
NASA-C_-190713

Ground Systems Development
Environment (GSDE)

Interface Requirements and
Pro to typing Plan

w-4
U_

,¢
_j

t
_j
o,
Z

r0

U
0

r-4
o

Victor E. Church

John Philips
Mitchell Bassman

C. Williams
Computer Sciences Corporation

j

",.-"Z L _

Q f4J I-..- • k_,-

{,,_ :,{ uJ _,,,,_,,f

I _ _LJ_.._ __

i C:u_ _- O _"

_c
September 1990

Cooperative Agreement NCC 9-16

Research Activity No. SE.34

NASA Johnson Space Center

Mission Operations Directorate

Space Station Ground Systems Division

Research Institute for Computing and Information Systems

University of Houston-C/ear Lake

PRELiMiNARY REVIEW REPORT

https://ntrs.nasa.gov/search.jsp?R=19920023207 2020-03-17T11:09:47+00:00Z

The RICIS Concept

The University of l louston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCLand its gateway alRliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research an'l education programs, while other research

organizations are involved via the *gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tcch-

nleal and adminJstratlvc support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.

Ground Systems Development
Environment (GSDE)

Interface Requirements and
Pro to typing Plan

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Computer Sciences Corporation in cooperation with the

University of Houston-Clear Lake. The members of the research team for this

report were: Victor E. Church, John Philips, Mitchell Bassman and C. Williams

from CSC and Alfredo Perez-Davila from UHCL. Mr. Robert E. Coady was CSC

program manager for this project during the initial phase. Later, Mr. Ray

Hartenstein assumed the role of CSC program manager. Dr. Perez-Davila also
served as RICIS research coordinator.

Funding was provided by the Mission Operations Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Thomas G. Price of the ADPE and Support Systems Office, Space Station

Ground Systems Division, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

PRELIMINARY

CSC/TR-90/6155

Ground Software Development Environment (GSDE)

Interface Requirements and Prototyping Plan

Prepared for

The University of Houston-Clear Lake

Houston, Texas

by

Computer Sciences Corporation

System Sciences Division

Behsville, Maryland
and

Special Projects Division

Falls Church, Virginia

under

Subcontract No. 075

RICIS Research Activity No. SE-34

NASA Cooperative Agreement NCC 9-16

September 1990

Pr_p/ared by:

V. Church

M. Bassman

J. Philips
C. Williams

Reviewed by:

R. Coady _/ ' Date

Quality Assurance:

M. Ellwood

Approved by:

W. Webb

Date

PREUMINARY

Preface

CSC/TR-90/6155

GSDE Interface Study

This report is based partly on information provided by Ford Aerospace

Corporation and by CAE-Link Corporation. It is also based on Computer

Science Corporation's own understanding of the requirements placed on

the Ground Software Development Environment (GSDE) for the

development of Space Station Freedom ground software. As more

information becomes available (i.e., as the ground system requirements

are completed and the design efforts are begun), it will be factored into

this report. Further information is particularly required from CAE-Link

Corporation to complete this research effort.

This is a preliminary report on interfaces within the GSDE, together with

a plan for prototyping software to support those interfaces. This report

covers the major topics of interest, even though it is based on incomplete

requirements information. An update to this report, based on further

research, data collection, and prototype analysis, is planned for December
1990.

CSC/SSD
ii September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Abstract

This report describes the data collection and requirements analysis effort

of the GSDE Interface Requirements study. It identifies potential

problems in the interfaces among applications and processors in the

heterogeneous systems that comprise the GSDE. It describes possible

strategies for addressing those problems. It also identifies areas for

further research and prototyping to demonstrate the capabilities and

feasibility of those strategies and defines a plan for building the necessary
software prototypes.

CSC/SSD iii September 1990

PRELIMINARY

CSC/TR- 90/6155
GSDE Interface Study

Table of Contents

Section 1 - Introduction ... 7

1.1 Purpose of this Report ... 7

1.2 Scope and Organization of this Report ... 8
1.3 Statement of the Problem .. 9

1.4 Related Documents and References ... 10

1.5 Glossary ... 11

Section 2 - Analysis of the Problem ... 14

2.1 Ground Software Development Contract ... 14

2.2 Host-to-Target Development Requirements .. 18

2.2.1

2.2.2
2.2.3

2.2.4

2.2.5

Cross-Development Justification .. 18

Models of Host-Target Development .. 19

Obstacles to Host-Target Development .. 23

Experiences with Cross-Development .. 25
Implications for Different Models .. 27

2.3 Strategies for Cost-Effective Development .. 27
2.4 Ground System Development ... 28

2.4.1

2.4.2
2.4.3

Ground Support Development Environment ... 28

Space Station Training Facility ... 30

SSCC Software Development .. 33

2.5 Requirements Collection Process ... 35

Section 3 - Development Process Interface Issues .. 36

3.1 Standard Software Process .. 36

3.2 Distributed Configuration Management ... 40

3.2.1 CM During Code Development ... 40

3.2.2 Post-Delivery CM ... 41

3.3 Implementation Status Reporting .. 42

3.3.1

3.3.2
Test Status Reporting .. 42

Process Status Reporting .. 43

3.4 Software Transparency .. 43
3.5 General Issues for SSTF Software Development .. 44

3.5.1

3.5.2
3.5.3

Multiple Languages in the SSTF .. 44

Multiple Types of Machines for SSTF IVTE .. 44
IVTE Machines as Target Machines ... 45

CSC/SSD iv September 1990

PRELIMINARY

Table of Contents (Continued)

CSC/TR- 90/6133
GSDE Interface Studv

3.6 General Issues for SSCC Software Development ... 46

3.6.1 Use of Ada and non-Ada in the SSCC ... 46
3.6.2 Multiple Target Machines for the SSCC ... 46

Section 4 - Host-Target Transition Interfaces ... 48

4.1 Operational Procedures ... 48

4.1.1 Object Transport and Location Tracking .. 49

4.1.2 Object Execution and Status Reporting .. 50

4.2 Using a Virtual Machine Environment (e.g., Cronus) ... 51

4.3 Simulations and Special Devices ... 51

Section 5 - Proposed' Prototype Work ... 53

5.1 Virtual Machine Environment ... 53

5.1.1 POSIX Interface .. 53

5.1.2 Interoperability .. 54

5.2 Software Operations ... 56

5.2.1 Distributed Configuration Management ... 56

5.2.2 Implementation Status Reporting .. 57

5.3 Investigation of Concepts and Environments ... 57

5.3.1 Analysis of COTS Packages and Standards .. 57

5.3.2 PCEE Concept Prototyping ... 58

Section 6 - Technical Approach ... 59

6.1 Project Organization and Resources .. 59

6.1.1 Contractor Facilities ... 59

6.1.2 Software Engineering Environment ... 60

6.1.3 Government-Furnished Equipment, Software, Services 60

6.2 Prototyping Products ... 61

6,3 Risk Management .. 61
6.4 Technical Information Interfaces ... 63
6.5 Product Assurance Plan

6.5.1 Quality Assurance Approach ... 63
6.5.2 Configuration Management .. 64

6.5.2.1 Software Library .. 64
6.5.2.2 Problem/Change Report .. 64

Section 7 - Summary and Findings ... 65

CSC/SSD v September 1990

PRELIMINARY

CSC/TR-90/6153
GSDE Interface Study

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

3-1

5-1

List of Figures

Ground Software Development Environment 15

Ground Systems/Software Production Facility 17

Bare-Machine Targeting .. 20

Peer-Machine Targeting ... 21

Virtual Machine Targeting ... 22

GSDE Communications Architecture ... 29

GSDE Functional Architecture .. 31

TSC Development Facility ... 32

MSC Development Facility .. 34

Cross-Development .. 37

Communications Modes ... 55

List of Tables

6-1 Risk Association With Prototype Activities 62

CSC/SSD vi September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Section I - Introduction

As part of the Space Station Freedom Program (SSFP), the Mission Operations

Directorate (MOD) at the Johnson Space Center (JSC) is developing a Space Station

Training Facility (SSTF) and a Space Station Control Center (SSCC). The software

components of these systems will be developed in the Ground Software Development

Environment (GSDE). The GSDE will serve as a common, high-productivity support

environment for the development and configuration control of ground system software.

It will make use of tools and procedures developed by the SSFP Software Support

Environment (SSE) project. Both the SSTF and the SSCC will be developed using
elements of this environment.

Computer Sciences Corporation (CSC) is studying ways to improve the effectiveness of

the GSDE in supporting development for different target computer environments. This

study is being performed for the Research Institute for Computing and Information

Systems (RICIS) of the University of Houston-Clear Lake. The study includes

identifying and documenting interface requirements and planning software prototypes to
support those interfaces.

This report, GroundSoftware Development Environment (GSDE) Interface P_quirements and

_oto_pin a Plan, addresses the problems of constructing software in the GSDE for

integration, test, and operation in the integration, verification, and test environments

(IVTEs). It documents requirements for software to support the subject interfaces and

describes a plan for prototyping that software.

1.1 Purpose of this Report

This report documents the data collection and problem analysis phases of the GSDE

interface study. The interfaces of concern are those between the software development

(or host) environment and the software execution (or target) environment. These
interfaces include the following:

Transfer of software from one environment to the other, including any necessary

redevelopment (sometimes called rehosting, or porting)

Communications of status information, test data, and test results between the two
environments

o Configuration management of software across the boundary between the two
environments.

These interfaces reflect the need for cross.dtve[.opment (i.e., development in one computer

environment for execution in another) of ground system software within the GSDE. The

CSC/SSD 7 September 1990

PRELIMINARY

CSC/TR-90/61 "_5

GSDE Interface Study

initial activity Of:this study is to identify obstacles to cross-development (interface

problems) that are specific to the SSTF and SSCC projects. While many of the software

construction details of those projects are unknown, due to the early state of the design of

those two systems and to pending procurements, it is possible to identify and report on

some of the anticipated problems. At the same time, the study team has identified

approaches to resolving or reducing those problems.

This report also describes plans for the prototyping effort of the study. It describes

procedures, operations, and interface problems that can be addressed and investigated

with prototypes. The areas of investigation include software development operations in

the complex of computers and workstations designated the Ground Systems/Software

Production Facility (GS/SPF), GS/SPF to IVTE interfaces, and methods of achieving

apparent functional equivalence between host and target systems.

This report will serve as input for the evolutionary development of the GSDE. It will

identify requirements for moving software between the GS/SPF and the IVTE for

compilation, testing, configuration management, and operations. It is intended to aid in

developing the operational plans for use of the GSDE by the SSTF and SSCC

contractors, as well as in acquiring the necessary tools and equipment for cost-effective
software engineering.

1.2 Scope and .Organization of this Report

The interface requirements addressed in this report include the following:

Operational flow of software between elements of the GS/SPF and the

appropriate IVTE, e.g., moving source code to an IVTE for compilation and test

Distributed configuration management (CM), during implementation and after

delivery

Interface mechanisms (protocols) used by ground system software for

communications within its execution environment (more specifically, data

interoperability across disparate architectures)

Rehost and test implications of differences between resources (e.g., specialized

hardware components) available in the GS/SPF environment and in the IVTEs

Requirements for specific tools and/or devices in the GSDE (to simulate or
replicate elements of the IVTE in the GS/SPF).

This report addresses the interface problems that result from separating the development

and execution functions on different computers. Those problems are, in effect,

CSC/SSD 8 September 1990

PRELIMINARY

CS C/TR-90/6155

GSDE Interface Study

requirements le.v.ied on the GSDE for specific elements of support. The primary focus of

this analysis is the requirements placed on the GSDE by the SSTF and SSCC projects.

Following this overview section, Section 2 provides a detailed analysis of the problem.

with references to similar types of problems encountered in other National Aeronautics

and Space Administration (NASA) ground system development efforts.

Section 3 describes the development process suggested for software engineering in the

GSDE. It discusses the requirements for CM, software porting and remote compilation,

and integration and test.

Section 4 discusses ways that the host environment can be made functionally similar to

the target environment. Requirements for a virtual environment are discussed, as are

tools and devices used to simulate the target.

