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FIDEX
FAULT ISOLATION AND DIAGNOSIS EXPERT
An Expert System for Intelligent Computer Diagnostics of a

Ka-Band Satellite Transponder System
ABSTRACT

The National Aeronautics and Space Administration (NASA), Lewis Research
Center, in Cleveland Ohio, has recently completed the design of a Ka-band satellite
transponder system, as part of the Advanced Communication Technology Satellite
(ACTS) System. To enhance the reliability of this satellite, NASA funded The
University of Akron to explore the application of an expert system to provide the
transponder with an autonomous diagnosis capability. The result of this research was the
development of a prototype diagnosis expert system called FIDEX™, Fault Isolation and
Diagnosis EXpert.

FIDEX is a frame-based expert system that was developed in the NEXPERT
Object™ development environment by Neuron Data, Inc. It is a MicroSoft" Windows™
version 3.0 application, and was designed to operate on an Intel i80386 based Personal

Computer system.

' Antecedent to the publication of a thesis by Donald Tallo, an application has been made for the
licence of Copyright. FIDEX, in the context of Fault Isolation and Diagnostic Expert, will be
protected under that licence.



As a frame-based system, FIDEX uses hierarchical structures to represent such
items as the satellite’s: subsystems, components, Sensors, and fault states. Its overall
frame architecture integrates these hierarchical structures into a lattice that provides a
flexible representation scheme and facilitates the maintenance of the knowledge-based
system. To overcome limitations on the availability of sensor information, FIDEX uses
an inexact reasoning technique based on the incrementally acquired evidence approach
that was developed by Shortliffe during his MYCIN project. The system is also designed
with a primitive learning ability through which it maintains a record of past diagnosis
studies. This permits it to search first for those faults which are most likely to occur.
And finally, FIDEX can detect abnormalities in the sensors which provide information
on the transponder’s performance. This ability is used to first rule out simple sensor
malfunctions.

The overall design of the FIDEX system, with its generic structures and
innovative features, makes it an applicable example for other types of diagnostic systems.

This report discusses these aspects of FIDEX and summarizes the research involved in

its development.
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CHAPTER 1
INTRODUCTION

The satellite network of the United States supports both the commercial and
military sectors by providing an effective world-wide communication network. The
reliability of this network represents a strategic resource for this country and a critical
concern for the National Aeronautics and Space Administration (NASA).

At present, the reliability of these satellite communication links are maintained
through the intervention of ground terminal personnel. They use status information
transmitted from the satellite to assess the possibility of system problems. Should these
personnel suspect a problem with the satellite, a prescribed fault diagnosis/response
strategy is followed. This process utilizes telemetry with mechanisms onboard the
satellite to obtain required diagnostic information. Corrective measures are then
communicated back to the switching mechanisms onboard the satellite which substitute
redundant components.

This process can only occur when the satellite is within communication range;
during fly-by. Otherwise, telemetry with the satellite is not possible. This limitation
poses little problem for satellites in geosynchronous orbits because they are in constant
communication with their controlling ground terminals. However, many satellites in the
U.S. network are in asynchronous orbits. These satellites can be out of telemetry with
their controlling ground stations for as much as 50% of the time. This situation

represents a significant handicap in the maintenance of these communication links.
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Current research in artificial intelligence (AI) has sought to resolve this problem
by increasing the capabilities of the satellite’s onboard diagnostic software. Since the
mid 1980°s, NASA has been investigating Al technology to develop a diagnostic expert
system which could be placed onboard the spacecraft. If such a system could replicate
the diagnostic tasks that are performed by the ground terminal personnel, it could provide
the satellite with an autonomous diagnosis capability.

Success in this effort would offer the potential of significantly improving the
reliability of satellite communication systems. Stephan [36] believes that achieving a
high level of autonomy could allow the satellite to operate for months without ground
contact. Such an enhancement could significantly reduce the cost of ground operations.

In the summer of 1988, NASA-Lewis Research Center funded The University of
Akron to study the application of such a diagnosis expert system. This report discusses
that study and the resulting prototype expert system called FIDEX, Fault Isolation and
Diagnosis Expert.

1.1 Overview of the Application Area

NASA has recently completed the design of a Ka-band (30/20-GHz)
communication satellite transponder. This transponder system is to be integrated within
the Advanced Communication Technology Satellite (ACTS) System and deployed early
in 1993, The ACTS transponder is a multiple channel repeater which relays microwave
communication signals between highly localized ground terminals. All references to the
transponder in this report are directed towards the components of the communication

system that will reside onboard the satellite.



1.1.1 Overview of the ACTS Communication System

Figure 1.1 illustrates the ACTS communication system. The center figure,
resembling a communication satellite, represents the ACTS transponder onboard the
satellite. It is a typical multiple channel satellite transponder. Each channel of this

system has an input and an output which are inter-linked through a matrix switch.

A.L.T.S. Tronsponder

AC.T1.S. A.C.T.S.
Ground Terminol Ground Terminol

Figure 1.1: The ACTS Communication System

The transponder receives its inputs on a channel up-link from a ground terminal
system. In the input channel, this signal is first amplified and then down-converted from
the up-link frequency to an intermediate frequency (IF) signal. The IF signal is routed
through a matrix switch to one of the output channels. There, the IF signal is up-
converted to the broadcast frequency, amplified, and broadcast on a down-link to the
proper destination ground terminal system. Only two channels are being implemented
in the current phase of SITE; SITE Phase II. Therefore, this discussion is limited to that

of a two channel system.
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Associated with each channel through the transponder is a ground terminal
system. They are represented in Figure 1.1 by the two satellite dishes. These stations
are currently in a state of development similar to the transponder system. In fact, the
actual units are not being used in the SITE testing of the transponder. Simulated ground
stations have been substituted in their place until the entire system is ready for integration
testing. Therefore, the following discussion is limited to that of ground stations in
general, and not specific to the ACTS ground terminals.

Ground terminals represent the places of origin and destination for the signal
transmitted through the transponder system. Respectively, these stations are called the
originating and receiving ground terminals. In an originating ground station, digital
information is encoded into a modulated signal. The modulated signal is up-converted
to the up-link frequency, amplified and broadcast to the satellite. The satellite routes this
signal as discussed above, and transmits it to the receiving ground terminal. In the
receiving ground station, the down-link signal is amplified, down-converted, and
demodulated back into digital information. In this manner, these three systems work
together to provide cross-link communication between two geographically isolated places.

The remainder of this section explains the inner workings of the transponder
system. This discussion, however, is limited to the workings of the SITE model of the

transponder.

1.1.2 Overview of the ACTS Transponder System

Figure 1.2 shows a schematic representation of the ACTS transponder. At
present, only two of the multiple channels are implemented in its design. However, this
proof of concept design can easily be expanded to incorporate additional links as the

system design progresses.



JFPC 9 NSWITCH Q IFPC
E J\§ § B:]
CHIRCVR CHZRCVR
' b Ch2 UpLink

Q Q HPAPC  CHIMIX CHZMX  HPAPC g) (J)
£ T
)p-l“’p#! GaAsFET koL v o F TTA ‘(‘N

Ch1 Downlink Ch2 Downlink

Ch1 Uplink

UPXLO

Figure 1.2: SITE Model of the ACTS Transponder System

At present, the design of this transponder is being evaluated within the System
Integration, Test, and Evaluation (SITE) testbed at NASA-Lewis. The SITE laboratory?
is used by NASA for validating designs and demonstrating the capabilities of satellite
communications systems. This phase of development is valuable to NASA for refining
the response of the various systems onboard the transponder. Another important aspect
of SITE is the formulation of an understanding of these systems’ fault response.

The first phase in the development of FIDEX was to study the diagnostic
knowledge used by SITE personnel. This investigation began by studying the workings
of the application area under normal conditions. This section is dedicated to
summarizing that investigation. It is included to provide the background information on

the ACTS transponder required by later discussions. For more detailed information on

2Spacce Electronics Division (SED), NASA-Lewis Research Center, Cleveland Ohio 44135
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the transponder, please refer to the several papers listed in the SITE Related Publications
appendix.

The transponder is the part of the communication system which routes signals
between ground terminals. It consists of all elements of the communication system which
will reside onboard the satellite. This system is a comparatively small part of the
satellite system. Other major systems onboard the spacecraft include power systems,
diagnostic systems, telemetric systems, etc. This discussion is limited only to the
transponder.  Therefore, references to the satellite are implicitly directed to the
transponder system onboard.

Figure 1.2 shows the configuration of the transponder in its current SITE phase.
As stated earlier, only two channels through the matrix switch are currently implemented.
This will change as additional signal paths are added in future testing phases. However,
the principles discussed here apply to any number of channels.

Table 1.1 provides a legend for the labels in Figure 1.2. The names in the table
are functionally descriptive. They are not the names used by NASA personnel. The
following discussion traces the functionality of each transponder element listed in this
table.

Again, this section is only intended to provide background information on the
workings of the transponder system. Therefore, each component’s operation is discussed

in a general manner regarding its function in system operation.



