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Chapter 1

Introduction

A common method of analysis for high-frequency electromagnetic and acoustic scat-
tering and diffraction problems involves the use of radiation integrals as well as plane
wave integral representations for the fields, with the asymptotic approximations to
the various scattering mechanisms found from the critical point contributions of
the integrand. The incomplete Airy integrals [1] serve as canonical functions for
the uniform asymptotic approximation of a class of integrals characterized by two
stationary phase points that are arbitrarily close to one another or to an integra-
tion endpoint [2]. Integrals of such analytical properties describe transition region
phenomena associated with composite ‘shadow boundaries resulting from the conflu-
ence of two stationary points and an endpoint in the integration interval. A typical
problem of particular interest, V\Vrr}l;e;ertir’a;\sition region phenofnena of this type exist,
involves the scattering from smoothly indented boundaries containing an edge as
illustrated in Figures 1.1 and 1.2. When the reflection shadow boundary (RSB) is
not in the immediate v1c1n1ty of the s;;;)oth caustic, the conventional UTD! edge
diffraction coefficient [3] which involves the Fresnel integral as a canonical function
can be used to effectively describe the e&ge diffracted field behavior in the neighbor-
hood of the reflection shadow boundary. Furthermore, the ordinary Airy integrals

and their derivatives are the appropriate canonical functions for the description of

'Uniform Geometrical Theory of Dlﬂ'ractlon



Smooth Caustic
(Reflected Rey Envelope)

Reflection Shadow Boundary (RSB)

Figure 1.1: Scattering and diffraction from a concave boundary containing an edge.

the high-frequency fields in the neighborhood of the smooth caustic [4]. However,
when there is a confluence of both reflected and caustic type shadow boundaries
as shown in Figures 1.1 and 1.2, neither the Fresnel integral nor the ordinary Airy
integral adequately describe the transition region phenomena, and they must be
appropriately replaced by the incomplete Airy function.

The formulation of uniform ray optical solutions for problems involving compos-
ite shadow boundary transition phenomena, that are useful for engineering purposes,
requires an efficient and accurate method for computing the incomplete Airy func-
tions. In the original work of Levey and Felsen [1], several other diffraction problems
whose solutions involve the incomplete Airy functions are also described, and some
general and asymptotic characteristics of these functions are examjned. However,

the asymptotic formulae given in [1] are valid when the saddle points are sufficiently

QUL



!
I

e

(.

lr et
[T

Sovrce

Smooth Caustic
(Reflecled Ray Envelope)

Reflection Shadow Boundery (RSB)

Figure 1.2: Scattering and diffraction from a concave-convex boundary containing

~ an edge.



far apart or far removed from the integration endpoint. When the two saddle points
move close together or coalesce to form a caustic, the asymptotic formulae break
down and an alternative computation method for the incomplete Airy functions is
needed.

In this report, a convergent series solution for the incomplete Airy functions is
rigorously derived, and asymptotic expansions involving several terms are also devel-
oped for large argument épproximations. The higher order terms in the asymptotic
expansions greatly improve the accuracy of the asymptotic formulae, and also im-
prove computational efficiency by limiting the region of the argument space where
the more time consuming series solution form should be used. Thus, the combination
of the series solution form with the more accurate asymptotic formulae provides for
an efficient and accurate computation of the incomplete Airy functions for the entire
range of their arguments. These results would allow the formulation of uniform ray
optical solutions for high-frequercy scattering and diffraction problems that are use-
ful for engineering purposes. A method for uniformly evaluating certain stationary
phase integrals using the incomplete Airy integral as a canonical function is briefly
discussed in Appendix A. The detailg of a systematic uniform asymptotic analysis
for particular applications that involve transition region phenomena describable by
the incomplete Airy functions will be reported a separately.

The outline of this report is as follows: In Chapter 2, some general i)roperties of
the incomplete Airy functions are reviewed, and a convergent series solution form is
rigorously derived using the parabolic differential equation. The asymptotic formulae
for large argument approximations are derived in Chapter 3 using the integral forms
of the incomplete Airy functions. In Chapter 4, some indicative numerical results
are presented and discussed, with their accuracy demonstrated via comparison with
data obtained from direct numerical integration of the integral forms. The regions

of validity for each formula used in the computations are also shown in this chapter,
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and some error assessments for the asymptotic results are provided. Finally, the

main results and accomplishments of this work are summarized in Chapter 5.




Chapter 2

Derivation of the Series Solution
Form

In this chapter, a convergent series solution form for the incomplete Airy functions
is derived. Before proceerding with the derivation, however, some of their general
properties are briefly reviewed.

The incomplete Airy functions are functions of two va.iables and they satisfy the
parabolic partial differential equation applied by Fock [5] to the study of fields near

the surface of a smooth convex scattering surface; i.e.,

i 8 o
[Eﬁ-ﬂ_.?'éz} gi(ﬂ7£)=0 H 1,—-0,1,2. (21)

In integral form, the solutions of (2.1) are given by:

oo exp(ji)

g.(5,¢) E/ eI (Bz+2"/3) 4, i 1=0,1,2 . (2.2)

&
where the upper limit lies within one of the three sectors of the complex z-plane in
which the integral converges; i.e.,

-

2% < i < (2 +1)3 ;

3 1=0,1,2. (2.3)
The contours of integration for the incomplete Airy functions are shown in Figure 2.1.
In this report, we only examine g,(3,¢) since the other two functions, namely

g, and g,, can be obtained from g, and the well known complete Airy functions [6];



(.

Figure 2.1: Contours of integration for the incomplete Airy functions.



g:(6,€) = g,(8,¢) — 2w Ai(B), (2.4)
and
82(8,¢) = go(8,€) — w[Ai(B) + jBi(B)] s (2.5)
where
Ai(B) = 2% / A g, (2.6)
and '
Bi(8) = -2]; /L IPRaaar 2 (2.7)

The contours of integration for the complete Airy functions are shown in Figure 2.2.
Also, the quantities 8 and £ will be taken as real since in most practical applications
real 8 and ¢ are of primary interest. However, this is not a requirement for the
analysis that follows and the resulting formulae are valid for arbitrary values of g
and . In addition, ¢ will be restricted to positive values since for negative values of

¢, g, may be obtained using the expression:

8o(B, —l¢]) = 2w Ai(B) — gy(8, [€1) » (2.8)

with (*) denoting the complex conjugate operation.
In order to obtain a series solution form for g,(83,¢£), we begin with the parabolic
differential equation and assume two independent solutions of the form:

o0

yl(ﬂ’f) = E_:a,.(f)ﬂ", (29)
and y,(6,8) = 3 ba(6)6"- (2.10)

Substituting (2.9) and (2.10) in (2.1) we obtain the following expressions:

3l ~ D@7~ 3 an(8" -5 3 (08" = 0, (211
and in(n—l)bn(e)ﬂ"-i’—ib,,(e)ﬂ"“—ji'b:,(e)ﬂ"'E 0. (2.12)
8
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Figure 2.2: Contours of integration for the complete Airy functions.