Section 5 describes the prototyping effort that is planned to demonstrate the workability

of software to support the GSDE interfaces and to assist in further requirements

clarification. Section 6 describes resources necessary for the performance of the

prototyping effort. Section 7 presents the recommendations from this phase of the
research effort.

1.3 Statement of the Problem

The Mission Operations Directorate at JSC is responsible for the development of ground

support computer systems, the SSTF and the SSCC, for the Space Station Freedom

Program. The software in these systems is being developed in the Ground Software

Development Environment, on a complex of computers and workstations designated the

GS/SPF. The GS/SPF provides resources that are part of the SSFP Software Support

Environment (SSE). The GS/SPF includes an Amdahl mainframe, several Rational

R1000 Model 300S Ada development computers, and a local area network (LAN) with

various workstations (Apollo, MS DOS-compatible, and Apple Macintosh at a minimum)

and some special-purpose devices attached. This is referred to as the host environment.

Note

The terms host computer and host environment in this report
refer to the computers on which development is hosted.

All of the computers in the GS/SPF--not only the

mainframes--are considered host computers.

The target environments for this ground system software will be composed of computers,

workstations, and special-purpose devices that differ from the corresponding elements in

CSC/SSD 9 September 1990

PRELIMINARY

CSC/TR-90/6 ! 55

GSDE Interface Study

the GS/SPF environment. Software will be developed in the host environment and

transferred to the target for integration and system testing. The differences between host

and target will force some transformation and even redevelopment of code. The

separation of functions will also require mechanisms for communications and integration

between the host and target environments. The fact that both environments will be

heterogeneous, distributed systems further complicates the problem.

This study task (and the related prototyping effort) focuses on the interfaces between the

host and target environments. Those interfaces include communications between host

and target, actual transfer of files and command lists, and testing on the target that is

orchestrated from the host. The goal of the effort is to find or develop mechanisms of

GS/SPF-to-IVTE interfacing that will minimize the cost of rehosting software developed
in the GS/SPF.

1.4 Related Documents and References

Campbell, I., "Standardization, Availability and Use of PCTE", Information and Software

Technology, Vol. 29:8, October 1987

Campbell, I., "Emeraude Portable Common Tool Environment", Information andSoftware

Technology, Vol. 30:4, May 1988

Federal Information Processing Standards Publication 151, Portable Operating System

Interface Standards (POS IX)

Gallo, F., R. Minot, and I. Thomas, "The Object Management System of PCTE as a

Software Engineering Database Management System", ACMSIGPLANNotices, Vol. 22:1,

January 1987

Johnson Space Center/T. Price, Ground Software Development Environment, April 1990

(briefing)

Liu, L-C. and E. Horowitz, "Object Database Support for a Software Project

Management System", ACMSIGPLANNotices, Vol. 24:2, February 1989

McKay, C., "Portable Common Execution Environment (PCEE)", UHCL Report

Penedo, M., "Prototyping a Master Database for Software Engineering Environments",

ACMSIGPLANNotices, Vol. 22:1, January 1987

Schantz, R., et al, "Resource Management in the Cronus Distributed Operating System"

(abstract and bibliography), ACM Computer Communications P_view, Vol. 17:5, August 1987

CSC/SSD l0 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Stumm, M., "Strategies for Decentralized Resource Management", ACMComputer

Communications P_cview, Vol. 17:5, August 1987

Thomas, I., "The PCTE Initiative and the PACT Project", ACM Software Engineering
Notes, Vol. 13:4, October 1988

Vinter, S. "Integrated Distributed Computing Using Heterogeneous Systems", S_naL
June 1989

1.5 Glossary

AAS

A/D

AADS

Ada

APSE

CAIS-A

CM

CMVC

COTS

Cronus

CSC

D/A

DBMS

DEC

DMS

CSC/SSD

Advanced Automation System

analog to digital

Automated Attitude Determination System

Ada programming language; Ada is a registered trademark of the

US Government, Ada Joint Program Office

Ada Programming Support Environment

Common Ada Interface Set-A

configuration management

Component Management and Version Control system

commercial, off-the-shelf (i.e., commercially available hardware

or software products not requiring SSFP-specific development

distributed network operating system, developed at Rome Air

Development Center

Computer Sciences Corporation

digital to analog

database management system

Digital Equipment Corporation

Data Management System

'0

11 September 1990

DSDM

DTIA

FAA

FAC

GERM

GESS

GFE

GS/SPF

GSDE

GSFC

IBM

IVTE

JSC

LAN

MCC

MIPS

MOD

MSC

NASA

NDI

OS

PCEE

PCIS

PCTE

PRELIMINARY

CSC/TR-90/6155
GSDE Interface Stud_

Digital Systems Development Methodology, a trademark of the

Computer Sciences Corporation

Distributed Tool Integration Architecture

Federal Aviation Administration

Ford Aerospace Corporation

Generalized Entity-Relationship Model

Graphics Executive Support System

government furnished equipment

Ground Systems Software Production Facility

Ground Software Development Environment

Goddard Space Flight Center

International Business Machines

Integration, Verification, Test Environment

Lyndon B. Johnson Space Center

local area network

Mission Control Center

millions of instructions per second

Mission Operations Directorate

Mission Support Contract

National Aeronautics and Space Administration

non-developed item

operating system

Portable Common Execution Environment

Portable Common Interface Set

Portable Common Tool Environment

CSC/SSD 12 September 1990

POSIX

QA

RICIS

RXI

SDP

SIB

SMM

SPF

SSCC

SSE

SSFP

SSTF

TBU

TCP/IP

TSC

UHCL

VM__.

WAN

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Stud),

Portable Operating System Interface (standard)

quality assurance

Research Institute for Computing and Information Systems

Rational X-Windows Interface

Standard Data Processor

Simulation Interface Buffer

Solar Maximum Mission

Software Production Facility

Space Station Control Center

Software Support Environment

Space Station Freedom Program

Space Station Training Facility

Target Build Utility

Transmission Control Protocol/Internet Protocol

Training Support Contract

University of Houston-Clear Lake

virtual machifie environment

wide area network

CSC/SSD 13 September 1990

PRELIMINARY

CSC/TR-90/6] 55

GSDE Interface Study

Section 2 - Analysis of the Problem

As noted in Section 1.3, the problem addressed here is the development-to-execution

interfaces within the GSDE. The analysis presented in this section characterizes the

interfaces involved and identifies strategies for supporting those interfaces. The

resolution strategies and derived requirements for GSDE interface support are

investigated in Sections 3 and 4.

2.1 Ground Software Development Context

There are two major obstacles to the use of a single environment throughout the software

life cycle. First, the target systems (the SSTF and the SSCC) will include computers that

are not represented in the GS/SPF. Second, the target systems will include a significant

amount of code that is reused from previous systems, for which the standard SPF does

not provide compilers and tools. Because of these two obstacles, integration and testing

of the ground software will require the use of target facilities that are distinct from the

GS/SPF. There will be one such facility, called an IVTE, for each of the ground

systems. Figure 2-1 shows this configuration.

Because of execution, interface, and performance requirements, SSTF and SSCC ground

software will operate on different types of computers from those used for development.

In particular, the major development platform will be Rational RI000 computers, which

are not suitable for operations. (The Rational computer systems are optimized for Ada

code development and are not cost-effective for general data processing operations).

Other differences will be defined as system designs and hardware procurements are

completed.

Rehosting generally requires changes and modifications that increase the cost of

ownership of the software. In extreme cases, a substantial amount of development (or

redevelopment) occurs in the target environment. This reduces the cost effectiveness of

the entire process. The host environment (e.g., the GS/SPF) is typically far more

productive (due to factors like availability, power, and tools complement) than the target.

Integration and testing, on the other hand, can be very expensive if performed on the host

because of the cost of simulating or emulating the target environment in the host

environment. An example is the use of Data Management System (DMS) kits and the

Simulation Interface Buffer (SIB) for development of SSFP flight software.

CSC/SSD 14 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

_Rli00 I , I

RIO00]

RII_

ADA

Develop_nt

AMDAHL

COMPILERS

CONFIG. MANAGEMENT

I OADP

OAOP

COMPILERS

COMMUNICATIONS_ NETWORK

All(ilia, PS,"2,

Ma¢tnloeh

I

o-oljOTHF.R SPECIAL

HARDWARE

HOST ENVIRONMENT (GS/SPF)

II

I OADP 1

OADPCOMPILERS I

J

I

OADP

I
l

I
I-IHARDWARE

I

KIT I

I I
S,_C _'rF

TARGET (INTEGRATION, VERIFICATION, TEST ENVIRONMENT

GROUND SOFTWARE DEVELOPMENT ENVIRONMENT (GSDE) UHCL-O04

Figure 2.1. Ground Software Development Environment

CSC/SSD 15 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

The basic problem is to find a cost-effective balance between using the high-fidelity

target environment and the high-productivity host environment. The study described in

this report involves identifying strategies and techniques for optimizing the use of the

GS/SPF in developing software for the SSTF and the SSCC. By supporting test and

integration on the host and reducing the use of the target environments, the overall cost
of development can be reduced.

In general, several basic strategies can be used to achieve this balance of

development between host and target. For example, the host environment can be

enhanced, making it more attractive to developers. Tools (e.g., cross-compilers and

target-machine simulators) can be used to perform simulated target-based testing. The

target environment can be stripped of development tools (e.g., editors, debuggers) to

make it less attractive. Virtual-machine interfaces (e.g., POSIX) can be installed on both

target and host environments to minimize the differences. Some of these strategies are

provided by the SSFP SSE and are already in place in the GSDE.

Software development for the SSTF and the SSCC will take place in the GSDE on the

GS/SPF. The developers of these ground systems, the Mission Support Contractor

(MSC) for the SSCC and the Training Support Contractor (TSC) for the SSTF, will each
have components of the GS/SPF located within their facilities and dedicated to their use.

Administration of the GS/SPF and CM of ground system software will be centralized at

JSC. Figure 2-2 shows this basic configuration.

By using the GS/SPF, the ground systems software developers can take advantage of the

tools and facilities that have been collected and created to boost software productivity.

The GS/SPF provides tools and database support for many aspects of software

development, including the following:

o Requirements development and tracking

o System and software design

o Schedule and performance management

o Configuration management

o Code development (for Ada code)

o Test and integration
o Documentation.

Using this environment, developers will be able to capitalize on the availability of

software tools and procedures developed for all of the SSFP. Some of the tools,

particularly Cadre Teamwork and Rational R 1000 computers, have established excellent

track records for improving the productivity of users and the quality of products. The

GS/SPF will provide users with an extensive set of resources, including an Amdahl,

several Rationals, many workstations of several types (Apollo, MS-DOS or OS/2

compatible, Apple Macintosh, possible others), and network support.

CSC/SSD 16 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

RIO00 _

1:11000

RIOGO

ADA

Oevelopmem AMDAHL J_

COMI_LF.RS
CONFIGURATION

MANAGEMENT

COMMUNICATIONS NETWORK

I I I
SSTF

R1000

SSCC

HOST ENVIRONMENT (GS/SI:_') UHCL-OG2

Figure 2-2. Ground Systems/Software Production Facility

CSC/SSD 17 September 1990

PRELIMINARY

CSC/TR-90/6155
GSDE Interface Study

2.2 Host-to-Target Development Requirements

2.2.1

The most common strategy for developing software is to use the same computer(s) for

development and for operations. (This strategy, called sdf-ta_eting, also includes using

compatible computers, such as different models of VAX computers). This strategy

requires that the target computer provide adequate development tools such as compilers,

linkers, and debuggers. There are few problems of incompatibility between host and

target machines because they are the same, or at least functionally equivalent. (Even

with this strategy, differences in processing speed or in peripheral complement could

cause problems, but these are generally minor and easily solved.)

Cross-Development Justification

There are several reasons why functionally different machines will be used for

development and operations. The requirements of the two different uses are generally

quite different: the target computers are selected to meet operational requirements (such

as fast processing, real-time response, small size, or flight qualification), while the host

computers are chosen to minimize the cost of development. For SSFP ground software,

it is not possible or practical to find one system that is optimal for both sets of
requirements.