Table 1.1: Components of the ACTS Transponder System

Major Transponder Components:

CHIRCVR Channel 1 Receiver Unit

CH2RCVR Channel 2 Receiver Unit

RCVRLO Receiver Unit Local Oscillator

MSWITCH Matrix Switch

CHIMIX Channel 1 Up-Converter Mixer

CH2MIX Channel 2 Up-Converter Mixer

UPXLO Up-Converter Mixer Local Oscillator

GaAsFET Gallium-Arsenide Field Effect Transistor Amplifier
TWTA Traveling Wave Tube Amplifier

Intermediate Frequency Power Control (IFPC) Amplifiers:
Channel 1 Matrix Switch Input IFPC Amplifier

Channel 2 Matrix Switch Input [FPC Amplifier

Channel 1 Up-converter Input IFPC Amplifier

Channel 2 Up~converter Input IFPC Amplifier

o aOw>

Intermediate Frequency Power Control Attenuators:
Channel 1 Matrix Switch Input IFPC Attenuator
Channel 2 Matrix Switch Input IFPC Attenuator
Channel 1 Up-converter Input IFPC Attenuator
Channel 2 Up—onverter Input IFPC Attenuator

High Power Amplifier Input Power Control (HPAIPC) Amplifiers:

Channel 1 HPAIPC Driver Amplifier
Channel 2 HPAIPC Driver Amplifier

T M

High Power Amplifier Input Power Control Attenuators:
K Channel 1 High Power Amplifier Input Attenuator
L Channel 1 HPAIPC Driver Input Attenuator
M Channel 2 HPAIPC Driver Input Attenuator
N Channel 2 High Power Amplifier Input Attenuator

Signal Power Level Sensors:

PM_1 Channel 1 Matrix Switch Input Signal Power Level Sensor
PM_2 Channel 2 Matrix Switch Input Signal Power Level Sensor
PM 3 Channel 1 Up-converter Input Signal Power Level Sensor
PM_4 Channel 2 Up-converter Input Signal Power Level Sensor
PM_5 Channel 1 HPA Input Signal Power Level Sensor

PM_6 Channel 2 HPA Input Signal Power Level Sensor

PM_7 Channel 1 HPA Output Signal Power Level Sensor

PM_8 Channel 2 HPA Output Signal Power Level Sensor



Transponder System Control and Monitoring

The first components of interest are those designated as PM_I through PM_8 in
Figure 1.2. These components represent the transponder signal power level sensors
which are present in the SITE Phase II model. These signal power level sensors report
the power level of the transponder signal at various key locations throughout the system.
All sensor readings are made available as diagnostic information via two sources. First,
each sensor has a digital display which is visible on the transponder system control panel.
This display offers a visual means of obtaining power meter readings.

The second source for accessing sensory information is accomplished through an
interface with a specialized computer called the Experiment Control and Monitoring
(EC&M) Computer. This computer is discussed in greater detail later in this section.

Experiment control is provided by the adjustment of the attenuators within the
transponder. These attenuators can be either controlled manually or via an interface with
the EC&M computer. Additionally, these attenuator settings are monitored by the
EC&M and can be reported by either visual displays or interfacing with this computer.
The power meters are also interfaced with the EC&M computer. This interface provides
computer access to signal power level readings at the sensor locations.

With this understanding of transponder control and monitoring, the workings of
this system can be discussed on a component by component basis. Again, this discussion
is based upon the workings of the transponder system during testing and evaluation
experiments.

The two channels of the transponder system are symmetrical about the matrix
switch. Each channel has both an input and an output. A channel’s input consists of all

components responsible for receiving an up-link broadcast and preparing it for input to
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the matrix switch. A channel’s output consists of all components responsible for

preparing the signal for broadcast on the down-link.

Uplink Receivers and IF Frequency Conversion

Channel 1 and 2 input channels are symmetrical about the matrix switch and can
be discussed together. They receive up-link signals from their corresponding ground
terminal system. This input signal is the modulated data stream being broadcast at 30
GigaHertz (GHz) from the ground terminals. The 30-GHz Low Noise Receiver units on
the channel 1 and 2 inputs, CHIRCVR and CH2RCVR in Figure 1.2, receive the up-link
signal at a very low signal power level. The receiver units must provide the necessary
amplification and down-convert the signal frequency to 2.5-GHz, the Intermediate
Frequency (IF) level.

This frequency down-conversion is accomplished via mixing with a local oscillator
(LO) unit. Associated with both receiver units is the Receiver Local Oscillator, shown
as component RCVRLO in Figure 1.2. This LO unit provides the 2.5-GHz reference
necessary for down-conversion to the IF frequency.

After down-conversion, the IF signal power levels are controlled by components
A, B, G, and H. The Intermediate Frequency Power Control (IFPC) Amplifiers,
components 4 and B, provide a constant 43-dB amplification to the IF signal. This high
gain is compensated for by the IFPC Attenuators, components G and H. These
attenuators are under control of the EC&M Computer and are incrementally adjustable
in 1-dB steps. This control allows the IF signal power level to be maintained to within
1-dB of its nominal level before input to the matrix switch. The IF signal power levels
at the input to the matrix switch are monitored by the IF Power Level Sensors, PM_I and

PM_2, and reported to the EC&M computer.
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Ford Microwave Matrix Switch

Interconnectivity between channel inputs and outputs is provided by the
Microwave Matrix Switch, component MSWITCH in Figure 1.2. This matrix switch is a
switching unit having multiple input and output channels. The internal switching
mechanisms provide cross point connections for a full permutation of signal paths
through the switch. However, in the transponder’s current phase of development, only
two channels are implemented, channel 1 and channel 2. Consequently, only two of the
many channels of the matrix switch are in use. This provides a total of four possible
paths through the matrix switch. Table 1.2 shows the permutations of paths through the

matrix switch.

Table 1.2: Permutations of Signal Paths Through Matrix Switch

Signal Path: Switch Interconnectivity:

PATHI1 Channel 1 Input - Channel 1 Output
PATHI2 Channel 1 Input -- Channel 2 Output
PATH21 Channel 2 Input -- Channel 1 Output
PATH22 Channel 2 Input -- Channel 2 Output

Inherent to the switching mechanisms, internal to the matrix switch and dependant
upon signal path, is a certain degree of attenuation to the IF signal. Consequently, after
signal path switching, the IF signal power level must be adjusted to maintain a proper
signal strength. This signal power level control is affected by a second set of IFPC
units, components C, D, I, and J in Figure 1.2. The IFPC Amplifiers, components ¢ and
D, again provide a constant 45-dB amplification to this signal, allowing the IFPC

Attenuators, components P and @, to provide 1-dB step control over the IF signal
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strength. The IF signal power levels are monitored and reported to the EC&M by IF
Signal Power Level Sensors PM_3 and PM_4.

The channel outputs of the transponder system are responsible for preparing the
IF signal for broadcasting on the down-link to the ground terminal systems. After
switching, the transponder IF signal is considered to be in the output channel of its path
through the transponder system. Again, the channel outputs of the transponder system
are symmetrical about the matrix switch. The only exception to this symmetry occurs
at the high power broadcast amplifiers before down-link. This exception is discussed

later.

IF/Downlink Frequency Conversion

At this point in the component discussion, the signal has been directed through
the matrix switch to its proper output channel. It is now ready to be prepared for
transmission to the ground terminals. The first step in this preparation of the signal for
broadcast is the frequency up-conversion of the 2.5-GHz IF signal to the 20-GHz
broadcast frequency. This is accomplished by components CHIMIX and CH2MIX, which
are the Transponder System Up-converter Multiplexers. These units combine the 2.5-
GHz IF signal with a 20-GHz reference signal provided by the Transponder System Up-
converter Local Oscillator, component UPXLO in Figure 1.2.

After mixing, the signal power levels must be adjusted before input to the high
power broadcast amplifier units, components GaAsFET and TWTA. This is accomplished
by the High Power Amplifier Input Power Control (HPAIPC) units which follow the
multiplexers, components E through N. The first HPAIPC attenuators in the output
channel, components L and M, are fixed devices which provide a constant attenuation.

Next, the HPAIPC Driver Amplifiers, components E and F, amplify the signal between
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25 to 31-dB. The subsequent attenuators, HPAIPC attenuators, components X and N, are
rotary vane pin diode attenuators which are continuously variable. This continuity in
their adjustment allows the EC&M computer to have precise control of the signal power
level on input to the high power broadcast amplifier units. The signal power levels at
the input to the broadcast amplifiers are monitored and reported to the EC&M Computer
via power sensors PM_S and PM_6.

The two high power amplifier units, now amplify the signal for broadcast on the
down-link to the ground terminals. This is the point where the symmetry of the output
channels fails. These amplifiers perform similar functions in the operation of the
transponder system. However, they are distinctly different units and must be discussed

separately.

Gallium Arsenide (GaAs) FET Amplifier

Component GaAsFET, the 20-GHz Solid State Amplifier, at the output of channel
1, is a Gallium Arsenide Field Effect Transistor (GaAs FET) amplifier unit. This
amplifier unit can be configured to operate at various set-points along its Input vs. Output
(I/O) characteristic curve. By establishing a set-point, this amplifier can be configured
to operate in one of three different modes; in a linear mode, in 1-dB compression or in
a saturation mode. The following discussion helps to explain the multiple set-points for
operation of an amplifier unit.

