine face rake static pressure, lbs./sq. in., where L is the tap number.

PEXBR(J) Average bypass flow plug exit static pressure divided by average flow plug exit total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

SYMBOL NOMENCLATURE

PEXIT(L) Mass flow plug exit static pressure, lbs./sq. in., where L is tap number.
$\operatorname{PEXTR}(J) \quad$ Average flow plug exit static pressure divided by average flow plug exit total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

PFSDB(J) Bypass flow plug steady slate distortion index, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.

PI(J)/PTO Average engine face static pressure divided by freestream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine. Ratio of average bypass flow plug exit static pressure to free stream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

PPBS(L) Bypass flow plug exit static pressure, lbs./sq. in., where L is tap number.

PPBT(J) Ratio of average bypass flow exit total pressure to free stream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
PPBT(L) Bypass flow plug exit total pressure, lbs./sq. in. where L is probe number.

PPS(J)/PTO Average mass flow plug static pressure divided by free stream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.

PPT(L)
Mass flow plug exit total pressure, lbs./sq. in., where L is the probe number.

SYMBOL NOMENCLATURE

PPT(J)/PTO Average mass flow plug exit total pressure divided by freestream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

PRMS(L) Engine face RMS pressure, lbs./sq. in., where L is tap number
PRMS(L) Engine face RMS pressure divided by engine face average total $\operatorname{PTI}(J) \quad$ pressure, where $J=1$ for left engine, $J=2$ for right engine, and L is tap number

PSAB(J)(I) Ratio of average engine bleed static pressure to free stream total pressure, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.

PSB(L)
Engine bleed static pressure, lbs./sq. in., where L is the tap number.

PSD(J)/PTO Average flow plug static pressure divided by free stream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.

PTAB(J)(I) Ratio of average engine bleed total pressure to free stream total pressure, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.

PTB(L) Engine bleed total pressure, lbs./sq. in., where L is the probe number.

PTBD(J) Ratio of average bypass instrumentation plane total pressure to free stream total pressure, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

PTERAK(L) Engine face total pressure, lbs./sq. in., where L is the probe number.

SYMBOL NOMENCLATURE

PTI(J)/PTO Average engine face total pressure divided by freestream total pressure, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.

PTRAKB(L) Bypass instrumentation plane tctal pressure, ibs./sq. in., where L is probe number.
$\operatorname{SAB}(\mathrm{J})(\mathrm{I}) \quad$ Engine bleed exit area, sq. in., where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.

SANF(J) Inlet engine face annular flow area, sq. in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
$\operatorname{SCAP}(J) \quad$ Inlet capture area, sq. in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine,

SANFB(J) Bypass annular flow area, sq. in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
$\operatorname{SCAPB}(\mathrm{J}) \quad$ Bypass capture area, sq . in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
$\operatorname{SEF}(J) \quad$ Engine face area, sq. in., where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
$\operatorname{SEFB}(\mathrm{J}) \quad$ Bypass instrumentation plane area, sq. in., where $\mathbf{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

TFRMS(J) Engine face RMS turbulence, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
$\operatorname{TTBP}(J)(L) \quad B y p a s s$ flow plug total temperature, ${ }^{\circ} \mathrm{F}$, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and L is probe number.

TIPP(J) Average bypass flow plug total temperature, ${ }^{\circ} \mathrm{F}$, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=2$ for right engine.

SYMBQL NOMENCLATURE

TTB(J)	Bypass instrumentation plane computed total temperature, ${ }^{\circ} R$, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
TTE(J)	Engine face computed total temperature, ${ }^{\bullet}$ R, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
TTP(J)	Mass flow plug total temperature, ${ }^{\bullet} \mathrm{F}$, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.
TTP(L)	Mass flow plug total temperature, ${ }^{\bullet} F$, where L is the probe number with a maximum of 8 .
WCBR ${ }^{(J)(I)}$	Inlet bleed corrected mass flow, lbs/sec, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.
WCB(J)(I)	Inlet bleed corrected mass flow, lbs/sec, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.
WCCR(J)	Engine face choked weight flow, lbs/sec, where $J=1$ for left engine and $\mathrm{J}=2$ for right engine.
WCCBR(J)	Bypass instrumentation plane choked weight flow, lbs/sec, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
WCP(J)	Engine weight flow based on engine face pressure ratio, $\mathrm{lbs} / \mathrm{sec}$, where $J=1$ for left engine and $J=2$ for right engine, where $J=1$ for left engine, $J=2$ for right engine, and I is bleed number.
WCR(J)	Engine face corrected weight flow, lbs/sec, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
WCT(J)	Engine face total corrected weight flow, lbs/sec, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
WC/WCC(J)	Engine corrected weight flow ratio based on flow plug calibration, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=2$ for right engine.

WPB(J)(I) Engine bleed physical weight flow, lbs/sec, where $\mathrm{J}=1$ for left engine, $\mathrm{J}=2$ for right engine, and I is bleed number.

WPT(J) Engine face total physical airflow, lbs/sec, where $\mathrm{J}=\mathbf{1}$ for left engine and $\mathrm{J}=2$ for right engine.

WP(J) Engine face physical air flow, lbs/sec, where $\mathrm{J}=1$ for left engine and $J=2$ for right engine.

XMBE(J)(I) Engine bleed exit Mach number, where $J=1$ for left engine, $J=2$ for right engine, and I is bleed number.
XMEF(J) Engine face Mach number, where $J=1$ for left engine and $J=2$ for right engine.
$\mathrm{XMFB}(\mathrm{J}) \quad$ Bypass instrumentation plane Mach number, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.
XMFP(J) Mass flow plug nozzle mass flow function, where $J=1$ for left engine and $\mathrm{J}=2$ for right engine.

XMMBP(J) Bypass flow plug nozzle Mach number, where $J=1$ for left engine and $\mathrm{J}=2$ for right engine.
XMP(J) Mass flow plug nozzle Mach number, where $\mathrm{J}=1$ for left engine and $\mathrm{J}=2$ for right engine.

XPBR(.J) Bypass flow plug axial position, in., where $J=1$ for left engine and $\mathrm{J}=\mathbf{2}$ for right engine.

XPR(J) Mass flow plug axial position, in., where $J=1$ for left engine send $J=2$ for right engine.

