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Abstract

Let F(z) be a vector-valued function F : C --, C N, which is analytic at z = 0 and meromorphic

in a neighborhood of z = 0, and let its Maclaurin series be given. In a recent work [Si6] by

the author, vector-valued rational approximation procedures for F(z) that are based on its

Maclanrin series, were developed, and some of their convergence properties were analyzed in

detail. In particular, a Koenig type theorem concerning their poles and a de Montessus type

theorem concerning their uniform convergence in the complex plane were given. With the help of

these theorems it was shown how optimal approximations to the poles of F(z) and the principal

parts of the corresponding Laurent series expansions can be obtained. In the present work we

use these rational approximation procedures in conjunction with power iterations to develop

bona fide generalizations of the power method for an arbitrary N x N matrix that may be

diagonalizable or not. These generalizations can be used to obtain simultaneously several of the

largest distinct eigenvalues and corresponding eigenvectors and other vectors in the invariant

subspaces. We provide interesting constructions for both nondefective and defective eigenvalues

and the corresponding invariant subspa_es, and present a detailed convergence theory for them.

This is made possible by the observation that vectors obtained by power iterations with a matrix

are actually coefficients of the Maclaurin series of a vector-valued rational function, whose poles

are the reciprocals of some or all of the nonzero eigenvalues of the matrix being considered,

while the principal parts of the Laurent expansions of this rational function are vectors in the

corresponding invariant subspaces. In addition, it is shown that the generalized power methods

of this work are equivalent to some Krylov subspace methods, among them the methods of

Arnoldi and Lanczos. Thus, the theory of the present work provides a set of completely new

results and constructions for these Kryiov subspace methods. This theory suggests at the same

time a new mode of usage for these Krylov subspace methods that has been observed to possess

computational advantages over their common mode of usage.



1 Introduction

Let F(z) be a vector-valued function, F : C --* C N, which is analytic at z = 0 and meromorphic

in a neighbourhood of z - 0, and let its Maclaurin series be given as

OO

= Z ..z',
m-O

where um are fixed vectors in C N.

(i.i)

In a recent work by the author [Si6] three types of vector-valued rational approximation proce-

duresthat are entirely based on the expansion in (1.1) were proposed. For each of these procedures

the rational approximations have two indices, n and k, attached to them, and thus form a two-

dimensional table akin to the Pad6 table or the Walsh array. Let us denote the (n, k) entry of this

table by F,,k(z). Then Fmk(z), if it exists, is defined to be of the form

Fn,k(z) = E_=°c!a'k)zk-iF"+_+J(Z) __ Pn,k(z) with cl n'k) = Qn,k(O) = 1, (1.2)
kEj:o

where P is an arbitrary but otherwise fixed integer > -i, and

FFI

Fm(z)=_uiz i, m=0,1,2,...; F,n(z)--O form<0, (1.3)
i=O

(.,k)
and the cj are scalars that depend on the approximation procedure being used.

If we denote the three approximation procedures by SMPE, SMMPE, and STEA, then the

(,_,k)
cj =_cj, for each of the three procedures, are defined such that they satisfy a linear system of

equations of the form
k-!

uii ci = -uik, O < i < k-1; ck= 1, (1.4)
1=0

where uli are scalars defined as

{ (u,+i,u,+j) for SMPE,
ulj = (qi+l,un+j) for SMMPE,

(q, u,,+i+j) for STEA.

(1.5)

Here (. , .) is an inner product - not necessarily the standard Euclidean inner product - whose

homogeneity property is such that (ax,fly) = -Sfl(x,y) for z,y E C N and a,fl E C. The vectors



ql, q2, ..., form a linearly independent set, and the vector q is nonzero. Obviously, Fn,k(z) exists if

the linear system in (1.4) has a solution for co, q, ...,ck-1.

It is easy to verify that for SMPE the equations in (1.4) involving c0,cl, ...,ck-1 are the normal

equations for the least squares problem

I[ IImin c.i u,,,+j + un+k ,
cO'el "'"ek--I j=O

where the norm I1"IIis that induced by the inner product (., .), namely, Ilxll - v/ff .

(1.6)

As is clear from (1.2) and (1.3), the numerator of F,,.k(z) is a vector-valued polynomial of degree

at most n + v + k, whereas its denominator is a scalar polynomial of degree at most k.

As can be seen from (1.4) and (1.5), the denominator polynomial Qn,k(z) is constructed from

un, u,_+l,...,u_,+k for SMPE and SMMPE, and from u,,,un+l,...,u,_+2k_l for STEA. Once the

denominators have been determined, the numerators involve u0, ul, ..., u,,+u+k for all three approx-

imation procedures.

The approximation procedures above are very closely related to some vector extrapolation meth-

ods. In fact, as is stated in Theorem 2.3 in Section 2 of [Si6], F,_,k(z) for SMPE, SMMPE, and

STEA axe obtained by applying some generalized versions of the minimal polynomial extrapola-

tion (MPE), the modified minimal polynomial extrapolation (MMPE), and the topological epsilon

algorithm (TEA), respectively, to the vector sequence Fro(z), m = 0, 1,2, .... For early references

pertaining to these methods and their description, see the survey paper of Smith, Ford, and Sidi

[SmFSi], and for recent developments pertaining to their convergence, stability, implementation,

and other additional properties, see the papers by Sidi [Sil, Si2, SIS], Sidi and Bridger [SiB], Sidi,

Ford, and Smith [SiFSm], and Ford and Sidi [FSi]. The above mentioned generalizations of vector

extrapolation methods are given in [SiB, eqs.(1.16) and (1.17).].

A detailed convergence analysis for the approximations F,,,k(z) as n _ ov was given in [Si6],

whose main results can be verbally summarized as follows: (1) Under certain conditions the de-

nominators Q,_,k(z) converge, and their zeros, k in number, tend to the k poles of F(z) that axe



closest to the origin. This is a Koenig type result and is proved in Theorems 4.1 and 4.5 of [Si6],

where the precise rates of convergence are also given for both simple and multiple poles of F(z),

and optimal approximations to multiple poles are constructed in a simple way. (2) Under the same

conditions Fn,k(z) converges to F(z) uniformly in any compact subset of the circle containing the

above mentioned k poles of F(z) with these poles excluded. This is a de Montessus type theorem

and is proved in Theorem 4.2 of [Si6]. (3) The principal parts of the Laurent expansions of F(z)

about its poles, simple or multiple, can be constructed from Fn,k(z) only. This construction, along

with its convergence theory, is provided in Theorem 4.3 of [Si6].

It turns out that the denominator polynomials Q,,k(z) are very closely related to some recent

extensions of the power method for the matrix eigenvalue problem, see [SiB, Section 6] and [Si3].

Specifically, if the vectors um of(1.1) are obtained from um= Aura_l, m = 1, 2, ..., with uo arbitrary,

and A being a complex N x N and, in general, nondiagonalizable matrix, then the reciprocals of the

zeros of the polynomial Q,,,k(z) axe approximations to the k largest distinct and, in general, defec-

tive eigenvalues of A, counted according to their multiplicities, under certain conditions. In Section

3 of the present work we provide precise error bounds for these approximations for n _ cc that are

based on the results of Theorems 4.1 and 4.5 of [Si6]. While the approximations to nondefective

eigenvalues have optimal accuracy in some sense, those that correspond to defective elgenvalues do

not. In this paper we also show how approximations of optimal accuracy to defective eigenvalues can

be constructed solely from On,k(z), providing their convergence theory for n _ oo at the same time.