As for any amplifier, the gain of the GaAs FET amplifier can be plotted as the
magnitude of its output power level versus the magnitude of its input power level. This
plot is often called the characteristic curve of the amplifier. Figure 1.3 shows a typical
characteristic curve for a GaAs FET Amplifier. This figure is only intended to provide

a conceptual understanding of the linear, compression and saturation ranges of amplifier
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characteristic curves. It is not scaled to provide characteristic data about the GaAs FET

amplifier specifically.
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Figure 1.3: Characteristics of a GaAs FET Amplifier

This curve shows the non-linear relationship between the power at the output of
an amplifier for a given input power level. Furthermore, this curve shows that the
behavior of an amplifier is not consistent over the entire range of inputs. However,
some generalizations can be made about amplifier behavior over specific regions of the
curve.

Although the characteristic curve is never actually linear, the lower end of the
input power scale exhibits a behavior which approximates a linear relationship. The
range of input power levels which produce this nearly linear characteristic is therefore

called the Linear Range. Figure 1.3 shows this linear behavior in the range marked
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"Linear." Notice that over this range, the characteristics of the amplifier could be
approximated by a straight line.

As the input power level is increased beyond this "Linear” range, the nonlinear
parameters of an amplifier begin to become more pronounced. The characteristic curve
begins to lose its linearity and compresses to a line of zero slope. Additionally, this
compression is not constant and increases proportionally with the input power level.
However, over a specific band of input power levels, the compression of the curve can
be approximated as a 1-dB compression ratio. This range is therefore called the "1-dB
Compression” range and is noted in Figure 1.3.

As the magnitude of the input power level is increased beyond this 1-dB
compression range, the compression of the characteristic curve becomes very
pronounced. Its slope begins to approach zero rapidly, as the amplifier unit approaches
saturation. The band of all input power levels above the 1-dB compression range exhibit
this behavior. Therefore, this band of input power magnitudes is called the "Saturation”
range and is also indicated on Figure 1.3.

The configuration of the broadcast amplifier has a direct effect on the quality or
accuracy of the communication signal. Ideally, an amplifier operates most efficiently
near its saturated region. Near this range, the amplifier is providing the highest possible
gain to an input signal. However, as the operating point of the amplifier approaches
saturation, the amount of noise induced in the transmitted signal becomes greater. This
noise is induced by the saturated amplifier as an increase in the harmonic content of the
signal. Data bit errors begin to occur when this noise rises above a certain threshold
limit.

To prevent any loss of data in the modulated signal being transmitted through the
satellite transponder, a set-point should be chosen in the linear region of operation.

However, the gain characteristics of the amplifier in the linear range do not provide for
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efficient amplification of the broadcast signal. Consequently, a trade-off must be made
between the broadcast power required for efficient transmission and the linearity required

for accurate transmission of data through the transponder.

Multi-Mode Traveling Wave Tube Amplifier (TWTA)

Component TWT4, the 20-GHz Multi-Mode Traveling Wave Tube Amplifier at the
output of channel 2, is a Traveling Wave Tube Amplifier (TWTA). This amplifier can
be configured to operate in various power modes. This multi-mode behavior allows the
amplifier to operate along several characteristic curves; as opposed to a single curve like
the GaAs FET. Specifically, the Multi-Mode TWTA can operate along one of three
characteristic curves; each corresponding to one power mode of the TWTA. Figure 1.4
shows typical power characteristics for a Multi-Mode TWTA.

The Low Power Mode is designed for optimal efficiency in broadcast power. The
gain of this mode is limited. However, under normal atmospheric conditions, this mode
of operation should provide sufficient broadcast power for communication with the
ground terminals.

However, adverse atmospheric conditions often require a satellite to step up its
broadcast power to overcome interferences. This TWTA can be stepped up to a Medium
Power Mode to provide this compensation. The Medium mode of operation provides a
higher gain and therefore an increase in the strength of the broadcast signal. The
consequence is a greater power consumption by the amplifier unit.

Similarly, should additional gain be required beyond that of the Medium Power
Mode, a third configuration of the TWTA modes is available. The High Power Mode
provides a very high gain to compensate for extremely strong atmospheric interferences,

such as rain.
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Figure 1.4: Characteristics of a Traveling Wave Tube Amplifier

In addition to having the multi-mode capabilities, the TWTA can also be
configured to operaté at various set-points along each of its characteristic curves. Similar
to the GaAs FET, the TWTA can operate linearly, in compression or in saturation. It
has three operating points in each power mode; resulting in a total of nine possible
configurations for the TWTA.

The final components in the transmission paths through the transponder system
are the transponder signal power level sensors PM_7 and PM_8. After amplification by one
of the broadcast amplifiers, the power levels of the down-link signal is reported to the
EC&M via these sensors. These sensor readings indicate the output power of the

transponder system, as the signal is transmitted to one of the ground terminals. In the
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current phase of development, transmission of the signal to and from the ground
terminals is simulated by a direct wave guide link.

In summary, the transponder system consists of many components responsible for
receiving, routing and broadcasting a communication signal between the ground
terminals. A signal is received on a channel up-link from its originating ground terminal
system. This signal is then down-converted in frequency to an intermediate frequency
and routed through a matrix switch. This matrix switch is a switching network which
channels a signal through one of four possible paths. After switching, the signal is up-
converted in frequency and amplified by high power amplifiers and then broadcast on a
channel down-link to its destination ground terminal.

The next section looks into the computer control and monitoring performed by the

various computer systems associated with the transponder and ground terminal.
1.1.3 Overview of Computer Control & Monitoring
The final topic of discussion in this overview is the computer network responsible

for the control and monitoring of the satellite transponder and ground terminal systems.

Figure 1.5 is an interface diagram which shows this network.
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Figure 1.5: Computer Control and Monitoring Interface

Digital Ground Terminal

The first computer network of interest is a group of digital processors located in
the ground terminal system. This group is collectively called the Digital Ground
Terminal. It is comprised of the three simulated user terminals and the Data Bit Error
Rate Registers. Again, as stated earlier, these processors are only present to simulate
the existence of users. The actual ground terminal computer is currently under
independent development, therefore, this discussion is limited to the operation of the
simulated user processors.

Located in the bottom right hand corner of Figure 1.5 are three blocks labeled as

User Terminals. In the current stage of development for this system, only three system
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users are being simulated. It is these three processors which are used to simulate the
users. Each user terminal originates an individual data set to be transmitted through the
communication system. During experimentation, large data sets are required for
transmission. To accomplish this generation of a large data set, each user terminal
generates a pseudo-random stream of bits. This data it then transmitted digitally to the
signal processing components of the ground terminal.

The signal processing components transmit this data through the satellite
transponder system and then returns it digitally to the appropriate users. After the
transmitted data is received at the appropriate user terminal, the data stream is checked
for bit errors. This is accomplished by an Exclusive-OR (XOR) with the bits of the
original data stream. The total of "Missed Bits" is calculated and a Bit Error Rate (BER)
determined. This BER is simply the ratio of missed bits to the number of bits
transmitted.

This BER provides useful information about the performance of the
communication under the experimental conditions. Therefore, the results of error
checking for each of the users are stored in the three BER Registers shown in Figure 1.5.
Since these registers are also digital components involved in the generation and
evaluation of digital data, they are included in the network as part of the Digital Ground
Terminal. In all, the components of this network, collectively called the Digital Ground
Terminal, are responsible for the generation and evaluation of data to be transmitted

during the testing and evaluation of the transponder system.

Network Control Computer

The next computer of interest is the block in Figure 1.5 labeled as the Network

Control Computer (NCC). This computer is responsible for evaluating information from
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the Ground Terminal System and appropriate control of the Transponder System. Its
primary task is two fold. First, it must control the routing of the transmitted signal
through the transponder system. And second, it must compensate for atmospheric
disturbances by controlling the output signal power level of the satellite broadcast
amplifiers.

The NCC receives input from the simulated ground terminal users for the proper
configuration of the matrix switch in the transponder system. Then, it configures the
matrix switch to assure proper routing of data transmitted through the transponder. The
NCC also is responsible for controlling the output power levels of the transponder’s
broadcast signal. The primary reason for this output power level control is compensation
for power losses which result from atmospheric disturbances, commonly called "Rain
Fade." Located in the signal processing portion of the ground terminal system is a rain
fade sensor. This sensor detects power attenuation caused by the rain fade simulator.
When the down-link signal power level, reported by the rain fade sensor, falls below a
certain threshold, the NCC directs the power processing unit of the Multi Mode TWTA
to compensate for this attenuation by changing power modes. Conversely, to save
power, if the rain fade sensor reports a decrease in attenuation, the NCC instructs the

TWTA’s power processing unit to change to a lower power mode to compensate.

