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Abstract

A truncated modal expansion approach is used to study the spatiotemporal dy-

namics of a phase-conjugate resonator as a function of Bragg detuning. The numerical

results reveal a rich variety of behaviors. Emphasis is given to the spatial distribution

of optical vortices, their trajectories and their relationship to the beam's spatial coher-

ence. The limitations of the model are discussed and experimental results are presented

for comparison with the model's predictions and assessment of its soundness.
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1 Introduction

Nonlinear dynamics in optical systems (e.g.: passive cavities, wave mixing geometries and

lasers) have been the subject of intense research during the past few decades. The interest

stems from the many potential applications of such devices in e.g. optical bistability, phase

conjugation, image processing, etc. All these applications involve the two dimensional (2-

D) transverse nature of the system in a fundamental way [1]. Yet, although the nonlinear

and chaotic behavior of low-dimensional systems described by ordinary differential equations

(ODE) is fairly well understood [2, 3], problems that include the transverse dimensions and

are described by systems of partial differential equations (PDE) remain a theoretical chal-

lenge and do not benefit from well established experimental methodologies [4]. Furthermore,

their numerical analyses require large computational budgets [5, 6].

The system considered in this paper is the phase-conjugate resonator (PCR) sketched

in fig. 1. It consists of a phase-conjugate mirror (PCM) and a self-imaging cavity made of a

lens and a planar mirror. PCRs have interesting potential applications in image storage and

processing [7, 8, 9] as well as in laser systems [101. The particular geometry of fig. 1 was chosen

because it leads to simple boundary conditions and because certain aspects of its dynamics

derived numerically [11] as well as experimentally [12, 13] have akeady been reported in the

literature, providing a useful comparative reference frame. In addition, the PCR of fig. 1

may offer a convenient way of studying experimentally some as yet partially understood

aspects of more generic dynamical systems. For example, the transverse confinement of the

resonator is conveniently controlled by the size of two apertures which determine the cavity

Fresnel number. This is akin to controlling the aspect ratio in hydrodynamics and thus offers
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a possibleway of studying the transition betweenlow aspect ratio dynamics involving few

modesto larger aspectratio systemswheredislocations,vorticesand defectsplay a dominant

role [14]. An additional motivation for this work is that experimentaland numericalstudiesof

manydifferentphysical systemsareneededto determinepossibleuniversalbehaviorsand test

theoretical conjectures,e.g. the similar role playedby topologicaldefectsin different physical

systemsand the striking analogiesbetweenlaserdynamicsand hydrodynamics [15, 16,17].

This paper has two aims. The first is to describe and establish the soundnessof a

somewhat arbitrary yet sensiblemodal decompositionapproach to study the dynamics of

PCRs with modest Fresnel numbers. This is done by comparing numerical results with

actual experimental data. The hope is that this comparison,although complicated by the

difficulty in measuringexperimentalcontrol parametersexactly and by the problematic effect

of stochasticnoise,will provesufficientlyconvincingto confirm the usefulnessof the approach.

The secondis to illustrate the relationship existing between the dynamics of the optical

vorticesobservedin PCRs [12, 13,17] and the spatial correlation of the oscillating beam.

The paper is organizedasfollow. The PCR's equationsand boundary conditions within

approximations compatible with experimental conditions are stated in section 2.1. Argu-

ments justifying the modal expansionapproacharegiven in section 2.2 and the method is

then usedto arrive at a set of modal amplitude equations. In section3.1, a particular set of

parametervalues is chosenand the systemis integrated, using the off-Bragg detuning as a

control parameter. Different dynamicalbehaviorsare identified from local time series,power

spectra and phasespaceportraits. Examplesof vortices' motions and spatial correlation

mapsaregiven in section3.2. Experimental resultsarepresentedand discussedin section4



and a summary is given in section5.

2 The model

2.1 Phase-conjugate resonator

The PCR is sketched in fig. 1. Its active element is an externally pumped photorefractive

medium acting as a PCM. Maxwell's equations for the optical field in the medium lead to

the following coupled equations:

(__ 0 ) A1(x, z,t) -Q(x,y,z,t)A4(x,y,z,t)e -ibz+ kv V+(_+ _-_ y, = (1)

jV]. 0 ) A_(z,y,z,t) = Q(x,y,z,t)A_(z,y,z,t), (2)- 2---U+ k2•v + _ + _--_

(72-_ + ]¢3 • V + cr + _-_0 ) A3(x, y, z, t) = -Q(x, y, z, t)A2(x, y, z, t), (3)