Additional development costs are incurred whenever software must be ported from one

computer to a different one. In this instance, the difference in requirements (between

development and operations) is large enough to justify the cost of transitioning from host

to target. Accordingly, different computers have been selected.

The GS/SPF is based on the SSFP SSE and includes a very extensive set of procedures,

tools, and standards for software development. The support provided by the SPF extends

from requirements definition and analysis to configuration management of developed

code. The SPF includes documentation and project management support, an extensive

training and support system, and ongoing development of new tools and capabilities.

This level of support would be impossible to provide for each target environment.

The GS/SPF also includes Rational development systems, which are highly effective Ada

development tools that are not suited for use as targets in real-time applications. It

includes other tools and capabilities (such as Teamwork and Interleaf) that are not suited

to either the SSTF or the SSCC target environment. Both target environments require

real-time distributed processing and involve specialized hardware that is not part of the

standard SPF complement.

To support integration and test, the special-purpose hardware and target system

computers will be replicated in the IVTEs. For both cost and productivity reasons, the

IVTEs will be restricted to use only for integration verification and test. All

CSC/SSD 18 September 1990

PREUMINARY

CSC/TR-90/6155

GSDE Interface Study

development will be performed in the GS/SPF, and developed software will be ported to
the IVTEs.

2.2.2 Models of Host-Target Development

The cost of transitioning is dependent on the support provided to the developer for

masking or accommodating the functional disparities. There are several models for

supporting this transition, with varying implications and cost factors.

The simplest model (see figure 2-3), often used in avionics development, uses a bare

machine for the target and performs all code implementation on the host system. Cross-

compilers and loaders are provided by the host computer. Executable images are

downloaded to the target; testing is often performed under control of the host system.

The target computer may be simulated on the host system so that functional testing can

be performed without using the actual target. Such simulators generally provide more

instrumentation (e.g., symbolic debuggers and breakpoints) than the actual target

computer provides.

This model will apply to special-purpose hardware such as communications processors,

which be identified as the SSTF and SSCC design efforts proceed.

A more complex model (figure 2-4) involves a target processor with its own operating

system and system-level applications (e.g., a DBMS or an inference engine). The host

environment is used to create and unit-test code, but the target's compilers and loaders

are used to create executable images for integration test and operations. Some of the

ekn_ntsof the target (such as external interfaces) may be simulated on the host to support

unit-testing, but the entire target environment cannot be realistically simulated.

This model may be appropriate when the target is adequately supported and is powerful
enough to support compilation and test. This model makes effective use of the host

environment during early stages of implementation but may get cumbersome during later

stages of the life cycle. Changes to applications (e.g., replacing stubs with actual system

calls) are often needed when transitioning from host to target. Those changes make it

difficult even to unit-test modifications on the host system.

The mainframes and workstations in the IVTEs fit this model. The specifics of those

machines are dependent on the outcome of the OADP procurement.

A third model (figure 2-5) involves the use of "virtual machine" software to hide the

differences between host and target. The virtual machine environment (VME) software

is itself hardware specific. It resides on both host and target systems, masking the

differences. This model requires that functionally equivalent compilers be available on

both systems. As with other models, there may be some simulation of the target on the

host, but the VME provides most of the interface.

CSC/SSD 19 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

m

T
O
O
L
S

TARGETRTE

TA RG ET SIMU LATOR

SOFTWARE DEVELOPMENT
ENVIRONMENT

LINK AND DOWNLOAD

TEST INFORMATION

TARGET
RTE

TARGET (BARE MACHINE)

Figure 2-3. Bare-Machine Targeting

CSC/SSD 2O September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

DEVELOPMENT
TOOLS

APP.
S/W

I HOST LIBRARY I
J

I HOST OS

SOFTWARE DEVELOPMENT
ENVIRONMENT

DOWNLOAD, COMPILE,
AND LINK

BUILD STATUS

TEST INFORMATION

APPLICATION _

LIBRARY

TA RG ET
OS

TARGET ENVIRONMENT

\

KEY:
APP. S/W: APPLICATION SOFTWARE

UHCL-O06

Figure 2-4. Peer-Machine Targeting

CSC/SSD 21 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

T
O
O
L
S

VIRTUAL MACHINE
ENVIRONMENT

SOFTWARE DEVELOPMENT
ENVI RONMENT

KEY:
APP. S/W: APPLICATION SOFTWARE
VME: VIRTURAL MACHINE ENVIRONMENT

DOWNLOAD

BUILD STATUS

TEST INFORMATION

UHCL-007

Figure 2-5. Virtual Machine Targeting

CSC/SSD 22 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

2.2.3

This model requires that VME implementations exist or be developed for all host and

target computers. The VME may impose a performance penalty on the target, which

may be unacceptable. The most common example of this approach is the use of Unix as

a platform-independent operating system; the POSIX standard is intended to make the

Unix model more consistent. Another example is Cronus, which provides an interface

definition and supporting software for peer-to-peer and application-to-data interfaces.

It may be possible to apply this model to some or all of the mainframes and workstations

in the IVTEs. Further study of requirements and available commercial environments, as

well as prototyping of some interfaces, will be used to resolve this issue. Sections 2.2.2

and 4.3 provide further discussion of this issue.

Obstacles to Host-Target

Development

As previously noted, there are problems associated with developing code on one type of

computer for operation on another. Each of the development models described in

subsection 2.2.2 has a different set of problems, advantages, and cost factors. In brief,

those problems include the following incompatibilities:

o Object-code and addressing

o Low-level operating system (OS) facilities (e.g., interrupts)

o Peripheral hardware (I/O, network, etc.)

o Resources available (e.g., memory)

o Timing (performance and clock services)

o High-level (system call) OS services

o Library routines (standard libraries)

o Compilers

The characterization and mitigationof each of these problems, with respect to the models

defined above, is discussed in the following subsections.

Object code and addressing. The object code for different processors is, of course,

different. Addressing schemes may also be different in subtler ways; logically equivalent

data structures may exhibit differences in performance due to segmentation and memory

architecture. Most such problems are solved with the used of high-order languages, but

there can be differences (e.g., in hardware arithmetic) that have subtle impacts.

The bare-machine model may address the problem by simulating in detail the

performance of the target computer. The mixed-machine and virtual-machine models

must rely on precise format specifications and careful record-keeping to mitigate the

problem. Ada provides some support for detailed specification of formats, and some

virtual machines (e.g., Cronus) provide standard formats and conversion routines.

CSC/SSD 23 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Low-level O$ facilities. Many operating systems have program information stored in

specific locations, such as program status word, job control and file control blocks, or

video display memory. These facilities generally cannot be tested except on the target

machine. The software applications that use these facilities can be tested if they are

simulated on the host. This is often the case on bare-machine model systems.

Peripheral hardware. Control of hardware devices that will attach to the target

computer presents a considerable difficulty. These hardware devices include analog-to-

digital (A/D) and digital-to-analog (D/A) converters, communications interfaces such as

Ethernet transceivers and modems, recording devices, display devices, switches, etc. In

some instances, the device may be able to connect directly to the host computer for

integration and testing. In other cases, there may be equivalent devices for both target

and host. In still other cases, it may be necessary either to simulate the device on the host

or to delay testing until transition to the target. (The last option does nothing to reduce

risk; it simply permits testing of other elements of the system).

Resource availability. Even if the host and target are otherwise compatible, differences

in resources may pose an obstacle to integration and test. Main memory size is an

obvious example; development machines often require and have more available main

memory than do targets. Disk space and speed and coprocessors are other examples of

critical resources. These may not affect the logical construction of application programs

but may impact the integration and test of applications. (For example, a very real

concern for SpaceStation flight software is that applications that work in a development

environment may not fit in the memory available on a Standard Data Processor.)

Resource limits such as these must be identified for each host-target pair and may be

different for different applications depending on requirements. Once identified, checks

must be made to ensure that application software uses only resources that will be

available on the target.

Timing considerations. In a real-time environment, the availability of support for

timing and clock services is critical. This is one area in which the target is more likely

than the host to have the necessary facilities. Interactions among task elements may be

difficult to test in the host environment if the target's real-time environment cannot be

accurately simulated. Clock and timer services provided by the target may be

unavailable in the host, or may be available only to the system supervisor. Planning is

necessary to ensure that timing considerations are addressed during development.

Benchmarking of the target may be needed to establish simulation parameters on the
host.

High-level OS services. The services that are readily accessible to high-order languages,

such as file operations and interprocess communications, are more or less platform

specific. Generally, they are straightforward and easily simulated. If the operating

system is standardized (e.g., POSIX-compliant) the simulation is made even simpler.

High-level system services present an obstacle to cross-development, but one that is

CSC/SSD 24 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

easily addressed (e.g., by writing interface routines to translate from one context to

another).

Library-based services. In addition to the services provided by the platform OS, there

are support libraries for specific compilers, data base systems, network services, etc.

These libraries are often duplicated on both host and target, but the duplications are of

variable fidelity. Experience with Ada support libraries on different systems, for

example, has shown that careful testing is needed to ensure functional equivalence in

operational settings. Past history and good record.keeping are valuable in assessing the

magnitude of this obstacle to cross-development.

Compilers. The differences among various CPUs and memory systems are largely

camouflaged by the use of common high-order languages. However, compilers

themselves can introduce differences, especially when produced by different vendors.

The Ada compiler validation process tends to reduce such problems for Ada, but does not
eliminate them. The Federal Aviation Administration's (FAA) Advanced Automation

System (AAS) has identified many compiler differences, as noted in section 2.2.4. As

with library service differences, experience and recordkeeping are important to

addressing the problem.

2.2.4 Experiences with Cross-Development

NASA has considerable experience in cross-development, using all three models of host-

to-target development. Flight computers are generally too small to support compilers

and development tools, and are typically supported with host development systems. This

falls into the "bare-machine" model. Typically, the software for an onboard computer is

written and cross-compiled or cross-assembled on a general-purpose computer (such as a

VAX) and downloaded to the target for testing. The target computer generally remains

connected to the host for test control, test data, and perhaps simulated data.

Autonomous Attitude Determination System. An example of this class of cross-

development was the Autonomous Attitude Determination System (AADS). The target

was a 16-bit Intel processor (not flight-qualified); the host was a VAX 780. The AADS

system was first constructed on the VAX and functionally tested, then cross-compiled for

the target and downloaded. Support software developed on the host included a full data

simulation system, a test harness, and a ground command simulator. The simulation

system served the purpose of the simulation interface buffer (SIB), providing all of the

signals that the AADS would receive if it were actually on board a satellite. (It was

generalized from dynamics simulators used for testing mission-specific onboard

computers). The test harness provide the controls for transmitting data and retrieving

results, with facilities for adjusting the time step and for restarting the simulation. The

ground command simulator provided the operator interface (distinct from the test

operator) to exercise the AADS.

CSC/SSD 25 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

The bulk of development was performed on the host, with testing being performed on the

target.

Solar Maximum Mission Attitude Determination. NASA's operational ground system

computers are heavily committed to operations in some instances, and cannot provide

adequate resources for development of new systems or maintenance of current systems.

Since many of these systems involve highly specialized equipment (operator consoles,

orbit ta'ack displays, etc.), development must proceed with limited access to parts of the

system. This was the case during the development of the Solar Maximum Mission

(SMM) attitude ground software at Goddard Space Flight Center.

The operational system used a specialized console interface program called GESS

(Graphics Executive Support System), which was closely tied to the display devices and

operating system of the operations computer system. To support development offline, a

PDP-11/70 computer was used to emulate the IBM 360/95 target environment. The

differences between Digital Equipment Corporation (DEC) and IBM FORTRAN were

mapped out, and many utility routines that had been developed for the target were

rewritten for the host. The GESS program was simulated on the host, using VT- 100

terminals as substitutes for 2250 displays.

After development and functional testing, the code was ported to the target. Changes

were needed where the GESS simulation was not a true copy of the target version, and

where language and machine architecture differences caused problems. Final integration

and redevelopment were performed on the target, which did have a full complement of

development tools. The developed code was never returned to the host after being ported

to the target. (This is typical of traditional cross-development practices).