Experiment Control & Monitoring Computer

In the current phase of integrating, testing, and evaluating the transponder and its
associated ground terminals, all operation is controlled and evaluated by the EC&M
Computer. This computer is responsible for controlling all adjustable attenuators and the

reporting of all sensory information.
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Several attenuator settings can be controlled and reported by this computer.
These settings are controlled by an analog voltage generated via an interface with the
EC&M. The magnitude of this control voltage is also available for reporting the current
levels of attenuation in these settings.

In addition to controlling the transponder system signal power levels, the EC&M
also provides a means of monitoring and evaluating the condition of the transponder and
associated ground terminals by reporting sensory information. There are fifteen sensory
inputs to the EC&M which report the readings of the nine transponder signal power level
sensors and six data stream bit error rates.

In the current phase of development of FIDEX, there is no direct interface
between this EC&M computer and the diagnostic process. Currently, this information
is input via user interrogation. However, the availability of this data would lend to a
future implementation of an interface between this expert system and the EC&M
computer. This concept is discussed in greater detail, when appropriate, later in this

report.
1.2 Project Definition

The goal of this research project was to investigate the possibility of representing
the knowledge gained during SITE in a diagnostic expert system. Such a study would
then help to lay groundwork for a future system capable of providing the transponder
with autonomous diagnosis capability. The research for this project progressed according
to several key developmental phases:

1. Domain Analysis: Study the operation of the application system under both normal and
abnormal conditions
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2. Knowledge Acquisition: Study and organize the knowledge used by the domain experts who
perform fault diagnostics on application system

3.  Knowledge Representation: Design a scheme to model the application system and represent
the knowledge required to detect, isolate, and diagnose its fault states

4.  Response Strategy Definition: Establish response strategies and procedures for all fault states

5.  Prototype Development: Develop, test, and modify a series of evolutionary prototype
diagnostic expert systems

6.  Requirements Definition: Define the overall specifications for the final deliverable diagnostic
expert system

7.  Final Development: Design, encode, integrate, test, and document the final deliverable
expert system

8.  Life Cycle Analysis: Define and specify a maintenance schedule for the deliverable diagnostic

expert system

During these phases of development, several problems were encountered which
reshaped the requirements of the project. Three problems of particular interest resulted
from the evolutionary state of the ACTS transponder system. The requirements which
these difficulties added to the project, and their solutions, highlight the major strengths
of this expert system.

The first of these difficulties became evident during domain analysis. The expert
system was constrained to work with limited information on the operational condition of
the transponder. Specifically, there were only a few sensors available to provide
information on the response of the transponder system. This information was limited to
the signal power level sensors, indicated in Figure 1.2 as PM_1 through PM_8, and a few
bit-error-rate (BER) registers. This limited information was not completely adequate for
assessing the condition of the transponder. In short, the sensors in the transponder were
sparse in number, compared to the other components of the transponder system.

Therefore, the isolation of a fault to a specific component based upon sensory
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information alone was not possible. This limitation was termed the Sparse Sensor
Problem.

This problem also placed a high premium on the reliability of sensory
information.  Inconsistent or erroneous readings could render the expert system
inoperable. Therefore, a method for resolving conflicts in sensory data was needed.

A second problem was encountered during knowledge acquisition. A prerequisite
for the development of an expert system is an extensive understanding of the application
area. In a diagnostic application, this requirement dictates that the potential fault states
of the system be well known. However, the ACTS transponder was still under
evaluation, and a complete understanding of its fault response had yet to be formulated.
This fact constrained the investigators to work with limited diagnostic knowledge.
Without a clear definition of the transponder’s fault response, explicit diagnostic rules
were not possible. Therefore, the expert system was prescribed to work with abstract,
as well as concrete diagnostic knowledge.

The final problem was also a result of the evolutionary state of the transponder
system. The problem was that changes in the design of the system were always possible.
These changes could range from modifications to design specifications, or even the
addition of new modules. This situation made it difficult to develop a robust diagnostic
agenda.

Faced with these problems, the goal of this project changed more towards a study
effort. Emphasis was placed on the development of techniques that would overcome
these problems and permit the expert system to reason intelligently with only limited
information. The system’s knowledge needed to be structured such that any change in
the design of the transponder could easily be reflected in the structure of the expert
system. All of these requirements placed a premium on the design of knowledge

representation techniques and reasoning methods that were general and flexible.
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The result of this effort was the development of a prototype diagnostic expert
system called FIDEX, Fault Isolation and Diagnosis EXpert. This project demonstrated
the feasibility of developing an intelligent computer diagnostic system not only for the

ACTS transponder, but for space systems in general.

1.3 General Approach to Solution

The general approach taken in the development of this project followed the
problem-solving approach used by the ground personnel who perform satellite
diagnostics. This strategy was termed the Modular Approach to Diagnostics. In general,
it follows the four tasks of:

1. Fault Detection: Monitor the response of the transponder to determine whether it is
functioning properly or not
2. Fault Isolation: Narrow the range of suspected components to the smallest possible group

3.  Fault Diagnosis: Investigate the precise nature of the misbehavior and determine the
component causing it

4.  Fault Response: Respond to the diagnosis in a robust and intelligent manner

Fault Detection

The purpose of the first task, Fault Detection, is to detect any misbehavior in the
transponder performance. This task involves the analysis of current sensor information
to ascribe qualitative descriptions to each sensor’s reading; either "GooD" or "BAD.~
These descriptions are based on whether the data reported by a sensor exceeds a
tolerance figure centered on its nominal or expected value. Sensor readings which are

within tolerance receive a "GooD" description, and those which exceeded their tolerance
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range are labeled as “B4D.” The detection of a fault is based upon establishing a "BAD"
reading on any sensor. This indicates that a misbehavior exists in the transponder system

and causes the next task to begin.

Fault Isolation and Sensor Validation

The second task in this approach is Fault Isolation. Its purpose is to isolate the
suspected fault to the smallest possible group of components in the transponder. This is
accomplished through a principle known as Error Propagation. This principle states that
the observable symptoms of a misbehavior in a component propagates through all
subsequent sensors in a signal path. The source of such a misbehavior can thus be
concluded to lie in that signal path, prior to the detection of the misbehavior, and
subsequent to the last sensor indicating a proper signal response.

To implement this, the isolation task considers the qualitative description of all
sensor readings ascribe by the detection phase. It locates a sensor reporting a “GoOD*
reading which is followed by a “B4D" reading. However, because of the sparse sensor
limitations, this approach can only isolate the source of the misbehavior to the group of
components between these two sensors. For the purposes of this project, these groups
of components are termed SubSystems, and are defined as the groups of components
bounded signal power level sensors.

The fault isolation task relies heavily upon the integrity of the data reported by
the sensors. Should any sensor report erroneous data, this task will fail to reach a valid
conclusion. Therefore, a subordinate Sensor Validation task was added to this diagnostic
phase.

The sub-task of sensor validation is designed to identify the possibility of a faulty

sensor. This ability permits the FIDEX system to avoid the search for a non-existing
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transponder fault. Sensor validation is also based on error propagation; however, in a
slightly different fashion. Again, a signal producing a "BAD" sensor reading at one point
in the transponder should result in a "BAD* reading on all subsequent sensors in that
signal path. This task identifies the possibility of a faulted sensor if a “Goob" reading
instead is found.

In either case, the purpose of isolation is to identify the subsystem containing the
component causing the misbehavior. If this misbehavior is the result of a component
failure, the subsystem identified by its input and output sensor readings is flagged as
isolated. However, if the detected “BAD" sensor reading is the result of a faulty sensor,
isolation flags the sensory components as the isolated subsystem. Once the source of the

fault is isolated, the next task is initiated.

Fault Diagnosis

The third task, Fault Diagnosis, involves consulting a community of diagnostic
expert systems. Each system is designed to address the problems of a specific subsystem
within the transponder. Determining the appropriate diagnostic expert to be consulted
is the final task of the isolation phase.

These specialized diagnostic systems use knowledge which is rule-based and
backward chaining in nature. The hypotheses for these rules represent the potential faults
in the isolated subsystem. The order in which they are placed on the agenda is based on
the history of the fault states. Maintaining this history permits FIDEX to pursue the
most likely problems first.

Each diagnostic system was also designed with an ability to perform inexact

reasoning. This was done to overcome problems which resulted from limited information
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about the transponder’s performance. Such an ability was important in that the FIDEX
system would often need to make a "guess" at the most likely fault state.

The inexact reasoning technique chosen for this project was based on the certainty
theory given by Shortliffe [34]. It relies upon establishing incremental measures of belief
or disbelief in rule conclusions. These two factors are then used to establish an overall

confidence when a conclusion is supported by multiple rules.

Fault Response

The final task is Fault Response. The present strategy for fault response is to
provide recommendations for reconfiguring the components or sensors. Plans are to
include the capability to reconsider fault diagnosis if the recommended action was
ineffective. FIDEX would retain its past diagnosis, including recommendations, and
reconsider the problem with information made available following the corrections to the
transponder.

The remainder of this paper discusses the workings of the FIDEX system. It
demonstrates the techniques discussed above, and by example, show their application to

other types of diagnostic systems.