We then extend the treatment of [SiB] and [S13] io cover the corresponding invarlant subspaces in

general, and the corresponding eigenvectors in particular. For example, we actually show how the

eigenvectors corresponding to the largest distinct elgenvalues, whether these are defective or not,

can be approximated solely in terms of the vectors uj, and provide precise rates of convergence for

them. The key to these results is the observation that the vector-valued power series _"_rn°°__0 UrnZ_

actually represents a vector-valued rational function F(z) whose poles are the reciprocals of some

or all of the nonzero eigenvalues of A, depending on the spectral decomposition of u0, and that

corresponding eigenvectors (and certain combinations of eigenvectors and principal vectors) are

related to corresponding principal parts of the Laurent expansions of the function F(z). The main

results of Section 3 pertaining to eigenvalues are given in Theorem 3.1, while those pertaining to

eigenvectors and invaxiant subspaces are given in Theorem 3.2 and the subsequent paragraphs. A

detailed description of the properties of the power iterations um = Aura-l, m = 1,2, ..., is provided



in Section 2.

In Section 4 we present a short review of general projection methods and Krylov subspace

methods for the matrix eigenvalue problem. Of particular interest to us are the methods of Arnoldi

[A] and Lanczos [L], which are described in some detail in this section.

In Section 5 we show that the extensions of the power method developed and analyzed in Section

3 are very closely related to Krylov subspace methods. In particular, we show that the reciprocals

of the poles and the corresponding residues of the rational approximations F,_,k(z) obtained from

the SMPE, SMMPE, and STEA procedures are the Ritz values and the Ritz vectors, respectively,

of certain Krylov subspace methods for the matrix A starting with the power iteration un. Specifi-

cally, the methods of Arnoldi and Lanczos are related to the Fn,k(z) obtained from the SMPE and

STEA procedures, respectively, precisely in this sense. The main results of Section 5 are summa-

rized in Theorem 5.4 and Corollary 5.5.

Now the Ritz values and Ritz vectors obtained from Krylov subspace methods are normally

used as approximations to nondefective eigenpairs. They are not very effective for defective eigen-

pairs. Since we know that the generalized power methods based on the SMPE, SMMPE, and

STEA procedures are related to Krylov subspace methods, the constructions for approximating

defective eigenvalues and their corresponding invariant subspaces that originate from generalized

power methods and that are given in Section 3 are entirely new as far as Krylov subspace methods

are concerned. Similarly, all of the convergence results of Section 3, whether they pertain to defec-

tive or nondefective eigenvalues and their corresponding invariant subspaces, are new and totally

different from the known analyses provided by Kaniel [K], Palge[Pai], and Saad[Sal,Sa2]. Some of

these analyses can also be found in Parlett [Par2] and Golub and Van Loan[GV]. The last two refer-

ences also give a very thorough treatment of the computational aspects of Krylov subspace methods.

In Section 6 we show how the Ritz values and Ritz vectors obtained in a stable way from the

common implementations of the Aroldi and Lanczos methods can be used in constructing the ap-

proximations to the defective eigenvalues and their corresponding invariant subspaces in general

and eigenvectors in particular.



In view of the connection between the Krylov subspace methods and vector-valuedrational

approximationsof [Si6]and the correspondinggeneralizedpower methods ofthe presentwork, we

can summarize the main contributionsofthispaper as follows:

(i)Itisshown that Krylov subspace methods forthe matrix eigenvalueproblem have a basis

in analyticfunctiontheoryand in rationalapproximationsin the complex plane.

(ii) A mode of usage of Krylov subspace methods akin to the power method, in which one

first iterates on an arbitrary initial vector many times and only then applies Krylov subspace

methods, is proposed. This mode produces approximations only to the largest eigenvalues

and their corresponding invariant subspaces.

(iii) The output from Krylov subspace methods, namely, the Ritz values and Ritz vectors, are

used in constructing optimal approximations to defective eigenvalues and the corresponding

eigenvectors and invariant subspaces. (The Ritz values and Ritz vectors by themselves are

not good approximations to defective eigenvalues and corresponding subspaces.)

(iv) A complete convergence theory for the generalized power methods is provided.

(v) Numerical experience shows that in many cases the mode of usage proposed in this work

and mentioned in (ii) above may produce the accuracy that is achieved by applying the

Arnoldi method in the commonly known way using less storage and less computational work

when the matrix being treated is large and sparse.

Before closing this section we would like to note that the eigenvalue problem for defective ma-

trices has received some attention in the literature. The problem of approximating the largest

eigenvalue of a matrix when this eigenvalue is defective has been considered by Ostrowski[O], who

proposes an extension of the Rayleigh quotient and inverse iteration and gives a thorough analysis

for this extension. Parlett and Poole [ParPo] consider the properties of a wide range of projection

methods within the framework of defective matrices. The convergence of the QR method for defec-

tive Hessenberg matrices has been analyzed in detail by Parlett [Parl]. The problem of determining

the Jordan canonical form of nondefective matrices has been treated in Golub and Wilkinson [GW].

The use of power iterations in approximating defective eigenvalues is also treated to some extent

in Wilkinson [W, Chap. 7] and Householder [H, Chap. 7].
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Finally, we mention that the results of [Si6] as well as the application of vector-valued rational

approximations to the matrix eigenvalue problem were motivated by the developments in a recent

work by the author [Si4] on the classical Pad_ approximants.

2 Properties of Power Iterations

Let A be an N × N matrix, which, in general, is complex and nondiagonalizable. Let u0 be a

given arbitrary vector in C N, and generate the vectors ul, u2, ..., according to

uj+l = Auj, j _ O. (2.1)

Denote by s be index of A, i.e., the size of the largest Jordan block of A with zero eigenvaiue. Then

um is of the form

= " (2.2)a:l $_n, for m _ s,
j=l l

where Aj are some or all of the distinct nonzero eigenvalues of A, which we choose to order such

that

->I 21_> --..._ I MI> o, (2.3)

pj + 1 - wj are positive integers less than or equal to the dimension of the invariant subspace

of A belonging to the eigenvalue _j, and ajt, 0 < 1 _<pj, are linearly independent vectors in this

invariant subspace. It turns out that the vector ajpj is an eigenvector of A corresponding to Sj,

while the vectors ajl, i = 0, 1, ...,pj - 1, are combinations of eigenvectors and principal vectors of

A corresponding to the eigenvalue _j. What is more, the subspaces

I_= span {ajt, i _ I < pj}, i = 0,1,...,pj,

are invariant subspaces of A corresponding to the eigenvahe _, and satisfy II0 D Y1 D ... D Ypi"

Whether all distinct nonzero eigenvalues are present among )q, _2, .-.,),M, the exact values of

the wj , and the precise composition of the vectors ajt, all depend on the spectral decomposition

of the initial vector u0. For a detailed derivation of the above see [SiB, Section 2].