For Equations (2.11) and (2.12) to be satisfied, the sum of coefficients of like powers
of A must be zero for any value of {. To obtain the first independent solution, y,
we let a;(¢) = 0, and setting the sum of coefficients of like powers in (2.11) equal to

zero we obtain:

al(f) = 0" V£’ (2'13)
asl¢) = Fai(6), (2.14)
and a,(¢) = “"‘3(52:_"1‘5"“)’ nz3. (2.15)

Similarly, for the second independent solution, y,, we let by({) = 0 and setting the

sum of coefficients of like powers in (2.12) equal to zero we obtain:

bo(§) = 0, V¢, (2.16)
b(¢) = 0, V¢, (2.17)
and b,(¢) = b"’S(ig:_ﬂ’l")-?(E), n>3. (2.18)

Thus, y, and y, are given by:

y,(8,6) = ao(e)+§_°;a,,(e)ﬁ", (2.19)
and y(8,6) = B+ Y b(O)6", (2.20)

where a,(¢) and b,(¢) for n > 2 can be expressed in terms of ay(£), bi(£) and their
derivatives, respectively, via Equations (2.13)—(2.18). Now, g,(8,£) must be equal

to the sum of the two independent solutions; i.e.,

8(B8) = af€)+BOF+ D lanle) + bl (22)
nd Ze(6,6) = b(E)+ L nle@ + L@ @22)

Although the coefficients a,(¢) and b,(¢) can be combined into a single coefficient,

keeping them separate greatly simplifies their evaluation in a computer code.
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Finally, it remains to find expressions for ay(¢) and b,(¢) in order to complete
the solution. This can be accomplished by applying the proper boundary conditions
at @ = 0 using the integral form of g (3, f) given in Equation (2.2); i.e.,

ao(§) = go(Bs E) /E e dz, (2.23)

and .
bi(¢) = so(ﬂ Olamo = [ G2 dz. (2.24)

The functions ay(¢) and bl(f) can be expressed in terms of the incomplete Gamma
function [7], and their computation is straight forward. Details are provided in
Appendix B.

When § — —o0, our solution shoul&tﬁeduce to the series solution form for the

complete Airy function, Ai(3) [6]. In this case we have:

ao(f — —00) = 21rA1(0) = 2.23070703, (2.25)
bi(§ — —00) = 2mAi(0) = —1.62621025, (2.26)

and using Equations (2.13)-(2.20) we obtam

go(B,€ = —o0) = 2wAi(0) (1 + = ﬂ3 + Ll 4ﬂ6 1 4 7,39 )
+ 2rAi'(0) ( ﬁ4 : 55 2 5 8[310 )
= A0, 2

which is a necessary condition for the validity of our result.

11



Chapter 3

Derivation of Asymptotic
Formulae -

In this chapter, a pair of asymptotic formulae for the incomplete Airy function,
go(B, £), involving several terms are derived and serve as large argument forms. We
begin by introducing the large parameter {2 in the integral form of g,(4,¢), and

examine the integral:

Io(o,7; Q) = / eI+ /3) gy (3.1)

~

Our objective is to obtain asymptotic expansions for I, as  — oo for various
dispositions of the saddle points and endpoint. Then, the asymptotic formulae for

90(B,€) may be obtained using the expression:
0(8,6) = 0PL(e = g7y =¢27%0).  (32)

Since we are interested in real # and ¢ with £ > 0, the analysis that follows will be

restricted to real o and v, with v > 0.

3.1 Asymptotic Formula for £ > Iﬂlé

This case corresponds to the endpoint being far removed from the possibly neigh-
boring saddle points of the integrand in Equation (3.1), or v > |o|¥. Although the
sign of ¢ is irrelevant in this case, the saddle points z; 5 = +(—0)'/? are taken as

real for simplicity. Also, the original integration path Py in Figure 3.1 is deformed

12
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into the steepest descent path, P.s,, leading away from the endpoint at z = v and

of I, is then performed using repeated integration by parts that yields:

: 3 1[ 3 1 2
. ~ piov+77/3) ) =
Tlomi @) ~ e {9 [0+72} T [(0+72)3]
+ 1 2j 1259 1 40y 12043
QB e+ (e++2)3] ¥ [(e+97)° (o +7%)
1 —40j 84052 16805~ ]} 6
— - o%. (3.3
i (e A e A ol | R

Now, using Equations (3.2) and (3.3), the asymptotic formula for g,(8,{) when

¢ > |B]"/? is given by:

' o ilterer) | _J 2§ 2 1%
B(A:8) = e [ﬂ+£"- tErer T @ e Brop
10¢ 1208 —40j  840j€%  16805¢'
tErer T Brey (Brer B+ e2)9] - @4
The de:ivative of g,(8,¢) is given by:
9 ~ HBEHE)3) [ € ] 2§ 8¢
pps:e) = BT (BrEr B+ey (Bray
_ 87 — 12£ + 605 + 40;¢2 _ 280¢. + 1205¢3
B+ (B+&) B+ €y
1680¢% — 2805 67205£% — 1680¢" 15120]'5" 3 5)

GreF | (Brer @I

3.2 Asymptotic Formula for B L -1

This case corresponds to real and widely separated saddle points (¢ < —1) in the
integrand of Equatio‘n (3.1), with the endpoint y arbitrarily close to the saddle point
z; = (—0)'/?, as shown in Figure 3.2. For an asymptotic evaluation of Equation (3.1)
that holds uniformly as the endpoint 77“aw.pproaches the saddle point z;,, we make the

following transformation [1]:

o(2) = 024 /3= glz) + 8 = — (=0 + 87 = 7(s), (3.6)

13



z—plane

Figure 3.1: Contours of integration for the incomplete Airy integral, v > (—a)'/2.
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with arg(s) restricted so that I,(e,v; ) converges as s — oo. Hence, employing

(3.6) in Equation (3.1) we have:

(o, 75) = 80 [T f(5)ein ds (37)
) . ¢

with the upper limit taken in the sector 0 < arg(s) < m/2 of the complex s-plane.
The quantities { and f(s) are given by: —

1/2 .
(=t [y 4734500 5 (=), (38)
and S
o) = E _ 7'(s) 2
fls) = ds  ¢'(z) o+22° (3.9)

Equation (3.7) can be written as follows [8]:

Iu((?',‘)';n) — e'j%ﬂ(-d):’/? {f((]) '/Coo ejﬂa"' ds + 5:716 Lw [M] _é_l;ejﬂﬂ ds} ,
(3.10)

and using integration by parts in the second integral we get:

I(0,7;Q) = e 33 {f(o) ]; " e g 2;9 [f ©) z f (0)] e

" gls)e™ ds} : (3.11)

1
258 Je

where
sf'(s) — f(s) + £(0)

g2

g(s) = . (3.12)

In a similar way, the second integral in Equation (3.11) can be written as follows:

/;"’g(s)em,’ags = g(0) fcweiﬂa’ds_ ! [9(0_9(0)] eI

........... 2jQ ¢
1 i L i§1s?
*2—j§7§ *h(s)e d.s, (3.13)
where 7 B
h(S) —_ 39,(3) - g(") + g(O) . ' (3.14)

82



Thus, using (3.13), Equation (3.11) becomes:

Io,7;9) = e 3% [f(O)—ﬁg(o)] / 3% g
+ej9(v‘r+7’/3){ [f(C)~ (0)] 1 [9(4)—.«7(0)”

2;Q (2;0)° ¢
_J'.'Q(_a)a/? 1 Jn,
+e [(2],‘.2)2'/; h(s)e ds] . (3.15)
The same procedure is repeated once more for the last integral in Equation (3.15);
ie.,
o0 . 1 = S I
h(s)e’ ds ~ |R(0) — ——k / if
-/C (s)e s [ (0) 250 (0)] A e’ ds
nc [ __1 |R({) - R(0) 1 {Kk(¢) — #(0) -
+el {— : [ + 753 +0(Q7%), (3.16
e~ ¢ | T@er | ¢ (@7, 316
where

sh'(s) — h(s) + h(0)