-- 2---_q-]c4.Vq-c_-F_-_ A_(x,y,z,t)=Q(x,y,z,t)AT(x,y,z,t)e -_bz, (4)

where, in spirit of the slowly varying envelope approximation, the field in the medium is

written as
4

E(x,y,z,t) = _ A,(x,y,z, tle _(`°'-;''_ + c.c., (5/
i=l

v = c/fi is the speed of light in the medium, fi is the average refractive index, k'i are unit

vectors pointing in the direction of the four wavevectors in the medium. The wavenumber

is ki = w/v where w is the angular frequency of the pump and a is the linear absorption

coefficient. VT iS the transverse gradient operator. The parameter b is the wavevector

mismatch (momentum mismatch along the z-axis) measuring the departure from the Bragg
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condition. This off-Braggparameteris introducedasa meansof varying the amount of phase

transfer betweenthe wavesmixed in the nonlinearmedium and is later taken asthe control

parameter.

The equation for the phase grating Q is derived from the standard band transport model

of Kukhtarev [18] and reads, in the single grating approximation,

r OQ(z,y,z,t)ot +C,Q(x,y,z,t)= %c, (A'(x'y'z'tlA'4(x'y'z't)eib'Io(x,y,z,t) + A_(x,y,z, tlA3(z,y,z,t)) ,

(6)

where C1 = (ED+ Eq +jEo)/(EM+ ED+jEo) and C2 = [(Eq + ED)/EDI[(ED+jEo)/(EM+

ED +jEo)].r is the Debye relaxation time. ED, Eq and EM are characteristic fields (diffusion,

limiting space charge and drift field respectively) which depend on the medium properties

and the grating spatial frequency. Eo is an external or photovoltaic field, Io is the average

light intensity in the medium and 3'o a coupling constant function of the geometry and the

electro-optic tensor of the medium.

The boundary conditions for the wave equation in the medium are determined by the

cavity geometry. The transverse confinement of the cavity is controlled by two square aper-

tures H1 and H2 of sides 2%_ and 2a,,, respectively. The first aperture is located near the

phase-conjugate mirror in the front focal plane of the lens (fig. 1). The second one is in

the back focal plane of the lens next to the planar mirror. The transverse confinement is

measured by the cavity Fresnel number defined as

.T" = 2a,,_ap_,,/ Af , (7)

\

\
\

where A is the wavelength in vacuum and f the focal length of the lens.
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Onecavity round trip, starting at the PCM consistsof a truncation by H1and imaging

in a 4-f afocal system with a pupil H2. Thus, the amplitude A4 is proportional to the

truncated convolution of A3 with a point-spread-function which is the Fourier transform of

the aperture H2. Using transverse coordinates normalized to the aperture size ap_,,,, the

boundary condition at the entrance face (z = 0) of the PCM, which is also the plane of the

aperture H1 becomes

A4(x,y,O,t + 2L/c) = r_'2rect(x/2)rect(y/2) i/f-1
1

Az(x',y',O,t)sinc[_'(x' + z)]

sinc [_(y' + y)] dx'dy',

(8)

where rect(x/2) =1 for -1 < x < 1 and = 0 otherwise, sinc(x) = sin(_'x)/Trx and r is the

amplitude reflection coefficient of the planar mirror. L is the cavity optical length and an

unimportant phase factor has been omitted in eq. 8.

The experimental conditions pertaining to section 4 are those of a slow photorefractive

medium (e.g. BaTiO3). In these conditions, equations 1- 4 can be further simplified by

neglecting the temporal derivative on the left hand sides. The round trip time delay in the

boundary condition is also neglected for the same reason.

2.2 Modal decomposition

The direct integration of equation 1- 6 requires a large computational budget. Furthermore,

calculations taking only one transverse dimension into account, althougth showing interesting

dynamical behaviors (e.g. ref. [11]), fail to reveal the crucial role played by the phase defects

in mediating the spatiotemporal dynamics of the PCR [12, 13, 17].

6



Modal decompositionis a powerful tool for studying systemsof PDEs [19]. This ap-

proach allows one to reduce an infinite dimensional problem to a finite (hopefully low)

dimensional problem described by a system of equations for the modal coefficients. The

success of the method relies on the assumption that the dynamics is fairly well described

by the interaction of a small number of active spatial modes. The main difficulty resides in

the choice of appropriate basis functions for the expansion. They must accurately represent

the spatial structure of the active modes. However, this structure is generally difficult to

identify a priori and one often relies on the choice of a sensible basis rather than trying to

identify the exact optimal basis.

In optical resonators with relatively small Fresnel numbers, these simplifications appear

to be justified. The dynamics of these systems is indeed dominated by a few active modes and

the Gauss-Laguerre or Gauss-Hermite modes of the empty resonator seem to be reasonable

basis functions to replace the optimal ones [20]. Of course such a practice introduces a degree

of arbitrariness since a small number of modes of the sensible basis may not be sufficient to

adequately represent the spatial structure. Nevertheless, the resulting enormous reduction

of computational budget and the physical insight that can be gained justify further tests of

the validity of this approach.