Advanced Automation System. Another example of cross-development (although not a

NASA experience) involves developing software on Rational machines for operation on

IBM mainframes. The Advanced Automation System being built for the FAA'is

currently being developed in Ada. Rational R1000 development computers are used for

initial code design and development. The code is functionally tested and then recompiled

on the target with the Telesoft Ada compiler. The system has both real-time and fault-

tolerant elements, and requires extensive integration and system testing.

It has been found that Ada code developed on the Rational for the IBM system does not

perform exactly the same on host and target. The differences between the Rational

version of the library and the Telesoft library are enough to cause problems in this

particular environment. Because of the superior performance of the Rational compiler,

the developers make every effort to complete development on those computers; but

integration must still be performed on the target. When software is moved back to the

Rational for software fixes, configuration management is compromised.

CSC/SSD 26 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

2.2.5 Implicationsfor Different Models

With the bare-machine model, the host computer must provide extensive simulation and

cross-development facilities. As with the AADS example, the target computer is only a
small portion of the total integration environment. The test framework and whatever

interface support is required must be built in the host to enable the tests to be performed.

If the target itself can be simulated in the host (a common condition with many small

bare computers), the development process can be streamlined very well. As more of the

target environment is replicated in the host, the cost and risk of cross-development is

greatly reduced. Of course, the cost of reproducing the target environment must be
evaluated.

When the target machine is of the same class as the development computer (i.e., both are

general purpose systems, the peer-machine model), it is not practical to replicate one

computer system in another. Compilers and standard libraries can minimize the

differences, but (as with the SMM example) there may also be a need to duplicate

special-purpose hardware or software to perform even unit-testing. The higher
productivity of the host environment is presumed to more than offset the cost of

redevelopment after porting. (In the SMM example, the benefit was the much greater
availability of the host system).

One risk of using this approach is that, if changes are made to specialized software on the
target, those changes must also be made to the host emulation. This increases the cost of

sustaining engineering.

Another risk is that anomalies may be reported in the developed code that are in fact due

to errors in emulation. Experience with using simulators to test operational software (a

common practice) shows that apparent errors in the operational software are often due to

simu[atorbugs instead of errors in the operational code. Other problem reports can stem

from less-than-complete fidelity in the simulation.

The SMM example actually demonstrated some aspects of the Virtual Machine

Environment (VME) approach to cross-development. The GESS software on the target

was created to isolate operational software from some characteristics and machine

dependencies on the target. Instead of developing software for the actual display devices

and memory structures, code was developed for the GESS virtual machine. By

replicating that capability on the host, it was possible to develop "machine-independent"
code.

2.3 Strategies for Cost-Effective Development

The incentive for maximizing the use of the GS/SPF--and delaying as long as possible

the shift to the IVTE--is that support for dozens or hundreds of developers can be

CSC/SSD 27 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

provided more effectively and at less cost in the SPF. The IVTE is expensive and is not

conducive to high productivity. The GS/SPF can more readily accommodate large

numbers of users, more and better tools, and better integration of tools. The SPF can

also be expanded more easily than can the IVTEs. The problem is to mask and contain

the inevitable cross-development incompatibilities so that GS/SPF-based development

can be effective as well as productive.

Two basic, mutually reinforcing strategies can be followed to maximize use of the

GS/SPF, and thereby reduce the overall cost of ground software development. First,

tools and procedures can be put in place to simplify the cross-development process and

encourage development in the host environment. Second, tools and simulations can be

installed in the host (and possibly in the target) to minimize the differences between host

and target. The first strategy involves the process of cross-development; the second

strategy directly affects the design and implementation of application software.

Both of these strategies must be tailored to the systems being developed. The

development process strategy must encompass the use of the Amdahl and Rationals as

well as various network-interfaced workstations. The applications strategy must

accommodate the specific requirements of the two systems as well as the expected use of

existing code.

Section 2.4 discusses the characteristics of the various development and operational

environments and describes the process of assembling the requirements to tailor these

strategies. Sections 3 and 4 discuss the strategies themselves.

2.4 Ground System Development

This section describes the different computing environments that were reviewed to derive
interface requirements for the GSDE.

2.4.1 Ground Support Development
Environment

The GSDE system is a distributed system with users of the system networked to a central

facility located in Building 46 at JSC. Each of the users have development computers

within other facilities. Figure 2-6 shows the overall architectural layout of the GSDE,

with logical communications interfaces shown by the arrows. This layout includes an

overview of the portions of the GSDE that are in the facilities of the TSC and MSC
contractors.

CSC/SSD 28 September 1990

PREUMINARY

CSC/TR-90/6155

GSDE Interface Study

MSC DEVELOPMEN1]

WORKSTATION

CONTRACTOR SITE I

MSC IVT&E " J _

•

GSDE RATIONAL
BUILDING 46

GSDE HOST
AMDAHL
BUILDING 46

TSC RATIONAL

TSC CONTRACTOR
SITE

WORKSTATIONS I

CONTRACTOR SITE I

TSC IVT&E

KEY:

ARROWS SHOW LOGICAL (NOT PHYSICAL) COMMUNICATIONS PATHS

Figure 2-6. GSDE Communications Architecture

CSC/SSD 29 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

2.4.2

Since the GDSE is the central portion of the development environment, it will be the

central repository for all developed software. It will maintain a centralized configuration

control accounting and be a centralized reporting point for software testing reports.

Figure 2-7 depicts the functions performed by the different elements within the GDSE.

Software developed within the GS/SPF will be ported to IVTEs (one for the SSCC and

one for the SSTF). This interface (from GS/SPF to IVTE) is critical to the success of the

planned use of the GS/SPF as the central software development facility for developing
software for the SSCC and the SSTF. This GS/SPF to IVTE interface must be

transparent to the developed software to reduce the need for development activities on

the IVTE (target) machines.

The target machines are not yet specified, except in general terms (e.g., performance

estimated in millions of instructions per second (MIPS), support for specific

programming languages). Based on anticipated requirements, it seems probable that the
target systems will include:

O Mainframe computers and midrange computers from the set of IBM 370 or 390

series computers, DEC VAX computers, or systems from Control Data

Corporation or from Unisys Corporation.

O Workstations based on the Unix operating system, such as Sun (Sun OS), Apollo

(Domain), IBM 6000 (AIX), or DEC VAXstation (Ultrix).

o Masscomp workstations

o Special purpose hardware (unique to each IVTE)

Once the computer systems have been selected as a result of the OADP procurement, the

requirements for interfaces to the target systems will be specified in detail.

Space Station Training Facility

Software development for the SSTF will be a distributed process. The bulk of the

software will be developed on workstations (Apollo) and Rational development hardware

and software located in the Link Flight Simulation Building. These development

machines will be connected to the GSDE host located in Building 46 at JSC. Figure 2-8

illustrates this configuration, and shows the allocation of functions to different TSC

facility components.

It is intended that software developed at the CAE-Link facility will be stored on the

GSDE host. Configuration control will also be maintained on the GSDE host.

CSC/SSD 30 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Stud,,,'

MSCRATIONAL
MSCCONTRACTOR

S_E

• ADA CODE DEVELOPMENT
• MSCDEVELOPMENT

CONRGURATION CONTROL

* CONFIGURATION

CONTROL FOR

RATIONALS

I GSDERATIONAL
BUILDING48

TSCRA_ONAL

TSCCONTRACTOR

SITE

• ADA CODE DEVELOPMENT

"TSCDEVELOPMENT

CONRGURATIONCONTROL

MSCDEVELOPMENT

WORKSTATIONS

CONTRACTOR SITE

" ADA CODE DEVELOPMENT

° TEST REPORT RECEPTION

GSDE HOST

AMDAHL

BUILDING 46

• ADA CODE DEVELOPMENT

• CODE REPOSITORY

• CONFIGURATION CONTROL CENTER

' TEST REPORTING CENTER

• CODE TESTING (UNIT)

MSC IVT&E i
BUILDING 30A

• CODE TESTING AND

INTEGRATION

• TEST REPORT GENERATION

TSCDEYELOPMENT

WORKSTATIONS

CONTRACTOR SITE

• ADACODE DEVELOPMENT

"TEST REPORT RECEPTION

TSC IVT&E o

BUILDING 46

• CODE TESTING AND

INTEGRATION

• TEST REPORT GENERATION

Figure 2-7. GSDE Functional Architecture

CSC/SSD 31 September 1990

PREUMINARY

CSC/TR-90/6155

GSDE Interface Study

* CODE REPOSITORY
* CONF1G.CONTROL
* UNIT TESTING
" TEST REPORT CENTER
* C CODE DEVELOPMENT
* FORTRAN DEVELOPMENT
* ADA TRAINING
* SYSTEM ANALYSIS

I

LR "l_C
ATIONAL

* CODE DEVELOPMENT
* CONFIG. CONTROL

GSDE HOST
AMDAHL

I
TSC Iv'r&E LAN

L GSDE JRATIONAL

* CONFIG. CONTROL

4

i

I

• TMIS

• DOCUMENTATION L

'r_ DEVELOPMENT]FILE SERVER

TSC SOFTWARE DEVELOPMENT LAN

* CODE DEVELOPMENT * CODE TEST
* DOCUMENTATION

Figure 2-8. TSC Development Facility

CSC/SSD 32 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

The target machines for the developed software will be the IVTE for the SSTF located in

Building 5 at JSC. The IVTE hardware is expected to be identical to the operational
hardware.

The SSTF IVTE will include support for SSFP SDPs and other specialized devices,

including "aural cue" (voice data processing) systems and visual scene processing

hardware. These items, along with other special-purpose devices in the SSTF IVTE, will

be identified as the SSTF design progresses.

The software for the SSTF is largely a complex, highly distributed, real-time event-

driven simulation and control system. The software must perform simulations (e.g., of

the Space Station environment, of the modules, of the onboard computer systems) in real

time to provide a highly accurate emulation of the real Space Station. The training

facility needs the ability to model the various stages of consu'uction and assembly, and so

must be flexible and reconfigurable.

2.4.3 SSCC Software Development

Software development for the SSCC will be a distributed process. The bulk of the

software will be developed on workstations (Apollo) and Rational development hardware

and software located in the FAC building. These development machines will be

connected to the GSDE host located in Building 46 at JSC. Figure 2-9 illustrates this

configuration, and shows the allocation of functions for components of the development

facility.

It is intended that software developed at the FAC facility will be stored on the GSDE

host. Configuration control will also be maintained on the GSDE host.

The target machines for the developed software will be the IVTE for the SSCC located in

Building 30A at JSC. The IVTE h_'dware is expected to not always be identical to the

operational hardware.

The SSCC will include special purpose hardware for communications processing, for

large-scale visual display, for recording, and for communications link management.

These devices will be specified during the SSCC design process.

The software in the SSCC is primarily oriented toward receiving, processing, displaying,

and capturing real-time telemetry data from the Space Station. In general, it does not

include closed-loop real-time processing, although some of the communications

equipment may have such constraints. The intent is to provide information to operators

for assessment and action. The SSCC software is characterized by high data volumes,

complex processing, and human interaction performance goals.

Unlike previous manned space flight control centers, the SSCC will be operational full

time for the life of the Space Station Freedom. The SSCC must therefore be highly

CSC/SSD 33 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

• CODE REPOSITORY
"TEST REPORTING
• CONFIG. CONTROL

* UNIT TESTING 1['

GSDE
HOST

AMDAHL

|

I,SOL,TIONS"TCH]

"CODE INTEGRATION
* CODE TESTING
"TEST REPORT GENERATION

MSC
RATIONAL

*CONFIG. CONTROL

I CISCO 1

ROUTER I

t
_cso_sul

T
I c,sco I

COMMUN_ATIONS]
DISTRIBUTION
PANELS

MSCSOFTWARE DEVELOPMENT LAN
L 4 _L

r

MSC
RATIONAL!

• CODE DEVELOPMENT
• CONFIG. CONTROL

I

MAC APOLLO SSCC
TARGETWS WS

WS

" CODE DEV. * CODE DEV. * CODE TES'nNG

UNIX ,2_

DEV. iWS

• CODE DEV.