Before we go on, we will only mention how to determine the maximum value that wj can assume.

Suppose that the Jordan canonical form of A has several Jordan blocks whose eigenvalues are all

8



equal to Aj. Then the largestvaluethat wj can assume isthe sizeof the largestof theseblocks.

In general,for a randomly chosen vectorUo, wj willtake on itsmaximum value. In caseswj is

theoreticallylessthan thismaximum value,rounding errorson a computer willultimatelyforcewj

to takeon itsmaximum value.

Itisobviousfrom the above that

M M

ko= + 1)= < N
j=l j=l

and

(2.4)

5ji, 0 <_ i < pj, 1 <_j < M, are linearly independent. (2.5)

Also the minimal polynomial of the matrix A with respect to the vector u, has degree k0 M= _j=l wi,

i.e.,

/k0 = min k : _i Ai Uo = O, flk = 1 .

If defined as a monic polynomial, this polynomial is unique and divides the minimal polynomial of

A, which, in turn, divides the characteristic polynomial of A. Furthermore, the minimal polynomial

of A with respect to u° is also the minimal polynomial of A with respect to u,,, for all m > s. Con-

sequently, any set of vectors {Urn, Urn+l, ..., Urn+k} is linearly independent for m > s provided k < ko.

Applying now Lemma 3.1 of [Si6] in conjunction with (2.2), we conclude that the vector-valued

OO wipower series _'_.m=o umz represents the vector-valued rational function

M Pj

1=1 i=o - Aiz) i+1 + G(z), (2.6)

in which the vectors aji are uniquely determined in terms of the 5jr from

gtjt = _ aji , O <_ l <_pj, I <_ j < M, (2.7)
i=t i - 1

and hence form a linearly independent set, and G(z) is a vector-valued polynomial of degree at

most s - 1. In fact, G(z) is in the invariant subspace of A corresponding to the zero eigenvalue.

Also, a./n, = _j_,j, i.e., aj_,i is an eigenvector of A corresponding to the eigenvalue Aj, while for

each i, 0 < i < pj - 1, aji is some other vector in the invariant subspace I_ corresponding to the

eigenvalue Aj, and involves principal vectors as well as eigenvectors.



Whenthe matrix A is diagonalizable, pj = 0 for all j in (2.2) and hence in (2.6). If, in addition,

A is normal, then its eigenvectors form an orthogonal set with respect to the standard Euclidean in-

ner product, namely, (x, y) = x'y, where _* stands for the hermitian conjugate of x. Consequently,

the vectors aj0 = ajo in (2.2) and (2.6) are orthogonal with respect to this inner product when A

is normal.

Now that we have shown that the power series _"]_=o urnz'n represents a rational function F(z)

that is analytic at z = 0 and has poles zj = ,_-1 of respective multiplicities wj = pj + 1, j =

1, 2, ..., M, we can apply any one of the approximation procedures SMPE, SMMPE, or STEA to

the power series _=0 urnz'_ to obtain the vector-valued rational approximations Fn,k(z) to F(z).

We can then apply the theorems of Sections 4 and 5 of [Si6] to construct approximations to the

eigenvalues _j and the vectors aji in (2.6) and (2.7).

It is important to note that the linear independence of the vectors ajl is an important condi-

tion for the convergence of the SMPE and SMMPE procedures, but is not needed for the STEA

procedure. In addition, we assume throughout that

and that

(qx,alo) ... (ql,alnl) ... (ql,ato) ... (ql,atm)

(qk, alo) ... (qk,alv,)... (qk,ato) ... (qk, at,,)

t

n(q, ajpi) # 0
j=l

No additional assumption is needed for SMPE.

# 0 for SMMPE, (2.8)

for STEA. (2.9)

In order for (2.8) to hold it is necessary (but not sufficient) that the two sets of vectors

{ajl : 0 < i < pj, 1 <_j <_ t) and {ql, ..., qk}, each be linearly independent, as has already been as-

sumed.

3 Theoretical Development of Generalized Power Methods

In light of the developments of the previous section and Theorems 4.1, 4.3, and 4.5 of [Si6] and

the developments of Section 5 in the same paper, we approach the matrix eigenvalue problem as

10



follows:

Given the vector Uo that is picked arbitrarily, we generate the vectors ul, u2, ..., according to

(2.1). We then fix the integers n and k, and determine the coefficients (",Dc i , j = 0, 1, ...,k, of the

denominator polynomial of Fn,k(z) for one of the procedures SMPE, SMMPE, and STEA, by using

un, un+l,...,un+k for SMPE and SMMPE, and u,_,u,+l,...,un+2k_l, for STEA. By Theorem 4.1

of [Si6] the zeros of the polynomial _,_,k(._) =--)_-kQn,k(_-l) = _j=ok c_,,k))_j, are approximations

to the k largest _j in (2.2), counted according to their multiplicities wj, provided the conditions

stated in this theorem are satisfied. In case the matrix A is normal, the zeros of the polynomial

Q),,k(_), obtained from SMPE and STEA with the standard Euclidean inner product, are even

better approximations to the eigenvalues )_j of A as follows from Theorem 4.5 of [Si6].

3.1 Treatment of Eigenvalue Approximations

Theorem 3.1 below, which is of constructive nature, summarizes all the relevant results con-

cerning the approximations to the _j. The corresponding approximations to eigenvectors and other

vectors in the invariant subspaces are subsequently obtained with the help of the developments in

Section 5 of [Si6], and the relevant results for this problem are summarized in Theorem 3.2 below.

We note that we have adopted in this section all of the notation of the previous sections.

Theorem 3.1: Let the matrix A and the vector sequence urn, m = 0, 1,2, ..., be as described in the

preceding section. Let the positive integers t and k be such that

t t

lad > I_,+al and k _(pj + 1) - _-_wj. (3.1)
j=l j=l

Determine the coe.OTcients (n.k) .cj ,3 = O, 1, ..., k, for one of the procedures SMPE, SMMPE, and

STEA, by utilizing u,, u,+l, ..., as described in (1.4) and (1.5). Then, under the additional condi-

tions given in (2.8) and (2.9),

k t

-- = + O(,(n)) asn -* eo, (3.2)
/=0 j=l

where

e(n) = na I _)tttl In , (3.3)

I1



a being some nonnegative integer. In fact, if the )_j whose moduli are ])'d are simple, then a = ]5,

where _ = max{pj : IX_l-- I,_,+al}. Consequently, the polynomial (_,,,k()_), for n _ 0% has wj zeros

,_jt(n), 1 < l < oaj, that tend to _j, j = 1,2,...,t. For each j ancI l we have

where

Let us denote

Then

_st(n)- Aj = 0 (_j(n)'/"i) as n -.-, ce,

I a,+l]""

(3.4)

(3.5)

]1_j(n) = 1 _ A it(n) or ._j(n) = 1 _ _./t(n)-' (3.6)
60j I=1 1=1

faj(n) - Xj = O(Sj(n)) as n _ oo. (3.7)

(3.8)

Also, the pith derivative of O,,,k()_) has ezactly one zero _j(n) that tends to )_j and satisfies

Y,j(n)- _j = O(tj(n)) asn --,oo.