82

k(e) = , (3.17)

and finally combining Equations (3.15) and (3.16), the asymptotic expansion of
Iy(o,7; 1) when o < —1 is given by:

I(g,7;9Q) ~ et [f(O)——lﬁg(O)Jr(z—.lm;h(o) @ ;)qk(o)] e ds

+em(n+w3){ 219 [f (0)] 4L [g(()cg(ﬂ)]

(250

(

In order to express the functions f, g, h, and k in Equation (3.18) in terms of &
and v, we need to derive an expression for f(s) and its derivatives when s = 0. This

is done using a procedure introduced by Erdélyi [9] that yields:
~_ I@n2-1)(-1)"" .,

o) == )‘“Z(n-l)vr m/B(—a) /1 (3.19)
d* I(3n/2 — 1)(~1)*" e
and F () = 1/4 %1 n—k—1)![‘(11,/2)[3(_0-)3/4]71—18 (320)
16
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Figure 3.2: Contour of integration for the incomplete Airy integral, ¢ < —1 and
v = (—a)'/




Hence, using Equations (3.9), (3.12), (3.14), (3.17), (3.19), and (3.20) we have:

10 = (321)
10 = Gy E (522
MO = G T - e A O
M) = G (ot o e

N 2y -
£0) = =y | (3.25)
£(0) = fg_) , (3.26)
9(0) = f,’2(0)=24(—50)7/4’ (3:27)
g0 = fmg(o)=27(__f)s,2, | (3.28)
h(0) = f(4;(0)=3456(7*70)]3/4’ | (3.29)
K(0) = f(51)§0):81(—_5§)4’ (3.30)
K0) = f<:>§0) - 829412(1_55’),9/4, and (3.31)
vy = 10 _ 610 (3.32)

105 243(—0)"/2"
Also, the Fresnel integral in Equation (3.18) may be expressed in terms of the Fresnel

transition function F(z) [3]; i.e.,

Rl ; “(n?) ;-
/ e ds = Q2 [/r N U(—7) - F2§:’7 )e’” = Q'2A(n), (3.33)
¢

where U(z) is the Heaveside unit step function, and 7 = Qf/ (. The general prop-

erties of the Fresnel transition function and details on its computation are provided

in Appendix C. Now, using Equations (3.21)-(3.33), the asymptotic expansion of
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Iy(o,v;§2) when o < —1 is given by:

e—ii0(-0)?/?

1) ~ Gy

S(e; ) A(n) + MNP (g, p; Q)+ O(27%), (3.34)

where
31 82 83
Q) =1-— . - , 3.3
S0 =1~ Saeyn * Gap(eP ~ Gp(—) (3.85)
1 2 Qe
E 'Q = - —
(0',‘7,77, ) 250 o + 42 .,7(_0)1/4]
N 1 [ -84 + Q3/2 3 01/,
(279)2 [(e+1%)®  n¥(—o)/*  q(-0)"/
1 [ 16 96y 372 s 0!/,
(2590 [(e+72)* " (e +72)°  p¥(—=a)/d) " p¥(—0)/1  m(—o)r3/
4 1 [ 640y 192043 4 15072 30°/%, N Q3/2g,
(27Q) [(e+72)8 (0 +72)  7(=o)/%)  9d(—o)"/ " pd(—0o)'3/
01/2‘53
rem R (3.36)

s; = 0.20833333, s, = 0.33420139, and sé = 1.02581260. '
The asymptotic formulae for g(,(ﬁ,f ) and its derivative when 8 < —1 are then
obtained using Equations (3.2) and (3.34)-(3.36); i.e.,
-3 (=8

(=B
eI} -8

8 - (s L 4
2.0 = g w7+ | s@n + angse)

go(B,¢) =~ S(B) A(n) + CHEIE(B, ¢, ), (3.37)

+5(ﬂ)%1\(n)} 4 O30 [J’éE(ﬂ,£,n) + 2B, (2:39)

where

31 82 83

SB) = 1=g5pyn t eip-py @ &
d 1.5s; 33, 4.5s3 :
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1 2 1
E(ﬂ’fs"l) = -EJ—- ﬂ+£2-77("ﬂ)]/4
4 1 [ -8¢ 4 1 &
(27)? [(B+€2)* ~ n3(=B)/*  n(-B)/
1] 16 N 96¢> 3 P B
(272 [(B+€2) " (B+€)  95(=B)/ ~ p(=B)/*  n(-B)3H
4 1 [ 6406  1920¢° i 5 3 8,
(27)' L(B+€2)°  (B+&) " (=B n°(=B)* " n’(-B)**
—n(—sﬁi] , (3.41)
8 R O I 5—(—3)”2}
5B = =3 |G g A
‘ 4 1 { 24¢ n 1 -/ s
(2]')2 (ﬂ+£2)4 4n3(_ﬂ)5/4 2n5(_ﬁ)1/4 417(__ﬂ)11/4
+sl[f—(—ﬂ)"2]}__ 1 { 64 480 3
293(—B)"/" 2P LB+Ey (B+€)P  49°(-F)>/
L 15l - (=8)'"7] s, 3l (=B)/T  13s
297(=BP/*  An?(-B)/H 25 (-B8)"/ dn(-g)y"H
+sz[g—(—ﬁ)‘/:’-]} 1 {—3840{ 13440¢3 + 15
2 (=AY T (2) \(B+E) T (B+EF " (=BT
_105[6 - (=8)7  21s 158, (¢ — (=B)"Y] N 133,
2,,9(_ﬂ)1/4 4,’5(_[3)11/4 2,’7(_ﬂ)7/4 4,’3(__'3)17/4
3536 —(=B)7] 19 83§ — (—ﬂ)‘“l} :
2,’5(_6)13/4 4n(_ﬁ)23/4+ 2,73(_5)19/4 ' (3'42)
d = 6n n? — E_:__(__’H___)l_/j in’
T i G4
and P v
1
= [Be+ €3+ i e(-p). (3.49)

It can be easily shown using the large argument form of the Fresnel transition
function (see Appendix C) that when ¢ > (—8)"/? or 7 > 1, Equation (3.37)
appropriately reduces to the first six terms of Equation (3.4). Also, Equations (3.41)

and (3.42) remain finite near the caustic when ¢ — (—8)'/? and 7 — 0, however,
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they become numerically unstable and an alternative formulation should be used.

Applying L’Hospital’s rule in Equation (3.18), and then using Equations (3.2) and

(3.19)—(3.32) we have:

~ ~ Jo fin fan
E(8,6,n~=0) =~ 2j(-B) [1 (-8 )3/4 (- ,3)3/2]

_ go _ an a2
@GR [l B T (- ﬂ)””"’]

hu ‘ 1— hl‘f] + hz?]
B)’

"= 8" t gy~
_(_237“‘_(% [1 B (—I;;,w + (_kg;n] ., (3.45)
and
S BB~ 0) = ol {1 4(7 - 5y 2(5_%;2 (e é;lez)m]}
) (21')2(5135)7’ : {1- - 4(1_3?)2/4 T (iggg':/z gl (‘_[(i;ez)‘l’]}
i SR e RS o R = (o)1)

ko Wkiy ke Then?

" (2)'(-B)P { THBPR 2 TR (A
where

fo=1/3, fi = 1.25, f. = 4/3,

go = 0.20629630, g = 3.00781250, g, = 5.83333333,

hy = 0.60135802, h, = 4.74804688, h, = 13.3333333,

ko = 2.63374486, k; = 6.48405151, k, = 23.8333333.