CHAPTER IO
DEVELOPMENT ENVIRONMENT

The long term objective for FIDEX was to permit it to acquire data on the
transponder through the satellite’s onboard data acquisition systems. However, during
its development of FIDEX it was decided to acquire this data interactively from the user.
Therefore, a user interface between NEXPERT Object™ and ToolBook™ was developed.
These software packages operate in the MicroSoft” Windows™ environment. This permits
them to interact and communicate through dynamic data exchange (DDE).

Being a Windows™ application, the interface is highly menu driven. The user
enters information about the condition of the transponder through various forms and
prompts. This data is then dynamically transferred to the NEXPERT" application where
it is evaluated. The interface also allows NEXPERT" to prompt the user for information
as it is required during the diagnostic process.

The FIDEX system needed to be designed in a fashion that would allow it to
incorporate changes to the transponder easily. Therefore, a frame-based approach was
taken for knowledge representation. The system was also required to operate on an
i80386 machine. The NEXPERT Object™ development environment, by Neuron Data,
Inc., was chosen as the development environment for the FIDEX system.

NEXPERT™ permits an object-oriented style of programming within
class/subclass-object/subobject hierarchies. It includes message passing through active
facets. It allows the encoding of general rules that scan frame hierarchies. It also

permits access to database information contained in a variety of database formats. It can

28
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be linked with and execute external programs. As a MicroSoft” Windows™ application,
it supports dynamic data exchange (DDE) and external message passing through dynamic
link libraries (DLLs). All of these features were important in the design of FIDEX.

Table 2.1 shows the basic system requirements for using NEXPERT Object”.

Table 2.1: NEXPERT Object™ System Requirements

» IBM PC Model 80, or compatible 80386 machine, with 1024-KBytes of base
memory plus a minimum of 2048-KBytes extended memory.

» MicroSoft™ Windows™ version 3.0 or later.

» Enhanced Graphics Array (EGA) or VGA color graphics adaptor with a minimum
of 64-KBytes graphics memory.

» 1.2-MByte or 1.44-MBjyte floppy disk drive.
» Hard disk with a minimum of 6-MBytes available disk space.

» Programmable bi-directional parallel port.



CHAPTER I
KNOWLEDGE ENGINEERING

The diagnostic knowledge of FIDEX is represented using both frame-based and
rule-based techniques. This section discusses the structure of this hybrid framework.
This is required to provide a background for discussions in subsequent chapters which

describe the actual implementation of FIDEX in the syntax of NEXPERT Object”.

3.1 Frame-Based Architecture

The expert system needed to be designed such that it would easily allow the
incorporation of changes to the transponder. Therefore, it was decided that a
frame-based approach for knowledge representation would be appropriate. Frame
hierarchies were developed to represent the transponder’s components, subsystems,
sensors and fault states. These hierarchies were interconnected into a network to enrich

the overall knowledge representation structure.

3.1.1 Structure of Components Class Hierarchy

A frame hierarchy was created to provide a clear and efficient representation of
all components in the transponder. Figure 3.1 shows this structure called the
Components Class Hierarchy. This figure illustrates a convention that is maintained

throughout in this report. Circles represent class frames and triangles represent object

30



31

frames. Lines indicate links between frames, with the arrows indicating the direction of

inheritance.

Conponents
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Subdlass

Amplifiers
Subclass

Figure 3.1: Components Class Hierarchy

The root node in Figure 3.1 is a circle indicating a class frame called

Components.  This class was created to represent the commonality between all

components in the transponder. It is divided into several subclasses; represented by the

second level of class frames. Each of these subclasses describe the function of

components in the transponder: amplifiers, attenuators, etc.

represented by object frames attached to these subclasses.

3.1.2 Structure of Subsystems Class Hierarchy

The components are

Each component is also associated with a subsystem of the transponder, see

Figure 3.2. Several object frames are used to represent the collections of components

called subsystems. These frames are then attached to a class frame called Subsystems.



32
Finally, the membership of a component to a particular subsystem is represented by

attaching its object frame as a subobject of the appropriate subsystem object frame.

Conmponents Subsystems
CQlass Class

Awbplifiers . e 8 o . .

Subclass (> W) | Chl Ch.2
Recaiver Amplifier Awnplifier
e o o Atten Ch.1

] Receiver

Figure 3.2: Subsystems Class Hierarchy

3.1.3 Structure of Sensors Class Hierarchy

Two types of sensory elements monitor both the response of the transponder and
the relayed signal. The first type is signal power level sensors. The other type
represents the data stream bit error rate (BER) registers located within the ground
terminal systems. The information used for diagnosis is provided by these sensors.
These sensors were represented by creating the class structure called Sensors for all
sensory components shown in Figure 3.3.

This structure is divided into subclasses according to the two types of sensors.

Each sensor is then represented by an object attached to the appropriate type subclass.
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Figure 3.3: Sensors Class Hierarchy

The BER Sensors class is also divided into two subclasses according to their
channel. This was done to simplify the analysis of frequency dependant fault states. It
also demonstrates how class structures can be cascaded to further describe component
function and organization.

Like all other transponder components, sensory elements could potentially fail.
Therefore, each sensor is also represented in FIDEX as a member of the Components
world. Each sensory component is represented by an object frame. These frames are

linked to their appropriate subclass type in both the components world and the sensors

world.
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3.1.4 Structure of Fault States Class Hierarchy

The transponder fault states are represented as objects in a class structure called
Fault States. This class is also divided into several subclasses. Each subclass frame
represents the association of fault states to component types such as amplifier faults,
attenuator faults, etc. Object frames representing the specific failure modes of the
transponder are then attached to the appropriate subclasses. This structure, shown in

Figure 3.4, enables FIDEX to reason about both known and abstract faults.

Fault
States
Class

Amplifier
Faults
Subclass

Attenuator
Faults
Subclass

Subclass

Figure 3.4: Fault States Class Hierarchy

This section has discussed the engineering of knowledge about the structure of the
transponder and its faut states. The next sections discusses the engineering of knowledge

about the diagnosis of fault states within the transponder.
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3.2 Modular Approach to Diagnostics

The basic approach was to divide the job of diagnosing faults within the
transponder into a series of diagnostic tasks. Each of these tasks was separated into an
individual module of the FIDEX system.

The knowledge for the task of monitoring the response of the transponder in order
to determine whether it is functioning properly or not was separated into an individual
module called the Fault Detection Module. Similarly, the knowledge for the task of
narrowing the range of suspected components to the smallest possible group was
separated into an individual module called the Fault Isolation and Sensor Validation
Module.

The fault isolation task isolates the probable source of the fault to a subsystem of
the transponder. For each of these subsystems, different knowledge is required to
investigate the precise nature of a misbehavior and for determining the component
causing it. Therefore, this knowledge was separated into a different Fault Diagnosis
Module for each subsystem of the transponder system. Similarly, the strategies for
responding to the diagnosis were also different for each subsystem. Therefore, the fault
response task was incorporated into the diagnostic modules for the subsystems.

Each of the above modules are loaded as they are needed in the diagnostic
process. In this manner, the FIDEX system functions as a community of experts on the

diagnosis of faults in the transponder system.

3.3 Reasoning Techniques

FIDEX reasons with two distinctly different techniques. The first technique,

called absolute reasoning, is used to establish or reject the existence of predefined fault
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states. The second technique, called abstract reasoning, is used to recover when the
diagnostic task cannot reason effectively using the first technique. FIDEX uses the

second technique to establish evidence in conceptual fault states.

3.3.1 Absolute Reasoning

In general, procedural knowledge which supports rules in absolute terms is
associative knowledge. This type of knowledge associates conditions with the
establishment or rejection of a conclusion. Two types of associative knowledge are used
by FIDEX.

The first type is directly associative. This knowledge directly associates
conditions with conclusions. An example of this type of knowledge might be: If the
data reported by a sensor reading exceeds its tolerance band, then the sensor’s reading
is "BaD.~ The condition of sensor data exceeding its acceptable range is directly
associated with establishing a "BAD* qualitative description for that reading. Rules which
represent this type of knowledge are used to structure the strategies of the diagnostic
tasks.

However, the majority of the knowledge used in the task of fault diagnosis is
supported by an accumulation of evidence. This type of knowledge is cumulatively
associative. That is, the accumulation of several conditions is associated with the
establishment or rejection of a conclusion. Moreover, each condition may contribute
differently to that conclusion. An example of such knowledge might be: "A Low signal
power level might indicate internal phase lock failure in a local oscillator.” and "A HIGH
bit error rate is might indicate that the local oscillator is out of phase lock.”

Neither conditions can be directly associated to establish or reject the conclusion

of an internal phase lock failure. However, each contributes evidence to that conclusion.
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When multiple rules contribute evidence toward a conclusion, the system must be able

to accumulate this evidence. The FIDEX system has such an ability.

3.3.2 Inexact Reasoning

The FIDEX system uses inexact reasoning based on the MYCIN technique for
incrementally accumulating evidence during the fault diagnosis task. This is because
very few of the known fault states of the transponder system are supported by singular
conditions. This section discusses the approach used in FIDEX for implementing the
MYCIN technique.