APPENDIXI
 Module I
 Inlet Distortion

A. Required Constants

The constants for inlet distortion calculations are given in the nomenclatures. Constants of the same name are also described by modules B and E. All constants are initialized to a value of 0.0 .

1. IRAKE - Rake code
where \quad IRAKE $=5$, inlet distortion using rotating rake
IRAKE $=6$, inlet distortion using nonrotating rake If $\operatorname{IRAKE}=0,1-4$ skip module I

B. Calculation of Inlet Weight Elow/Mass Elow

The same general equation can be used for the calculation of either an area from which mass flow is computed or for the direct calculation of weight flow. The difference will be in the way the calculated terms are used in succeeding calculations. The calculation path will be determined by the flag MFLO.

$$
\begin{aligned}
& \operatorname{APR}(\mathrm{J}) \text { or } \operatorname{WCR}(J)=\mathrm{C} 1+\mathrm{C} 2 * \operatorname{XPR}(\mathrm{~J})+\mathrm{C} 3 * \operatorname{PEXTR}(\mathrm{~J})+\mathrm{C} 4 * \operatorname{XPR}(\mathrm{~J})^{2}+ \\
& \mathrm{C} 5 * \operatorname{XPR}(\mathrm{~J}) * \operatorname{PEXTR}(\mathrm{~J})+\mathrm{C} 6 * \operatorname{PEXTR}(\mathrm{~J})^{2}+\mathrm{C} 7 * \operatorname{XPR}(\mathrm{~J})^{3}+ \\
& \mathrm{C} 8^{*} \operatorname{XPR}(\mathrm{~J})^{2} * \operatorname{PEXTR}(\mathrm{~J})+\mathrm{C} 9^{*} \operatorname{XPR}(\mathrm{~J})^{*} \operatorname{PEXTR}(\mathrm{~J})^{2}+ \\
& \mathrm{C} 10^{*} \operatorname{PEXTR}(\mathrm{~J})^{3}+\mathrm{C} 11^{*} \operatorname{XPR}(\mathrm{~J})^{4}+\mathrm{C} 12^{*} \operatorname{XPR}(\mathrm{~J})^{3} * \operatorname{PEXTR}(\mathrm{~J}) \\
& +\mathrm{C} 13^{*} \operatorname{XPR}(\mathrm{~J})^{2} * \operatorname{PEXTR}(\mathrm{~J})^{2}+\mathrm{C} 14^{*} \operatorname{XPR}(\mathrm{~J}) * \operatorname{PEXTR}(\mathrm{~J})^{3}+ \\
& \mathrm{C} 15^{*} \operatorname{PEXTR}(\mathrm{~J})^{4}+\mathrm{C} 16^{*} \mathrm{XPR}(\mathrm{~J})^{5}+\mathrm{C} 17^{*} \operatorname{XPR}(J)^{4}{ }^{*} \operatorname{PEXTR}(\mathrm{~J}) \\
& +\mathrm{C18}^{*} \mathrm{XPR}(\mathrm{~J})^{3} * \operatorname{PEXTR}(\mathrm{~J})^{2}+\mathrm{C}^{2} 9^{*} \mathrm{XPR}(\mathrm{~J})^{2} * \operatorname{PEXTR}(\mathrm{~J})^{3}+ \\
& \text { C20* }{ }^{1} \operatorname{PPR}(\mathrm{~J})^{3} * \operatorname{PEXTR}(\mathrm{~J})^{3}+\mathrm{C} 21 * \operatorname{XPR}(\mathrm{~J}) * \operatorname{PEXTR}(\mathrm{~J})^{4}+
\end{aligned}
$$

$\mathrm{C} 22^{*} \operatorname{PEXTR}(\mathrm{~J})^{5}+\mathrm{C} 23^{*} \mathrm{XPR}^{(\mathrm{J})^{5}}{ }^{*} \operatorname{PEXTR}(\mathrm{~J})+$
$\mathrm{C} 24^{*} \operatorname{XPR}(\mathrm{~J})^{*} \operatorname{PEXTR}(\mathrm{~J})^{5}+\mathrm{C} 25^{*} \operatorname{XPR}(\mathrm{~J})^{5} * \operatorname{PEXTR}(\mathrm{~J})^{5}$

Calculation for choked flow:

$$
\begin{align*}
\operatorname{AMFD}(\mathrm{J}) \operatorname{OR} \operatorname{WCCR}(\mathrm{J})= & \mathrm{C} 51+\mathrm{C} 52^{*} \mathrm{XPR}(\mathrm{~J})+\mathrm{C} 53^{*} \mathrm{XPR}(\mathrm{~J})^{2}+\mathrm{C} 54^{*} \mathrm{XPR}(\mathrm{~J})^{3}+ \\
& \mathrm{C} 55^{*} \mathrm{XPR}(\mathrm{~J})^{4}+\mathrm{C} 56 * \operatorname{XPR}(\mathrm{~J})^{5} \tag{Eq.I-2}
\end{align*}
$$

where $\operatorname{PEXTR}(\mathrm{J})=\operatorname{PPS}(\mathrm{J}) / \mathrm{PTO} / \mathrm{PPT}(\mathrm{J}) / \mathrm{PTO}$
and

$$
\begin{equation*}
\operatorname{PPS}(\mathrm{J}) / \operatorname{PTO}=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPS}(\mathrm{~J})} \operatorname{PEXIT}(\mathrm{L}) * \operatorname{KEXIT}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPS}(\mathrm{~J})} \mathrm{KEXT}(\mathrm{~L}) * \operatorname{PTO} \tag{Eq.I-4}
\end{equation*}
$$

If MFLO is equal to 1 the area terms $\operatorname{APR}(\tilde{u})$ and $\operatorname{AMFD}(J)$ are calculated and the following equations are used.

