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Abstract

This paper presents an algorithm for identifying state-space models from

frequency response data "of linear systems. A matrix-fraction description of the transfer

funcdon is employed to curve-fit the frequency response data, using the least-squares

method. The parameters of the matrix-fraction representation are then used to construct

the Markov parameters of the system. Finally, state-space models are obtained through

the Eigensystem Realization Algorithm using the Markov parameters. The main

advantage of this approach is that the curve-fitting and the Markov-parameter-

construction are linear problems which avoid the difficulties of non-linear optimization of

other approaches. Another advantage is that it avoids windowing distortions associated

with other frequency domain methods.

Introduction

State-space models of dynamic systems are usually required for many current

control design methods as these control approaches are developed based upon some state-

space representation of the system. Recently, it has been found that state-space models

can be effectively identified through the Observer/Kalman Filter System Identification

method (OKID)[ lz] using time domain input-output data. However, there are cases in
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which frequency response data rather than time histories are available. This is often the

case with the advent of sophisticated spectrum analyzers and associated automatic test

equipment. Therefore, the technique of obtaining state-space models from frequency

response data is of practical interest.

Classically, the Inverse Discrete Fourier Transform method (IDFT) is used to

transform frequency response data to time domain data, that is, to transform the

frequency response function (FRF) of the system to its pulse response. The pulse

response of discrete-time systems is also known as the Markov parameters. The

disadvantage of this approach is that the Markov parameter sequence thus obtained is

distorted by time-aliasing effects [51.

Recently, a method called the State-Space Frequency Domain (SSFD)

identification algorithm [6] has been developed. This method can estimate Markov

parameters from the FRF without windowing distortion and an arbitrary frequency

weighting can be introduced to shape the estimation error. The method uses a rational

matrix description (the ratio of a matrix polynomial and a monic scalar polynomial

denominator) to curve-fit the frequency data and obtains the Markov parameters from this

equation. In obtaining the state-space models from the Markov parameters, the

Eigensystem Realization Algorithm (ERA)IT] or its variant ERA/DC[ 8] is used. The

disadvantage of this method is that the curve-fitting problem must either be solved by

non-linear optimization techniques or by linear approximate algorithms requiring several

iterations[6].

This paper proposes a simple yet effective way of curve-fitting the FRF data and

of constructing the Markov parameters. Instead of using a rational matrix function, this

method uses a matrix-fraction for the curve-fitting. Thus the curve-fitting is reformulated

as a linear problem which can be solved by the ordinary least-squares method in one step;

that is, no iteration is required. The method can match the frequency response data

perfectly if the FRF is accurate in ideal cases, and will seek an optimal match if noise
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and/or distortion are involved in data. This new approach retains all the advantages

associated with the SSFD while avoids the iterative, approximate curve-fitting

procedures.

Section 2 gives some background and the notation used for this problem. Section

3 discusses the curve-fitting method while Section 4 describes a method to compute the

Markov parameters from the parameters obtained from curve-fitting. The process of

going from the Markov parameters to a state-space model is discussed in Section 5.

Finally, simulated data from a model of the Mini-Mast structure and experimental data

from a NASA testbed are used in Section 6 as illustrative examples. The simulated data

discuss an ideal FRF case (without distortion and noise) whereas the experimental data

present a practical case. The illustrative examples show that the method is effective in

both cases.

Background and Notation

The objective of frequency domain state-space system identification is to identify

state-space models from the given frequency response data m the frequency response

functions (FRF). The state-space representation of a linear discrete-time system is

x(k+ I)= Ax(k)+ Bu(k) (I)
y(k) = Cx(k) + Du(k) (2)

where x( k ) _ R "x_ is the state vector, u( k ) _ R "X_the input vector, y( k ) _ R "xt the output

vector;, A, B, C, D are the system matrix, input matrix, output matrix and direct-influence

matrix, respectively. Matrices A, B, C, D are referred to as state-space parameters or the

state-space model. The relation between the state-space parameters and the FRF G(¢o_) is

G( goi) = C(eJO"r l, - A )-I B + D (3)

where T is the sampling time of the discrete-time system in seconds and to_ are the

frequencies in rad/sec. Given G(w_), the problem of frequency state-space system
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identification is to find a set of state-space parameters, denoted by [A,/_, C,/_] (hereafter

"^" denotes an estimated value), such that the estimated FRF

G(¢o,) = 6"(e jo'r × I. - _t) -l B + b (4)

matches G(w_) optimally under Some optimality criterion. Note that G(w_) is a matrix

of a dimension p x m. If the L2-norm of the error is to be minimized, then an appropriate

error criterion is
l

min _.w2(w,)lG(wi)-C,(coi)[I (5)

where w(_0_) is a specified weighting function of frequency and t is the total number of

the frequency data.