Not shown in Figure 3.4 is an additional node to the fault state hierarchy. The
Fault States class is attached as a child of another class called Certainty Analysis. The
certainty analysis class was created to provide the overhead required to perform inexact
reasoning. All objects which represent hypotheses requiring certainty analysis are
attached to this class. Because the fault state hypotheses require this, attaching their root
node to the Certainty Analysis class provides them this overhead.

Each fault state object inherits from the Certainty Analysis properties for
accumulating: measures of belief, measures of disbelief, accumulated belief MB, MD, AB,
4D, and CF quantities that were discussed in section 3.3.2. As the diagnostic process
acquires evidence in support or rejection of Fault State hypotheses, measures of belief
and disbelief are assigned to these properties.

Associated with these properties are algorithms for calculating the confidence
factor according to the equations in 3.1 and 3.2. When measures of belief or disbelief

are assigned, they are accumulated and an overall certainty is calculated.
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3.3.3 Incremental Accumulation of Evidence

FIDEX uses the incremental accumulation of evidence technique to establish or
reject hypotheses which are supported by multiple rules, Shortliffe [34]. The two
equations given in 3.1 accumulate a measure of belief 48 and disbelief 4D in a hypothesis
H. These two measures are then used by Equation 3.2 to establish an overall confidence

CF in that hypothesis.

AB(H), - AB(H), , + MB(H), [ 1 - AB(H), , ]
AD(H), - AD(H), , + MD(H),'[ 1 - AD(H), , ]

@3.1)

AB(H), - AD(H),

i ] 3.2)
1 - min(AB(H),, AD(H),)

CF(H), - [

Rules which accumulate belief do not assign Boolean values to their associated
hypothesis. Instead, they determine a measure of belief MB or measure of disbelief MD
in that conclusion. These measures represent the degree to which the rule has
contributed to the establishment or rejection of its hypothesis. The values which are
assigned to these measures range between 0 and 1. Values close to 1 represent strong
measures while values close to 0 represent weak measures. A value 6f 1 is generally not
assigned; as it results in a Boolean value for 4B or 4D.

Consider an arbitrary hypothesis H# and assume that no evidence has been
established toward belief in that conclusion; ¥ = 0 and 4B@#H), = 0. Establishing a fact

in support of this conclusion might assign a measure of 0.2 to the belief in #, for
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example MB#H), = 0.2. According to the first equation in 3.1, the accumulated belief in
the hypothesis would then be 4B#), = 0.2. The establishment of another fact in support
of H might assign a measure of 0.5 to the belief in H, i.e. MBH), = 0.5. The
accumulated belief in the hypothesis would then be incremented according to the first
equations in 3.1; 4BH), = 0.6.

The accumulated measure of disbelief AD@#) is incremented similarly. However,
this accumulation would be based on rules which establish measures of disbelief in a
hypothesis MD(H),. This measure indicates evidence in rejection of the hypothesis.

As rules ascribe MB(H),’s and MDH),’s, and accumulated values are calculated, the
overall confidence in a conclusion CF@), is calculated. Confidence factors range in value
from -1 to 1. A value near -1 signifies little confidence in the hypothesis, or the
rejection of the hypothesis. A value near 1 denotes a high level of confidence, or the
establishment of the ‘hypothesis. Values in between represent various degrees of

confidence, with 0 meaning unknown.

3.3.4 Abstract Reasoning

Discussion to this point has been on the incremental accumulation of evidence
toward concrete fault states. The next topic is discuss the application of these techniques
for abstract reasoning. In general, knowledge which supports rules in abstract terms is
conceptual knowledge. This type of knowledge is indirectly associative knowledge. It
associates conditions to abstract ideas which are indirectly related to the rule being
pursued. An example of this type of knowledge might be: A HIGH bit error rate is

typical of a misbehavior in one of the frequency conversion components.
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FIDEX uses this type of reasoning to establish levels of confidence in class level
fault categories. That is, it might reach a conclusion of the form: The observed
symptoms are typical of those associated with a failure of the local oscillator.

During the diagnostic task, FIDEX exhausts its knowledge about the fault states
of the system. It is entirely possible that a failure mode might occur for which FIDEX
has no knowledge. In that case, it would resort to confidence accumulated in class level
fault states as its diagnostic conclusion.

This abstract reaéoning ability of FIDEX is implemented as follows. All of the
fault state type subclasses defined in section 3.1.4 are attached as subclasses of the class
Certainty Analysis. Therefore, they inherit information from this class. and permit
measures of belief and disbelief to be assigned to the fault state classes. Levels of
confidence can then be accumulated at this class, or conceptual, level. Using this
technique, FIDEX can piece together information and reach conceptual conclusions about

a fault.
3.4 Learning and Adaptive Search Strategy

There are two databases used by FIDEX. One contains information required to
initialize parametric values of the system. Each record contains information on nominal
readings, error tolerances, and other initial parameters. These values are loaded and
stored in the appropriate slots of objects at run time or when FIDEX is initialized. This
method of initialization was chosen to facilitate the maintenance of the system.

The second database is used to provide FIDEX a limited learning capability.
FIDEX stores the failure history of the transponder system in this database. Each known
fault state is represented by a record that contains fields that represent the failure history

of that fault state. Following diagnostics, FIDEX increments the history of the identified
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fault. This record keeping is used to direct the search strategy of future sessions toward
the most likely faults.

The search strategy is adaptive in that the priorities by which known fault states
are placed on the agenda is based upon the values maintained in the history database.
A class level property of all fault states is the integer INFR_CATEGORY. The value of this
property is retrieved from the database when the diagnostic task is initialized. This
property is then assigned to the inference priority of the fault state hypothesis by slot
actions. When the diagnostic task establishes a known fault state, the value of its
inference category is incremented accordingly. The updated value is then stored in the
learning database.

This chapter has discussed the engineering of knowledge about the structure of
the transponder system and diagnosing its fault states. The next several chapters discuss
the techniques used to represent this knowledge in the knowledgebases of the FIDEX

system.



CHAPTER 1V
KNOWLEDGE REPRESENTATION

As the previous chapter discussed the engineering of knowledge, this chapter
discusses its frame-based representation in the FIDEX system. The kernel of this frame
representation of the structure of the transponder is contained in the FIDEX.tkb
knowledge base. A complete listing of that knowledge base is included in Appendix A

of this report. The sections of this chapter discuss key segments of that knowledge base.

4.1 Representation of Transponder System Components

As discussed in chapter 3, a frame hierarchy was created to provide a clear and
efficient representation of all components in the transponder. The root of this structure
is a class frame called cOMPONENTs. This class was created to represent the commonality
between all components in the transponder. It is divided into several subclasses;
represented by the second level of class frames, as shown in Figure 3.1. The

components are represented by object frames attached to these subclasses.

4.1.1 Property Definitions

Code Segment 4.1 shows a series of declarations that define the properties which
are used to describe the components of the transponder system. These properties were

defined to describe physical characteristics about a component; such as its name,
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input/output components, etc. Some properties are used by FIDEX to give a component
a self awareness. Other properties provide functional information about the components;
such as its input and output signal power levels, gain, nominal gain, etc. The properties
represent attributes of transponder components as follows.

COMPONENT IN and COMPONENT_OUT are string properties that are used to encode
structural information about the transponder components. These property values are
initialized for every component to the names of the component objects at their input and
output respectively. It is shown in the next chapter how these properties can be used to

by an object to obtain information from its neighbors.

Code Segment 4.1: Properties of the COMPONENTS Class

(@PROPERTY = COMPONENT_IN @TYPE=Slring;)
(@PROPERTY = COMPONENT_OUT @TYPE=String;)
(@PROPERTY = DESCRIPTION @TYPE=String;)
(@PROPERTY = FREQUENCY @TYPE=Float;)
(@PROPERTY = FREQUENCY_IN @TYPE=Float))
(@PROPERTY = FREQUENCY_OUT @TYPE=Float;)
(@PROPERTY = GAIN @TYPE =Float;)
(@PROPERTY = MODEL_GAIN @TYPE=Float;)
(@PROPERTY = MODEL_POWER IN @TYPE=Float;)
(@PROPERTY = MODEL_POWER_OUT @TYPE=Float;)
(@PROPERTY = NAME @TYPE=String;)
(@PROPERTY = NASA_ID @TYPE=S5tring;)
(@PROPERTY = NOMINAL_FREQUENCY @TYPE=Float))
(@PROPERTY = NOMINAL_FREQUENCY_IN  @TYPE=Float;)
(@PROPERTY = NOMINAL_FREQUENCY_OUT @TYPE=Float})
(@PROPERTY = NOMINAL_GAIN @TYPE=Float;)
(@PROPERTY = NOMINAL_POWER_IN @TYPE=Float;)
(@PROPERTY = NOMINAL_POWER_OUT @TYPE=Float;)
(@PROPERTY = POWER_IN @TYPE=Float)
(@PROPERTY = POWER_OUT @TYPE=Float;)

Another sting property called NAME is used to encode the name of a component
object. This allows the object to communicate information about itself through the frame
hierarchy. It is also useful for writing generic rules. Such rules operate on information

posted in several blackboard frames. This property enables an object to post itself on
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the blackboard and be operated upon by such rules. This utility is discussed in the next
chapter.