Let the matrix A be normal, i.e., AA" = A*A. Then pj = 0 hence wj = 1 for all j. If the
(_,k)

ej are determined through the procedures SMPE and STEA with the standard Euclidean inner

product, and k is such that

Ia_l> Iak+al, (3.9)

and provided q = u, for STEA, then (6.8) and (6.10) are substantially improved to read, respec-

tively,
k

.i=1 _ as n _ _, (3.10)

as n--*o¢, (3.11)

and, for j = 1,..., k,

,_j(n)-,_j=O (]-X_f)_k+l ]2,.,

where )_j(n) is the unique zero of O.,k(), ) that tends to ),j.

We would like to note again that the result in (3.2) and (3.3) was originally given in [SiB,

Section 6, Theorem 6.1], and those in (3.10) and (3.11) were originally given for SMPE in [Si3].

The rest of Theorem 6.1 is new. As mentioned in these papers, the methods contained in Theorem

3.1 are true extensions of the classical power method.

12



One important aspect of Theorem 3.1 is the Construction of optimal approximations to defective

eigenvalues through (3.6) and (3.7). From (3'4) it is clear that when pj = 0 hence wj = 1, which

occurs automatically if _j is a nondefective eigenvaiue, the rate of convergence of the approxima-

tion corresponding to _j is optimal. In case ),j is a defective eigenvalue and pj > 0, the rate of

convergence of each of its w i corresponding approximations is 1/wj of the optimal rate. For this

case (3.6) and (3.7) show how the poor appro_matlons Ajl(n) can be combined in a simple way

to give an optimal approximation, namely ),j(n). Similarly, (3.8) shows that _i(n), the zero of

the pith derivative of On,_(_) that tends to _j, has the same optimal convergence rate as Aj(n).

The results in (3.10) and (3.11) show that the approximations obtained from SMPE and STEA for

a normal matrix converge twice as fast as those obtained for a nonnormal diagonalizable matrix

having the same spectrum.

3.2 Treatment of Invariant Subspace Approximations

For the treatment of the eigenvectors and invariant subspaces we need some preliminary work.

Let us rewrite (2.6) in the form

where

M Pj dj i

F(_) = F_,_ (_ _ _j),+, + c(_),
j=l i=0

zj = ,_j-1 and dj_ = (-zj)i+laii for all j, i.

(3.12)

(3.13)

Thus the dii are the coefficients of the principal part of the Laurent expansion of F(z) about the

pole zj, j = 1, ...,M.

Consider the rational function

P(z) = F(z)- F_+_(z)
zn+,,+ 1 , (3.14)

which is analytic at z = 0 and has the Maclaurin series expansion

oo

_(_) = _ _+.+,+,_.
i=0

By (3.12) we can write

-P(_)= _ (z- zi)'+' + _(_)'
i=0

(3.15)

(3.16)

13



where

djl = z; "-v-1 _ z;l+idj,, (3.17)
t=i l - i

and t_j(z) is analytic at zj, i.e., as above, the dji are coefficients of the principal part of the Laurent

expansion of F(z) about the pole zj,j = 1, ..., M. Unlike before, both F(z) and the dji depend on

n, in addition. The vector djpj, being a scalar multiple of the constant vector din#, is an eigenvector

of A corresponding to the eigenvaJue Aj. For i # pj, the vector djl, being a linear combination

of the constant vectors djt, i <_ l <_ pj, is in the invariant subspace _, and, as is obvious from

(3.17), the coefficients of the dfl in this linear combination are polynomials in n, up to the common

multipUcative factor z_-n-v-'

Following now the developments in Section 5 of IS,6], we obtain the following constructive result

for the dji.

Theorem 3.2: With the notation and conditions of Theorem 3.1, let us define, for 1 < j < t,

(j(n) = 1/Aj(n) or (j(n)- 1/Aj(n), (3.1s)

and, for O < i < pj and l < l < wj,

dj,,,(n)= - Cs(n))/

and

k Jn,k) .k-r x'_r
_r=, --r -- L,m=, Un+v+m gin-'

Ek=oC!n'k)(k- r)zk-r-'
]*=,/,xiK(,0 (3.19)

ds,(n)= d,,.,(n). (3.2o)
/=1

Then, for 0 < i < pj, dji(n) is an approzimation to dji in (3.17) in the sense

lip_sup d.ii(n) - d.ii < At+, • (3.21)

We would like to note that Theorem 3.2 actually contains the basic ingredients of a potentially

bona fide numerical method for approximating the eigenvectors and other vectors in invariant

subspaces corresponding to largest eigenvalues of A. The resulting method, which is described

below, (i) makes use of only un, un+,, ..., disregarding uo, u,, ..., an-, entirely, and (ii) enables us

to construct optimal approximations to the vectors aii, 0 <_ i < pj, for pj = 0 as well as pj > O. We

now turn to these constructions.
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3.2.1 Approximation of the Eigenvector ajp i

Let us first specialize the result of Theorem 3.2 to the case i - pj. We have

_jpj xn+_+l j.= '_j '*3Pj ' (3.22)

so that (3.21) can also be written as

limsup A_'n-_-I dip, (n) - djp_ [ _< . (3.23)

This clearly shows that the vector djpi(n), as n --* _, aligns itself with the constant vector djpi,

which is proportional to the eigenvector ajp_i practically at the rate of [At+l/Aj[ '_. It is thus

sufficient to compute the vectors _jij(n), 1 _< l _<wj, by (3.19), and then to form dji(n) by (3.20)

as our approximation to the (appropriately normalized) eigenvector ajpi, and this is valid whether

pj = O or pj > O.

3.2.2 Approximation of the Vectors ajl, 0 _< i _< pj - 1

Although the vector ajpj (up to a multipllcative constant) can be determined from dipi(n) in a

rather painless manner, the determination of the remaining aji from the djl(n) becomes somewhat

involved. The reason for this is that the vectors dji, apart from the scalar multipllcatlve factor

z_"_-v-1, are linear combinations of the djt hence Of the ajt, i <_ I <_pj, with coefficients that vary

as functions of n, as can be seen from (3.17) and (3.13), and as has been mentioned before. This

means that the dji do not have a fixed direction with varying n.

Let us now rewrite (3.17) in the form

d j0

djl
T(n) . = z7+_+1

• djpj ,

where T(n) is the upper triangular matrix

T(n) =

• " ropj 1
... Ylp i

I
rp#pi J

, tit--

djo

d jl

A

• djp_

, (3.24)

(3.25)
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Obviously,T(n) is invertible since its diagonal elements are unity. Thus,

djo

dj_

• djpj .

= T(n)-' (3.26)

d'j01
|

djl z_+V+l
• !

where T(n) -1 is also upper triangular, its diagonal elements being unity.

Now since all elements of T(n) are polynomials in n, and since its determinant is unity, the

elements of T(n) -1 turn out to be polynomials in n, i.e., the matrix T(n) -1 can grow at most

polynomially as n _ oo. If we denote the nonzero elements of T(n) -1 by pil, i < l <_ pj,O < i < pj,

then we can write (3.26) in the form

pj

dji = z_ +v+l _Plt djl, 0 < i < pj. (3.27)
l=i

ulation we obtain

I pj [I/n
limsup djl z; +'+1- pi,as,(n) < .