Also, A(7) and its derivative near the caustic are given by:

A in’
5

A(‘I]%O) jad U—T,

eJ'l

2o S

and %A(n ~0) =

=21

ka[€ — (-ﬁ)l/z]} ,

(3.46)

(3.47)

(3.48)



Chapter 4

Numerical Results and Discussion

For an efficient and accurate computation of the incomplete Airy function g,(8,¢)
and its derivative, the argument space is divided into three regions as shown in
Figure 4.1. Three different sets of formulae are used, one for each region in Figure 4.1,
and a fourth set of formulae that is used in the immediate vicinity of the caustic
(B+ ¢ =~ 0 or n =~ 0). In region I, Equations (3.4) and (3.5) are used, in region
11, Equations (3.37)-(3.44) are used, and in region III, the series solution is used
given by Equations (2.21) and (2.22). In the immediate vicinity of the caustic and
specifically when 7 < 0.1, Equations (3.37)-(3.40) and (3.44)-(3.48) are used.

An empirical expression for the number of terms used in the series solution is

given by:

N(B,6) = 8l8|+4, when¢ <20, (4.1)
= 8|8|+4+3|8|(¢£ —2.0), when¢>20, (4.2)

and results in a truncation error of less than 107°.

Figure 4.2 shows the percent amplitude error of the asymptotic result relative
to the series solution along the boundary between regions I and IIl. The results are
plotted vs. the parameter 8, with { = (12 — 28)'/2. The asymptotic result shows
excellent agreement with the series solution, exhibiting a maximum error of 0.12%.
Figure 4.3 shows the percent amplitude error of the asymptotic result relative to the

series solution along the boundary between regions II and III. The results for this
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Figure 4.1: Three different sets of formulae are used for the computation of the
incomplete Airy function, one for each region in the figure, and a fourth set that is
used in the immediate vicinity of the caustic.
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Figure 4.2: Percent amplitude error of the asymptotic result for the incomplete Airy
function (solid line) and its derivative (broken line) along the boundary between
regions I and III. Results are plotted vs. the parameter 8 with ¢ = (12 — 28)'/2,

case are plotted vs. the parameter ¢, with § = —4. Again the asymptotic result
shows excellent agreement with the series solution, exhibiting a maximum error of
only 0.075%. ’

Figﬁres 4.4 and 4.5 show plots of the incomplete Airy function g,(8,¢) and

its derivative vs. the parameter § for § = —3 and 2, respectively. Figures 4.6

and 4.7 show plots of the incomplete Airy function gy(8,¢) and its derivative vs. the

parameter § for § = —5 and 0, respectively. The marks on the contours represent
direct numerical integration data, and show excellent agreement with the results

obtained using the formulae derived in this report.
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Chapter 5

Summary and Conclusions

In this report, a convergent series solution form for the incomplete Airy functions
has been derived, and asymptotic expansions involving several terms have been
developed for use in large argument approximations. It has been demonstrated that
the combination of the series solution with the asymptotic formulae results in an
efficient and accurate means for computing the incomplete Airy functions for the
entire range of their arguments.

A necessary requirement for the applicability of uniform asymptotic solutions
to practical engineering problems is the efficient and accurate computation of the
canonical functions involved. The results of this report would allow the formula-
tion of useful uniform asymptotic solutions for several high-frequency scattering and
diffraction problems in which the incomplete Airy integrals serve as canonical func;
tions for the description of high-frequency field behavior in the vicinity of composite
shadow boundaries. Furthermore, the methods used in this report may provide use-
ful insight to the computation of other multivariable canonical functions occurring
in high-frequency scattering and diffraction theory.

A FORTRAN code for the computation of the incomplete Airy functions based

on the formulae derived in this report is available from the authors. A complete

code listing appears in Appendix D.
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Appendix A

Uniform Asymptotic Evaluation
of Certain Stationary Phase

Integrals

Let’s consider the uniform asymptotic evaluation of a stationary phase integral of

the form o

I(a,b; k) = / ” f(s)e™*H) dg (A.1)

where the phase function ¢(s,b) possesses two stationary phase points s, 2(b) sat-

isfying ¢'(s1,2,b) = 0 with no restrictions placed on théir location relative to the

integrati‘on endpoint a. The amplitud: function f(s) is assumed to be a slowly vary-
ing and analytic function of s. The integral in (A.1) may be transformed into a

canonical form using the following transformation:

#(s,8) = 1(2,0) = a+ Bz + /3 (A.2)
where
a = 1(0,6)=#enbi #(s)=0 (A.3)
5 = o |5 (A4)
or alternatively |
a = r(z1n0) + 5(-AP, (A.5)
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s = -{2r0a-ran) (A5)

with 2,2 = £(—B)"/%. The proper branch for 8 depends on the sign of ¢'(s,) and
#"'(sp). Thus, using (A.2) the integral in (A.1) becomes:

I(¢2,8;k) = /Ew G(z)e™* ¢ dz (A7)

where

e A2 T O B

¢,”(3p)
G(z) = f(s)%, and (A.9)
dz 2 3
& Ls'"(sp)} ' 0

The proper brénches for £, and -‘;—j— depend on the sign of ¢"/(s,). Next, we employ
the Chester et. al. expansion [10] for the amplitude function in (A.7), ie.,
G(z) = ) _ [am(z* + B)™ + bm2(22 + B)™) (A.11)
m=0

and since only the leading terms in the asymptotic expansion of (A.7) will be re-

tained, Equation (A.11) may be rewritten as follows:

G(z) = ag + zby + (2% + B)g(2) 7 (A.12)

where
gy = %[G(zl +G(z), | (A.13)
b, = ——l——[G(zl - G(z1], (A.14)

g(z) = i[am (Z2+8)" "'+ bnz(2*+8)™ "], and (A.15)

= f(s1,2) [;,‘(6;/2)]% . (A.m)

G(z12) = f(sl,z)i

=212
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Inserting (A.12) into (A.7) yields .

(L.

I(¢.,Bk) = & [a[,/ T k842 13) gy +,bo./ 2tk (B4 13) 4,

fﬂ a

B T1129(&.)!.yvcmec.ﬁte?./s)_,lk g (2)eik B ) dz}- (A.17)
J I

The last two terms in the right side of (A.17) are obtained by an integration by parts

of the integrand involving g(z). The desired uniform asymptotic approximation for

k — oo is given by the first three terms of (A.17), and may be expressed in the form

I(a,Bik) ~ & {’“_1’ YaoRi(k2B, k' /3¢) - jk*“boga—ﬁ?fi(k?/ﬂﬁ,k'/%a)

1 G(€a) — a0 — &aby jk(3€a+53/3)}
L 0 ] . (A.18)

where Ai(o,() is the incomplete Airy integral defined by

Ai(o,() & /C T il 9) g (A.19)

and the upper limit terminates in one of the three sectors in the complex z-plane
where the integral converges. For example, in the case when the upper limit termi-

nates in sector 0 < arg z < 7/3 we have that Ai(o,{) = g.(o,¢).