NASA_ID and DESCRIPTION are string properties which are used to communicate
information about a component object through the ToolBook™ interface. NASA_ID is
initialized to the rag which NASA personnel use to reference transponder system
components. DESCRIPTION is initialized to a functional description of the component.

The remaining properties are used to represent functional attributes of the
transponder system components. Floating point properties are used to represent the
propagation of the communication signal through a component of the transponder.
Particularly, there are two aspects of the signal that are of interest: the signal power level
and carrier frequency. The properties POWER_IN and FREQUENCY_IN are used to represent
these attributes of the transponder signal at the input to a component. Similarly, the
properties POWER_OUT and FREQUENCY_OUT are used to represent the signal power level
and carrier frequency at the output of a component. The effect that a component has on
the signal propagated through it is represented by the floating point properties G4IN and
FREQUENCY. A component’s gain is its effect on the power level of the signal passed
through it; be that an amplification or attenuation. If a component alters the carrier
frequency of the signal, that alteration is represented in the value of the FREQUENCY
property; be it an upconversion or downconversion.

All components have parametric values for their input/output signal power levels
and frequencies. Moreover, their effect on the signal is defined by their design
specifications. These nominal values are represented by the properties:
NOMINAL FREQUENCY, NOMINAL_FREQUENCY_IN, NOMINAL_FREQUENCY_OUT, NOMINAL _GAIN,
NOMINAL_POWER_IN, and NOMINAL_POWER_OUT.

Early in the development of the FIDEX system, a direction was taken toward the

development of a system that used model-based reasoning. Although this approach was
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abandoned early on, the properties required for its implementation were left within the
COMPONENTS world. The reason for this was that it made no sense to destroy this
capacity. If NASA would wish to expand this capability, the basic building blocks will
exist within the FIDEX frame structure. Specifically, these properties are MODEL_GAIN,

MODEL_POWER_IN, and MODEL_POWER_OUT.

4.1.2 Class Definitions

The next definition, Code Segment 4.2, creates a class frame called COMPONENTS
in the object space of the expert system. It establishes links to several subclasses and
defines the properties discussed above as being associated with this class. The ten
component subclasses listed represent different types of components in the transponder
system.

Several properties are required to represent attributes of specific types of
components. These properties do not apply to components in general, but to specific
types of transponder components. Code Segment 4.3 lists their definition. Due to the
number of properties involved and their distribution between various subclasses, they are

discussed with their corresponding subclasses later.



Code Segment 4.2: Definition of the COMPONENTS Class

(@CLASS= COMPONENTS
(@SUBCLASSES =
AMPLIFIERS
ATTENUATORS
LOCAL_OSCILLATORS
RECEIVERS
POWER_METERS
BER_REGISTERS
SWITCHES
GaAsFETS
TWTAS
MIXERS )
(@PROPERTIES =
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY _IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT ) )




Code Segment 4.3: Properties of COMPONENTS SubClasses

(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =

BIAS_CURRENT @TYPE=Fioat)
BIAS_VOLTAGE @TYPE=Float)
COMPONENT _IN_2 @TYPE=String;)
COMPONENT_OUT_2 @TYPE =String;)
CONFIG @TYPE=String;)
DRAIN_VOLTAGE @TYPE=Float;)
FREQUENCY 2 @TYPE=Fioat))
FREQUENCY_IN_2 @TYPE=Float))
FREQUENCY_OUT 2 @TYPE=Float))
GAIN 2 @TYPE=Float)
GATE_VOLTAGE @TYPE="Float)
LO_INPUT_FREQUENCY @TYPE=Float))
LO_INPUT_POWER @TYPE=Fioat)
LO_UNIT @TYPE=String;)
MODEL_GAIN_2 @TYPE=Float)
MODEL_POWER_IN_2 @TYPE=Float;)
MODEL_POWER_OUT 2 @TYPE=Float;)
MODEL_SETTING @TYPE=Float)
NOMINAL_BIAS_CURRENT  @TYPE=Fioat;)
NOMINAL_BIAS VOLTAGE  @TYPE=Float;})
NOMINAL_DRAIN_VOLTAGE @TYPE=Float})
NOMINAL_FREQUENCY 2 @TYPE=Float})
NOMINAL_FREQUENCY_IN_2 @TYPE=Float;)
NOMINAL_FREQUENCY_OUT 2 @TYPE=Float;)
NOMINAL_GAIN 2 @TYPE=Float)
NOMINAL_GATE_VOLTAGE  @TYPE=Fioat;)
NOMINAL_LO_INPUT_FREQUENCY @TYPE=Float)
NOMINAL_LO_INPUT_POWER @TYPE=Float))
NOMINAL_POWER_IN_2 @TYPE=Float)
NOMINAL_POWER OUT_ 2  @TYPE=Float;)
NOMINAL_SETTING @TYPE=Float)
POWER_IN_2 @TYPE=Float))
POWER_OUT 2 @TYPE=Float.)
SETTING @TYPE=Float)

SETTING_ERROR

@TYPE=Float,)
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Each subclass defined in Code Segments 4.4a and 4.4b represent the subclass

nodes introduced in Figure 3.1 in section 3.1.1. Again one class is created for each
basic type of category of component in the transponder system. The names are

descriptive but are explained for clarity.

Code Segment 4.4a: Definition of the COMPONENTS SubClasses

(@CLASS= AMPLIFIERS
(@PROPERTIES =

BIAS_CURRENT
BIAS_VOLTAGE
DRAIN_VOLTAGE
GATE_VOLTAGE
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_GATE_VOLTAGE ) )

(@CLASS= ATTENUATORS
(@PROPERTIES =
MODEL_SETTING
NOMINAL_SETTING

SETTING
SETTING_ERROR ) )
(@CLASS= BER_REGISTERS )
(@CLASS= GaASFETS
(@PROPERTIES =

DRAIN_VOLTAGE

GATE_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_GATE_VOLTAGE ) )

(@CLASS= LOCAL_OSCIL.LATORS
(@PROPERTIES=
COMPONENT_OUT 2
FREQUENCY_OUT 2
NOMINAL_FREQUENCY_OUT 2
NOMINAL_POWER_OUT 2
POWER_OUT 2 ) )

The subclass called AMPLIFIERS is used to classify objects that represent
components that amplify the power level of the signal inside the transponder system.
Associated with this class are 8 floating point properties. The first two properties listed

in definition of AMPLIFIERS in Code Segment 4.4a are BIAS_CURRENT and BIAS_VOLTAGE.
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These properties represent the bias current and bias voltage supplied to an amplifier
component by its power supply. The second two properties, DRAIN_VOLTAGE and
GATE_VOLTAGE are used to represent the voltage levels on an amplifier component’s drain
and gate respectively. The design parameters specify nominal values for these four
quantities. The remaining properties, prefixed by NOMINAL_ are used to represent the
respective parametric values.

The subclass called ATTENUATORS is used to classify objects that represent
components that attenuate the power level of the signal inside the transponder system.
Again, several properties are unique to these objects. Attenuator objects have only one
unique attribute. This is that they have a SETTING. The levels of attenuation for these
components are set either manually or by the Network Control Computer (NCC). This
value is stored in the floating point property called SETTING. The parametric value for
an attenuator’s setting is represented by the NOMINAL_SETTING property. The difference
between an attenuator’s nominal setting and its actual setting is represented by the
property called SETTING ERROR. And finally, a remanent of the model-based overhead
is provided for an attenuators MODEL_SETTING.

The third definition in Code Segment 4.4a creates a class called BER_REGISTERS.
This class is used to represent the Bit Error Rate Register objects as components of the
transponder system. The roles of sensors as both sensor elements and transponder
system components were discussed in section 3.1.3 of chapter 3.

The fourth class definition creates a class for the GaAs FET Amplifier. This
shares four properties with the AMPLIFIERS class. However, the GadsFETS class is
separated from the amplifiers because the bias current and bias voltage properties have
no meaning for Gallium Arsenide Field Effect Transistor (GaAs FET) amplifiers. The
properties DRAIN_ and GATE_VOLTAGE and their associated NOMINAL_ values for the GaAs

FETs are the same as for the amplifiers.
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The final class definition in Code Segment 4.4a creates a classification for the
objects that represent local oscillators (LO). The LOCAL_OSCILLATORS class has five
unique properties. However, all of these as extensions of concepts which have already
been discussed. That is, the local oscillators in the ACTS transponder system are
multiple output devices. Each unit has one output per channel through the transponder.
In the current phase of development, only two channels are operating. This requires that
an additional output port be represented in the properties of the objects that represent
Los. Therefore, the properties that represent the functional and relational attributes of
a component’s output port were duplicated and suffixed by _2.

Code Segment 4.4b continues the definition of the classes which organize the
coMPONENTS world hierarchy. The first definition creates a class for the objects that
represent the two multiplexers, or signal mixers. These units have an additional input
for a signal from a local oscillator. Therefore, the properties for component input
parameters were duplicated and prefixed with Lo_ to represent this additional signal. The
property LO_UNIT corresponds to the COMPONENT_IN property discussed earlier, except
that this property represents the name of the local oscillator associated with the LO input
port.