If PEXTR(J) is ≤ 0.6 then use the choked flow value to calculate a mass flow ratio as follows:

$$
\operatorname{TTP}(\mathrm{J})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPTT}(\mathrm{~J})} \operatorname{TTP}(\mathrm{L}) * \operatorname{KTTP}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\operatorname{NPTT}(\mathrm{J})} \mathrm{KTP}(\mathrm{~L})
$$

(Eq. I-5)

$$
\begin{equation*}
\mathrm{M} / \mathrm{MOP}(\mathrm{~J})=(\operatorname{AMFD}(\mathrm{J}) * \operatorname{PPT}(\mathrm{~J}) / \mathrm{PTO}) /\left(\mathrm{XMO}^{*} \operatorname{SCAP}(\mathrm{~J})\right) \tag{Eq.I-6}
\end{equation*}
$$

where $\quad \mathrm{XMO}=0.9189^{*} \mathrm{MACH}^{*}\left(1+0.2^{*} \mathrm{MACH}^{2}\right)^{-3}$
and \quad MACH is obtained from Appendix A

If $\operatorname{PEXTR}(J)>0.6$ then this equation is used:

$$
\begin{aligned}
\mathrm{M} / \mathrm{MOP}(\mathrm{~J})= & (\mathrm{APR}(\mathrm{~J}) * \mathrm{XMFPNL} * \mathrm{PPT}(\mathrm{~J}) / \mathrm{PTO}) /\left(\mathrm{XMFFO}^{*}\right. \\
& ((\mathrm{TTP}(\mathrm{~J})+459.67) \sqrt{(\mathrm{TTO}+459.67)} * \operatorname{SCAP}(J))
\end{aligned}
$$

(Eq. I-8)
where $\quad \mathrm{XMPL}=\sqrt{5^{*}\left(\operatorname{PEXTR}(J)^{-2 / 7}-1\right)}$
and $\quad \mathrm{XMFPNL}=0.9189^{*} \mathrm{XMPL}^{*}\left(1+0.2^{*} \mathrm{XMPL}^{2}\right)^{-3}$
(Eq. 1-9)

Average flow plug exit total pressure ratio

$$
\operatorname{PPT}(\mathrm{J}) / \mathrm{PTO}=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPT}(\mathrm{~J})} \mathrm{PPT}(\mathrm{~L}) * \mathrm{KPPT}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPT}(\mathrm{~J})} \mathrm{KPP}(\mathrm{~L})
$$

(Eq. I-10)

Mass flow plug steady state distortion index

$$
\begin{equation*}
\operatorname{PAFSD}(J)=\left((\mathrm{PPT}(\mathrm{~L}) / \mathrm{PTO})_{\max }-(\mathrm{PPT}(\mathrm{~L}) / \mathrm{PTO})_{\min }\right) / \mathrm{PPT}(\mathrm{~J}) / \mathrm{PTO} \tag{Eq.I-11}
\end{equation*}
$$

Engine face Mach number.

$$
\begin{equation*}
\operatorname{AS}(\mathrm{J})=\left(\mathrm{XMO}{ }^{*}(\operatorname{SANF}(\mathrm{~J}) / \mathrm{M} / \mathrm{MOP}(\mathrm{~J}))^{* P T I}(\mathrm{~J}) / \mathrm{PTO}\right) / \mathrm{SCAP}(\mathrm{~J}) \tag{Eq.I-12}
\end{equation*}
$$

where XMO is defined in Eq. I-7.

If $\operatorname{AS}(J)$ is ≥ 0.53177 then $\operatorname{XMEF}(J)$ is 1.0. Otherwise compute engine face Mach number by iteration from the following

$$
\begin{equation*}
\operatorname{AS}(\mathrm{J})=0.9189 * \operatorname{XMEF}(\mathrm{~J}) *\left(1+0.2^{*} \operatorname{XMEF}(J)^{2}\right)^{-3} \tag{Eq.I-13}
\end{equation*}
$$

If MFLO is equal to 0 (the default) the WC values are calculated and the following equations are used.
WC/WCC(J) = WCR(J)/WCCR(J)

$$
\begin{equation*}
\mathrm{WP}(\mathrm{~J})=(\mathrm{WCR}(\mathrm{~J}) *(\mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO}) * \mathrm{PTO}) /(\sqrt{\mathrm{TT} 0+459.67} * \mathrm{RC}) \tag{Eq.I-15}
\end{equation*}
$$

where $\quad \mathrm{RC}=14.696 / \sqrt{518.68}$
which is a reference pressure divided by a reference temperature and is a constant used secause of the flow plug calibration.

$$
\begin{equation*}
\mathrm{WCP}(J)=\mathrm{MA} * \mathrm{SEF}^{*} \mathrm{RC} \tag{Eq.I-16}
\end{equation*}
$$

where $\quad \mathrm{MA}=0.9189^{*} \mathrm{M} 2 *\left(1+0.2^{*} \mathrm{M}^{2}\right)^{-3}$
and

$$
\mathrm{M} 2=\sqrt{5^{*}\left((\mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO} / \mathrm{PI}(\mathrm{~J}) / \mathrm{PTO})^{-2 / 7}-1\right)}
$$

$$
\begin{equation*}
\text { M/MOP(J) }=(\mathrm{WCR}(\mathrm{~J}) * \operatorname{PTI}(\mathrm{~J}) / \mathrm{PTO}) /(\mathrm{XMO} * \mathrm{SCAP}(\mathrm{~J}) * R C) \tag{Eq.I-17}
\end{equation*}
$$

where XMO is defined in Eq. I-7.

$$
\begin{equation*}
\mathrm{M} / \mathrm{MOI}(\mathrm{~J})=(\mathrm{WCP}(\mathrm{~J}) * \operatorname{PTI}(\mathrm{~J}) / \mathrm{PTO}) /\left(\mathrm{XMO}^{*} \operatorname{SCAP}(\mathrm{~J})^{* R C}\right) \tag{Eq.I-18}
\end{equation*}
$$

Engine face Mach number

$$
\begin{equation*}
\operatorname{EFMAC}(J)=W C R(J) /(R C * \operatorname{SANF}(J)) \tag{Eq.I-19}
\end{equation*}
$$

If EFMAC(J) ≥ 0.53177 set XMEF(J) equal to 1.0. If EFMAC(J) is $<\mathbf{0 . 5 3 1 7 7}$ then compute $\operatorname{XMEF}(\mathrm{J})$ by iteration from the following expression

$$
\begin{equation*}
\operatorname{EFMAC}(J)=0.9189 * \operatorname{XMEF}(J) *\left(1+0.2 * \text { XMEF }^{2}\right)^{-3} \tag{Eq.I-20}
\end{equation*}
$$