This implies =that the vector _tvJ=i Pll dj/(n) aligns itself with the fixed vector djl as

(3.28)

n _ _ prac-

ticaJly at the rate of [At+I/Aj[ n. We leave the details of the proof of (3.28) to the reader.

We note that (3.28) shows how to construct a good approximation to djl from the djt(n) and

Aj, provided Aj is known. Since Aj is not known, however, the vector _[i=i pltdj_(n) cannot be con-

structed. We, therefore, propose to replace A./in the matrix T(n) -1 by the known approximations

(j(n). Also, in this case, it can be shown that (3.28) remains valid. Again, we leave the details of

the proof to the reader.

Before closing this section, we must mention that the developments of this section are meant to

be theoretical, in general. Although they can be used for computational purposes for small values of

k, their use for large k is likely to introduce numerical instabilities in many cases. These instabilities

are mainly a result of our direct use of the power iterations u,+i = Aiu,, i = 0, 1, .... They exhibit

themselves first of all through the poor computed approximations to the Aj, which ultimately affect

the computed eigenvector approximations. This problem can be remedied by observing that the
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approximationsFr,,k(z) that we developed and applied to the matrix eigenvalue problem are very

tightly connected with Krylov subspace methods for some of which there exist computationally

stable implementations. In particular, the SMPE and STEA procedures are related to the method

of Arnoldi and the method of Lanczos, respectlvely, as we show in detail in the next two sections.

4 General Projection Methods and the Methods of Arnoldi and

Lanczos for the Matrix Eigenproblem

4.1 General Projection Methods

Let {vl, ...,vk} and {wl, ...,wk} be two linearly independent sets of vectors in C N, and define

the N x k matrices V and W by

v --[vllv21 ""lvk] and W = [WllW21...Iwk]. (4.1)

In addition, let us agree to denote the subspax:es span {vl, ..., vk} and span {wl, ..., wk} by V and

W, respectively.

In projection methods one looks for an approximate eigenvalue-eigenvector pair (_, z) with

z E V that satisfies the condition

(y, Ax - _x) = 0 for all y E W,

which can also be written in the equivalent form

W*(A - ,_I)V_ = 0 for some _ E C k.

(4.2)

(4.3)

Here we have used the fa_t that z E V implies that x = V_ for some _ E C k. Of course, (4.3) holds

if and only if )_ is an eigenvalue of the matrix pencil (W'AV, W'V), i.e., it satisfies the characteristic

equation

det(W'AV- AW*V) = 0. (4.4)

In general, (4.4) has k solutions for A, which are known as Ritz values in the literature. Given that

AI is a Ritz value, the corresponding eigenvector _ is a solution of the homogeneous system in (4.3).

The eigenvector approximation corresponding to _t is now z _ = V_ _, and is known as a Ritz vector.

The different projection methods are characterized by the subspaces V and W that they employ.

(Note that V and W are also called, respectively, the right and left subspaces.)
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4.2 The Method of Arnoldi

In this method V and W are Krylov subspaces given by

V = Vk-, - span {uo, Auo,...,Ak-luo} and W = Wk-1 = Vk-1,

for some arbitrary vector u0.

(4.5)

Arnoldi has given a very successful implementation of this method. In this implementation the

vectors A_uo, i - O, 1, ..., are orthogonalized by a very special Gram-Schmidt process as follows:

Step 0. Let Vl = uo/lluo]t

Step 1. Forj = 1,...,k- 1, do

Determine the scalar hj+l,j > 0 and the vector vj+l, such that IIvj+,ll = 1 and

hj+l,jVj+l Avj J-" -- )"_i=1 hijvi, hij = (vi, Avj), 1 < i < j.

(4.6)

Thus the N x k matrix V = [ttl]t_2]---[Vk] is unitary in the sense that V*V is the k x k identity

matrix. As a result, W*V = V'V = I, and the generalized eigenvalue problem of (4.3) now becomes

=

where H isthe k x k upper Hessenberg matrix

hn hn

h2, h22

H = h32

,o.

"o

hk,k-1

hlk

h2k

h3k ,

hkk

i.e., the Ritz values are the eigenvalues of H.

(4.7)

(4.8)

(4.9)

4.3 The Method of Lanczos

In this method V and W are the Krylov subspaces

V = Vk-1 = span {u0, Auo, ..., Ak-lUo} and W = Wk-1 = span {q, A'q, ..., (A*)k-lq},
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for some arbitrary vectors u0 and q.

The algorithm given by Lanczos generates one set of vectors {vl, ...,vk} from the Aiuo, i =

0, 1,...,k- 1, and another set of vectors {wl, ...,wk) from the (A*)iq, i - 0, 1, ...,k- 1, that satisfy

the biorthogonality condition

wfvj = _ij, (4.10)

as long as the process does not break down. This is achieved by the following Algorithm:

Step 0.

Step 1.

Set vl = auo and wl = rq such that (Wl, vl) = 1.

For j = 1, ..., k- 1, do

(a) Compute Vj+ 1 and wj+l by

0/+1 = Avj - ajv.i - _jvi_ 1 ....
D

tbj+ 1 = A*wj - "_jwj - Sjwj_ 1

(when j = 1 take fllVo = _lWo = O)

with aj = (wj, Avj)

(b) Choose 6j+1 and flj+l such that

and set

vj+l = fij+l/6j+l and wj+l = _j+l/-3j+l.

(4.11)

By (4.10) the matrices V and W satisfy W*V = I. As a result, the generalized eigenvalue problem

of (4.3) becomes

where H is the k × k tridiagonal matrix

o_ 1

62

H .__

_2

(2 2

63

and the Ritz values are the eigenvalues of H.

n_ = ),_, (4.12)

O_4 _4

** °,

3k

_k ak

(4.13)
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4.4 The Case of Hermitian A

The subspaces V in (4.5) and (4.9) are identical. When A is hermitian, i.e., A* = A, and

q = Uo, the subspaces W in (4.5) and (4.9) become identical too. Thus the methods of Arnoldi

and Lanczos become equivalent for the case under consideration. Furthermore, it can be shown

that the elements hij of the matrix H in the method of Arnoldi satisfy _ = h_+l,i so that

hij+l = hi+l,i > 0 for i = 1,2,...,k - 1, while hlj = 0 for j >__i+ 2. The diagonal elements hli are

all real. That is to say, in the absence of roundoff, the matrix H is real symmetric tridiagonal. If

we pick q = u0 and choose _i =/_J = (_, vi) in the method of Lanczos, then the matrix H in

(4.13) turns out to be real symmetric and is exactly the same as the one produced by the method

of Arnoldi.

The properties of the Ritz values and Ritz vectors of the Lanczos method, as applied to hermitian

matrices, have been analyzed by Kaniel [K], PaJge[Pai], and Sand [Sal]. The paper [Sa2] gives results

for nonhermitian matrices.