The cavity fields A3 and A4 in the nonlinear medium (0 < z _ d) are thus expanded in

series as

A3(x,y,z,t) = __, f3,,,,_(z,t)u_(z,z; zo)u*(y, z; zo) (9)
Etl_n

A4(z,y,z,t)- __,f4m,(z,t)u,,,(x,z;zo)u,,(y,z;zo) (10)
,,,,,,

and the Gauss-Hermite modes are chosen as a sensible set for the decomposition:
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\w(z)/

exp w_(z ) J2--R'_ + j(m + 1/2)tan-'(Z/Zo) ,

where H., are ttermite polynomials. The beam radius is w(z) = Wo(1 + z2/z2o)'/2 , its radius

of curvature is R(z) = z(1 + z° = ,vw_/_ is the Rayleigh distance and k = 2_/_

is the wavenumber in the medium. The waist is located at the entrance face of the PCM

(z = 0).

The pump beams are Gaussian with a waist wp chosen sizably larger than Wo and for

simplicity are assumed to make a very small angle with the z-axis. Thus, the pump beams

are

Al(x,y,z,t) = f_(z,t)U(z,z)U(y,z)

A (x,y,z,t) =

whereV(x,z) = and =

(12)

(13)

The series in equations 9, 10 are infinite and the problem remains infinite dimensional.

Because of the cavity transverse confinement however, we expect that only the modes with

indices smaller than some upper bound will take a significant part in the dynamics. The

cavity Fresnel number defined by equation 7 is a measure of the amount of transverse spatial

information that the cavity can accommodate ( P is the space-bandwidth product of the

cavity). It is thus reasonable to assume that only the modes with indices smaller than 9r will

play a dominant role in the wave interaction in the PCM since they are the modes which are

most likely to survive in the cavity. It must be stressed however that choosing which modes

to include in the dynamics is somewhat arbitrary. Only a comparison with experiment can
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provide a a posteriori justification of this choice. The important point is that the series

of equations 9,10 can often be limited to a small number of terms while still giving results

which agree at least qualitatively with observations, as will be shown in a later section.

Equations 9- 13 are substituted in 1- 6 and use is made of the fact that the Gauss-

Hermite modes are solutions of the Helmholtz equation:

(_V]..j + "_zO) um(x'z)u'(y'z) = O' (14)

and satisfy the biorthogonality relation [21]

f f _oo dxdyu,,(x, z)u_(y, z)u;(x, z)u_(y, z) = 5,_pS,_q.
O0

(15)

A final set of differential equations is then obtained for the modal amplitudes:

ofl(z,t)
Oz +af,(z,t) = --e-Jbz__.f4.,,,(z,t)h.,,_(z,t),

IrIl, t lt_

Of_(z,t)
Oz af_(z,t) = y_f_m_(z,t)h,,,n(z,t),

c3z af3mn(z,t) = f2(z,t)hmn(z,t),

+ af_*_n(z,t) = e-Jb'f_(z,t)hm,,(z,t),
Oz

(16)

(17)

(18)

(19)

where

h,,,,,(z,t) = f f_ +°°
¢20

dxdyQ( x, y, z, t)u,_(z, z)u,(y, z)U'(x, z)U'(y, z) (20)

is the overlap integral of the pump and the projection of the grating Q onto the mode (m, n).

The grating equation 6 is likewise projected onto the cavity modes to obtain

Oh=.(z,t)
r Ot + C,h,_(z,t) = 7oC2 (21)

{eib" fl(z,t) _ f_'kt(z,t)Gk,m,_(z,t) + ];(z,t) __.fzlaGkt..,,,(z,t)},
k,l k,l
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with

ck,...(z,t) = fX+_f u_(x' z)_r(Y' z)u'(x' z)u"(_' z)lU(x' _)I21u(Y'_)l_1o(X,y,z, t) dxdy

and the total intensity Io(z, y, z, t) is calculated using equations 9, 10, 12, 13.

(22)

The integration of equations 16- 22 is greatly simplified if the interaction length in the

PCM is shorter than all the beams' Rayleigh distances:

d << Zo, %. (23)

In this case, diffraction can be neglected in the medium and the interacting beams' modes,

normalized to the aperture size ap_, take the simple form:

u,,,(x,z; Zo) " u.(x) = _ H,,,(floX)e -_/2, (24)

with _o = v_apc,../Wo. The pumps are gaussian with a parameter tip = v_ape_/wp.