Computed engine face total temperature

$$
\begin{equation*}
\operatorname{TTE}(J)=(\operatorname{TT} 0+459.67) /\left(1+0.2^{*} \operatorname{XMEF}(J)^{2}\right) \tag{Eq.I-21}
\end{equation*}
$$

C. Engine face data

Average engine face total pressure ratio
$\operatorname{PTI}(\mathrm{J}) / \operatorname{PTQ}=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPTEF}(\mathrm{J})} \operatorname{PTERAK}(\mathrm{L}) * \operatorname{KTERK}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPTEF}(\mathrm{J})} \mathrm{KTERK}(\mathrm{L}) * \operatorname{PTO}$
(Eq. I-22)

Average engine face static pressure ratio
$\operatorname{PI}(\mathrm{J}) / \mathrm{PTO}=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPSEF}(\mathrm{J})} \operatorname{PERAKE}(\mathrm{L}) * \operatorname{KERAK}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\operatorname{NPSEF}(\mathrm{J})} \underset{\mathrm{KERK}}{\mathrm{N}}(\mathrm{L}) * \operatorname{PTO}$

RMS pressure ratio

$\operatorname{PRMS}(\mathrm{L}) / \mathrm{PTI}(\mathrm{J})=\mathrm{PRMS}(\mathrm{L}) / \mathrm{PTI}(\mathrm{J}) / \mathrm{PTO} * \mathrm{PTO}$

(Eq. I-24)
Engine face RMS turbulence

$$
\begin{equation*}
\operatorname{TFRMS}(\mathrm{J})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\operatorname{NPRMS}(\mathrm{J})} \operatorname{PRMS}(\mathrm{L}) * \operatorname{KPRMS}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\operatorname{NPRMS}(\mathrm{J})} \mathrm{KRS}(\mathrm{~L}) * \operatorname{PTO} \tag{Eq.I-25}
\end{equation*}
$$

Engine face static pressure distortion

$$
\begin{equation*}
\operatorname{ADPS}(J)=\left((\mathrm{PERAKE}(\mathrm{~L}) / \mathrm{PTO})_{\max }-(\mathrm{PERAKE}(\mathrm{~L}) / \mathrm{PTO})_{\min }\right) / \mathrm{PI}(\mathrm{~J}) / \mathrm{PTO} \tag{Eq.I-26}
\end{equation*}
$$

Engine face total pressure distortion

$$
\begin{equation*}
\operatorname{AFSD}(\mathrm{J})=\left((\mathrm{PTERAK}(\mathrm{~L}) / \mathrm{PTO})_{\max }-(\mathrm{PTERAK}(\mathrm{~L}) / \mathrm{PTO})_{\min }\right) / \mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO} \tag{Eq.I-27}
\end{equation*}
$$

Aerodynamic interface plane (AIP) theta extents computed by the ARP 1420 methodology. ${ }^{5}$ Using these areas and theta values the following parameters are computed:

Circumferential distortion by ring

$$
\operatorname{DCI}(J)(N)=(\operatorname{PAVR}(J)(N)-\operatorname{PALWR}(J)(N)) / \operatorname{PAVR}(J)(N)
$$

(Eq. I-28)
where:

$$
\begin{equation*}
\operatorname{PALWR}(J)(\mathrm{N})=\operatorname{PAVR}(\mathrm{J})(\mathrm{N}) \cdot(\operatorname{ARXT}(J)(\mathrm{N}) / \operatorname{EXT}(\mathrm{J})(\mathrm{N})) \tag{Eq.I-29}
\end{equation*}
$$

[^4]Multiples per revolution by ring

$$
\operatorname{MPR}(\mathrm{J})(\mathrm{N})=\frac{\mathrm{L}=\mathrm{NUMEXT}}{\sum_{\mathrm{I}=1} \mathrm{AREA}(\mathrm{I}) / \text { AREAMAX }}
$$

(Eq. I-30)

Radial distortion by ring

$$
\begin{equation*}
\operatorname{DRI}(\mathrm{J})(\mathrm{N})=((\mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO}) * \mathrm{PTO}-\operatorname{PAVR}(\mathrm{J})(\mathrm{N})) /(\mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO}) * \operatorname{PTO} \tag{Eq.I-31}
\end{equation*}
$$

If the inlet data is for a specific engine, then the engine constants may be input to compute the loss in surge pressure ratio

$$
\begin{equation*}
\left.\operatorname{DPRS}(\mathrm{J})=\sum_{\mathrm{N}=1}^{\mathrm{N}=\mathrm{NRING}(\mathrm{~J})}(\mathrm{N}) * \operatorname{DCI}(\mathrm{~J})(\mathrm{N})+\mathrm{KR}(\mathrm{~N}) * \operatorname{DRI}(\mathrm{~J})(\mathrm{N})+\mathrm{K}(\mathrm{~N})\right] \tag{Eq.I-32}
\end{equation*}
$$

Engine face stream forces

$$
\begin{aligned}
\operatorname{CAEF}(\mathrm{J})= & \operatorname{SANF}(\mathrm{J}) /(\mathrm{QO} * \operatorname{SAREA}(\mathrm{I}))^{*}\left(\left(\operatorname{PTI}(\mathrm{~J}) / \mathrm{PTO}{ }^{*} \operatorname{PTO}\right.\right. \\
& *\left(1+\operatorname{GAMJ}{ }^{\left.\left.\operatorname{XMEF}(\mathrm{J})^{2}\right)\right) /\left(\left(1+0.2^{*} \operatorname{XMEF}(\mathrm{~J})^{2}\right)^{2 / 7}\right)-\mathrm{PO}}\right.
\end{aligned}
$$

(Eq. I-33)
where SAREA(I) is obtained from Appendix D.

$$
\text { CAEFT }=\text { CAEF1 }+ \text { CAFF2 }
$$

(Eq. I-34)

D. Bleed Flow Computations

All bleed flow computations are to be made for a maximum of 12 separate bleeds in each engine.