Optimizing Eq. (5) with respect to the state-space parameters directly is a

nonlinear problem, which may be difficult to solve. To avoid the difficulties associated

with the nonlinear optimization, one possible alternative is to optimize first with respect

to the Markov parameters and then convert the Markov parameters to a state-space

model, as optimizing Eq. (5) with respect to the Markov parameters is a linear problem.

To formulate this alternative mathematically, it begins with expanding Eq. (3)

G(oJi)= D+CBe-_°"r +CABe-J2'_'r +CAaBe-J3*"r +...= _,gf _'r (6)
k=0

(Yo = D, Yk = CAk-'B)

Substitution of Eq. (6) into Eq. (5) yields

n}in_'_w2(co,)lG(_,)-_Y,e-:_"r ! . (7)
O=t._..-) i:1 II k=O 112

The parameters Yk = CA_-_B (k = 1,...,oo) are the Markov parameters. However, the

problem associated with this approach is that theoretically the number of Markov

parameters is infinite. Though overall the Markov sequence is a decreasing sequence,

assuming the system is stable, it may take a large number of terms to make CAk-_B = 0

for all k >_ka, for some arbitrarily large k t especially when the system is lightly damped.

A large number of Markov parameters will make the optimization in Eq. (7)

computationally too intensive and impractical for many applications.
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To avoid the problem of excessive number of parameters in the optimization, an

intermediate step should be taken. That is, curve-fit the FRF data using a finite-ordered

matrix-fraction first and then construct the Markov parameters from this result. This

approach is detailed in the next section.

Linear Curve-fitting

The transfer function matrix of the system described by Eqs. (1) and (2) is

G(z -_) = C(zl,, - A)-_ B + D = Cadj(zl, - A)B + p(z)O (8)
p(z)

where p(z) is the characteristic polynomial of A, and adj(.) denotes the adjoint of a

square matrix. Polynomial p(z), in general, is monic. The FRF is simply the transfer

function matrix G(z -_) calculated along the unit circle in the z-plane. Note that G(z -_)

does not change if the numerator and denominator of Eq. (8) are multiplied

simultaneously by an arbitrary monic scalar polynomial. This implies that the expression

of G(z -1) as a rational matrix polynomial is not unique; therefore, one can over-specify

the orders of the polynomials. In Ref. [6] the SSFD uses this rational matrix polynomial

to curve-fit frequency data. By doing so, however, the estimation of the parameters

becomes a non-linear problem. The SSFD therefore has to use an approximate, iterative

method to solve the problem, which results in a value not generally optimal in any sense

in the presence of noise and/or incorrect model order.

On the other hand, it is also known that the transfer function matrix can be

expressed by a left matrix-fraction [3,4] description as

G( z -_ ) = A -l ( z -1)B( z -1) (9)

where both A( z -_ ) and B( z -_ ) are matrix polynomials:

A(z -_) = I,,, + A_z-' +...+A,,z -p (A i e R""") (10)

B(z-')=Bo+Blz-l+...+B,z -" (BieR'"') (ll)



This factorizationis alsonot unique.For convenience one can choose the orders of both

polynomials to be equal (= p). Pre-multiplying Eq. (9) by A(z -I) one has

A(z -l)G(z -_) = B(z -1) (12)
which can be rearranged to become

G(z -_) = -A_G(z-_)z -I ..... ApG(z-_)z -" + B o + B_z-%...+Bpz-'. (13)

Note that with G(z -_) and z -_ known, Eq. (13) is a linear equation. Because G(z -_) is

known at z = e_'r (i = 1,...,l), there are a total of l equations available. Denoting e _'r

by z_ and stacking up the t equations, one has

"Gr(z?')z? ' ... Gr(z?l)z? p I, z?'l, ... z?Pl,"

Gr(z;')z; 1 ... Gr(z;')z_ p I r z;'l, ... z_Pl,

Gr(zg_)zg _ ... Gr(z_l)z-_ p I, z'_ll, ... z'_Pl,

"_Alr_

-AT.
GT(z?')]

G'(z;)l,= !

Lo"(z;')J

(14)

or in short,

• O = w (15)

where

Or=[-A1 .... A, B o ... Bp] (16)

w_:[O(z? ') O(z;')... c(=;")] (17)

and • is the large data matrix. Equation (15) is a normal equation, where a least-squares

solution of O can be found.