The boundary conditions for the modal amplitudes at z = 0 are found from equation 8

using the modal decompositions 9, 10. They read

with

f_..(0, t) = ,-.r__ f_k_(0,t)Ikj,.,
k,l

(25)

FIIk. = dxT"lk(x)u.(x), (26)
1

and

in dz'uk(x')sinc[._'(x' + x)l. (27)

The algorithm described by Solymar in [22] was used to solve the system of equations 16- 22

with the boundary conditions 25- 27. Some results are illustrated in the next section.
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3 Numerical results

Phase transfer between interacting beams in the four-wave mixing process appears to be a

desirable condition for the observation of non trivial dynamics with reasonable values of the

coupling parameter. For example, the onset of instabilities in ring resonators with injected

signals has been shown to depend sensitively on this parameter [23]. In a material having

a real coupling parameter and no external field, this phase transfer can be the result of an

angular mismatch of the pump beams. For the simulation presented in this section, the

control parameter was chosen to be the phase mismatch bd (off-Bragg parameter), where b

is the momentum mismatch along z and d is the length of the nonlinear medium.

In a recent report [13], it was shown that the dynamics of the PCR strongly depends on

the cavity Fresnel number. Increasing the Fresnel number relaxes the transverse confinement

of the system and allows higher order modes to take part in the dynamics. As a result, the

spatial complexity of the beam increases. In particular, the number of vortices increases and

their motion becomes more complex, eventually leading to chaotic states and in the limit of

large Fresnel numbers, to spatiotemporal turbulence. The example shown in the next section

is for a Fresnel number _" = 3.5. This is small enough so that only a few modes are expected

to take part in the dynamics, yet it is large enough to exhibit a wide range of behaviors.

Experiments carried out with Fresnel numbers between 3 and 4 reveal a transverse

pattern in which two pairs of defects of opposite charges repetitively nucleate, move along

symmetrical trajectories, spending much time in some circular zone centered on the beam and

disappear at boundaries or collide and annihilate each other [13]. Based on these observations
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and in order to keepthe computational budget to a minimum, it wasdecided to limit the

expansionsin eqs.9, 10 to four modesonly, namely, (m,n) = (0,0),(1, 1),(2,0), and (0,2)

with a beamwaist Wo = ar¢,_ = 1.

As already mentioned, there is a certain degree of arbitrariness in this choice. However,

with a Fresnel number of 3.5, it is unlikely that modes with indices higher than 3 can survive

in the cavity and play a significant role in the dynamics. Indeed, when a mode of higher

index was initially added to the series, the simulation showed that its amplitude decays

and vanishes with the other transients. Another reason for limiting the expansion to these

particular four modes is that it allows the calculation of the vortices' positions to be done

algebraically rather than numerically, thus saving CPU time. Finally, simulations ran with

different choices of modes, although giving result which differ in details, revealed the same

generic range of behaviors.

The other parameters of the model are chosen as follow: 7d = -10,_d = 0.15,/_o =

v/'2, flp = V/'2/IO, Eo = lkV/cm, Eq = 5kV/cm, EM = lOOkV/cm, Eo = 0 and the pump

beams intensity coemcients are f?(z = O) = f_(z = d) = 0.5. As an initial condition, it is

assumed that the four modes are excitied from white noise and have initial modal amplitudes

f,,,,,,(t = 0) = 10-'.

3.1 Local intensity fluctuations

The local intensity of the cavity field A4 measured at the exit face of the PCM was chosen as

a variable because it is easily accessible experimentally. The local intensity I4(zo, yo, d) was

calculated at (Zo, yo) = (0.75, 0.15) in a region where experiments indicate that the intensity
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fluctuations have a deepmodulation. Figure 2 showsshort sections of time seriesof the

local intensity fluctuations for different valuesof the off-Bragg parameter. Time in fig. 2

is normalized to the relaxation time r _ of the photorefractive grating (r _ = ](EM + ED A-

iEo)/(Eo + E, + iEo)lr).

After the transients have vanished and a stationary state has been reached, the local

extrema of these time series were recorded and used to construct the bifurcation diagram of

fig. 3. For small Bragg mismatch (Ibdl < 2.4) the motion is periodic. Unstable oscillations

occur in a wide range of parameter values (3.6 < Ibd I < 2.4). In most of this range the

motion appears to be quasiperiodic. Although this is not readily visible at the resolution of

fig. 3, some regions of the bifurcation diagram seem to be more chaotic than others and there

exist narrow windows in which the motion is periodic, usually showing a large number of

subharmonics. For [bd I > 3.6, the motion is periodic again and eventually, with a sufficiently

large mismatch, the only stable state is/4 = 0.