Average bleed total pressure

$$
\begin{equation*}
\operatorname{PTAB}(\mathrm{J})(\mathrm{I})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NBT}(\mathrm{~J})(\mathrm{I})} \mathrm{PTB}(\mathrm{~L}) * \mathrm{KPTB}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NBT}(\mathrm{~J})(\mathrm{I}) \mathrm{TB}(\mathrm{~L}) * \mathrm{PTO}} \tag{Eq.I-35}
\end{equation*}
$$

Average bleed static pressure divided by freestream total pressure

$$
\operatorname{PSAB}(J)(\mathrm{I})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NBS}(\mathrm{~J})(\mathrm{I})} \operatorname{PSB}(\mathrm{L}) * \mathrm{KPSB}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NBS}(\mathrm{~J})(\mathrm{I})} \mathrm{KSB}(\mathrm{~L}) * \operatorname{PTO}
$$

(Eq. I-36)

Ratio of average bleed static to average bleed total pressure

$$
\begin{equation*}
\mathrm{PB}(\mathrm{~J})(\mathrm{I}) / \mathrm{PTB}(\mathrm{~J})(\mathrm{I})=\operatorname{PSAB}(\mathrm{J})(\mathrm{I}) / \mathrm{PTAB}(\mathrm{~J})(\mathrm{I}) \tag{Eq.I-37}
\end{equation*}
$$

Bleed corrected mass flow from calibration

$$
\begin{align*}
& \mathrm{WCB}(\mathrm{~J})(\mathrm{I})=\mathrm{CB} 1(\mathrm{M})+\mathrm{CB} 2(\mathrm{M})^{*} \mathrm{~PB}(\mathrm{~J})(\mathrm{I}) / \mathrm{PTB}(\mathrm{~J})(\mathrm{I})+\mathrm{CB} 3(\mathrm{M})^{*} \\
& (\mathrm{~PB}(\mathrm{~J})(\mathrm{I}) / \mathrm{PTB}(\mathrm{~J})(\mathrm{I}))^{2}+\mathrm{CB} 4(\mathrm{M})^{*}(\mathrm{~PB}(\mathrm{~J})(\mathrm{I}) / \mathrm{PTB}(\mathrm{~J})(\mathrm{I}))^{3}+ \\
& \mathrm{CB}(\mathrm{M}) *(\mathrm{~PB}(\mathrm{~J})(\mathrm{I}) / \mathrm{PTB}) \mathrm{J})(\mathrm{I}))^{4} \tag{Eq.I-38}
\end{align*}
$$

Bleed exit weight flow corrected to engine face

$$
\mathrm{WCPB}(J)(\mathrm{I})=\left(\mathrm{WCB}(\mathrm{~J})(\mathrm{I}) * \mathrm{RC}^{*} \sqrt{\mathrm{TT} 0+459.67}\right) / \mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO}^{*} \mathrm{PTO}
$$

(Eq. I-39)

Bleed mass flow ratio

$$
\begin{equation*}
\mathrm{M} / \mathrm{MOB}(\mathrm{~J})(\mathrm{I})=\left(\mathrm{RC}^{*} \mathrm{WCB}(\mathrm{~J})(\mathrm{I}) * \operatorname{PTAB}(J)(\mathrm{I})^{*} \mathrm{PTO}\right) / \mathrm{MACH}^{*} \operatorname{SCAP}(\mathrm{~J}) \tag{Eq.I-40}
\end{equation*}
$$

where MACH is obtained from Appendix A

Bleed exit Mach number

$$
\operatorname{XMBE}(\mathrm{J})(\mathrm{I})=\sqrt{5^{*}\left((1 / \mathrm{PB}(\mathrm{~J})(\mathrm{I}) / \mathrm{PTB}(\mathrm{~J})(\mathrm{I}))^{-2 / 7}-1\right)}
$$

(Eq. 1-41)

If exit area is provided instead of a calibration then weight flow is computed in the following manner.

$$
\mathrm{WCB}(\mathrm{~J})(\mathrm{I})=\left(\mathrm{MB}^{*} \mathrm{SAB}(\mathrm{~J})(\mathrm{I}) * \mathrm{PTAB}(\mathrm{~J})(\mathrm{I}) * \mathrm{PTO}\right) / \sqrt{\mathrm{TTO}+459.67}
$$

(Eq. I-42)
where $\quad \mathrm{MB}=0.9189 * \operatorname{XMBE}(\mathrm{~J})(\mathrm{I}) *\left(1+0.2 * \operatorname{XMBE}(\mathrm{~J})(\mathrm{I})^{2}\right)^{-3}$

Weight flow corrected to engine face

$$
\begin{equation*}
\mathrm{WCPB}(\mathrm{~J})(\mathrm{I})=\mathrm{WCB}(\mathrm{~J})(\mathrm{I}) * \mathrm{RC} * \sqrt{\mathrm{TTO}+459.67} / \mathrm{PTI}(\mathrm{~J}) / \mathrm{PTO} * \mathrm{PTO} \tag{Eq.I-44}
\end{equation*}
$$

Bleed mass flow ratio is then computed

$$
\mathrm{M} / \mathrm{MOB}(\mathrm{~J})(\mathrm{I})=(\mathrm{WCB}(\mathrm{~J})(\mathrm{I}) * \sqrt{\mathrm{TTO}+459.67}) /(\mathrm{SCAP}(\mathrm{~J}) * \mathrm{MO} * \mathrm{PTO})
$$

(Eq. I-45)

