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Abstract

A method of removing non-aerodynamic acceleration signals and
calibrating the High Resolution Accelerometer Package (HiRAP) has been
developed and improved. Twelve HiRAP mission data sets have been
analyzed applying the improved in-flight calibration technique. The
application of flight calibration factors to the data sets from these missions
produced calibrated acceleration levels within 5.7 pug of zero during a time
in-flight when the acceleration level was known to be less than 1 pg. To
validate the current in-flight calibration technique, the atmospheric density
results, specifically the normal-to-axial density ratios, have been compared
with the analysis results obtained with the previous in-flight calibration
technique. This comparison shows an improvement (up to 12.4 percent per
flight) in the density ratio when the updated in-flight calibration technique
is used.

Nomenclature
A = acceleration measurements, pg
o = angle of attack
B = sensor bias
b = bias coefficlent, pg
cx = axial aerodynamic coefficient
cz = normal aerodynamic coefficient
g = 9.80665 m/s2, Earth gravitational constant
Hz = cycles/sec
M = temperature coefficient, pg/°F
T = sensor temperature
ng = 1x106 g
X, Z = HiRAP sensor location or Orbiter X and Z body axes

incremental acceleration
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Acronyms

APU = Auxiliary Power Unit
GMT = Greenwich Mean Time
HiRAP High Resolution Accelerometer Package

ov Orbiter Vehicle
OEX Orbiter Experiments
STS = Space Transportation System

Subscripts

calibrated

flight

reference or initial
= due to APU

c
f
o
u
Introduction

The High Resolution Accelerometer Package (HiRAP) experiment, as
part of the NASA Orbiter Experiments (OEX) program, has to date made
low-frequency, low-acceleration flight measurements during 12 Space
Transportation System (STS) missions. The HiRAP is a tri-axial, orthogonal

system of gas-damped accelerometers with a resolution of 1 X10-6 g (1 ug.

The HiRAP mission is to measure low-frequency aerodynamic accelerations.

With these measurements, atmospheric density and the aerodynamic flight

%)e)rformance characteristics of the Orbiter Vehicle (OV) can be determined
1).

Orbital and reentry aerodynamic analyses require calibrated
low-frequency, low-acceleration measurements. Many flight programs rely
upon ground calibrations of the accelerometer instrument system in a 1g
environment to properly adjust the pug environment flight measurements.
However, experience indicates that ground calibrations have an accuracy
within £100 ug (or greater) of zero during a time in flight when the
acceleration level is generally accepted to be less than 1 ug (2). Until true,
in-flight calibration station corrected accelerometry is perfected (3), an
alternate method of calibration is necessary.

This paper presents an updated in-flight calibration method used to
calibrate HIRAP's low-frequency, low-acceleration data on 12 missions. Also,
presented are the results of a direct comparison between atmospheric
density ratios produced by the previously used calibration technique and the
in-flight calibration technique presented here.

Analysis of Flight Data

The HiRAP science and housekeeping data are recorded in counts as a
function of Greenwich Mean Time (GMT). The science data are comprised
of acceleration measurements for each of the 3 sensors. The data are



collected at a rate of 174 Hz for all flights except STS-61C, STS-35, and
STS-40, which are collected at a rate of 112.7 Hz. The housekeeping data
includes measurements of sensor temperature and power supply voltages.
The data are recorded at a rate of 1.6 Hz for STS-61C, STS-35, and STS-40,
and at a rate of 2.7 Hz for all other flights. The method used to convert the
acceleration count values to engineering units is presented in Ref, 1. To
obtain an aerodynamic data set, all non-aerodynamic accelerations must be
removed. The procedures for removing the effects of thrust induced
accelerations and rotational induced linear accelerations, caused by the
instrument offset from OV center of gravity, are documented in Refs. 1 and
2. After thrust removal and center-of-gravity adjustments have been made, a
1-sec average is made of the acceleration data. Since the averaged data set
represents the acceleration data, due only to aerodynamic accelerations and
bias, the data set is ready for calibration.

Flight Calibration

The first step in the flight calibration method is to determine an OV
altitude, at which aerodynamic acceleration levels are less than 1 pg. The
model and current flight calibration technique used are presented in Ref. 2.
For STS-07, the model predicts accelerations of less than 1ug above 227 km
and 214 km, respectively, for the X- and Z-axes. The uncalibrated
acceleration data and the selected calibration intervals are shown in Fig. 1.
The calibration parameters for each flight are presented in Table I. The
linear regression of sensor acceleration with sensor temperature produces a
bias calibration of the form

Bfi = Mj (Tj-Ty;) +by

where 1 = X, Z. The bias slope and intercepts of the linear regression, as
well as the associated uncertainty estimates, are presented in Table II. The
method for obtaining the calibration uncertainty estimates is documented in
Ref. 2. These uncertainty estimates are evaluated over the calibration sensor
temperature range to obtain the maximum orbital acceleration measurement
uncertainties presented in Table III. As shown, the flight calibration
acceleration levels have an accuracy within 5.7 pg of zero. Table IV, the
maximum reentry acceleration measurement uncertainties, is an evaluation
of the uncertainty estimates over the range from sensor temperature at
calibration to sensor temperature at sensor saturation. The flight calibration
acceleration levels have an accuracy within +26.4 ug of zero at a
measurement of -8000 pg. The bias value, Bfj, resulting from the linear

regression is removed from the uncalibrated aerodynamic data using:
Aci = Aj - Bfi

where i = X, Z. The resulting aerodynamic accelerations, presented for
STS-07 in Figs. 2 and 3, are very near zero during the calibration interval.