Figure 2-9. MSC Development Facility

CSC/SSD 34 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

reliable and fault tolerant, with appropriate load-sharing and failover capabilities. The
software architecture will have to reflect this consideration.

2.5 Requirements Collection Process

This section describes the process used to collect data for this study as well as how that

data was used. Data was collected through a series of interviews with personnel

responsible for the various pieces of the GSDE. It is important to note that the GDSE is

still being defined in terms of development methodology and operational scenarios.

Information was collected from the MSC prime contractor, but information is still needed

from the TSC prime contractor.

Much of the hardware and software tools to be used for the development of ground

software have been purchased and are in place within the building 46 facility. The data

collection process involved defining the general structure of the SSTF and SSCC,

mapping the development of the necessary software onto the elements of the GSDE, and

identifying interfaces where software and control information and status information will

have to be communicated from one system to another. The obstacles to smooth

communications and transitions were identified in general and were discussed with

representatives of the TSC and MSC contractors.

The data collection process also involved reviewing various distributed computing

support environments to identify problems that are likely to be found. The examples

examined ranged from conceptual analyses to actual, commercially available

environments. On the basis of these researches, anticipated interface problems were

identified and discussed with TSC and MSC personnel.

CSC/SSD 35 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Section 3- Development Process Interface Issues

This section discusses the standard software processes for development and configuration

management, and investigates the problems that result from cross-development. This

section also discusses various issues within the GSDE (including the SSTF and SSCC)

that impose added requirements on the use of this standard process. The normal flow of

development is analyzed to expose issues that might hinder this flow.

3.1 Standard Software Process

The process of developing software in the SSE-supplied environment is described at

length in SSE documentation. Specific adaptations for ground software development and

for the SSTF and SSCC hardware environments are documented by the TSC and MSC

contractors, respectively.

The SSE is designed for development on one system with targeting to one other specific

platform--the Standard Data Processor. To support this cross-development, the SSE uses

actual target machines (DMS kits) and simulation support (a SIB). Ground software

development will use some of the same strategies, but has a much wider array of

potential targets ranging from mainframes to special-purpose programmable devices.

This development process, for the most part, matches the "peer machine" model of cross-

development as defined in Subsection 2.2.2. In the following discussion, areas where the

VME approach might alleviate problems are pointed out.

In order to maintain control of the process, cross-development in the GSDE will make

use of code management and configuration control services in the GS/SPF for all code,

including code that has been ported to the IVTE. Figure 3-1 shows the general sequence
of activities.

The implementation process includes the following basic steps:

o Create or adapt source code
o Build host-based executable files

o Perform unit testing on host

o Create target-build scripts

o Build executable files on target

o Perform integration testing on target.

The first four steps are performed entirely in the host environment. The last three steps

involve both the host and the target. Figure 3-1 shows the procedures in sequence

clockwise from upper left.

CSC/SSD 36 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

E
0

>

e_

@

°_

CSC/SSD 37 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Stud,,

Create source code. Working from design information and/or existing code. the tools

in the host are used to create application software source code. The presumption is that

all Ada code will be developed on Rational systems, using the incremental compiler,

Code Management and Version Control (CMVC) system, and other tools as needed.

Non-Ada code (FORTRAN and C) will be developed on workstations or on the GS/SPF

Amdahl. Reusable code will be placed under configuration control (if not already

controlled) and included in the application source files. Configuration control is

essentially at the level of the individual developer or development group.

In cross-development, the developer must be familiar with both the host and the target

compilers and support tools. The VME approach would reduce the need to learn two

different systems to develop software for just one.

Along with the source code, scripts will be created to control the compilation and linking

of the application software. These "build scripts" will serve as module reference lists,

and will be the basis for target-build scripts to be created later. These scripts may be

used as lists for code-reading and certification as well.

Build host-based executable files. Syntactical and interface accuracy will be verified

by compiling the source code on the host and linking it with system support files. The

code is still controlled at the developer level. The host environment editing system is

used to make any changes to the source code and build scripts. The code must be

designed to work on the target, but must be compilable on the host. If there are a variety

of target environments, this can be difficult to provide in any one host.

Perform unit-testing on host. Still in the host environment, executable files are unit

tested using data sets designed to exercise as much of the functionality as possible.
Because the host environment does not include all of the interfaces and characteristics of

the target, some elements will need to be stubbed out or ignored. Some of these target-

only features may be simulated on the host, permitting functional testing to be
performed.

A VME approach to supporting cross development would minimize the number of

different features to be simulated. Due to the real-time nature of the problem, the

performance impact and significance of this approach must be evaluated for each
interface.

A common way of performing unit tests is to establish an executable image of part of the

system with stubs for incomplete segments and then to plug in new components for

testing in place of stubs. The developing subsystem executable image serves as a test

framework and ensures that intermodule interfaces get heavily exercised.

The feasibility of performing interprocess and interprocessor communications testing

depends on the level of simulation and support provided in the host. Mechanisms for

providing such support are discussed later in this report.

CSC/SSD 38 September 1990

PRELIMINARY

CSC/TR-90/6155
GSDE Interface Study

Create target.build scripts. The scripts needed to perform compilation, linking, and

testing on the target are typically created by modifying the scripts used in the host

environment. The Rational Ada Development System has the capability of building such

scripts for certain target processors. The requirements and characteristics of the target-

machine compilers and linkers must be understood in order for these scripts to be built.

One of the questions involved in planning the target-build process is how much object

code is retained on the target. The cleanest way to ensure consistent, repeatable testing is

to recompile everything that is not part of the target operating system. In practice, some

large systems take so long to compile that total recompilations are to be avoided. This

requires careful recordkeeping so that the scripts created for target-building can reliably
ensure that all software objects are current.

The target-build scripts themselves are created with editors or special utilities in the host

environment. They are subject to the same level of configuration control as the source
code and test data.

Build executable files on the target. This step mirrors the host-build process of

compiling, identifying, and correcting syntactical and interface errors and then

rebuilding. The source code is resident on the host and is transmitted (along with the

target build scripts) to the target machines. Compilation and linkage reports are returned

to the host environment where any necessary changes to the source code are made. The

changes needed for compilation on the target may be incompatible with the host

development system (e.g., language-sensitive editor, compiled unit library), in which

case the source code must be stored as text. Successful compilations and links produce

object files which are returned to the host for storage.

Depending on the target environment, the object files may also be retained in the target

for use in subsequent compilations. The main requirement is that the target environment

must support the use of a singk instance of an object anywhere in the distributed target.

This requirement ensures that outdated files axe not left sitting where they might be
inadvertently used.

In any case, the objects will be stored on the host, and can be downloaded along with

source code, to facilitate system building without massive recompilation. Configuration

control remains in the host. If more than one developer has access to a target machine

(as is probable), configuration control must be elevated above the developer level.

Perform target-based testing. Executable images and test scaffolding are either

downloaded from the host or loaded from the target object library. Test reporting

software is included in the scaffolding so that tests can be controlled and evaluated from

workstations in the host environment. (Some types of tests, particularly those involving

hard real-time constraints, may not be compatible with this procedure. Those tests will

be performed directly on the target.)

CSC/SSD 39 September 1990

PRELIMINARY

CSC/TR-90/6] 55

GSDE Interface Study

The outcome Of.the testing is reported, in real-time or as test log files created during the

test, to the developer in the host environment. Any changes necessary to the source code

or test data and scripts are made in the host environment. Configuration control stays in

the host, even when testing has shifted to the target environment. This ensures that all

related development takes advantage of the most up-to-date version of the software.

3.2 Distributed Configuration Management

A major characteristic of software development in the GSDE is that CM must deal with

files that are created on several different kinds of machines, providing appropriate levels

of control for each stage of development. Before software is delivered for central

control, it must be tracked and controlled at the level of developer, development team, or

test organization. Following delivery, control will be centralized with provisions for "in
use" copies to be moved around the GSDE.

These two stages of control are discussed below.

3.2.1 CM During Code Development

When code is first created, it will be controlled on the machine used for its creation. For

Ada code, that generally means one of the Rational R100Os. For FORTRAN and C code,

the development machines will generally be workstations. The source code control tools

on each machine will be used to control and track the necessary files. At this stage, there

is no need for CM per3e because there is only one version of the source code. That

version is under the control of the originator.

For tracking purposes, the module lists developed during detailed design will serve as

control lists to identify the family of files associated with each module. (The "family of

files" may include build scripts, test scaffolding and data, primary and included source

files, and package and body files.) These lists will also be used in status accounting and

for quality assurance (e.g., certification of peer review).

Most developers make use of the available CM tools to track their own work, so the tools

must be available at the individual workspace and session level. The files are not placed

under official CM, however, until they are delivered or provided for others to use and
test.

Once a module is publicized, control passes from the developer to the team leader or

group software configuration manager. The actual files will be placed in group- or

project-level development libraries, and (typically) checked back out to the developer for

refinement and testing. The Ker_[opm_nt _brary Can be a single, centrally controlled disk

store, but may also be a distributed, logically integrated set of storage facilities.

CSC/SSD 40 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

3.2.2

The critical aspect of CM is that controlled objects are not changed without proper

approval and recordkeeping. If that goal can be met with a distributed development

library, the cost of CM (and the impact on developers) may be considerably reduced.

CM extends to source files and to all object files created from the source code. Since a

given object file may be needed in several places at once (by different developers on

different machines), there is some risk that a fully centralized library system could
become a bottleneck.

On the other hand, if a distributed library system is used, there is danger of inconsistency

and of outdated versions of files being used. One of the areas of investigation of this

study effort is the availability and dependability of procedures for distributed access and
control.

Another area of concern is object naming and name-space considerations. If an object

module (under CM) is required for testing, the distributed system should be able to

determine where that module resides. (There is little sense in downloading a large object

library from the main storage facility if the object is already resident locally. When

development is geographically distributed, the cost and time of substantial downloading

becomes even more significant.) Objects under control should be uniquely named and

identifiable throughout the distributed environment.

This concern is also an issue when it comes to deleting superseded modules from local

storage. If each version and each copy of a module is identifiable, the process of purging

outdated files is more predictable and reliable. This study effort will consider approaches

to establishing system-wide naming procedures. The final GSDE Interface Study Report

will detail findings in this area.

Post-Delivery CM

Once a module has been delivered for operational use (or possibly for acceptance

testing), it is placed under central CM. The source code and all associated files will be

stored and controlled on the GS/SPF Amdahl. As far as practical, object files created

from source code will also be stored centrally. (This applies only to target-buih object

modules, not to any host-built object code that may be retained on the development
machines.)

This study effort will investigate mechanisms whereby the Rational Code Version

Control System (CVCS) can be used to manage files stored on the Amdahl. The Rational

Aria Development System provides an effective environment for managing source files,

object files, and dependencies, all very important to effective project-wide control. The

cost and feasibility of such a shared-function system (Rational control, Amdahl mass

storage) needs to be determined.

CSC/SSD 41 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

The biggest advantage to using the Rational for CM is the avoidance of unnecessary

recompilation. By keeping track of dependencies at a relatively low level, the Rational

can determine when changes in one unit require recompilations of other units. Without

such dependency information, a change in one unit can ripple through a system requiring

massive recompilation that may not be required by the actual change. Since such

recompilations may take hours or days for large software systems, the savings can be

significant.

The potential problems of having a Rational R1000 become a CM bottleneck must be

evaluated to determine the viability of this approach. Section 5 describes the plan for

resolving this issue.

3.3 Implementation Status Reporting

Several issues need to be resolved within the GSDE so that its role of supporting

distributed development for the MSC and TSC can be accomplished. The issues

discussed in the following paragraphs were discovered during the requirements

gathering. Some of the issues are targets for prototyping. Plans for prototyping these
issues are discussed in Sections 5 and 6.

3.3.1 Test Status Reporting

The first major issue is the reporting of test results from the target machines back to the

development environment. This means that the two target "areas" (Building 5 and

Building 30A) would report back to the GSDE test reports. This is complicated by the

fact that the development of the software tested could be on any number o.f machines

within the distributed development environment. It is also important to understand that

this reporting may be required to be done in real time or the requirements could be

satisfied with batch process reporting.