Appendix B

Computation of ay(¢), b;(¢) and
their Derivatives

The functions ao(¢) and b,(¢) needed in the series solution form of the incomplete

Airy functions can be expressed in terms of the incomplete Gamma function; i.e.,

ao(¢) = €37 T(1/3,-3€°/3), (B.1)

bi(€) = —e¥/*371°T(2/3,-5€°/3), (B.2)
where

I‘(:c,y)=/wt"] etdt, R(z)>0. (B.3)

Using the series solution form of the incomplete Gamma function [7], ay(¢) and b;(¢)

are computed using the expressions:

W _Gen)r

ao(t) = &m3-23T(1/3) — 2_:0 Brg )l (B.4)
~ _o-in/609-1/3 o 2N(€) (5€°/3)"
and b(§) ~ —e 371°T(2/3) — 5¢ Z A (B.5)

The number of terms in the series, N(£), is given by the empirical formula:
N(¢) =2+4¢€, (B.6)

and results in a truncation error of less than 1076,
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The derivatives of a,(€) and b,(¢{) are given by:

aB(E) = jdeaI(€) + ena2(e) + jE2LN(E), n 23,

8M(6) = (k- 1)al () + jad(E), n>1,

where

e3
i) =~

and al(¢) = j€%af(¢).

The constants dy and e; are obtained dghg the recursive relationships:

dy = dp_y+ ek,

and e = ’ékr_1+2, k__>_3,

with dz = €2 = 0.

(B.7)
(B.8)

(B.9)
(B.10)

(B.11)
(B.12)



Appendix C

Computation of the Fresnel
Transition Function

The Fresnel transition function (3] is defined as follows:
F(z) & 2j/z " ccJe’”’d‘r, C.1
(2) 2 25vze” [ (C.1)
where /2 = |/z|if £ > 0, and /= = j|/z| if £ < 0. Also,
F(—|z|) = F*(l=]). (C.2)

When z < 6.0, F(z) is computed using its series solution form; i.e.,

L NE gy
(x4~ : - JT —Jz)
F(z)~ yrz e/ sign(z) — 2jze™ > ny )l

n=U

(C.3)
The number of terms in the series, N(z), is given by the empirical formula:

N(z) = 10z, (C.4)

and results in a truncation error of less than 10~%. The large argument form of the

Fresnel transition function (z > 6.0) is given by:

5, (-1)m2m (1
F(z) ~ ;%;).’_Silm , (C.5)
where

(a+%)0=1, and 27 (a+%)m=(2a+1)(2a+3)---(20+2k—1). (C.6)
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Appendix D

Code Listing

cn
crit
crn
cr1!
ciil
crtil
ciit
ci
cr!
cr1!
ciit
¢!

‘Ci!

citit
crt
c1t
cti
ct!
ci!
ciit
cit!
crit
cH

OPTIONS/EXTEND_SOURCE
SUBROUTINE INCAIRY(B,X,G0,GOP,G1,GiP,G2,G2P)
IMPLICIT NONE

This subroutine computes the incomplete Airy functions and their
first derivatives with respect to the parameter B. Both B and X

INT(X,INFTY,FS)
INT(X,INFTY,CJ*5*FS)

Go (B,X)
GOP (B,X)

(]

where FS = EXP[CJ*(BxS+5%%3/3)]

G1(B,X) = GO(B,X)-TPI*AI(B)
G2(B,X) = GO(B,X)-PI*[AI(B)+CJ*BI(B)]

AI(B) and BI(B) are the qbﬁ?iete Airy functions.
Version 1.1 4-12-1992

Author: E. D. Constanfiniﬁ;;w
The Ohio State University
ElectroScience Laboratory
1320 Kinnear Road

REAL*8 B,X,XP,X2,BXX,PI/3.141592653589793/,
& TP1/6.283185307179586/



criy

cru
¢
ciri
ciit

cn

COMPLEX*16 GO,GOP,G1,G1P,G2,G2P,CJ/(0.0D0,1.0D0)/
COMPLEX BZ,AI,ATIP,BI,BIP '

EXTERNAL  INC_AIRY_SS,INC_AIRY_FF,INC_AIRY_IP,AIBI
COMMON ¢J,PI,TPI

XP=DABS (X)

X2=X*X

BXX=B+X2

IF (B.GT.0.0D0O) BXX=2.0DO*B+X2

IF (BXX.GT.12.0DO) THEN
CALL INC_AIRY_IP(B,XP,GO,GOP)

ELSEIF (B.LT.-4.0D0) THEN
CALL INC_AIRY_FF(B,XP,GO,GOP)

ELSE B
CALL INC_AIRY_SS(B,XP,G0,GOP)

ENDIF

BZ=CMPLX (B)

CALL AIBI(BZ,AI,AIP,BI,BIP)

IF (X.LT.0.0DO) THEN
GO=TPI*AI-DCONJG(GO)
GOF=TPI*AIP-DCONJG (GOP)

ENDIF

G1=GO-TPI*AI

G1P=GOP-TPI*AIP

G2=GO-PI*(AI+CJ*BI)

G2P=GOP-PI*(AIP+CJ*BIP)

OPTIONS/EXTEND_SOURCE
SUBROUTINE INC_AIRY_IP(BS,XS,GO,GOP)
IMPLICIT NONE

This subroutine computes the incomplete airy function

using integration by parts when BS5+XS**2>>1.0

REAL*8 BS,XS,BXS,BXS1,BXS2,BXS3,BX54,BXS5,BX56,BXS7,

BXS8,BXS9,BX510,BXS11,PI,TPI
COMPLEX*16 CJ,CT,GO,GOP
COMMON ¢J,PI,TPI

BXS=BS+XS*XS
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cvit
ci1!
cii!
cril

BXS1=1.0D0/BXS
BXS2=BXS1*BXS1
BXS3=BXS2*BXS1
BXS4=BXS3*BXS1
BXS5=BXS4*BXS1
BXS6=BXS5*BXS1
BXS7=BXS6*BXS1
BXS8=BXS7*BXS1
BXS9=BXS8*BXS51
BXS10=BXS9*BXS1
BXS11=BXS10*BXS1 ,
CT=CDEXP (CJ* (BS*XS+XS*XS*XS/3.0D0))

IF (XS.EQ.0.0DO) GOTO 10
GO=CJ*BXS1+2.0DO*XS*BX53+2.0D0*CI*BXS4-12.0DO*CJ*XS*XS*BXSE

& +40 . 0DO*XS*BXS6+40 . ODO*CI*BXS7-120 . ODO*XS*XS*XS*BXS7

&  -840.0DO*CJ*XS*XS*BXS8+1680 .0DO*CJI*XS*XS*XS*XS*BXS9
&  +2240.0D0O*XS*BXS9
GO=CT*GO
GOP=-CJ*BX52-6.0DO*XS*BXS4-8 .0DO*CJ*BXS5+60 . 0DO*CI*XS*XS*BXS6
& -240,0D0*XS*BXS7-280.0D0O*CJ*BXS8+840.0DO*XS*XS*XS*BXS8
& +6720.0D0*CI*XS*XS*BXS9-15120.0DO*CI*XS*XS*XS*XS*BXS10
& -20160.0D0*XS*BX510

GOP=CJ*XS*GO+CT*GOP

RETURN

GO=CJ*BXS51+2.0DO*CI*BXS4+40 . 0DO*CI*BXST
GOP=-CJ*BXS2-8.0DO*CJ*BXS5-280 . 0D0O*CJ*BXS8-22400 . 0DO*CJI*BXS11
RETURN =

IMPLICIT NONE

This subroutine computes the incomplete airy function
using the Fresnel integral when BS<<0.0