E. Calculation of Bypass Weight Elow/Mass Flow

If there is a separate controlled bypass or ejector flow from the inlet, many of the same values must be calculated for the bypass controller as for the inlet flow controller. The same general equation can be used for the calculation of either an area from which mass flow is computed or for the direct calculation of weight flow. The difference will be in the way the calculated terms are used in succeeding calculations. The calculation path will be determined by the flag MFLB.
$\operatorname{APBR}(J)=\mathrm{CE} 1+\mathrm{CE} 2 * \mathrm{XPBR}(\mathrm{J})+\mathrm{CE} 3^{*} \operatorname{PEXBR}(J)+\mathrm{CE} 4^{*} \mathrm{XPBR}(\mathrm{J})^{2}+$ or CE5*XPBR(J)*PEXBR(J) + CE6 * PEXBR (J) ${ }^{2}+$ CE7 * XPBRR1 3
$\operatorname{WCBR}(\mathrm{J}) \quad+\mathrm{CE} 8^{*} \operatorname{XPBR}(\mathrm{~J})^{2} * \operatorname{PEXBR}(\mathrm{~J})+\mathrm{CE9} 9^{*} \operatorname{XPBR}(\mathrm{~J})^{*} \operatorname{PEXBR}(\mathrm{~J})^{2}$
$+\mathrm{CE} 10 * \operatorname{PEXBR}(\mathrm{~J})^{3}+\mathrm{CE} 11^{*} \operatorname{XPBR}(\mathrm{~J})^{4}+\mathrm{CE} 12^{*} \operatorname{XPBR}(\mathrm{~J})^{3}$ ${ }^{*} \operatorname{PEXBR}(\mathrm{~J})+\mathrm{CE} 13^{*} \operatorname{XPBR}(\mathrm{~J})^{2} * \operatorname{PEXBR}(\mathrm{~J})^{2}+\mathrm{CE} 14^{*} \operatorname{XPBR}(\mathrm{~J})$ ${ }^{*} \operatorname{PEXBR}(\mathrm{~J})^{3}+\mathrm{CE}^{2} 5^{*} \operatorname{PEXBR}(\mathrm{~J})^{4}+\mathrm{CE} 16^{*} \mathrm{XPBR}(\mathrm{J})^{5}$ $+\mathrm{CE} 17^{*} \mathrm{XPBR}(J)^{4}$ *PEXBR(J) $+\mathrm{CE} 18^{*} \mathrm{XPBR}(\mathrm{J})^{3}$ $* \operatorname{PEXBR}(J)^{2}+\operatorname{CE} 19 * \operatorname{XPBR}(J)^{2} * \operatorname{PEXBR}(J)^{3}$ + CE20* $\operatorname{XPBR}(\mathrm{J})^{3} * \operatorname{PEXBR}(J)^{3} * \operatorname{CE} 21 * \operatorname{XPBR}(J) * \operatorname{PEXBR}(J)^{4}$ $+\mathrm{CE} 22^{*} \operatorname{PEXBR}(\mathrm{~J})^{5}+\mathrm{CE} 23^{*} \mathrm{XPBR}(\mathrm{J})^{5} * \operatorname{PEXBR}(\mathrm{~J})$ $+\mathrm{CE} 24^{*} \operatorname{XPBR}(\mathrm{~J}) * \operatorname{PEXBR}(\mathrm{~J})^{5}+\mathrm{CE} 25^{*} \operatorname{XPBR}(J)^{5} * \operatorname{PEXBR}(J)^{5}$
(Eq. I-46)

Calculation for choked flow:
$\operatorname{AMFDB}(\mathrm{J})=\mathrm{CE} 51+\mathrm{CE} 52 * \mathrm{XPBR}(\mathrm{J})+\mathrm{CE} 53 * \mathrm{XPBR}(\mathrm{J})^{2}$
or $\quad+\mathrm{C} 54^{*} \mathrm{XPBR}(\mathrm{J})^{3}+\mathrm{CE} 55^{*} \mathrm{XPBR}(J)^{4}+\mathrm{CE} 56 * \operatorname{XPBR}(\mathrm{~J})^{5}$
wCCBR(J)
(Eq. 1-47)
where $\operatorname{PEXBR}(J)=\operatorname{PPBS}(J) / \operatorname{PPBT}(J)$
(Eq. I-48)

$$
\operatorname{PSBD}(\mathrm{J})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPBS}(\mathrm{~J})} \operatorname{PPBS}(\mathrm{L}) * \operatorname{KPPBS}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPBS}(\mathrm{~J})} \mathrm{KPBS}(\mathrm{~L})^{*} \operatorname{PTO}
$$

(Eq. I-49)
and

$$
\operatorname{PPBT}(\mathrm{J})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPBT}(\mathrm{~J})} \operatorname{PPBT}(\mathrm{L}) * \mathrm{KPPBT}(\mathrm{~L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPBT}(\mathrm{~J})} \mathrm{KPBT}(\mathrm{~L}) * \operatorname{PTO}
$$

(Eq. I-50)
If MFLB is equal to 2 the area terms $\operatorname{APBR}(J)$ and $\operatorname{AMFDB}(J)$ are calculated and the following equations are used.

If $\operatorname{PEXBR}(j)$ is ≤ 0.6 then use the choked flow value to calculate a mass flow ratio as follows:

$$
\begin{equation*}
\operatorname{TTBP}(\mathrm{J})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\operatorname{NPTTB}(\mathrm{J})} \operatorname{TTBP}(\mathrm{J})(\mathrm{L}) * K T T B(J)(\mathrm{L}) / \sum_{\mathrm{L}=1}^{\mathrm{L}=\operatorname{NPTTB}(\mathrm{J})} \mathrm{KTB}(\mathrm{~J})(\mathrm{L}) \tag{Eq.I-51}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M} / \mathrm{MOBP}(\mathrm{~J})=(\operatorname{AMFDB}(\mathrm{J}) * \operatorname{PPBT}(\mathrm{~J}) / \mathrm{PTO}) /\left(\mathrm{XMO}^{*} \operatorname{SCAP}(\mathrm{~J})\right) \tag{Eq.I-52}
\end{equation*}
$$

where $\quad \mathrm{XMO}$ is defined in Eq. I-7.
If $\operatorname{PEXBR}(J)>0.6$ then this equation is used:

$$
\begin{align*}
& \mathrm{M} / \mathrm{MOBP}(\mathrm{~J})=\left(\mathrm{AP}(\mathrm{~J})^{*} \mathrm{XMFPBNL} * \operatorname{PPBT}(\mathrm{~J}) / \mathrm{PTO}\right)!\left(\mathrm{XMO}^{*}\right. \\
&((\sqrt{\mathrm{TTPB}(J)}+459.67 \tag{Eq.I-53}\\
&\sqrt{\mathrm{TTO}+459.67}) * \operatorname{SCAP}(\mathrm{~J}))
\end{align*}
$$

where $\quad \mathrm{XMPBL}=\sqrt{5^{*}\left(\operatorname{PEXBR}(J)^{-2 / 7}-1\right)}$
(Eq. I-54)
and \quad XMFPBNL $=0.9189^{*}$ XMPBL $^{*}\left(1+0.2^{*} \text { XMPBL }^{2}\right)^{-3}$
(Eq. I-55)