The question becomes one of "where are the results reported?" The first suggested

resolution to this issue is to report to the Amdahl using batch processing techniques. At

this time (the users are still defining requirements) the need for real time reporting has

not been established. In addition, there have not been any requirements to provide

reporting to development workstations or to the Rational development environment.

The second suggested resolution is to make reports back to the development workstations

that are involved in the testing. This would require that the reporting be done in real
time.

At present there are no suggested software candidates for meeting this requirement.

CSC/SSD 42 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

3.3.2 Process Status Reporting

The second interface issue in this area involves controlling and reporting on the status of

software which is compiled and integrated on the target system. Source code,

commands, and possibly object code are downloaded to the IVTE for compilation and

load-image generation. The GS/SPF must be able to request and/or receive status reports

on the process. The developer must be able to verify, from the GS/SPF, that the build

process has completed successfully. The GS/SPF must be able to determine what object

code and load images (if any) reside in the IVTE, and what versions those files represent.

One approach to this problem is to use a global naming- and object-management process

to identify and locate all objects (typically, files) in the GSDE. Cronus is one such

management process, and will be investigated in this context.

3,4 Software Transparency

It is important that software developed within the distributed GSDE be transportable to

the target environments with minimal additional development work being done on the

target machines. In addition, it is important to minimize the need to simulate target

machines within the development machines (at best there would be no need to simulate

the target). Although this is an issue that will be detailed in the final report there are

some preliminary findings that suggest methods for resolving some or all of this issue.

The first finding is that there may be candidates for a distributed OS that will allow

software development on one machine to be compiled and linked on another machine

with little or no "redevelopment" on the target. Cronus is such a distributed OS that is

being investigated.

The second finding is that there may be development cross-compilers that will allow

some transparency between machines.

The third finding is that there may be some methods for developing software that will

reduce the amount of "redevelopment". These too are being explored.

The issue of software transparency will be solved only if detailed knowledge is gathered

about both the development and target environments. This knowledge will spawn the use

of target emulations within the development environment, methodologies for reducing

software/machine dependencies, and new technologies for making code more transparent
to the machine.

CSC/SSD 43 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

3.5

3.5.1

General IsSues for SSTF Software Development

As with the GSDE as a whole, the SSTF development environment (a subset of the

GDSE) has specific issues that need to be reviewed. These are issues of multiple

languages, multiple target machines, and IVTE machines becoming operational

machines. The following paragraphs will describe the issues involved and any

suggestions for further study in search of a resolution.

Multiple Languages in the SSTF

Although the majority of the developed code will be developed in Ada, there will be two

sources of non-Ada code. The first will be code that is procured as part of some

subsystems that will not be developed within the GSDE (e.g., image generation

equipment, aural cue equipment, some signal conditioning equipment). The other source

will be "carry over code" from the other existing simulators (e.g., Shuttle Mission

Simulator, Shuttle Network Simulator). For cost and schedule reasons, it will not be

desirable to recode these sources in Ada.

Because of the multiple languages to be used and developed, the TSC/SSTF portion of

the development activities within the GSDE will require a development system that goes

beyond the Rational environments. It is expected that much of the non-Ada code that is

developed or modified (modified from another source such as is the "carry over code")

will be developed or modified on workstations, on the Amdahl, or in the IVTE platforms.

Further definition of the SSTF need for multiple languages will reveal whether or not

this non-Ada code can be produced or modified within the strict confines of the GSDE

If it cannot be developed within the GSDE, the issues of configuration control and test

reporting become complicated.

3.5.2 Multiple Types of Machines for SSTF

IVTE

Many of the target machines that will be used by the SSTF will be procured under a

center-wide bid for computational equipment (OADP Contract). At present it is not
known which vendor will win the contract or exactly which machines (along with OSs

and available COTS (commercial off-the-shelf tools) will be selected. This issue makes

requirements gathering difficult. However, important information is available.

There will be at least three different "classes" or "types" of platforms that will be targets

for the SSTF portion of the GSDE. The first will be computers that are acquired under

the OADP Contract. These machines will have the ability to run the selected SSE

standard Ada compilers. The OSs of these machines will be required to support a high

CSC/SSD 44 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

3.5.3

degree of code transparency between them. The second "type" of machine will be those

that are acquired outside of the OADP. These machines will be part of subsystem

procurements (image generation, simulation interface buffer, etc.). These machines may

or may not meet the same requirements as the OADP machines. Their OSs may or may

not support the selected Ada and non-Ada compilers. The third class of machines are

bare machines which are special purpose in nature and will not have an OS. These

machines will be procured or built by the TSC contractor (aural cue, signal conditioning

equipment, etc.)

With machines from each "type" as targets for the GS/SPF, the impact of porting

becomes a major issue. This issue becomes one of deciding how much of the target

machine(s) will be emulated or simulated in the GS/SPF. It also means that for "bare

bones" machines, additional equipment might be needed within the GS/SPF or might

have to be procured by the contractor to transport code.

IVTE Machines as Target Machines

Because much of the computational equipment for the SSTF will be replicated four times

to be able to run four simultaneous simulations at one time, the SSTF will be delivered in

stages that will allow that the IVTE computers become the operational computers. In

other words the IVTE equipment may be used to integrate and verify operational

software and then be delivered as another "set" of IVTE machines that will be procured

for development of the next simulation capability.

This process is able to continue until all four simulation capabilities are delivered, and a

"permanent" IVTE will then be established. This raises the issue as to how much

development work can be done in the SSTF IVTE in the beginning and what will the

IVTE then need to maintain and develop software for systems that are already delivered.

It is apparent that there are two IVTEs to be considered for the SSTF. The first is the

IVTE that will be delivered as operational, and the second is an IVTE that will not be

delivered but will be used to do continuing development and maintenance coding. Each

of these will have to interface with the GS/SPF in a different manner.

The SSTF IVTE that is delivered as operational could be used as a development

environment and therefore will have different interfaces (both physically and logically)

to the GS/SPF. It would be expected that if the IVTE is used as a development

environment that the issues of configuration control and test status reporting will be

different than if the IVTE was the target of the GS/SPF.

The SSTI:: IVTE that will be "permanent" will have more traditional interfaces to the

GS/SPF. That is to say, that the interfaces will be such that the GS/SPF will be the

primary development facility and the IVTE will be the target; the GS/SPF will be the

center for configuration control and the center for test status reporting.

CSC/SSD 45 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Decisions mUSt be made early as to whether the SSTF IVTE will in fact be a

development facility for part of its lifetime or will be a target for the GS/SPF from the
beginning.

3.6 General Issues for SSCC Software Development

3.6.1

Several issues surround the development of software for the SSCC. These issues include

the mixing of Ada and non-Ada and the multiplicity of target machines. The following
paragraphs discuss these issues.

Use of Aria and non-Ada in the SSCC

The code to be used in the SSCC falls into three language categories. The first is the

development of new code that will be written in Ada. The second is the "carryover" code
from the Mission Control Center (MCC) that is non-Ada code and the third is the

development of new code that is non-Ada.

The multiplicity of languages to be used in the SSCC will place demands on the GSDE

to support the development as well of the configuration control of these mixed languages.

Therefore, it may not be possible to relegate the development of the code to a single

system within the GSDE for development or configuration control (i.e., Rational

environments). It will require the GSDE to support several different compilers and cross

compilers, as well as different sets of development tools. This issue can only be solved

by allowing code to be developed on workstations, Rationals, and the Amdahl and

controlled from each with a central configuration reporting system.

3.6.2 Multiple Target Machines for the
SSCC

Like the SSTF, the SSCC will have a multiplicity of targets for the development system

to contend with. There will be three "types" of targets; those targets that will be

procured under the OADP Contract; those that will be procured as part of subsystems

procured under the MSC; and those special targets that are produced by the MSC

contractor. Some of these targets will use SSE standard compilers and tools, others will

use non-SSE standard compilers and tools, and some will be "bare bone machines" with
no OS.

The issue arises as the GSDE will have to support this kind of multiplicity while

maintaining a system of configuration control as well as test result reporting. It is

anticipated that the Amdahl will play a major role as a repository for all code developed

for the SSCC as well as being the center for configuration control and test result

CSC/SSD 46 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

reporting. The tools needed to allow this operation have not been identified yet but are
the subject of the final report.

CSC/SSD
47 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Section 4 - Host-Target Transition Interfaces

Although the host-target transition process cannot be fully characterized until the OADP

computers are specified and all special-purpose processors are identified, there are many

transition processes that can be investigated with available information. For some of

these processes, prototyping may be needed to assess the feasibility of proposed interface

support mechanisms.

Three general classes of transition interfaces were investigated. First, operational

procedures were identified for moving software between the host and target

environments, and for controlling software in either environment. Second, a VME

approach to masking the differences between host and target computers was investigated.

Third, the study considered the use of simulations and emulations of special-purpose

devices to support testing on the host side of the transition.

These three areas are discussed in the following sections.

4.1 Operational Procedures

One type of GSDE interface involves the movement of application code objects from one

environment to another, and between machines within an environment. (An "application

code object" is a file or related set of files that may include source, object, or operations

scripts.) This object-transfer interface must support file transfer, file location and status

tracking, and reporting of results of operations (e.g., compilations). These requirements

include elements of configuration management and of implementation status reporting.

There are many different protocols, file managers, and communications tools available

on different platforms to provide low-level interface support. Code management systems

and library support systems also exist in various forms, supporting different languages on

different computers. The requirements for GSDE interface support include performance,

reliability, consistency across different environments, and connectivity to all systems in
the GSDE.

To demonstrate the feasibility and utility of specific mechanisms of interface support,

prototypes can be constructed to permit exercising those mechanisms. The following

sections discuss the operational goals and interface requirements of these support

mechanisms. Subsection 4.1.1 discusses transport and tracking of application code

objects. Subsection 4.1.2 discusses reporting on the status of operations on those objects.

CSC/SSD 48 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

4.1.1 Object Transport and Location

Tracking

Application code objects (or just "objects" in this subsection) are created, edited,

compiled, tested, revised, and stored, typically all on a single platform. In the GSDE

context, those objects are also relocated, tracked, backed up, remotely compiled,

remotely tested, and superseded on other, usually different platforms. Mechanisms for

managing these objects must take into account the low-level transport and

communications mechanisms that exist in the GSDE, and must also address the range of

different target platforms.

This subsection presents and discusses functional and operational requirements for a

general object transport and location tracking mechanism. In general, those requirements
are as follows:

o Global, unique object naming and namespace management

o Operations on all types of objects, including text, object code, structured data,

load images, and collections of objects

o Support for redundancy of objects (i.e., backup copies) without confusion or risk

of incomplete deletion or replacement of an object

o Redundancy and reliability of the namespace manager

o Distributed support for naming operations and inquiries, with reconciliation and

coordination mechanisms among distributed namespace managers

o Transmission control protocol/internet protocol (TCP/IP) support for moving

objects over LAN and wide area network (WAN)

o Support for network and environment security measures

0 Logging of all operations so that audit trails and configuration reports can be

generated. (This may apply to a selectable subset of operations or types of

objects)

The operations to be supported are listed in the following. All of these operations must

be accomplished within the security constraints of the GSDE. For example, the

mechanism for deleting an object must require proper authorization.

o Replicating an object, locally or remotely

o Archiving objects

o Inquiry about the location, status, and attributes of an object

CSC/SSD 49 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

o Transporting objects (moving or duplicating) between devices

o Creating and naming objects (i.e, from files)

o Deleting objects

o Replacing an object with a new file or set of files (producing a new version of the

object, with appropriate labeling)

o Executing objects

4.1.2 Object Execution and Status

Reporting

In addition to the need to move objects around in the GSDE, there is a requirement to

support execution of objects with feedback on the results of such execution. (The

meaning of "execution of an object" is dependent on the object. For an executable or

batch command file, the meaning is obvious. The term may not apply to all objects.)

For example, a collection of files (source, object code, commands) may be assembled

into a Target-Build object. (The Rational Target Build Utility (TBU) works something

like this.) "Execution" of this object implies execution of the commands on the data,

after the object has been moved to the target platform. The reports from the compilation

process need to be captured and transmitted to the sender of the object.