The least-squares solution of O could be complex numbers. To avoid this, one

can force O to be real by solving either the real part or the imaginary part of Eq. (15):

real( dp)O = real(W) (18a)

imag( _ )O = imag(W). (18b)

Or one can combine and solve both equations as:

real(O) ]0 [real(W)]

imag(_)] = [imag(W)J"
(18c)

Remark 1: Using a matrix polynomial as the left divisor in Eq. (9) instead of using a

scalar polynomial denominator as in Eq. (8) has a remarkable advantage of making the
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parameter estimation become a linear problem. With a scalar polynomial denominator,

Eq. (8) can also be formulated to have a form similar to Eq. (13); however, in this case

some parameters have to be diagonal matrices with identical diagonal elements. With this

constraint, the ordinary least-squares method can no longer be applied.

Remark 2: In an ideal case where the FRF is accurate, if the order of A(z -_) and B(z -_)

is over-specified, the rank of real(_) will be less than the row number of O. In other

words, the number of unknowns is more than the number of equations; therefore, the

answer is not unique. However, a minimum norm solution still can be found using the

least-squares method[9]. In this case, the match is exact; i.e., reaI(tb)O is exactly equal to

real(_P). The cases of using the imaginary part or of using combined real and imaginary

parts are similar.

Remark 3: In a sense, A(z -1) and B(z -_) in Eq. (9) can be interpreted as the observer

Markov parameters[2,3A]. The order p of A(z -_) and B(z -_) can be arbitrary as long as it

is set equal to or greater than n/m,[ 4] where n is the system dimension and m is the

number of outputs. Therefore, if more outputs are available, a smaller order can be

assigned to the matrix polynomials.

Remark 4: The frequency weighting w(to_) is set to unity in the above derivation. If this

is not done, a weighted least-squares algorithm should be used.

Estimation of Markov Parameters

After obtaining a solution to Eq. (14), it is now necessary to construct the system

Markov parameters. Equation (12) can be written as

Z -i z,-i -_ z-i •

\i=o ,/\i=0 ./ i=0

(19)

From this relation, the following equations are derived by equating terms of like powers

and recalling Eqs. (10) and (11):[ 4]

ro = Bo (20)



k

Y_ = Bk - _AjY__j for k = 1,...,p (21)
]=1

p

Y, = -__., A_Yk_ j for k = p + 1,...,oo (22)
j=l

Using the estimated _. and /_ instead of the true _ and B_ in Eqs. (20) through (22),

thus yields a set of estimated Markov parameters with as many terms as desired.

Note that there are only p independent Markov parameters excluding Yo; all the

other parameters are linear combinations (with matrix coefficients) of this independent

set. Therefore, the Markov parameters represent a signal containing a maximum of m x p

states where m is the number of outputs.

Identification of State-Space Models

Once the Markov parameters are constructed, the Eigensystem Realization

Algorithm (ERA) or the Eigensystem Realization Algorithm using Data Correlation

(ERA/DC) can be used to obtain a state-space model. The ERA (or ERA/DC) has been

proved valuable for modal parameter identification from the pulse response. The ERA

uses singular value decomposition to decompose a data matrix (referred to as the general

Hankel matrix) and to compute a state-space model from the decomposed matrices. The

system order is determined by examining the magnitudes of the singular values, where

the small values are ascribed to the effects of noise and are truncated. The number of the

retained singular values is taken as the order of the system.

Because the Markov parameters contain at most m × p states, the order assigned

to the system cannot exceed the number m × p. Real systems, in theory, have an infinite

dimension; therefore, the larger the number p is chosen, the better the results will be.

However, a large p causes intensive calculation. Thus there is a trade-off between

accuracy and computation. In practice, by examining the peaks in the FRF, an

approximate number of dominant modes can be estimated to assist the selection of a

proper value for p.



Illustrative Examples

Two examples are given -- one simulated example and one experimental example.

The simulated example uses a model of a 60-ft-long cantilevered truss structure, whereas

the experimental example is a 55-ft-long truss with a 15-ft diameter antenna.

Example 1

The In'st example uses an analytical model of the Mini-Mast structure described

and reported in Ref. 10. The model has five fundamental modes. The first two modes are

closely spaced, representing the In'st bending modes in two orthogonal planes. The third

mode is the torsion model while the last two modes are also closely spaced, representing

the second bending modes. The discrete-time state-space parameters of this system using

a sampling rate of 30 Hz are listed as follows:

rr 0.9859 o.,_oolro.9859 0.15011[ 0.6736

a=diag[[..-O.1500 0.9859J'L-0.1501 0.9859J'L-0.7257

0.4033 0.90251r0.3943 0.90641_

_0.9025 o.4033j'L_0.9064 0.39431)

...