The time series of fig. 2 were chosen to illustrate these various types of motion. The

corresponding power spectra shown in fig. 4 give a fair indication of the dynamics of the

system. Additional information can be gained by reconstructing pseudo phase space portraits

such as these shown in fig. 5 which are plots of the imaginary part of the field A4(xo, yo, d)

versus its real part.

At bd = -2.3, the motion is clearly periodic with a frequency fl slightly larger than

1/2 relaxation rate of the grating (fig. 4a) and the phase space portrait (fig. 5a) is a limit

cycle. At bd = -2.45, a second characteristic frequency f2, about 1/10 grating relaxation

rate, appears and modulate the time series (figs 2b and 4b). For this value of the off-Bragg
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parameter,the two frequenciesare incommensurateand the motion is quasiperiodic with the

phase space portrait shown in fig. 5b. At bd = -2.55, the low frequency modulation deepens

(fig. 4c) and more energy shifts toward higher harmonics of ft and linear combinations of

the two main frequencies (fig. 4c). The phase space portrait still shows some structures

although it will eventually densely fill a region of phase space since the two frequencies are

still incommensurate. At bd = -2.75, the time series is more irregular, possibly chaotic

(fig. 2d). There are still two main frequencies but the spectrum is broadened and shows a

number of additional peaks indicating the presence of a third frequency about 1/100 grating

relaxation time (fig. 4d). The phase space portrait of fig. 5d is diffuse and show no apparent

structure. At M = -3.18, a phenomenon akin of frequency locking occurs. The two larger

frequencies pull each other as to become rational. The very low frequency, which seems to

have appeared only to allow this locking to occur, disappears. The spectrum of fig. 4e shows

a ratio fl/f2 =13. The periodic motion with 13 subharmonics is confirmed by the closed loop

phase space trajectory of fig. 5e.

3.2 Vortices and spatial correlation

The local intensity fluctuations offer a convenient means of comparing model predictions

with experimental data but this information is not sumcient to fully characterize the spa-

tiotemporal dynamics. The aim of this section is to illustrate the role played by the phase

defects (vortices) in mediating the dynamics.

The vortices appear where the real and imaginary parts of the field amplitude vanish

simultaneously. For example, fig. 6 shows a snapshot of the beam crosssection I4(z, y, d) for
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bd = -2.45, which exhibits four dark spots. The corresponding phase contour diagram of

fig. 7 clearly identifies these spots as two pairs of vortices of opposite charges (4-1). In time,

these vortices nucleates, move around, annihilate each other or disappear at boundaries. This

is the motion of the vortices which gives rise to the local intensity fluctuations described in

the previous section. This section gives a more detailed illustration of the spatial aspect of

the dynamics and attempts to identify the spatial features responsible for the characteristic

frequencies observed in the local times series.

Figure 8a to e shows the temporal evolution of the field amplitude A4(x -- 0.75, y, d)

along a line across the beam for the same off-Bragg parameter values used in figs. 2, 4, 5. For

a small offset (bd = -2.3), all points across the line execute synchronized periodic motions

with a period a bit smaller than two grating time constants (fig 8a). In 2-D, the phase of

the wavefront is observed to breathe periodically together with the amplitude but the phase

gradients produced are not steep enough to trigger the nucleation of defects.

At bd = -2.45 (fig 8b), the periodic motion is transversely modulated with a period of

the order of 10 grating time constants. This spatial motion gives rise to the quasiperiodic

time series of fig. 2b. In 2-D, the phase gradients are locally steep enough to tear the

wavefront at locations where two pairs of defects of opposite charges nucleate. The four

vortices then travel across the wavefront, pairs of opposite charge collide and annihilate.

The higher frequency of the time series seems to correspond to the recovery rate of the local

wavefront after a vortex has moved through it, while the lower frequency corresponds to the

full cycle of vortices' nucleation, motion and annihilation. At bd = -2.55, the motion is

similar to that just described but with deeper modulation (fig. 8c, which is plotted with a
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different time scale).

At bd = -2.75 (fig. 8d), the transverse modulation is irregular, possibly due to the

occurrence of a third incommensurate frequency. In 2-D, in contrast with the previous case

where the vortices' trajectories were confined to fairly well defined area, they now seem to

visit the whole beam crosssection irregularly. At bd = -3.18 (fig. 8e) the motion is periodic

again. The transverse modulation has a period of ,-, 23 grating time constants, which is 13

times the period of ,,- 9/5 time constant of the fast oscillations measured in fig. 8a.

The remainder of this section gives a more detailed illustration of the relationship be-

tween the vortices' trajectories and the spatiotemporal coherence of the beam. The dynamics

of the fluctuating beam can be characterized by a correlation index distribution. The corre-

lation index between two points (x,, y,) and (x2, y2) is defined as the maximum, with respect

to a temporal shift F, of the correlation of the intensity fluctuations at these two points, i.e.