The types of "execution operations" that will require this support are not yet enumerated.

There is no requirement identified to date for real-time status reporting. It may be

adequate to capture, package, and transmit the status of any operation after the

completion of all object operations. More analysis is needed to clarify this issue.

It is possible that many of the operations identified in Subsection 4.1.1 may actually be

supported by defining the operations as characteristics of the objects, and then using the

execution facility to invoke any desired operation on an object. Examples of such

operations on objects are

o move (yourself) to platform xxx

o compile (yourself)

o print (yourself).

This is an issue that needs further analysis into reporting requirements, performance

implications, operations required to be supported, and integration with the namespace

management mechanism.

CSC/SSD 50 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

4.2 Using a Virtual Machine Environment (e.g., Cronus)

As noted in Section 2, there are problems associated with transitioning software from one

platform to a different one. There are a variety of products, systems, standards, and

concepts that address this problem. The common goal is to mask the differences between

disparate computer systems. Methods include placing constraints on the applications

developers, providing software (e.g., operating systems, standard libraries, simulations)

to hide the differences from application code, and providing conversion systems that

translate applications from one platform context to another.

The specific platform dependencies that must be masked in the GSDE are not yet known.

The ground support systems are still in requirements definition and design, and the

hardware components of the IVTEs are not yet selected. At present, this study will

emphasize investigation of off-the-shelf solutions to parts of the interface problem.

When more details are available about the specifics of the IVTEs, the study effort will

concentrate on the specific requirements for masking platform differences.

In other words, the present study effort is directed at identifying a wide range of

available products, standards, tools, and environments, so that when more detailed VME

requirements axe known appropriate solutions can be quickly identified. The research

effort of this study, which is described in Sections 5 and 6, will address the types of

interfaces anticipated in the GSDE.

Although specifics are not yet available, many characteristics of the target systems will

help to bound the range of research. First, the development environment is well

specified. Second, the target environments will be based on selections from a limited set

of machines. Third, previous experience with control centers and simulation systems

provides guidance on the general nature of the software to be supported.

The characteristics of the GSDE computing platforms and the software characteristics of
the SSTF and the SSCC are described in Section 2.

4.3 Simulations and Special Devices

Off-the-shelf methods and tools will be investigated for general platform-to-platform

interfaces. For special-purpose devices and processors, however, generic solutions are

unlikely to be found. Support for cross-development targeted to unique hardware and

software will be addressed on a case-by-case basis. Examples of such special purpose
devices include the SSFP Standard Data Processor, communications hardware for the

SSCC, and visual processing support for the SSTF.

CSC/SSD 51 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

In each case, there will be several alternatives to review in supporting cross development

Those alternatives in general will include the following:

Connecting a copy of the device directly to the GS/SPF for syste m development
and testing

Building or buying a device simulator that will run in the GS/SPF (or on a

development workstation)

Placing software on the device (e.g., a standard run time executive) that makes it

functionally equivalent to devices that are already supported in the GS/SPF

o Stubbing out interactions with the device (for testing purposes) until the software

is transitioned to the target.

As special-purpose devices are defined and detailed requirements are provided by the

MSC and TSC contractors, these options will be analyzed and recommendations made

for resolving these interface issues.

CSC/SSD 52 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Section 5 - Proposed Prototype Work

This document specifies prototyping efforts in the three key problem areas identified in

sections 3 and 4. The three prototyping efforts are as follows:

O Development of standard interface support for all elements of the GSDE (i.e.

implementation of a standard POSIX interface) including development of

standard application-to-application communication mechanisms

Support for software development operations such as distributed CM and

implementation status reporting

O Analysis of COTS packages, industry standards, and interface concepts that may
aid in solving the problems.

5.1 Virtual Machine Environment

The creation of a VME requires that two different kinds of interfaces be developed. The

first of these is application-to-operating system. This involves developing standard

interfaces for use on all elements of the GSDE and target environments. This will allow

developed software to be ported from the development environment to the target

environment without requiring any source code changes before compilation on the target

environment. The second interface involves application-to-application communication,

which will provide data interoperability so that information may be shared between
applications without the need to reformat the data.

5.1.1 POSIX Interface

As POSIX compliance has been mandated for all Unix-based target computer

environments within the SSFP, there is a need to provide this standard interface to

elements within the GSDE. CSC will provide a prototype POSIX/Ada binding that will

be compatible with the Rational Ada Development Environment. This will allow

developers to write Ada software that utilizes the POSIX/Ada binding and does not have

to be modified to compile in the target environment. CSC will also provide a prototype

back-end POSIX simulation on the Rational so developers can perform a minimal

amount of unit testing of the POSIX systems calls within the developed software.

By providing a POSIX Ada binding within the Rational Environment, developers will be

able to make references to POSIX system calls directly in the software being developed,

rather than having to stub POSIX system calls as Ada comments that are then changed on

the target machine to allow compilation and execution. The POSIX Ada binding will

implement all aspects of POSIX as expressed in the POSIX standard.

CSC/SSD
53 September 1990

PREUMINARY

CSC/TR-90/6155

GSDE Interface Study

The back-endsimulation of the POSIX interface will provide developers with increased

capabilities for unit testing. The simulation will allow developers to execute software

directly in the Rational Environment. This saves the costly effort of porting code to the

target platform to perform testing. Furthermore, as this testing may involve some level of

debugging, the Rational Environment's debugger could be used to aid in the testing
effort.

This prototype will be delivered in three builds. The first build will consist of an

installable Ada package specification(s) that supports the complete set of POSIX

interfaces. This gives the developers the ability to code POSIX calls directly in Ada

software being developed on the Rational R1000. The second and third builds will

consist of an executable body for the specification which simulates the actual operation

of the POSIX system calls, providing developers with the ability to perform limited unit

testing within the Rational Environment. A report that provides the implementation and

simulation details for this prototype will also be provided.

5.1.2 Interoperability

Since there is a need for different applications to share data within both the SSTF and

SSCC, a standard application-to-application communication mechanism must be

developed. Current efforts are underway to determine if commercial packages such as

Cronus are capable of meeting this need. After this applicability is determined, CSC will

be able to provide a prototype application-to-application communication mechanism.

This capability will be prototyped within the GSDE and the target environments for the
SSTF and SSCC.

There are two different kinds of communications between applications: synchronous and

asynchronous. In synchronous communications, one application must wait until the other

is ready to communicate. The w.aiting application can do no other work until the

communication is complete. Asynchronous communication allows one application to

deposit a message in a mailbox, which can then be picked up and read by the second

application. In asynchronous communication, neither application has to sit idle while

waiting for the communication to occur. Both applications may be performing other

functions. Figure 5-1 shows the differences between these two modes of communication.

Cronus provides the tools to accomplish both methods of communication. CSC will

prototype both modes of communication by using the tools provided with Cronus. In

order not to impose any design criteria on either the SSTF or SSCC, a generic

communication model will be implemented. This will allow the application-to-

application communications to be tailored by the two conu'actors to meet their needs.

This prototype will be delivered in three builds. The first build will provide an example

of synchronous communication between applications. The second build will provide an

example of asynchronous communication between applications. The third build will

CSC/SSD 54 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

TIME

ts

ts +&=l

Is +as1 ÷_s2

I v

COMMUNICATION

REQUESTTO

APPUCATION B

APPHCATION B

ACCEPTS
REQUEST

SYNCHRONOUSCOMMUNICATION

TIME

|il

ta +tim1

la +/'111 +/_a2

_!_iiiiiii_iiii_iiii_iiiiiiiiii_i_i_iiiii_iii_i_iii_iiii!ii!ii_!_i_iii_iii!i!i_!i!_iii_i

ii!!ii_ii_aii_i_iiiiiiill I
COMMUNICATION

DEPOSITED IN

MAILBOX BY A

MAILBOX

AI_PLICATION B

_CKSUP

COMMUNICATION

ASYNCHRONOUS COMMUNICATION

! !!iiiliii_ii(_!_,_!_,_i_i_,!!,_,iii_i,:_i_l

Figure 5-1. Communications Modes

CSC/SSD 55 September 1990

PRELIMINARY

CSC/TR-90/6t 55

GSDE Interface Study

enhance these models on the bases of customer and ground system contractor feedback.

Sample applications will be selected as appropriate for planned development within the

GS/SPF. A report that provides the implementation details for both models will also be
developed.

Both sample communication models will consist of multiple Ada programs that will

make calls to Cronus for the communication services. The synchronous model will

utilize the Rational and the Sun Workstation to execute two Ada applications that will

communicate through Cronus. The asynchronous model will be the same as the

synchronous model, with the addition of Ada tasking. Ada's tasking features will be used

to make the Cronus calls to allow the applications to continue with other processing

while waiting for the communication to complete.

5.2 Software Operations

5.2.1 Distributed Configuration

Management

Because the environments for development and system delivery are different, CM is an

area for concern. The basic toolset for CM will be provided by the SSE, but details of

operational use need analysis in the context of the heterogeneous, distributed target

systems of ground software.

Distributed CM provides a means to gain control over all objects (or files) within the

entire GSDE. A single point of control can be established for all objects.

CSC will prototype a distributed CM system, integrated with the SSE-provided support,

based on Rational's Configuration Management and Version Control (CMVC) system.

This prototype will provide for the CM of all information related to the development

efforts of both the SSTF and SSCC regardless of the location of that information within

the network. The prototype will have the capability to access secondary storage on any

networked device. The resident CM system on the Amdahl will also be able to access
configuration data located within the Amdahl environment.

This prototype activity will implement a distributed configuration management system

based on Rational's CMVC system. The distributed CM tool will provide for location-

transparent control of objects within the local area network. It will allow all objects

(files) on all networked computers to be placed under CM. If access to the Amdahl at

JSC is available, the prototype will include access to this system. Otherwise the

prototype will be implemented between CSC networked resources. This prototype wilt

be delivered in one build, along with an accompanying report that provides details on the

use of the prototype.

CSC/SSD 56 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

5.2.2 Implementation Status Reporting

Along with the need for distributed CM, there is also a need to pass status and other

configuration data from the IVTE to the GS/SPF configuration database during the test

and integration phase of the life cycle. CSC will prototype a distributed status reporting

system that will provide for this capability.

The distributed status reporting system provides developers and managers with a single

point of control for all status data associated with a specific development effort.

Developers and test engineers can communicate status data in real-time (or near real-

time) to a single point of contact. Information is then immediately made available to

project management personnel for their use and review.

The use of Cronus as a distributed status reporting tool will be prototyped. This

prototype will provide a single repository for the location of all test and process status

reports. User interfaces for elements of the IVTE and GS/SPF would be prototyped

where Cronus is available.

This prototype activity will provide a client-server model for the maintenance and

tracking of status data within the local area network. The server will be built using the

Rational implementation of Cronus. Client interfaces will be built for all other network

resources for which Cronus is available. This includes the Rational and the Sun

Workstation. As Cronus is not yet available on all GS/SPF resources, this prototype may

require alternate solutions if it were to be turned into a full-scale development effort. A

report will be provided that details some alternative solutions as well as the operation of

the prototype. This prototype will be delivered in one build.

5.3 Investigation of Concepts and Environments

5.3.1 Analysis of COTS Packages and
Standards

Several efforts are currently underway to attempt to solve the problem of a

heterogeneous development/target environment. CSC is currently investigating the

applicability of Cronus to help solve this problem. Several other efforts will be

investigated. These include Portable Common Tools Environment+ (PCTE), Common

Ada Interface Set-A (CAIS), and Portable Common Interface Set (PCIS). The results of

this investigation, as well as the applicability of Cronus, will be included in a report on

findings of the prototyping effort.

CSC/SSD 57 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

5.3.2 PCEE Concept Prototyping

The Portable Common Execution Environment (PCEE) is a research effort within RICIS

that addresses the problem of supporting complex, distributed real-time computing

applications. The PCEE concept addresses the concerns of mission- and safety-critical

elements of applications in a fault-tolerant system. A primary goal of the PCEE research

effort is to define a portable interface between applications and the distributed computing

system. The PCEE concept addresses development, integration, and operational

environments and prescribes tools (or tool attributes) for each. The PCEE concept

proposes a common interface to differing instruction set architectures, data bases, data

communications systems, bare machine implementations, and operating systems.