REAL*8 BS,Xs,Bsp,Z,ZzZ,BXS,BX,PI,TPI,B1,B2,B3,

& G1,62,G3,23,75,27,29,BXS1,BXS2,BX53,BXS4,BXS5,BXS6,
& BXST,BXSB,BSi4,BXi,BSQP,BSS,Fi,F2,F3,F4,F11,F12,F21,
& F22,F31,F32,F41,F42,DZXS,DZBS
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ci!

ciit

COMPLEX*16 CJ,CT,GO,GOP,FCTZ,CZZ,G01,G02,G03,

& EPC,EPCP,SPC,SPCP,CT1,GZ,FZ,HZ ,KZ,FFCT,GPZ,FPZ,HPZ,

& KPZ ,FCTZP

EXTERNAL  FTRANSD

COMMON C¢J,PI,TPI

DATA G1,62,63 /0.2083333333333333,0.3342013888888889,

& 1.025812596450617/

DATA F1,F11,F12 /0.3333333333333333,1.25D0,1.333333333333333/
DATA F2,F21,F22 /0.2962962962962963,3.0078125D0,5.833333333333333/
DATA F3,F31,F32 /0.6913580246913580,4.748046875D0,
& 13.33333333333333/

DATA F4,F41,F42 /2.633744855967078,6.484051513671875,
& 23.83333333333333/

BSP=DABS (BS)

BSQP=DSQRT (BSP)
BS14=DSQRT(BSQP)
BSS=BSP*BSQP

Bi=1.0D0/BSS

B2=B1/BSS

B3=B2/BSS
BX=BS*XS+XS*XS*XS/3.0DO0
BX1=-2.,0D0*BSS/3.0D0
ZZ=DABS (BX+2.0D0*BSS/3.0D0)
Z=DSQRT(ZZ)

IF (XS.LT.BSQP) Z=-Z
Z3=Z*1Z

Z5=23%2Z

Z7=25%2Z

Z29=27%2Z

CT=CDEXP(CJ*BX)
CT1=CDEXP(CJ*BX1)
G01=0.5D0*CJ*G1*B1
G02=-0.25D0*G2*B2
GO03=-0.125D0*CJI*G3*B3
SPC=1.0D0+G01+G02+G03
SPCP=(1.5D0*G01+3.0D0*G02+4.5D0*G03) /BSP
BXS=BS+XS*XS

DZXS=XS-BSQP
CZZ=CDEXP(CJ*2Z)

IF (ABS(BXS).LT.0.1DO) GOTO 10
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BXS1i=1.0D0/BXS
BXS2=BXS51*BXS1
BXS3=BXS2*BXS1
BXS4=BXS3*BXS1
BXS5=BXS4*BXS1
BXS6=BXS5*BXS1
BXS7=BXS56%BXS1
BXS8=BXS7*BXS1

CALL FTRANSD(ZZ,FFCT)
FCTZ=0.5D0*CJ*CONJG(FFCT)*CZZ/Z
FCTZP=-0.5DO*CZZ*DZXS/Z

IF (Z.LT.0.0D0) FCTZ=FCTZ+CDSQRT(CJ*PI)
GZ=2.0D0*BXS1-1. ono/z/3514
GPZ=-2.0D0*BXS2-0. 25Do/z/BSP/Bs14+o 5DO*DZXS/Z3/BS14

FPZ= 24 ODO*XS*BXS4+0 2500/23/3514/35? 1.75D0*G1*B1/Z/BS14/BSP
& -1.5DO%DZXS/Z5/BS14+0.5D0*G1*B1*DZXS/23/BS14
HZ=-16.0D0*BX54+96 .0DO*XS*XS*BXS6-3.0D0/Z5/BS14+G1*B1/Z3/BS14
& -G2*B2/Z/BS1i4
HPZ=64 .0D0*BXS5-480.0D0*XS*XS*BXS6-0.75D0/Z5/BS14/BSP+
& 1.75D0*G1%B1/Z3/BS14/BSP-3,25D0%G2%B2/Z/BS14/BSP+
& 7.5D0*DZXS/Z7/BS14-1.5D0*DZXS*G1*B1/25/BS14+
& 0.5D0*DZXS*G2*B2/Z3/BS14
KZ=640.0D0*XS*BXS6~1920. 0D0*XS*XS*XS*BXS7+15 0D0/Z7/BS14-
& 3.0D0*G1*B1/Z5/BS14+G2*B2/Z3/BS14-G3*B3/Z/BS14
KPZ=-3840.0D0*XS*BXS7+13440.0D0*XS*XS*XS*BX58+3.75D0/27/BS14/BSP
-5.25D0*G1*B1/25/BS14/B5P+3.25D0*G2*B2/23/B514/BSP
-4 .75*G3*B3/Z/BS14/BSP-52.5D0*DZXS/Z9/BS14 '
+7 .5D0*DZXS*G1*B1/Z7/BS14-1.5D0*DZXS*G2*B2/25/BS14
+0.5D0*DZXS*G3*B3/Z3/BS14
EPC=CT* (0.5D0*CJ*GZ-0.25D0*FZ~-0.125D0*CJI*HZ+0.0625D0*KZ)
EPCP=CT*(0.5D0*CJ*GPZ-0.25D0*FPZ-0.125D0*CJ*HPZ+0.0625DO*KPZ)
GO=CT1*SPC*FCTZ/BS14+EPC
GOP=(CJ*BS14+0.25D0/BS14/BSP) *CT1+SPC*FCTZ+CT1*SPCP*FCTZ/BS14
& +CT1%SPC*FCTZP/BS14+CJ*XS*EPC+EPCP
RETURN -

L

Small argument Form

FCTZ#O.SDO*CDSQRT(CJ*PI)—Z—CJ*ZZ*Z/3.0D0
DZBS=0.5D0/BS14/DSQRT (1 .0D0+DZXS/3.0D0/BSQP)



FCTZP=-DZBS*CZZ

GZ=1.0DO-F11*Z/BSQP/BS14+F12*ZZ/BSS
GPZ=-0.75D0*F11*Z/BSQP/BS14/BSP+1.5D0*F12+ZZ/BSS/BSP
& -F11*DZBS/BSQP/BS14+2.0D0*Z*F12%DZBS/BSS
FZ=1.0DO-F21*Z/BSQP/BS14+F22%ZZ/BSS
FPZ=-0.75DO*F21+Z/BSQP/BS14/BSP+1 . 5D0*F22+ZZ/BSS/BSP
& -F21*DZBS/BSQP/BS14+2.0D0*Z*F22*DZBS/BSS
HZ=1.0DO-F31*Z/BSQP/BS14+F32*ZZ/BSS
HPZ=-0.75D0*F31*Z/BSQP/BS14/BSP+1.5D0*F32*ZZ/BSS/BSP
& -F31*DZBS/BSQP/BS14+2.0D0*Z*F32*DZBS/BSS
KZ=1.0D0-F41%Z/BSQP/BS14+F42%ZZ/BSS
KPZ=-0.75D0*F41%Z/BSQP/BS14/BSP+1.5D0*F42%ZZ/BSS/BSP
& -F41*DZBS/BSQP/BS14+2.0D0*Z*F42*DZBS/BSS
EPC=CT*(-0.5%CI*F1%GZ/BSP+0.25D0*F2*FZ/BSP/BSS

& +0.125D0O*F3*CJ*HZ/BSP/BSS/BSS

& -0.0625D0*F4*KZ/BSP/BSS/BSS/BSS)