[ < (I,(0- < I1 >)(I2(t+ r)- < I2 >) > ]
C(xo, yo;x,y) = MAX L[</12 > - </1 >2],/2[< I_ > - < 12 >211/2j vl-', (28)

where Ii(t) = I(xi, yi, t); i = 1,2. Stationarity is assumed and < • > represents a time aver-

age. The correlation index is high whenever the intensity fluctuations are highly correlated

even in the presence of a time delay. Such time delays may be expected if the fluctuations

are due to features (e.g. vortices) travelling across the beam as waves.

To illustrate the usefulness of this concept, the correlation index distribution with re-

spect to the origin, C(0,0; x, y), was calculated for the five off-Bragg parameter values used

in the previous examples. The spatial correlation diagram thus obtained can then be com-

pared with the vortices' trajectories. For this, the positions of the vortices were calculated
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at regular intervals of time by solving for ReA4(z, y, t) = hnA4(x, y, t) --0 and represented

by dots on a 2-D plot. Note in passing that with the particular, apparently arbitrary choice

of modes adopted for the expansion of A4, this could be solved algebraically.

Figure 9 shows the correlation index distribution for a small value of the off-Bragg

parameter (bd = -2.3). No vortices appear in the field but the amplitude and phase of the

wavefront oscillate periodically as if waves were travelling along an annular area centered on

the beam.

At bd = -2.45, the motion is characterized by the nucleation of two pairs of defects

at two ends of a diagonal. The vortices move along circular trajectories and the members

of opposite charges of each different pairs collide and annihilate near the two ends of the

opposite diagonal. This motion is then repeated periodically with alternating directions.

A sequence of interferogram snapshots illustrating this motion is shown in fig. 10. A plot

showing the distribution of vortice's positions in time is shown in fig. lla. The vortices'

trajectories are clearly confined to a narrow annular area in the beam. Figure 1lb shows the

corresponding correlation index distribution. Its particular shape can be explained by the

fact that the intensity fluctuations at some location in the beam are due to the passage of

a vortex nearby, that no vortex ever appears near the origin (the fixed point for calculating

C) and that the vortices' trajectories are confined to a narrow annular region of space. It is

only near this region that the correlation index is expected to drop sharply. The correlation

index distribution was also calculated with a fixed point chosen at a location frequently

visited by a vortex. The distribution looked as a negative of fig. 11a. The correlation index

is high in the annular area visited by the vortices and low everywheree else. This confirms
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that the four vortices appearing in the pattern are highly correlated, as is expected since

they nucleate simultaneously and produce intensity fluctuations near their trajectories which

are only delayed in time. A qualitatively similar behavior of the vortices was observed for

bd = -2.55, as illustrated in fig. 12a and b.

An apparently chaotic time series was observed for bd = -2.75. Figure 13a shows that

the vortices' position distribution is diffuse, indicating that their trajectories do not remain

confined in narrow regions of space. In fact, the defects can visit about any place in the beam

except near the origin and this is only because of the peculiar set of modes chosen for the

decomposition. The corresponding correlation index distribution shown in fig. 13b is low in

all regions visited by the vortices. Figure 13c shows the correlation index distribution with

a fixed point (x_,yl) = (1,0.3) frequently visited by a vortex. It shows that even though

the vortices trajectories have become more random, the intensity fluctuations in the regions

they visit remain highly correlated.

At bd = -3.18, an apparent frequency locking was observed in the local intensity time

series, leading to a quieter dynamics. For this value of the off-Bragg parameter, the wavefront

phase and amplitude oscillate periodically but no defects nucleates. The regions in space

where these fluctuations occur are identified as two concentric rings in the interferogram

snapshots of fig. 14 and in the corresponding correlation index distribution of fig. 15.

4 Experimental results

The experimental apparatus has been described in details in a previous report [13]. The PCM

is an externally pumped single crystal of BaTiO3. The source for the pumps is a single mode
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Ar ion laser (A = 514nm) optically isolatedfrom the setup by a Faraday rotator. The cavity

endswith a planar dielectric mirror (R=0.95%) and contains a 16cmfocal length lens. Two

intra-cavity circular aperturesof diameterdp_ = 0.79mm and d,, =0.38mm give a Fresnel

number .T" = 3.7. The off-Bragg parameter was varied by tilting the mirror directing the

pump A1 toward the PCM and its values were calculated as the product of the momentum

mismatch along the cavity axis with the interaction length. The change in pump overlap

due to the tilting was measured and found negligible.

The aim of the experiments is to show by way of illustrations, that the range of behaviors

predicted by the model and described in section 3 is indeed observed in the physical system.