5 Equivalence of Rational Approximation Procedures and Krylov

Subspace Methods

We now go back to the rational approximation procedures SMPE, SMMPE, and STEA. In

particular, we concentrate on the poles and residues of the rational functions Fn,k(z).

5.1 Poles of F,_,k(z) vs. Ritz Values

From the determinant representations of F,,k(z) that are given in Theorem 2.2 of [Si6], it follows

that the denominator Q,,,k(z) of Fn,k(z) is a constant multiple of the determinant

1

u00

D(A)= ulo

Uk-l,0

A ... Ak

it01 •.. ?10k

_fll " " " Ulk

Uk_l, 1 •.. Uk_l, k

, (5.1)

where A = z -1 and uij are as defined in (1.5). This implies that the zeros of the polynomial D(A)

are the reciprocals of the zeros of Qn,k(z), or, equivalently, the reciprocals of the poles of Fn,k(z).
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In addition, they are the roots of a generalized elgenvalue problem as we show next.

Theorem 5.1: Whatever the uij, the zeros of the polynomial D(A) in (5.1) are the eigenvalues of

the matrix pencil (X, T), where

X

l/Ol 110 2

Ull 1/12

.

Uk-l,1 Uk-l,2

•.. _dOk

•.. Ulk

•.. Uk_l, k

and T =

nO0 tlO1

IglO ltll

:

Uk-l,0 Uk-l,1

"" " nO,k-1

• .. lgl,k_ 1

• . . Uk_l,k_ 1

(5.2)

i.e., they satisfy the equation

det(X - AT) = 0. (5.3)

Proof: Multiply the (j - 1)st column of D(A) by A and subtract from the jth column for j =

k + 1,k, ...,2, in this order• This results in

D(A) =

1 0...0

_/00

nlO X - AT

.

Uk-l,0

= det(X - AT), (5.4)

thus proving the claim, o

When uij are as in (1.5), Theorem 5.1 takes on the following interesting form.

Theorem 5.2: Define the N × k matrices V and W by

v = [u.lu.+ll ""lu.+k-a] (5.5)

and

W = V for SMPE,

W = [ql[qul ""lqk] for SMMPE, (5.6)

W = [qlA*ql...l(A*)k-lq] for STEA.

Then, with uij as defined by (1.5), the zeros of D(A) are the eigenvalues of the matrix pencil

(W*AV, W'V), i.e., they satisfy

det(W*AV AW*V) = O. (5.7)
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Consequently, the reciprocals of the poles of the rational approzimations F,,k(z) obtained from the

SMPE or SMMPE or STEA procedures are the Ritz values of the Krylov subspace methods whose

right and left subspaces are column spaces of V and W, respectively.

Proof: Since Theorem 5.1 applies, a_ we need to show is that X = W'AV and T = W*V

there. That T = W*V follows from (1.5), (5.2), (5.5), and (5.6). From (1.5), (5.2), and (5.6), we

similarly have X = W'[U.+ll • • .lu.+k]. Using now the fact that uj+l = Auj, j > O, we also have

[u.+ll... lu.+k] = AV. Consequently, X = W*AV. Again, from uj+l = Auj,j > O, we realize,

in addition, that the right subspace for all three methods is none other than the Krylov subspace

span {un,Aun, ..., Ak-lun }. This completes the proof. D

5.2 Residues of F,.k(z) vs. Ritz Vectors

Turning Theorem 5.2 around, what we have is that the Ritz values obtained by applying

the Krylov subspace methods whose left and right subspaces are column spaces of V and W,

respectively, are, in fact, the reciprocals of the poles of the corresponding rational approximations

Fn,k(z) to the meromorphic function F(z) = _o ui zi. An immediate question that arises is, of

course, whether there is any connection between the Ritz vectors and the Fn,k(z). The answer,

which is in the aftlrmative, is provided in Theorem 5.3 below.

Theorem 5.3: Let _ be a Ritz value of the Krylov subspace methods whose right and left subspaces

are column spaces of, respectively, V and W in Theorem 5.2. Denote the corresponding Ritz vector

by _. Let v = -1 in the corresponding rational approximation F,,k(z), cf. (1.2). Provided _ is

simple, Y_is a constant multiple of the residue of F,,,k(z) at the pole _ = 1/_.

Proof: Let us first determine the residue of F,,k(z) at the pole ._ = 1/X. With v = -1

F.,k(z)l =2= = EL0 (5,8)
O',k(_) O_,k(_) '

since Qn,k(z) _ 0 that follows from the assumption that _ is simple, which implies that _ is a

simple pole. By Fn+,(z) F,_l(z) + E_+_ u,,,z _ and t,= _,=0 cr _l'-" = 0, we can rewrite (5.8) in

the form, cf. Section 5 of [Si6],

1 k
S E er_'k-r

Res F.,k(z)l_=, = Q.,k(_ ) .=1

where

n+r-I _n+k-1 k-1

= (5.9)
rtl----, rrL----0

}Tin = 2 Cr)kr-m-l'

r=ra+l

m = O, 1,...,k- 1.
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Let us now denote r/= (r/o,rh,...,r/k_1)T. Then (5.9)impliesthat Res F,_,k(z)]z=jis a scalar

multipleof Vr}.Recallthat the Ritz vectorcorrespondingto ,_isV_, where _ E C k and satisfies

W*(A - AI)V_ - 0,which, on account of Theorem 5.2,isthe same as (X - AT)_ = 0. Thus in

order to show that ResFn,k(z)Iz=_ isa constant multipleof the Ritz vectorcorrespondingto the

Ritzvalue A,itissufficientto show that

(X - AT)77 = 0. (5.11)

From (5.2), the (i + 1)st component of the k-dimensional vector r = (X - AT)_?, i = 0, 1, ..., k - 1,

is

which, by (5.10),becomes

k-1

m=0

k-1 k

m=O r=m+l

Expanding and rearranging this summation, we obtain

ri = --UiO crA r + UiraCm.

\r=l / m=l

Recalling that k2_-,r=ocr _r = 0, we can rewrite (5114) as

k

(5.12)

c,.A r-m-1 . (5.13)

(5.14)

=
m=O

Finally, from the assumption that ck = 1 and from the fact that c0, cl,...,c_-1 satisfy the linear

equations in (1.4), we conclude that

This completes the proof, t::!

ri= 0, i = 0, 1,...,k- 1. (5.16)

5.3 Summary of F,,,k(z)vs. Krylov Subspace Methods

We now combine the resultsofTheorems 5.2and 5.3to statethe followingequivalencetheorem,

which forms the main resultof thissection,and one ofthe main resultsof thiswork.

Theorem 5.4: Let Fr,,k(z) be the rational approximation obtained by applying the SMPE or

SMMPE or STEA procedure to the vector-valued power series c__"_rn=0 _trnzm, where Um= hmuo, m =
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0,1,..., are power iterations. Denote the reciprocals of the poles of F,_,k(z) by _,...,A_. Setting

v = -1 in the numerator of Fn,k(z), denote the corresponding residues of F.,k(z) by x'_, ...,x' k.