EPCP=CT* (-0.5*CJ*xF1*GZ/BSP/BSP-0.5*CJ*F1+GPZ/BSP

& +2.5D0*0 . 25D0*F2*FZ/BSP/BSS/BSP+0.25D0*F2+«FPZ/BSP/BSS
& +4.0D0*0.125D0*F3%CI*HZ/BSP/B5S/BSS/BSP

& +0.125DO*F3*CJ*HPZ/BSP/BSS/BSS

& -5.5D0*0.0625D0*F4*KZ/BSP/BSS/BSS/BSS/BSP

& -0.0625D0*F4*KPZ/BSP/BSS/BSS/BSS)
GO=CT1*SPC*FCTZ/BS14+EPC

GOP=(CJ*BS14+0. 25D0/BSl4/BSP)*CTi*SPC*FCTZ

& +CT1*SPCP*FCTZ/BS14+CT1*SPC*FCTZP/BS14+CJ*XS*EPC+EPCP

ci1t
RETURN
END
C-—-----’- ----------------------------------------------------------------
DPTIONS/EXTEND_SOURCE
SUBROUTINE FTRANSD(XF,FFCT)
IMPLICIT NONE
cit
C!!! This routine evaluates the Fresnel Transition function F(X)
cin
REAL*8 X,XF,PI4,PI,TPI
INTEGER N,NT
COMPLEX*16 CJ,A0,AN,FFCT ,FFCTS
COMMON CJ,PI,TPI
ci
X=DABS (XF)

IF (X.GT.6.0D0) GOTO 1
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ciil

citt
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ci
crn

Small argument (series) form
IF (X.EQ.0.0DO) THEN
FFCT=(0.0D0,0.0D0)
RETURN '
ENDIF
PI4=P1/4.0D0
FFCT=DSQRT (PI*X)*CDEXP(CJ*(X+PI4))
A0=(1.0D0,0.0D0)
FFCTS=A0
NT=10*DSQRT(X)
DO N=1,NT
AN=-CJ*X*A0/DBLE(N)
FFCTS=FFCTS+AN/DBLE (2*N+1)
AO=AN
END DO
FFCT=FFCT-2.0D0*CJ*X*CDEXP (CJ*X) *FFCTS
GOTD 20

Large argument form

A0=(1.0D0,0.0D0)
FFCT=A0
DO N=1,8
AN=0.5D0*CJ*DBLE (2*N-1)*A0/X
FFCT=FFCT+AN
AO=AN
END DO
IF (XF.GE.0.0) RETURN
FFCT=DCONJG(FFCT)

RETURN
OPTIONS/EXTEND_SOURCE

SUBROUTINE INC_AIRY_SS(BS,XS,GO,GOP)
IMPLICIT NONE

This subroutine computéé'%ﬁgrincompieté Airy function using a
convergent series solution with error less than 1.0E-6.
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ciit
cril

crn

ciHi
ciil

REAL=*8 BS5,BSP,BS2,BS3,X5,X52,X53,C0,C1,PI,TPI
INTEGER M,N,MM,NT ,MT
COMPLEX*16 GO,GOP,A(66,33),B(66,33),A0P(33),A1P(33),

& CA(66) ,CB(66),CJ
EXTERNAL  AOA1XS
COMMON ¢J,PI,TPI

Initialize the coefficient values.

BSP=DABS (BS)
XS52=XS*XS
XS3=X52%XS
CALL AOA1XS(XS,AOP(1),A1P(1))
AOP(2)=-CDEXP (CJ*XS3/3.0D0)
AOP(3)=CJ*XS2*A0P(2)
AOP(4)=2,0D0O*CJI*XS*AOP (2)+CI*XS2*AO0P (3)
A1P(2)=CJI*XS*AOP(2)
DO N=3,4

A1P(N)=CJ*DBLE(N-2) *AOP (N-1)+CJ*XS*AOP (N)
END DO
BS2=BS*BS
BS3=BS2%*BS
GO=AOP(1)+A1P (1) *BS+0.5DO*CJI*AOP (2)*BS2
GOP=A1P (1) +CJ*AOP (2) *BS
IF (BS.EQ.0.0DO) RETURN
MT=8+BSP+4
IF (XS.GT.2.0D0) MT=MT+3*BSP*(XS-2)
NT=(MT+1)/2
€0=0.0D0
C1=2.0D0
DO M=1,3

DO N=1,NT

A(M,N)=(0.0D0,0.0D0)
B(M,N)=(0.0D0,0.0D0)

END DO

END DO

A(1,1)=(1.0D0,0.0D0)
B(2,1)=(1.0D0,0.0D0) *BS
A(3,2)=(0.0D0,0.5D0)*BS2

Compute the series
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DO M=4,MT

MM=(M+1)/2

A(M,1)=A(M-3,1)*BS3/DBLE(M-1) /DBLE (M-2)

B(M,1)=B(M-3,1)*BS3/DBLE(M-1) /DBLE (M-2)

DO N=2,MM - )
A(M,N)=(A(M-3,N)*BS3+CJ*A(M-2,N-1)*BS2) /DBLE (M-1) /DBLE (M-2)
B(M,N)=(B(M-3,N)*BS3+CJ*B(M-2,N-1)*BS2) /DBLE(M-1) /DBLE(M-2)

END DO T

DO N=MM+1,NT
A(M,N)=(0.0D0,0.0D0)
B(M,N)=(0.0D0,0.0D0)

END DO - N

IF ((MM.NE.(M/2)).AND.(MM.GE.5)) THEN
C0=C0+C1 R
C1=C1+2.0D0 B
AOP (MM) =CJ*XS2+AOP (MM-1) +C1*CJ*XS*AOP (MM-2) +CO*CJ*AOP (MM-3)
A1P (MM)=CJ*DBLE (MM-2) *AOP (MM~-1) +CJ*XS*AOP (MM)

ENDIF

CA(M)=(0.0D0,0.0D0)

CB(M)=(0.0D0,0.0DO0)

DO N=1,MM
CA(M)=CA(M)+A(M,N)*AOP (N)

CB(M)=CB(M)+B(M,N)*A1P(N)

END DO

GO=GO+(CA(M)+CB(M))

GOP=GOP+DBLE(M-1)* (CA(M)+CB(M))/BS

END DO
ciit
RETURN
mo e
C --------------------------------- L L ———
OPTIONS/EXTEND_SOURCE ,
SUBROUTINE AOA1XS(XS,AO,A1)
IMPLICIT NONE
crit -
REAL*8 'XS,G13/2.6789385347D0/,G23/1.3541179394D0/ ,PI,TPI,
& XS1,XS2,A10/0.3550280539D0/,AIP0O/-0.2588194038D0/
COMPLEX*16 A0,A1,CJ,X3,B(100),C13,C23
INTEGER  I,NT
COMMON CJ,PI,TPI
ctn
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cii
cri
cii
cn
cii
cit
cii

cr

DATA €13,C23/(0.4163415888278022,0.2403749283845681) ,

& (-0.6004684775880014,0.3466806371753174)/

XS1=DABS (XS)
X3=CJ*XS1*XS1*XS1/3.0D0
X52=X51%X51

Series Solution

A0=C13%G13
A1=C23%G23

IF (XS1.EQ.0.0DO) RETURN

B(1)=X3

A0=A0-XS1-0.25D0*XS1*B(1)
A1=A1-0.5D0*CJI*XS2-0.2*CI*XS2+B (1)

NT=2+4%*XS2

DO I=2,NT

B(I)=B(I-1)*X3/DBLE(I)
A0=A0-XS1*B(I)/DBLE(3%I+1)
A1=A1-CJ*XS2%B(I)/DBLE(3*I+2)

END DO

IF (XS.LT.0.0DO) THEN b
A0=2.0DO*PI*AIO-DCONJG (A0)
A1=2.0DO*PI*AIPO-DCONJG (A1)

ENDIF

RETURN
END

SUBROUTINE AIBI(Z,AI,AIP,BI,BIP)

This routine calculates the Airy functions AI(Z),BI(Z),
and their derivatives AIP(Z) ,BIP(Z).