It would be unrealistic to expect a quantitative match between the experimental data and the

results of numerical simulations if only because it is not possible to control experimentally

which modes are actually taking part in the dynamics. A qualitative match however, would

at least indicate that the truncated modal expansion approach gives a fair representation of

the actual dynamics of the PCR.

Figure 16 shows an interferogram snapshot of the beam exiting the PCM. It exhibits four

vortices located at the comers of a quadrangle in an arrangement similar to that predicted

by the model in fig. 6 and 10.

The off-Bragg parameter was scanned between two extreme values at which the momen-

tum mismatch is large enough to reduce the gain below cavity losses and prevent oscillation.

Local time series were recorded within that range and analyzed using power spectra and

delayed time phase space portraits. Near the center of the covered range of parameter val-

ues, a region where the motion was clearly periodic could be identified. On both sides of
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this region,similar sequencesof variousdynamical behaviorswereobserved,up to large mis-

matchesat which the cavity stopsoscillating. Before reachingthese limits, simple periodic

oscillations at reducedamplitudes wereagainobserved.The sequenceof behaviorsjust de-

scribedis exactly what the bifurcation diagramof fig. 3 would predict (note that within the

approximationsof the model, this bifurcation diagram is symmetrical around M = 0 but

in the actual setup, this symmetry is broken). By analogy with the model, the origin of

parameter space (bd, = 0) was chosen as the midpoint of the central region showing periodic

oscillations. Other values of the off-Bragg parameter mentioned below are relative to this

point. Some examples of time series are shown in fig. 17 and the corresponding power spectra

are displayed in fig. 18. These examples were chosen to illustrate the variety of dynamical

behaviors exhibited by the PCR and to compare them with the characteristic behaviors

predicted by the model.

Figures 17a, 18a show the periodic motion expected for small values of the off-Bragg

parameter. The corresponding delayed time phase space portrait (fig. 19a) shows broadening

which may give an indication of the level of stochastic noise (although in our case there is no

sure way of differentiating between a limit cycle broadened by stochastic noise and a strange

attractor with a natural width due to the dynamics).

Figures 17b, 18b obtained with bd_ = 0.65 show a chaotic state with an irregular

time series and a spectrum containing at least two or three incommensurate frequencies,

including the main frequency of about 0.14Hz, and a large continuum, a signature of chaos.

The exponential decay of the power spectrum (linear on the semilog scale of fig. 18 may

be indicative of deterministic chaos). The corresponding phase space portrait of fig. 19b is
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diffuseand featureless.

Figures 17c, 18c give a typical example of frequency locking obtained at bd, = 1.29.

The locking at period three is confirmed by the closed-loop phase space trajectory shown in

fig. 19c. Note that the width of this limit cycle is about the same as that of fig. 19a and is

probably due to stochastic noise.

At bd, = 1.94 (figs. 17d, 18d) the motion is quasiperiodic with a spectrum containing

only two incommensurate frequencies and their linear combinations. Another quasiperiodic

motion obtained at bd, = 2.16 is shown in fig. 17e, 18e. Here the lower frequency appears as

sidebands of the higher one. For larger values of the off-Bragg parameter, e.g. bdr > 2.37, the

motion is periodic again with the same dominant frequency of --, 0.14Hz but with decreasing

amplitude. When bdr > 3, the gain is lower than the cavity losses and no oscillation occurs.

5 Summary and conclusions

A model based on a truncated expansion of the field into cavity modes has been tested to

describe the spatiotemporal dynamics of a phase-conjugate resonator. The Gauss-Hermite

modes of the empty cavity are chosen as sensible basis functions to represent the fields in

the nonlinear medium. Although the choice of the modes which take parts in the dynamics

is arbitrary in this method, justifications are given for truncating the series at a mode index

of the order of the cavity Fresnel number. Verifications of the validity of this choice are

later given by comparison with experimental data. Numerical examples, using the off-Bragg

parameter (momentum mismatch) as a control parameter reveal a rich variety of dynamical
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behaviorsillustrated by the local intensity fluctuations and ranging from simple periodic

oscillationsto quasiperiodicmotions and chaotic states.

The modal decompositionmethod is particularly well suited to study the spatial aspect

of the dynamicswithout requiring prohibitive computational budgets. Numerical results in-

dicatesthat the spatiotemporaldynamicsof the PCR is mediatedby the nucleation of pairs

of defectsof oppositechargesin the beam and by their subsequentmotion and annihilation.

Mapsof the spatial coherencefunction of the beam are found to be templates of the corre-

spondingmaps of the vortices'trajectories, establishing a strong correlation betweenthese

two quantities. The lossof temporal coherenceand the onsetof temporal chaosin the local

intensity fluctuations is likewizecorrelated to the lossof spatial confinementof the vortices'

trajectories and the lossof spatial coherence.