Next, denote b.s )_"1,..., ,V_ and x'lt, ..., x'_, respectively, the Ritz values and corresponding Ritz vectors

produced by the Krylov subspace methods whose right subspace is span {un, Aun, ...,A_-_Un_l } and

left subspaces are the column spaces of the matrices W in (5.6). Then

and

A_ = A_, j-- 1,...,k, (5.17)

xj' o¢ x j," provided )_ is simple. (5.18)

More can be said about the SMPE and STEA procedures versus the methods of Arnoldi and

Lanczos, and this is done in Coronary 5.5 below.

? ,
Corollary 5.5: With F,_,k(z),)_j, zj, j = 1, ..., k, as in Theorem 5.4, let ,_', xj,3" " = 1, ..., k, be the

Ritz values and Ritz vectors produced by applying the k-step Arnoldi or Lanczos methods to the

matrix A, starting with the vector u_, = Anuo. (That is to say, replace the initial vector Uo in

Step 0 of (_.6} or (_.11} by the nth power iteration un.} In addition, let q be the same vector for

the STEA procedure and the Lanczos method. Then the SMPE and STEA procedures are equiva-

lent to the methods of Arnoldi and Lanczos, respectively, precisely in the sense of (5.17} and (5.18}.

Now that we have shown the equivalence of the methods of Arnoldi and Lanczos with the

generalized power methods based on the SMPE and STEA approximation procedures, we realize

that those results that we proved in Section 3 for the latter and that pertain to the nondefective

as well a8 defective eigenvaiues of A are, in fact, new results for the former. That is to say, if we

apply the methods of Arnoldi or Lanczos to the matrix A starting with the nth power iteration

u,, = Anuo for large n, then the Ritz values are approximations to the k largest distinct eigenvaiues

of A counted according to the multiplicities that appear in (2.2). Similarly, the Ritz vectors can be

used for constructing the approximations to the corresponding invariant subspaces. These points

will be considered in greater detail in the next section.

5.4 Optimality Properties of the Arnoldi Method

(_,k)
In Section 1 we mentioned that the coefficients of c i of the denominator polynomial Qn,k(z)

of Fn,k(z) for the SMPE procedure are the solution to the optimization problem given in (1.6). If
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we now pick the vectors um as the power iterations Um= Amuo, ra = 0, 1, ..., then (1.6) reads

I
co,cl.....c,-I \j=o

Exploitingthe factthat the method ofArnoldiisequivalentto the generalizedpower method based

on the SMPE approximation procedure,we can statethe followingoptimalitypropertiesforthe

Arnoldi method as appliedto a generalmatrix A.

Theorem 5.5: Let A_,x_, j = 1,2,...,k, be the Ritz values and appropriately normalized Ritz

vectors, respectively, produced by applyin 9 the _:step Arnoldi method to the matrix A startin 9 with

the power iteration u,, = A'_uo. Let Pk denote the set of monic polynomials of degree ezactly k,

while xk denotes the set of polynomials of degree at most k. Then for k < ko, cf. (2.4),

!
:r j ----

i=l

i#j

u., (5.21)

(a '- AjI)xj + A k

k-1

u. _ ("*) (5.22): C i Un+i + Un+k,

i=O

II(A ' '- As_r)xsll = rain II(A- AI)g(A)u.ll,
AEC,gEPk-1

= minll(h- M)z_'II,

= rain II(A- A_I)g(A)u"II,
gEPt,__

= En,k independently of j, (5.23)

and

((A ' '- AjI)..j, g(A)u.) = O, all g E rk-1. (5.24)

For k = ko, we have Az_ Ajzj:'

Proof." We start by noting that (5.24) is nothing but a restatement of the requirement that

Az_ - A_z_ be orthogonal to the left subspace of the Arnoldi method, which is also its right sub-

space V = {g(A)un : 9 e _'k-1}.
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Since the Ritz values A_, j = 1,...,k, are the zeros of the monic polynomial (_,,k(A) =

k-1 c!n,k) Ai writeEi=o + Ak, we can
k

Thus

i----1

k-1 k

= c "'k)A' + = II(a -
i---0 i----1

Combining (5.26) with (5.19), we obtain (5.20).

(5.25)

Provided m_ isas given by (5.21),the proofsof (5.22)and (5.23)are immediate.

! lTo prove the validity of (5.21) it is sufficient to show that z_ E V and that (A - Ajl)zj is

orthogonal to all the vectors in V. That m_ E V is obvious from (5.21) itself. The fa_t that

(.,k)
c i , i = 0, 1, ..., k - 1, are the solution of the optimization problem in (5.19) implies that the

vector On,_(A)un is orthogonal to every vector in V. But (_n,k(A)un = (A AjI)xj, as can be seen

from (5.26). This completes the proof. 121

Note that the proofs of (5.20) and (5.21) for hermitian matrices can also be found in [Par2,

Chap. 12, pp. 239-240].

A few historical notes on the methods of Arnoldi and Lanczos are now in order.

Following the work of Arnoldi the equivalent form in (5.19) was suggested in a paper by Erdelyi

[El, in the book by Wilkinson [W, pp. 583-584], and in the papers by Manteuffel [M] and Sidi and

Bridger [SiBr]. The equivalence of the different approaches does not seem to have been noticed,

however. For instance, [W] discusses both approaches without any attempt to explore the connec-

tion between them. With the exception of [SiBr], these works all consider the case n = 0. The case

n > 0 and the limit as n _ co are considered in [SiBr] and [Si3].

In his discussion of the power iterations in [H, Chap. 7], Householder gives determinantal

representations of certain polynomials whose zeros are approximations to the largest eigenvalues

of the matrix being considered. One of these representations, namely the one given in Eq. (16)

in [H, p. 186], coincides with the determinant D(A) in (5.1) of the present work pertaining to the
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STEA approximation procedure with n _ 0. It is shown there that the zeros of D(A) tend to the

k largest eigenvalues of the matrix A as n _oo, but a theorem as detailed as our Theorem 3.1 is

not given. It is also mentioned in the same place that, apart from a constant multiplicative factor,

the polynomials D(A) with n = 0 are precisely the so-called Lanczos polynomials given in Eq. (10)

of [H, p. 23] that are simply det(A[ - H) W_th H as given in (4.13). As we pointed out in this

section, up to a constant multlplicative factor, D(A) with n > 0 is itself the Lanczos polynomial

det(A/- H) when the Lanczos method is being applied with uo replaced by u, = Anuo. It is not

clear to the author whether this connection between D(A) with n > 0 and the Lanczos method has

been observed before or not.

6 Stable Numerical Implementations

In this section we concentrate on the implementation of the generalized power methods based on

the SMPE and the STEA approximation procedures as these are related to the methods of Arnoldi

and Lanczos respectively, and as good implementations for the latter are known. For example, the

implementations in (4.6) and (4.11) are usually quite stable.

6.1 General Computational Considerations

The theoretical resultsof Section 3 all involvethe limiting procedure n -_ oo. When JAIl

islarger(smaller)than 1,we may have difficultiesin implementing the procedures above due to

possibleoverflow(underflow)inthe computation ofthe vectorsum forlargem. This situationcan

be remedied easilyas willbe shown below.