"--0.0407 -0.0454"

-0.5384 -0.6001

0.0746 _0.0669

0.9867 -0.8850

0.0164 0.0373

0.0376 0.0860

-0.0460 -0.0421

-0.0711 _0.0650

0.0653 _0.0655

0.0997 _0.1000

× 10 _ C T --

0.72571

0.6736 5

0.8570 1.8701

_0.0000 0.0000

1.5700 -1.2390

_0.0000 _0.0000

1.4030 1.4254

0.0000 0.0000

0.9016 1.7852

_0.0000 0.0002

1.3509 -1.4748

_0.0000 0.0000

[ooD = 0.0 .0
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With these parameters,one can calculate the frequency response function (FRF)

accordingto Eq. (3). Two hundredfrequencydatapoints equally spacedin a frequency

rangefrom 0 to 16.67Hz arecalculated.Assumingtheordersof A(z -1) and B(z -_) are

ten (i.e., p=10) and solving Eq. (14), one obtains an estimated O. This set of parameters

match the FRF through Eq. (13) exactly, as shown in Fig. 1. The (1,1) elements of the

true FRF and of the estimated FRF (calculated using O) are plotted in the same figure.

Note the two curves match exactly and thus can not be distinguished. The error between

the two curves is within the numerical precision of the computer. Comparisons of the

other FRF elements are similar.

Figure 2 compares the true Markov parameters and the estimated Markov

parameters, calculated based on E). Only the (1,1) elements are shown as the other

elements have similar results. Four hundred points of the Markov parameters are

calculated. The two curves also coincide within an error of order 10 -_. In this case the

ERA (or ERA/DC) is capable of recovering the true state space model (under some

equivalence transformation), and the reconstructed FRF also matches the true FRF

perfectly.

Figure 3 shows a comparison between the true Markov parameters and those

parameters obtained using the inverse discrete Fourier transform (IDFT) method. There

are 201 frequency samples available, including data at coT = 0 and o)T = tr; therefore,

400 points of the Markov parameters can be calculated. Due to the finite number of

frequency samples and long-duration pulse response of the system, the Markov parameter

thus obtained involves distortion as shown in Figure 3, even though the FRF data are

perfect. Additional frequency response data (by decreasing the frequency increment to

increase the resolution) will reduce the distortion. However, totally eliminating the

distortion requires a large number of FRF data points for this lightly damped system. The

Markov parameters obtained using the method proposed in this paper do not have

distortion, and the number of data required is small.
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Example 2

The second example uses experimental data taken from the CSI Evolutionary

Model (CEM). The CEM shown in Fig. 4 is a NASA testbed to study controls and

structures interaction problem.[ 111 The system has eight inputs and eight collocated

outputs for control. The inputs are air thrusters and the outputs are accelerometers. The

locations of the input-output pairs are depicted in Fig. 4. In this example, the structure

was excited using random input signals to four thrusters located at positions 1, 2, 6, 7.

The input and output signals were filtered using low-pass digital filters with the range set

to 78% of the Nyquist frequency (12.8Hz) to concentrate the energy in the low frequency

range below 10 Hz. A total of 2048 data points at a sampling rate of 25.6 Hz from each

sensor are used for identification. In this example, sixteen FRFs from four input and

output pairs located at positions 1, 2, 6, 7 are simultaneously used to identify a state space

system model to represent the CEM.

The order of the matrix polynomial is set to p=25, which is sufficient to match as

many as 50 modes (a system of dimension 100). A state-space model is obtained using

ERA/DC with the system order assigned to I00_ The reconstructed frequency response

data (dash lines) are compared with the experimental data (solid lines) in Figs. 5 and 6.

Figure 5 is the frequency response of output 1 with respect to input 1, representing a case

of a strong signal, while Fig. 6 is the frequency response of output 2 with respect to input

1, representing a case of a weak signal. The signal is weak because sensor 2 is orthogonal

to input 1. Similar results are obtained for other input/output pairs which are not shown

in this paper. The results show that the matching is better for the strong signal cases. This

is expected because the strong signal has a larger signal-to-noise ratio than the weaker

signal. The results for other input-output pairs are similar and hence omitted.
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Conclusion

A novel method of identifying state-space models from frequency response data is

developed. The method uses only a linear technique in the frequency domain without

iteration to obtain the Markov parameters from frequency response data. It is capable of

avoiding windowing distortions inherent to other frequency domain algorithms. In this

method, the frequency response data given is assumed reliable. For accurate frequency

response data of an ideal linear system the method can identify the system perfectly; for

experimental data of real systems the method provides a least-squares fit to the frequency

response data. The method was tested on both numerical and experimental data sets with

successful results.
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