One of the main thrusts of the work being done by CSC for RICIS is to explore methods

and produce software prototypes to facilitate interfacing the GS/SPF and the IVTE. This

effort is to some degree a subset of the PCEE research. CSC will review the PCEE

concept and apply it to the specific problem of interfaces within the GSDE.

PCEE is still a research concept, with no actual implementation. CSC's prototyping

effort in this area will address practical application of the concept in two ways. The f'wst

is to map the methodology described in the PCEE literature into the SSE-supported

procedures for software development in the GSDE. The second phase of PCEE

prototyping will be to implement some of the applicable tools and methods in software.

The first effort will focus on the elements of the PCEE concept that apply to the GSDE,

and will review methods and tool characteristics proposed for those aspects of ground

software development. The outcome of this stage of prototyping will be a report on how

the PCEE concept can be mapped into the real world of the GSDE.

The second effort will concentrate on developing prototype software implementing those

elements that fit the GSDE interface problem. Those elements will include interface

support tools and distributed development control software. Two concepts in PCEE that

seem relevant, based on preliminary analyses, are the DIADEM project, with its virtual

node approach to distributed real time control, and the described requirement for Ada-

based multiprocessing and interface support.

The products of this second stage of PCEE investigation will be software prototypes of

tools and utilities for application within the GSDE.

CSC/SSD 58 September 1990

PRELIMINARY

CSC/TR-90t6155

GSDE Interface Study

Section 6 - Technical Approach

The technical approach that CSC will use in building the prototypes comprises the

following activities: identifying the questions to be resolved, designing the prototype to

address the questions, constructing the prototype, using the prototype to answer the

questions, and assessing the results. This approach ensures that each prototype meets the

specific needs of the customer. This process will be used to build evolutionary

prototypes, which may then be used as the basis for a full-scale development effort.

This technical approach is prescribed by CSC's Digital Systems Development

Methodology (DSDM). A prototype is an early experimental model of a system, system

component, or system function that contains enough capabilities for it to be used to

establish or refine requirements or to validate critical design concepts. It is not meant to

be as reliable or robust as an operational system and is seldom constrained by stringent

performance, safety, security, or operational requirements.

The most important element in planning and using prototypes is to have a clear statement

of the objective of the prototype effort. Such a statement will be developed and reviewed

before each prototyping effort. The construction and exercise of each prototype will be

based on this statement of objective, and the assessment of the prototype will reflect it.

The deliverables for this effort include technical reports and operational prototypes.

Section 6 provides the listing of these items.

6.1 Project Organization and Resources

6.1.1 Contractor Facilities

The key resources for this effort are located at CSC's Virginia Technology Center in

Falls Church, Virginia, at CSC's STAR*LAB. The STAR*LAB includes various

networked workstation technologies as well as a Rational R 1000 Ada Development

Environment. The Rational R1000 will be used to develop the Ada software required to

complete the prototype effort. A Sun 3/260 and other workstations will serve as the

target environment for the prototype.

To demonstrate multisite development, CSC will use workstations and mainframes at
other sites via an Internet connection. Other sites include both CSC and other contractor

facilities.

CSCISSD 59 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

6.1.2 Software Engineering Environment

Commercial Software. The prototyping efforts described in this plan will require

access to the following software:

Rational R 1000 Ada Development Environment - includes:

Configuration Management and Version Control (CMVC)

Language Sensitive Editor

Compiler

Library Manager

Project Management Tools

Distributed Tool Integration Architecture (DTIA)

Additional Rational Products:

Target Build Utility (TBU)

Rational X-Windows Interface (RXI)

Amdahl Items:

Aria Compiler System (GFE via network access)

Operating System (GFE via network access)

TCP/IP Networking Software (GFE via network access)

Workstation Products:

Workstation OS (GFE)

Technical Publishing Tools (i.e. Interleaf, Framemaker, etc.) (GFE)
CASE Tools (GFE)

Computer Systems. Access to the following items will be required for the completion

of the prototyping efforts identified in this plan.

Rational R1000 Model I00 (at Star*Lab)

Amdahl 300E.(at JSC)

Apollo Workstations (GFE)

6.1.3 Government.Furnished Equipment,

Software, and Services

To accomplish the goals of this prototyping effort, CSC will require the following GFE:

o Two fully configured Apollo workstations with all SSE software packages; one

at CSC's Virginia Technology Center in Falls Church, Virginia and one at CSCs

Houston office for distributed prototyping

o Access to the Amdahl mainframe located at JSC

CSC/SSD 60 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

o Access tO standard TCP/IP software on the Amdahl.

6.2 Prototyping Products

This paragraph lists the deliverables and milestones for the prototyping effort described

in Section 5. The products of the prototyping effort are as follows:

o POSIX-Ada binding software and documentation (Rational Ada software)

o POSIX simulation software, (Rational Ada software)

- Prototype design report

Build 1 - first-priority executable package bodies

-' Build 2 - second-priority executable package bodies

o Data Interoperability prototype (Cronus-based Ada software)

Prototype design report

Build 1 - synchronous communications support

Build 2 - asynchronous communications support

Build 3 - revised/enhanced communications support

o

o

CM Operations prototype (operational interface to SSE CM system)

Implementation Status Reporting software

Prototype design report

Build 1 - prototype software

o PCEE prototype

Applications report
Tool/utility software

6.3 Risk Management

Table 6-1 lists the risks associated with each of the prototype activities described above,

and the means to mitigate these risks.

CSC/SSD 61 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

Table 6-1. Risk Association With Prototype Activities

Prototyping Activity

POSIX Interface

Interoperability

Distributed CM

Implementation Status
Reporting

Risk

POSIX Standard Changes

Cronus does not provide
adequate solution

Cronus is not available on

all required platforms

Rational/Cronus does not

provide adequate solution

No access to Amdahl at JSC

Cronus is not available on
all required platforms

Cronus does not provide
adequate solution

No access to GSDE
elements

Cronus is not available on

all required platforms

Mitigation Plans

Low Risk: Fix binding to
match new standard

Medium Risk: Determine

if other COTS products
are available (from results
of COTS study)

High Risk: Determine
costs of having Cronus
ported to all platforms. If
this is unacceptable, other
solutions will need to be

i investigated

Medium Risk: Determine
if other COTS products
are available (from results
of COTS study)

Medium Risk: Implement
prototype between
Rational and Sun at CSC
site

High Risk: Determine
costs of having Cronus
ported to all platforms. If
this is unacceptable, other
solutions will need to be

investigated

Medium Risk: Determine

if other COTS products
are available (from results
of COTS study)

Medium Risk: Implement
prototype between
Rational and Sun at CSC
site

High Risk: Determine
costs of having Cronus
ported to all platforms. If
this is unacceptable, other
solutions will need to be

!investigated

CSCISSD 62 September 1990

PREUMINARY

CSC/TR-90/6155

GSDE Interface Study

6.4 Technical Information Interfaces

CSC will need to maintain an interface with each of the other contractors (Ford

Aerospace, CAE-Link, and Lockheed) involved in SSFP ground system software

development. CSC will support the biweekly technical exchange meetings to be held at

JSC (or alternate site as identified by the JSC technical monitor).

6.5 Product Assurance Plan

CSC's Digital Systems Design Methodology (DSDM) prescribes a specific set of policies

and procedures for assuring system quality and integrity. The intent of CSC's approach

to product assurance is to make quality assurance and configuration management an

integral part of system development. To that end, guidelines have been established for

consistent application of quality assurance (QA) and CM throughout the development

process. Essential elements of CSC's approach include peer inspection and certification,

independent review, product assurance recordkeeping, CM, and use of proven

development methodologies.

6.5.1 Quality Assurance Approach

The small size and investigatory nature of this effort require that product assurance

procedures be relatively informal. The end products of the effort are prototypes of

software development tools and utilities and the assessments of those prototypes. The

products will be constructed rapidly and are subject to frequent changes during use. This

development profile makes it important to record changes and reactions to the prototypes

and reduces the importance of acceptance testing. The intended use of ti'ie prototypes--

investigating interface issues and potential resolutions--makes it necessary to streamline

the change procedure so that developers can respond quickly.

The quality goals for a prototype differ from those which apply to an operational system.

It would be counterproductive to mandate that prototypes meet the same performance

and documentation standards as operational systems. Accordingly, the standards that

will be applied to this effort will reflect the need for clear statements of objective and

usefulness in meeting that objective. Review and approval procedures will emphasize

responsiveness to the needs of rapid development and frequent change. Prototypes will

not be subject to the same level of CM that would be applied to an operational system,

but will serve to ensure that changes are recorded and results are repeatable.

CSC/SSD 63 September 1990

6.5.2

PREUMINARY

CSC/TR-90/6155

GSDE Interface Study

The product assurance plan for this work consists of the following elements:

o Use of the DSDM-prescribed methodology for prototyping, as noted in Section
6.1

O Designation of a product assurance officer to serve as an independent reviewer

and records auditor (note that this is not a full-time position, but rather a role to

be filled on an as-required basis)

Use of peer inspections and reviews to insure continuing technical integrity of the
prototypes during development

O A specifically defined set of procedures and electronic utilities to record

development progress, prototype changes, planned assessments, and reactions of
users.

As prescribed by DSDM, the specifics of these product assurance elements will be

defined under separate cover. They will be formulated as working notes, and will be

documented in the specific prototype design planning reports.

Configuration Management

While CM is not as rigorous in a prototype development as it is for operational software,

there is still a need to be certain of what version of software is being tested or distributed.

In addition, worthwhile operational experience with distributed CM will be gained

through the use of appropriate tools.

6.5.2.1 Software Library

The software library for this prototype effort will bemaintained primarily on the

Rational R 1000 under Rational's Configuration Management and Version Control

(CMVC) system. This system allows for the complete configuration management of all

developed software items. Non-developed item (NDI) hardware and software will be

maintained by tracking the versions of these items in ASCII files within an NDI

subsystem. Changes in versions/releases of NDI can then be tracked via changes in the
CMVC-controlled text files.

6.5.2.2 Problem/Change Report

Problem/change reports will be kept and tracked via Rational's Project Management

Facility. This facility provides the means to electronically define, maintain, and track
problem reports.

CSC/SSD
64 September 1990

PRELIMINARY

CSC/TR-90/6155

GSDE Interface Study

-Section 7 - Summary and Findings

This document reports on a preliminary study of internal GSDE interfaces. The study

effort has focused on the requirements for interface support mechanisms occasioned by

the separation of host and target environments (the GS/SPF and the IVTEs, respectively).

The study has identified specific interfaces that need to be better understood and

supported with software, and has led to a prototyping plan to address the problem. The

investigation has included examination of off-the-shelf software to see if ready-made

solutions can be found. The support that will be provided by the SSFP SSE is being
taken into account.

At the present stage of ground system development, the requirements for interface

support in the GSDE are not completely defined. More information is required from

both TSC and MSC contractors as the two system developments progress. Information

about the OADP-procured platforms is also required but will not be available until a

contractor is selected. Nevertheless there are general issues of interface that can be

defined and investigated within the limits of available information.

More work is needed to characterize the software development process in the GSDE,

with particular attention to configuration management and change control of application

code objects. The prototyping effort will develop model procedures and tools to

demonstrate methods of distributed CM with centralized storage and overall control.

Capabilities Of the SSE-provided CM tools as well as the Rational CMVC software will
be central to this effort.

Other work in the software development process involves procedures for implementation

status reporting between platforms. The requirements for such reporting are being

defined, and demonstration software will be developed in a status reporting prototype.

There are several initiatives, commercial and academic, to standardize interfaces across

different platforms. These include the POSIX standaxds, Cronus, and PCEE. Each of

these initiatives has the potential to solve some elements of the interface problem. The

characteristics and maturity of these (and other) initiatives are being investigated in view

of general GSDE requirements. Recommendations will be made for incorporating these
initiatives into the GSDE.

CSC/SSD 65 September 1990