We first observe that the denominator polynomial Qn,k(z) of the vector-valued rational approx-

imation Fr,,k(z) remains unchanged when the vectors un, un+l, un+2, ..., are all multiplied by the

same scalar, say a, and so do its zeros. Consequently, the vectors d.ii(n ) defined in Theorem 3.2

remain the same up to the multiplicative factor a. That is to say, as far as the matrix eigenvalue

problem is concerned, multiplication of the vectors u,,, u,,+l, ..., by the scalar a leaves the eigenvalue

approximations unchanged and multiplies the eigenvector approximations by a.

For the purpose of numerical implementation we propose to pick a = 1/llunl], and we achieve

this by the following simple algorithm that is also used in the classical power method:
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Step 0. Pick no arbitrarily such that [[uo[l - 1.

Step 1. For m - 1,2,...,n do

wrn - Aurn-1

urn= wrn/ll rnll.

(6.1)

Once the vector u, has been determined in this way, we apply the k-step Arnoldi or Lanczos

methods to the matrix A with this un as the starting vector, and obtain the k Ritz values and the

corresponding Ritz vectors.

6.2 Treatment of Nondefective Eigenvalues

If )_j, one of the largest t distinct nonzero eigenvalues of A that contribute to the power iterations

urn exactly as in (2.2), is nondefective, i.e., it has _j = 1, then, under the conditions of Theorem

3.1, there is precisely one Ritz value ,k.i(n ) that tends to ,_j with ,_j(n) - Aj = O(n_l_t+l/Ail n) as

n ---* oo if A is nonnormal and ,_j(n) - ,_j = O(IAk+l/Ail2n) as n oo if A is normal. If zj is

the eigenvector corresponding to ,_j, then the Ritz vector zj(n) corresponding to ,_j(n) tends to zj

with lira supn._,o o Ilzi(n) - zull _<IA +I/Aulin all cases, by Theorem 3.2. Thus the Ritz value and

the corresponding Ritz vector are the required approximations to the eigenpair (,_j, z j).

6.3 Treatment of Defective Eigenvalues

When the eigenvalue ,_j is defective and has wj > 1 in (2.2), then, under the conditions of

Theorem 3.1, there are precisely v.,j Ritz values _jt(n), 1 < l < vj, that tend to ,_j, each with the

rate of convergence as n _ co. That is to say, the Ritz values for a defective

eigenvalue are not as effective as the ones for nondefective elgenvaiues. However, _j(n) and _j(n)

that are defined in Theorem 3.1 do enjoy the property that they tend to ,_j with the optimal rate

of convergence O(n1'l_t+_/_jl n) as n -.-, oo, as in the case of a nondefective eigenvalue.

As for the invariant subspa£es I_, i = 0, 1, ...,pj, pj = wj - 1, the most basic result to use is

Theorem 3.2. Acordlng to this theorem and the subsequent developments, the building blocks for

the invariant subspaces are the vectors dji,t(n) that are defined by (3.19). Now the vector d.il,t(n )

is a constant multiple of Res F,,,k(z)l_=zi_(,,), where z.it(n ) = 1�),it(n), which, when _, = -1, is a
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constant multiple of the Ritz vector corresponding to _jt(n) by Theorem 5.4. That is, once the

Ritz vectors have been computed, they can be used to construct the vectors dji,l(n), which, in turn,

are used in constructing the approximate invariant subspaces Y_ with optimal accuracy.

Let us now show how the vector dji,t(n) is expressed in terms of the corresponding Ritz vector.

For simplicity of notation we shall write _ = zit(n ) = 1/hjt(n ). The Ritz vector corresponding to

 jt(n) is k= Ei=x _ivl, where vl = un and (u,,, u,_) = 1 by (6.1). We recall that for the method

of Arnoldl the vectors vl, v2, ..., Vk are actually the ones that would be obtained by orthogonallzing

the power iterations un, Au,_, ..., Ak-lu,_ by the Gram-Schmidt process. For the method of Lanczos

the vectors vl, v2, ...,vk are obtained by biorthogonalizing un, Aun, ...,Ak-lun against the vectors

q, A'q, ..., (A*)k-lq. In both cases we have

AV = VII + R, (6.2)

where H is the upper tIessenberg matrix of (4.8) for the Arnoldi method or the tridiagonal matrix

of (4.13) for the Lanczos method, and thus it is upper Iiessenberg in both cases. The matrix R has

all of its first k - 1 columns equal to zero, and its kth column is hk+l,kVk+l.

From the way the vectors vl, v2, ..., vk are constructed it is easy to see that

v- [unlZuolla -l o],,
where B is the upper triangular matrix

"" &k
B=

/_kk

whose entries filj are required. Substituting (6.3) in (6.2), we have

[Au, lA2u,d...IAku, ]B = ...IAk-lu,,]BH + R.

By equating the jth columns of both sides of (6.5) for j < k, we obtain

J i

_(Aiun)fiq Y_(Aiun)(BH)i+Lj
i=1 i=O

as the matrices B and BH are upper triangular and upper tlessenberg, respectively.

linear independence of the vectors Aiun, i = 0, 1, ..., k - 1, (6.6) reduces to

flij=(BH)i+Lj, 0<i<j; /30j=0allj>_ 1.

(6.3)

(6.4)

(6.5)

(6.6)

From the

(6.7)
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Now flll = 1 since vx = un. These equations can be solvedin the order i = 0,I,...,j,j =

1,2,...,k- 1, which amounts to computing the 1st,2nd,...,kthcolumns of the matrix B, in this

order.This can be _compUshed as hi+1J > 0 forallj. Thus by lettingi= 0 in (6.7),we obtain

_f+1 fllrhrj= 0, which we solvefor _l,j+1.Next, lettingi 1, we obtain _lj = z_.r=x/)2rhrj,r----1 = X"_J+I

which we solve for/_2,j+t. By letting i = 2,3, ...,j, we obtain JSi+lS+x, i = 2,3, ...,j, in this order.

Suppose that the Ritz vector _ has been computed in the form _ = _'_Ak=l _ivi and that the _i

have been saved. Then, recalling also that u,,+i = Aiu,_, i = O, 1, ...,k - 1,

k-1

= _ _.+,, (6.s)
/----0

and the coefficient of un is given by
k

_o= _ _ls_j. (6.9)
j=l

Similarly, from (3.19), the coefficient of un in djij(n) (setting v = -1 there) is given by

k c¢.,k)_k__ c¢0.,k)_kE,_-1 = -O-_/n))' , . (6.10)
_ = (_- _J(_))'E_=0_!.,k)(k-.)_k-.-, O.,k(_)"

Now if we denote the Ritz values by A_, ..., A_ and set z_ = 1/A_, i = 1, ..., k, then we can show that

k

[I
r=l

(1 - zlr/_")

(6.11)

so that

O.I

a0
_, (6.12)k

l-I (1 - z_l_,)
r-----I

which is the desired result.

With this we can now go on to compute the approximations to the eigenvector ajp# and the

vectors aji, 0 <_ i < pj, precisely as described in Sections 3.2.1 and 3.2.2, respectively. For example,

the vector dipj(n ) _o_= 2_-,t=1dipjJ(n) is the approximation to the eigenvector a## the error in which

is, roughly speaking, O([At+l/Ai[ n) as n _ oo.
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