Ref. Abramowitz and Stegun, Handbook of Mathematical Functions.

For CABS(Z) .LE. 6.0 ,a Taylor Series is used.
ARG(Z) may take any value. See eqs. (10.4.2) to (10.4.5) .

COMPLEX Z,AI,AIP,BI,BIP

IF(CABS(Z) .GT.6.)G0O TO 12
CALL AIBI1(Z,AI,AIP,BI,BIP)
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citl
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ciHl

gt

ciit
crit
cui!
cin
ctt!

cit!

cii

RETURN ' '
CALL AIBI2(Z,AI,AIP,BI,BIP)

SUBROUTINE AIBI1(Z,AI,AIP,BI,BIP)

COMPLEX  Z,AI,AIP,BI,BIP
COMPLEX*16 F,G,FP,GP
DOUBLE PRECISION CC1,CC2

DATA SB,CC1,CC2/1.73205080§i,355028053887817,.258819403792807 /

CALL Fz6z(Z,F,G,FP,GP)
AI=CC1%F-CC2*G
AIP=CC1*FP-CC2*GP
BI=S3% (CC1*F+CC2*G)
BIP=53* (CC1*FP+CC2*GP)

SUBROUTINE FZGZ(Z,F,G,FP,GP)

The auxiliary functions F(i?i&(Z),FP(Z),GP(Z) are computed as in
"Tables of the Modified Hankel functions of order one-third and
of their derivatives", Compﬁtation Lab, Harvard Univ. Press,1945.

COMPLEX*16 F,G,FP,GP,Z3,Z3M,ZD

COMPLEX  Z ”
REAL*8 AM,BM,CM,DM,AO,BO,CO,DO0
REAL ZMBD(5)

FIR 2 R

INTEGER MAX(5)

DATA ZMBD /6.1, 5.6, 4.8, 4.1, 3.2/
DATA MAX /22, 19, 16, 14, 11 /
ZD=0.D0
ZD=Z
A0=1.DO o
B0=1.D0 -

= 47
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citi!
¢!
cit
crit

crir

C0=0.5D0

D0=1.DO

Z3=(ZD**3) /200

Z3M=23

ZMAG=CABS(Z)

DO 3 M=1,5

IF(ZMAG .LE. ZMBD(M))MADMAX=MAX (M)

F=AD

G=B0

FP=CO

GP=DO

DO 10 M=1,MADMAX

TM=FLOAT (3*M)

AM=200.DO*A0/TM/ (TM-1)

BM=200.D0*B0/TM/ (TM+1)

CM=200.D0*C0/TM/ (TM+2)

DM=200.D0*D0/TM/ (TM-2)

F=F+AM*Z3M

G=G+BM*Z3M

FP=FP+CM*Z3M

GP=GP+DM*Z3M
Z3M=Z3M*Z3

AD=ANM

BO=BM

CO=CM

DO=DM

CONTINUE

G=ZD*G _

FP=(ZD*%2) *xFP

RETURN
END

SUBROUTINE AIBI2(XX,AI,AIP,BI,BIP)

This Routine calculates the Airy functions AI(XX),BI(XX),
and their derivatives AIP(XX),BIP(XX).
Ref. Abramowitz and Stegun, Handbook of Mathematical Functions.

COMPLEX Z,AI,AIP,BI,BIP,XX
COMPLEX 225,ZTB,2T,2T2,ZT3,ZT4,ZT5

" COMPLEX CT1,A2L2,EIPI3,EIPI6,C,S
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20

crl
gt
cn

DATA RTPI,TWORPI,RTOP,POF

% /1.772453851,3.544807702, .797884561, .785398164 /
DATA A2L2,EIPI6,EIPI3

% /(0.,.346573590), (.866025404,.5),(.5, .866025404) /
DATA C1/.069444444/,C2/.037133487/,C3/.037993059/,

% C4/.057649190/,C5/.116099064/

DATA D1/-.097222222/,D2/-.043885030/,D3/-.042462830/,

% D4/-.062662163/,D5/-.124105896/

ZTB=(2./3.)*XX*x1.5
ARG=ATAN2 (AIMAG (XX) ,REAL(XX))
IF(ABS(ARG).GE.2.1) GO TO 100

EQN. (10.4.59),(10.4.61)

Z25=XX*x* 25

ZT=ZTB

ZT2=ZT*ZT

ZT3=ZT2*ZT

ZT4=ZT2*ZT2

ZT5=ZT3*ZT2

CT1=CEXP(-ZT) /TWORPI
AI=CT1/225*(1-C1/ZT+C2/ZT2-C3/ZT3+C4/2ZT4-C5/ZT5)
AIP=-CT1*Z25%(1-D1/ZT+D2/ZT2- D3/ZT3+D4/ZT4 -D5/ZT6)
IF(ARG.LT.0.)GO TO 20 T

ZT=(0.,-1.)*ZTB

EQN. (10.4.65),(10.4.68) WITH UPPER SIGNS.

Z=XX/EIPI3
CT1=ZT+POF-A2L2

" BI=EIPI6

BIP=1./EIPI6
GO TO 30
ZT=(0.,1.)*ZTB

EQN. (10.4.65),(10.4.68) WITH LOWER SIGNS.
Z=XX*EIPI3

CT1=ZT+POF+A2L2
BI=1./EIPI6

]



30

100

crii
cr
cr!

ciil

BIP=EIPI6
S=CSIN(CT1)

C=CCO0S(CT1)

Z225=Z*% 25

ZT2=ZT*ZT

ZT3=ZT2*ZT

ZT4=ZT2*ZT2

ZT5=ZT3*ZT2
BI=BI*RTOP/Z25*(S*(1-C2/2T2+C4/2ZT4)-C*(C1/ZT-C3/ZT3+C5/2T5))
BIP=BIP*RTOP*Z25% (C*(1-D2/ZT2+D4/ZT4)+S*(D1/ZT-D3/ZT3+D5/ZT5))
RETURN

ZT=(0.,1.)*ZTB

EQN. (10.4.60),(10.4.62),(10.4.64),(10.4.67)

IF(ARG.LT.0.)ZT=-ZT

Z=-XX

225=Z+%% .25

ZT2=ZT*ZT

ZT3=ZT2*ZT

ZT4=ZT2*ZT2

ZT5=ZT3*ZT2

CT1=ZT+POF

S=CSIN(CT1)

C=CCOS(CT1)
AI=1./RTPI/Z25%(S*(1-C2/ZT2+C4/ZT4)-C*(C1/ZT-C3/ZT3+C5/2ZT5))
AIP=-Z25/RTPI*(C*(1-D2/2T2+D4/ZT4)+S*(D1/ZT-D3/ZT3+D5/ZT5))
BI=1./RTPI/Z25%(C*(1-C2/ZT2+C4/ZT4)+S*(C1/2T-C3/ZT3+C5/ZT5))
BIP=Z25/RTPI*(S*(1-D2/ZT2+D4/2T4)-C*(D1/ZT-D3/2ZT3+D5/ZT6))

RETURN
END
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