As detalled in Ref. 2, the three Auxiliary Power Unit (APU) exhaust ports
are located at the tail of the OV. The thrust from these ports is manifested
as an acceleration signal shift, shown in Fig. 3, on the Z-axis only. The
acceleration increment due to the APU, AA is determined by evaluating both
the pre- and post- APU calibration intervals at the location of the APU ~
transition. To complete the bias determination for the Z-axis data, the post-
APU acceleration shift is incorporated into the bias calibration factors
previously determined. The bias determination for the Z-axis data following
the last APU transition becomes:

Acz = Az - Bfz + AAuz

where AA is the change in acceleration due to the APU. For STS-07, the
calibrated Z-axis acceleration data, which includes the correction for
AAyz=40 pug, is presented in Fig. 4.

Atmospheric Density Ratio Results

A previous analysis (Ref. 1) details the aerodynamic coefficient model.
The same model was used with updates for the axial, cx(a), and normal,
cz(o), aerodynamic coefficients at 40° angle of attack. For this analysis, cx(o)
and cz(o) were derived from data in Ref, 4. The coefficients are:

cx = 5.86689 e-7 ()3 -6.72027e -5 (o) 2+.00332044 (o) - .009534
cz = -9.25704e -5 (o) 2 +.0523808 (o) -.832122

where o = angle of attack. These coefficients are used in the model to
calculate a density derived from normal- and axial-acceleration
measurements. The expected result, verifying the in-flight calibration
technique, is that these densities derived from separate measurements are
equal. Figures 5-16 profile the ratio of the densities derived from the axial
and normal accelerations. The density results of flights STS-51F and STS-
61A have unresolved anomalies. These anomalies have been noted and
discussed in a previous analysis (see Ref. 1). A comparison of density ratios
were performed between the values in Ref. 1 and the results obtained here.
The mean of each density ratio was calculated from 80 to 140 km. The
deviation of each mean is presented in Table V. The results from this new
analysis show smaller deviations overall. Therefore, the current in-flight
calibration technique has improved the analysis of HIRAP data.

Summary

There are time intervals during OV reentry when the aerodynamic
acceleration level is known to be less than lug. Since ground calibration
techniques may predict accelerations of £100 pg (or more), flight
calibrations techniques are used to calibrate the HiRAP acceleration data.



The improvements to the in-flight calibration method have produced
accelerations levels that are within +5.7 pug of zero for all HIRAP mission data
sets. These calibrated data sets are used in the aerodynamic performance
characteristics. The model calculates normal- and axial-densities from
normal- and axial-accelerations, respectively. The results obtained here,
compared with previous results, confirm that the changes to the in-flight
calibration technique are indeed improvements.
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Table Ill. Maximum Orbital Acceleration Measurement Uncertainties

Flight X-axs Z-axis

Number (ng) (ng)
STS-06 1.50 4.77
STS-07 0.54 3.96
STS-08 2.62 5.65
STS-09 2.97 5.32
STS-41B 0.67 © 3.25
STS-41C 1.63 2.77
STS-41C 1.21 3.27
STS-51B 1.14 2.16
STS-61A 1.48 4.28
STS-61C 4.05 4.39
STS-35 2.79 1.90

STS-40 1.71 2.16



Table IV. Maximum Reentry Acceleration Measurement Uncertainty

Flight X-axis Z-axis
Number (ug) (ug)
STS-06 6.23 17.23
8TS-07 1.49 10.13
STS-08 6.08 26.40
STS-09 . 8.57 19.06
STS-41B 2.54 5.74
STS-41C 4.79 8.24
STS-51B 3.41 11.91
STS-51F  3.29 8.00
STS-61A 7.03 10.67
STS-61C 14.42 18.32
STS-35 8.02 10.37

STS-40 5.69 4.45
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Table V. % Deviation from Equal Densities

Flight Current Reference 1
Number Analysis Analysis
STS-06 +0.57 +2.50
STS-07 -1.00 +7.72
STS-08 +2.76 +6.86
STS-09 +5.80 +18.17
STS-41B -0.05 +5.18
STS-41C +0.04 +2.37
STS-51B +0.96 -1.92
t STS-51F +8.50 +1.68
1 STS-61A +6.49 +3.63
STS-61C +1.55 -4.61
STS-35 +4.42 *
STS-40 +6.38 *

*Flight was only evaluated with current flight calibration technique.

$The density results are in error. The analysis of this error can be

found in Reference 1.
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