Average bypass flow plug total pressure ratio

$$
\begin{equation*}
\operatorname{PTBD}(\mathrm{J})=\sum_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPBT}(\mathrm{~J})} \operatorname{PTRAKB}(\mathrm{L}) * \operatorname{KPTRK}(\mathrm{~L}) /{ }_{\mathrm{L}=1}^{\mathrm{L}=\mathrm{NPPBT}(\mathrm{~J})} \mathrm{KRK}(\mathrm{~L}) * \operatorname{PTO} \tag{Eq.I-56}
\end{equation*}
$$

Bypass mass flow plug steady state distortion index

$$
\begin{equation*}
\operatorname{PFSDB}(\mathrm{J})=(\mathrm{PPBT}(\mathrm{~L}) / \mathrm{PTO})_{\max }-(\mathrm{PPBT}(\mathrm{~L}) / \mathrm{PTO})_{\min } / \mathrm{PPBT}(\mathrm{~J}) / \mathrm{PTO} \tag{Eq.I-57}
\end{equation*}
$$

Bypass instrumentation plane Mach number.

$$
\begin{equation*}
\left.\operatorname{ASB}(\mathrm{J})=\left(\mathrm{XMO}^{*}\left(\operatorname{SANF}(\mathrm{~J}) / \mathrm{M} / \mathrm{MOP}^{(J)}\right)\right)^{*} \operatorname{PTBD}(\mathrm{~J}) / \mathrm{P}\right) / \operatorname{SCAPB}(\mathrm{J}) \tag{Eq.I-58}
\end{equation*}
$$

where $\quad \mathrm{XMO}$ is defined in Eq. I-7.

If $\operatorname{ASB}(\mathrm{J})$ is ≥ 0.53177 then $\operatorname{XMBF}(\mathrm{J})$ is 1.0 . Otherwise compute instrumentation plane Mach number by iteration from the following

$$
\begin{equation*}
\operatorname{ASB}(\mathrm{J})=0.9189 * \operatorname{XMFB}(\mathrm{~J})^{*}\left(1+0.2^{*} \operatorname{XMFB}(\mathrm{~J})^{2}\right)^{-3} \tag{Eq.I-60}
\end{equation*}
$$

If MFLO is equal to 0 (the default) the WC values are calculated and the following equations are used.
(F.4. I-61)

$$
\mathrm{WBP}(\mathrm{~J})=(\mathrm{WCBR}(\mathrm{~J}) *(\operatorname{PTBD}(\mathrm{~J}) / \mathrm{PTO}) * \mathrm{PTO}) /(\sqrt{T \mathrm{TO} 0+459.67} * \mathrm{RC})
$$

(Eq. I-62)
where $\quad R C=14.696 / \sqrt{518.68}$
which is a reference pressure divided by a reference temperature and is a constant uesd because of the flow plug calibration.

$$
\begin{equation*}
\mathrm{WCPB}(\mathrm{~J})=\mathrm{MA}^{*} \mathrm{SFFB}^{*} \mathrm{RC} \tag{Eq.I-63}
\end{equation*}
$$

where $\quad \mathrm{MA}=0.9189^{*} \mathrm{M3}^{*}\left(1+0.2^{*} \mathrm{M3}^{2}\right)^{-3}$
and

$$
\mathrm{M} 3=\sqrt{5^{*}\left((\operatorname{PTBD}(J) / \operatorname{PPBS}(\mathrm{J}))^{2 / 7}-1\right)}
$$

$\mathrm{M} / \mathrm{MOBP}(\mathrm{J})=(\mathrm{WCBR}(\mathrm{J}) * \operatorname{PTBD}(\mathrm{~J}) / \mathrm{PTO}) /(\mathbf{X M O} * \operatorname{SCAPB}(\mathrm{~J}) * R C)$
(Eq. I-64)
where XMO is defined in Eq. I-7.

M/MOBI(J) $=(\mathbf{W C P B}(J) * \operatorname{PTBD}(\mathrm{~J}) / \mathrm{PTO}) /\left(\mathrm{MO}^{*} \operatorname{SCAPB}(\mathrm{~J}) * R C\right)$
(Eq. I-65)
Bypass instrumentation plane Mach number

$$
\begin{equation*}
\mathrm{XMFB}(\mathrm{~J})=\mathrm{WCBR}(\mathrm{~J}) /(\mathrm{RC} * \operatorname{SANFB}(\mathrm{~J})) \tag{Eq.I-66}
\end{equation*}
$$

If $\operatorname{EFMACB}(J) \geq 0.53177$ set $\operatorname{XMFB}(J)$ equal to 1.0 . If $\operatorname{EFMACB}(J)$ is <0.53177 then compute $\mathrm{XMFB}(\mathrm{J})$ by iteration from the following expression

$$
\begin{equation*}
\operatorname{EFMACB}(\mathrm{J})=0.9189 * \operatorname{XMFB}(\mathrm{~J})^{*}\left(1+0.2^{*} \mathrm{XMFB}(\mathrm{~J})^{2}\right)^{-3} \tag{Eq.I-67}
\end{equation*}
$$

$$
\mathrm{TTB}(\mathrm{~J})=(\mathrm{TT} 0+459.67) /\left(1+0.2^{*} \mathrm{XMFB}(\mathrm{~J})^{2}\right)
$$

(Eq. I-68)

F. Tetal Airflow

Total corrected mass flow ratio

$$
\begin{equation*}
\mathrm{M} / \operatorname{MOT}(\mathrm{J})=\mathrm{M} / \operatorname{MOP}(\mathrm{J})+\underset{\mathrm{I}=1}{\mathrm{I}=\mathrm{NBLD}(\mathrm{~J})} \operatorname{MOB}(\mathrm{J})(\mathrm{I})+\mathrm{M} / \operatorname{MOBP}(\mathrm{J}) \tag{Eq.I-69}
\end{equation*}
$$

Total corrected weight flow

$$
\begin{equation*}
\mathrm{WCT}(\mathrm{~J})=\mathrm{WCR}(\mathrm{~J})+\sum_{\mathrm{I}=1}^{\mathrm{I}=\mathrm{NBLD}(\mathrm{~J})} \mathrm{CPB}(\mathrm{~J})(\mathrm{I})+\mathrm{WCBR}(\mathrm{~J}) \tag{Eq.I-70}
\end{equation*}
$$