Experimental data obtained with a PCR using an externally pumped BaTiO3 photore-

fractive PCR reveal a range of dynamical behaviors similar to those shown by the simulation.

These results confirm and complete the findings of earlier experimental studies of the PCR's

dynamics at various Fresnel number [13]. The arbitrariness of choice of the modes to include

in the dynamics is the main shortcomming of the truncated modal expansion approach used

in this work. Nevertheless it appears to be a convenient and computationally nondemand-

ing tool to study and predict qualitatively the spatiotemporal behavior of phase-conjugate

resonators and perhaps of other nonlinear optical devices as well.

The authors wish to acknowledge the financial support of NASA/Langley for the re-

search leading to this report. In particular, we recognize the assistance of Sharon Welch and
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Figure Captions

Figure 1: Sketch of the phase-conjugate resonator. PCM, phase-conjugate mirror (externally

pumped photorefractive crystal); M, planar mirror; H1, H2, apertures controlling the Fresnel

number of the afocal cavity.

Figure 2: Sections of time series of the local intensity fluctuations at the output of the PCM

for different values of the off-Bragg parameter bd (numerical simulation).

Figure 3: Bifurcation diagram of the local intensity fluctuations at the output of the PCM

with the off-Bragg parameter as control parameter (numerical simulation).

Figure 4: Power spectra of the time series of fig. 2 showing a variety of motions: (a)periodic,

(b,c)quasiperiodic with two incommensurate frequencies, (d)chaotic, and (e)frequency locked

at period 13.

Figure 5: Phase space portraits corresponding to the motions illustrated in figs 2, 4 showing

(a)a limit cycle, (b,c)broadened tori, (d)a diffuse torus, (e)a 13-loop trajectory.

Figure 6: Snapshot of the field magnitude distribution 1.441 at the output of the PCM

for bd = -2.45, showing four dark spots identified as four vortices in fig. 7 (numerical

simulation).
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Figure 7: Phasecontoursof the wavefrontat the output of the PCM revealing the presence

of two pairs of vortices of opposite charges.

Figure 8: Temporal evolution of the field magnitude at the output of the PCM along the

line x = 0.75 beam waist for the same off-Bragg parameter values as used in fig. 2, 4, 5.

(a)single frequency periodic oscillation, (b)quasiperiodic oscillations with incommensurate

transverse modulation, (c)similar to b but with deeper modulation (note the time scale

change), (d)irregular transverse modulation leading to chaos, (e)frequency locked oscilla-

tions(period 13) with transverse modulation commensurate with the main frequency.

Figure 9: Spatial correlation index distribution with respect to the fluctuations at the origin

for bd = -2.3. No defects nucleates in the beam, but the amplitude and phase breathe

periodically.

Figure 10: Interferogram snapshots of the wavefront at the output of the PCM at bd = -2.45

showing the nucleation, motion and annihilation of two pairs of vortices of opposite charges.

Figure 11: (a)Distribution of the vortices' positions at bd = -2.45 showing trajectories

confined to well defined area. (b)Corresponding spatial correlation index distribution with

respect to the intensity fluctuation at the origin.

Figure 12: Same as fig. 11 at bd = -2.55.
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Figure 13: (a)Distribution of the vortices' position at bd = -2.75 (chaotic motion) showing

trajectories randomly visiting large area. (b)Corresponding spatial correlation index distri-

bution with respect to the intensity fluctuations at the origin. (c) same as b but with respect

to the intensity fluctuations at a point (x=l, y=0.3) frequently visited by a vortex.

Figure 14: Interferogram snapshots of the wavefront at the output of the PCM for be/ =

-3.18. No defect nucleates but the phase breathes periodically in two concentric annular

area.

Figure 15: Spatial correlation index distribution with respect to the intensity fluctuations

at the origin for bd = -3.18.

Figure 16: Interferogram snapshot at the output of the PCM revealing the presence of two

pairs of vortices of opposite charges. (experimental result)

Figure t7: Sections of experimental time series of the local intensity fluctuations at the

output of the PCM for different relative values of the off-Bragg parameter. (experimental

results)

Figure 18: Power spectra of the time series of fig. 17 showing a variety of motions: (a)periodic,

(b)chaotic, (c)frequency locked (period 3), (d,e)quasiperiodic.
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Figure 19: Delayedtime phase space portraits of the local intensity fluctuations of fig. 17, 19

showing (a)a noisy limit cycle, (b)a featureless portrait, (c)a period three limit cycle and

(d)a diffuse portrait possibly representing a quasiperiodic motion (experimental results).
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