Total physical weight flow at engine face

$$
\begin{equation*}
\mathrm{WPT}(\mathrm{~J})=\mathrm{WP}(\mathrm{~J})+\sum_{\mathrm{I}=1}^{\mathrm{I}=\mathrm{NBLD}(\mathrm{~J})} \mathrm{WCB}(\mathrm{~J})(\mathrm{I})+\mathrm{WBP}(\mathrm{~J}) \tag{Eq.I-71}
\end{equation*}
$$

F. Bad Tube Substitution Scheme

The calculations that use the engine face total pressures require that there be values for all pressures on the rake. Since it is an unusual occurrence to get through a test without losing some pressures, a probe substitution scheme has been added to the data reduction. This system works from a ring rake probe numbering scheme as shown in figure I-1. All engine face tctal pressures must be numbered and arranged in this order. Although the figure shows a 40 probe arrangement with five rings and eight rakes, it will
also work for a different arrangement of more or less rings with more or less probes as long as all the rings have the same number of pressures. In the following explanation ' n ' will denote ring number and ' m ' will denote rake number. The KTERK values are used to activate the probe substitution. When a KTERK value is zerc, the program determines where the bad probe is located and substitutes for it by the following criteria. All probe substitutions are made before any values using the total pressures are computed.

1. One bad probe on an interior ring (rings 2,3 , or 4). This value will be taken as an average of the four surrounding values, two from the same ring, two from the same rake.

$$
\begin{equation*}
P_{(n, m)}=\frac{\left[P_{(n, m+1)}+P_{(n, m-1)}+P_{(n+1, m)}+P_{(n-1, m)}\right]}{1} \tag{Eq.I-72}
\end{equation*}
$$

2. One bad probe on an I. D. or O. U. ring (rings 1 or 5). This value will be computed as an average of the three surrounding values.

$$
\begin{aligned}
& P_{(1, m)}=\frac{\left[P_{(1, m+1)}+P_{(1, m-1)}+P_{(2, m)}\right]}{3} \\
& P_{(5, m)}=\frac{\left[P_{(5, m+1)}+P_{(5, m-1)}+P_{(4, m)}\right]}{3}
\end{aligned}
$$

3. Two adjacent probes bad on an interior ring. Values for this case are computed using the average of the three surrounding values, two from the same rake, and one from the same ring.

$$
\begin{aligned}
& P_{(n, m)}=\frac{\left[P_{(n+1, m)}+P_{(n-1, m)}+P_{(n, m-1)}\right]}{3} \\
& P_{(n, m+1)}=\frac{\left[P_{(n+1, m+1)}+P_{(n-1, m+1)}+P_{(n, m+2)}\right]}{3}
\end{aligned}
$$

(Eq. I-73)
4. Two adjacent probes bad on an I. D. or O. D. ring. These values are computed from the average of the two surrounding values, one from the same rake, and one from the same ring.

$$
\begin{aligned}
& P_{(1, m)}=\frac{\left[P_{(1, m-1)}+P_{(2, m)}\right]}{2} \\
& P_{(1, \mathrm{~m}+1)}=\frac{\left[P_{(1, \mathrm{~m}+2)}+P_{(2, m+1)}\right]}{2} \\
& P_{(5, m)}=\frac{\left[P_{(5, m-1)}+P_{(4, m)}\right]}{2} \\
& P_{(5, m+1)}=\frac{\left[P_{(5, m+2)}+P_{(4, m+1)}\right]}{2}
\end{aligned}
$$

(Eq. I-74)
5. Two adjacent interior probes bad on the same rake. These values are computed as the average of two probes from the same ring, and one from the same rake.

$$
\begin{align*}
& P_{(n, m)}=\frac{\left[P_{(n, m+1)}+P_{(n, m-1)}+P_{(n \cdot 1, m)}\right]}{3} \\
& P_{(n+1, m)}=\frac{\left[P_{(n+1, m+1)}+P_{(n+1, m \cdot 1)}+P_{(n+2, m)}\right]}{3} \tag{Eq.I-75}
\end{align*}
$$

6. Two adjacent probes bad on the same rake, with one being on an ID. or O. D. ring.

$$
\begin{aligned}
& P_{(5, m)}=\frac{\left[P_{(5, m+1)}+P_{(5, m-1)}\right]}{2} \\
& P_{(4, n)}=\frac{\left[P_{(4, m+1)}+P_{(4, m-1)}+P_{(3, m)}\right]}{3} \\
& P_{(1, m)}=\frac{\left[P_{(1, m+1)}+P_{(1, m-1)}\right]}{2} \\
& P_{(2, m)}=\frac{\left[P_{(2, m+1)}+P_{(2, m-1)}+P_{(3, m)}\right]}{3}
\end{aligned}
$$

(Eq. I-76)

The equations used by the 16 -Foot Transonic Tunnel in the data reduction programs are presented in nine modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: a) tunnel parameters, b) jet exhaust measuremenis, c) skin friction drag, d) balance loads and model attitudes calculations, e) internal drag (or exit-flow distributions), f) pressure coefficients and integrated forces, g) thrust removal options, and h) turboprop options, 1) inlet distortion

This document is a companion document to NASA TM-102750, A User's Guide to the Langley 16-Foot Transonic Tunnel, September 1990

14. SUBJECT TERMS Data Reduction Wind Tunnel	Aerodynamics Propulsion		15. NUMBER OF PAGES 288
			16. PRICE CODE Al 3
17. SEETIRITY CLASSIFICATION Of REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITA TION OF ABSTRAC

NSN 7540-01-280-5500

Centimeter

MANUFACTURED TO AIIM STANDARDS BY APPLIED IMAGE, INC.

[^0]: ${ }^{1}$ Reimer, Robert M.: Compulation of the Critical Flow Function, Pressure Racio, and Temperature Ratio for Real Air ASME Paper 62-WA177 Journal of Basic Engincering, Trans. ASME

[^1]: 2 Frankl, F.; and Voishel, V.: Friction in the Turbulent Boundary Layer of a Compressible Gas a: High Speeds. TM NACA No. 1032, 1942.

[^2]: ${ }^{3}$ Smith, David L.: An Efficient Algorithm using Matrix Methods to Solve Wind-Tunnel ForceBalance Equations. NASA TN D.6860, 1972.

[^3]: * May be replaced with rake measurements.

[^4]: 5 Gas Turbine Engine Inlet Fluw Distortion Guidelines, ARP Paper 1420. Soclety of Automotive Engineers. Inc.