The second definition in Code Segment 4.4b creates a class called PWR_METERS.
This class is used to represent the power meter objects as components of the transponder
system.

The third definition creates a class called RECEIVERs for the objects that represent
the two receiver components in the transponder. As for the MIXERS, these components
also have a LO input port. Therefore, this class has the same properties as the mixers

class and the corresponding properties represent the same quantities.



Code Segment 4.4b: Definition of the COMPONENTS SubClasses

(@CLASS=

MIXERS

(@PROPERTIES=

(@CLASS=
(@CLASS=

LO_INPUT_FREQUENCY
LO_INPUT_POWER

LO_UNTT
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_INPUT_POWER ) )

POWER_METERS )

RECEIVERS

(@PROPERTIES =

(@CLASS=

LO_INPUT_FREQUENCY
LO_INPUT_POWER

LO_UNIT
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_INPUT_POWER ) )

SWITCHES

(@PROPERTIES =

(@CLASS=

COMPONENT _IN_2
COMPONENT_OUT 2
FREQUENCY 2
FREQUENCY_IN_2
FREQUENCY_OUT 2

GAIN_2

MODEL_GAIN_2
MODEL_POWER_IN_2
MODEL_POWER_OUT 2
NOMINAL_FREQUENCY_2
NOMINAL_FREQUENCY _IN_2
NOMINAL_FREQUENCY_OUT_2
NOMINAL_GAIN_2
NOMINAL_POWER_IN_2
NOMINAL_POWER_OUT 2
POWER_IN 2

POWER_OUT 2 ) )

TWTAS )
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The fourth class definition in Code Segment 4.4b creates a class for the matrix

switch. This component is a multiple input/output device having one input and one

output per channel in the transponder system.

additional input and one additional output port needed to be represented in the properties

Since there are two channels, one

of the SWITCHES class. Again, these are simply extensions of concepts discussed for the

general case of COMPONENTS, and they are suffixed by _2.
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The final class definition for the subclasses of the COMPONENTS world is TWT4s.
This class is for the Traveling Wave Tube Amplifier (TWTA). There are no unique

properties associated with this component.

4.1.3 Object Definitions

The next step is to create objects to represent the various components of the
transponder system and link them to their respective component type subclasses. These
definitions are given in Code Segments 4.5a and 4.5b. Each object corresponds to one
of the transponder system components that were introduced in section 1.1.2 of chapter
1. They are listed in Table 1.1.

The first definition in Code Segment 4.5a creates an object to represent the
Gallium-Arsenide Field Effect Transistor (GaAs FET) amplifier. This unit is located at
the output of the channel 1 signal path, see Figure 1.2. This object, called GAASFET, is
linked as a child of the Ga4sFETS class. Therefore, it inherits all the associated properties
that were discussed in the previous section.

The next two definitions create objects to represent the High Power Amplifier
Input Power Control (HPAPC) amplifiers labeled as £ and F in Figure 1.2. HPAPC_AMP I
represents the power control amplifier in the channel 1 output signal path and
HPAPC AMP_2 represents its counterpart in channel 2. Since both these objects represent
amplifiers in the transponder, they are both attached to the AMPLIFIERS subclass of the
COMPONENTS hierarchy.

The remaining HPAPC components are the attenuators labeled as X, L, M, and N
in Figure 1.2. These components are represented by the objects created as HPAPC_ATIN_I
through HPAPC ATIN 4. The fourth through seventh definitions in Code Segment 4.5a

create these objects and attach them to the ATTENUATORS class.
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Code Segment 4.5a: Objects of the COMPONENTS Class

(@OBJECT = GAASFET

(@CLASSES = GaASFETS ) )
(@OBIECT = HPAPC_AMP_1

(@CLASSES= AMPLIFIERS ) )
(@OBJECT = HPAPC_AMP_2

(@CLASSES= AMPLIFIERS ) )
(@OBJECT= HPAPC_ATTN_I1

(@CLASSES= ATTENUATORS ) )
(@OBRJECT = HPAPC_ATTN_2

(@CLASSES= ATTENUATORS ) )
(@OBJECT = HPAPC_ATTN_3

(@CLASSES = ATTENUATORS ) )
(@OBJECT = HPAPC_ATTN_4

(@CLASSES = ATTENUATORS ) )
(@OBJECT = IFPC_AMP_1

(@CLASSES= AMPLIFIERS ) )
(@ORJECT= [FPC_AMP_2

(@CLASSES = AMPLIFIERS ) )
(@OBIECT= [FPC_AMP_3

(@CLASSES= AMPLIFIERS ) )
(@OBJECT= IFPC_AMP_4

(@CLASSES= AMPLIFIERS ) )
(@OBJECT = [FPC_ATTN_1

(@CLASSES = ATTENUATORS ) )
(@OBJECT = IFPC_ATTN_2

(@CLASSES= ATTENUATORS ) )
(@OBJECT= [FPC_ATTN_3

(@CLASSES= ATTENUATORS ) )
(@OBIECT= IFPC_ATTN_4

(@CLASSES= ATTENUATORS ) )

The remaining definitions in Code Segment 4.5a create objects to represent the
Intermediate Frequency Power Control (IFPC) components within the transponder
system. These were indicated in Figure 1.2 by labels 4 through J. The first four,
IFPC_ AMP_I through _4, represent the IFPC amplifiers. They are therefore linked as

children of the AMPLIFIERS subclass. The remaining four, IFPC_ATIN_I through _4,
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represent the IFPC attenuators. They are therefore linked as children of the
ATTENUATORS subclass.

Code Segment 4.5b continues the definition of objects that represent the
components of the transponder system. The first two definitions create a new property
called CONFIG and an object called MSWITCH that represents the matrix switch component.
It is attached as a child of the SWITCHES subclass in the COMPONENTs world hierarchy.
This object has a unique property called CONFIG that is used to represent the multiple
channel handling of the matrix switch. The specifics of this property are discussed in

the next chapter.

Code Segment 4.5b: Objects of the COMPONENTS Class

(GPROPERTY=  CONFIG @TYPE=String;)
(@OBJECT = MSWITCH

(@CLASSES= SWITCHES )

(@PROPERTIES=  CONFIG ) )
(@OBIECT= MULT_1

(@CLASSES= MIXERS ) )
(@ORIECT= MULT 2

(@CLASSES= MIXERS ) )
(@OBJECT= RCVR_1

(@CLASSES= RECEIVERS ) )
(@OBIECT= RCVR_2

(@CLASSES = RECEIVERS ) )
(@OBJECT = RCVR_LO

(@CLASSES= LOCAL_OSCILLATORS ) )
(@OBJECT= TWTA

(@CLASSES= TWTAS ) )
(@OBIECT= UPX_LO

(@CLASSES= LOCAL_OSCILLATORS ) )

The next two definitions create objects, MULT I and MULT. 2, to represent the up-

converter multiplexers. These components were indicated in Figure 1.2 and Table 1.1



55
as CHIMIX and cH2MIX. Both these objects are attached to the MIXERS subclass of the
COMPONENTs hierarchy. They therefore inherit all properties that were discussed in the
previous sections.

The definitions in Code Segment 4.5b continue with the definition of two objects
to represent the receiver units at the inputs to the transponder system. The object named
RCVR_1I represents the Channel 1 Receiver Unit that was labeled as CHIRCVR in Figure 1.2
and Table 1.1. The object named RCVR_2 represents the Channel 2 Receiver Unit that
was labeled as CH2RCVR. Both these objects are attached as children of the RECEIVERS
class discussed in the previous section.

Objects that represent the local oscillator units in the transponder are created and
attached to the LOCAL OSCILLATORS class. The object called RCVR_LO represents the
Receiver Unit Local Oscillator that drives the receiver units. The object called UPX LO
represents the Up-converter Mixer Local Oscillator that drives the up-converter mixers.

Finally, the Traveling Wave Tube Amplifier (TWTA) is represented by the
creation of an object called TWTA attached to the TWT4s subclass. This completes the
definition of the Class/SubClass/Object hierarchy that was introduced in section 3.1.1 of
chapter 3. The next section of this chapter discusses the representation of the Subsystems

Class that was introduced in section 3.1.2 of chapter 3.

4.2 Representation of Transponder SubSystems

It was shown in Figure 3.2 how each component of the transponder is associated
with a subsystem of the transponder. Several object frames are used to represent the
collections of components called subsystems. These frames are then organized by
attaching them to a class frame for all subsystems in the transponder. Finally, the

membership of a component to a particular subsystem is represented by attaching its
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object frame as a subobject of the appropriate subsystem object frame. The following

code segments define this hierarchy.

4.2.1 Property Definitions

Code Segment 4.6 shows a series of declarations that define the properties which
are to be used to describe the subsystems of the transponder system. The first property
is called DIAGNOSTIC MODULE. Recall from section 1.3 of the introduction that the idea
of a transponder subsystem was developed for the isolation of a fault. Once a fault is
isolated to a subsystem of the transponder, the next step is to load a diagnostic module
to perform the task of fault diagnosis on that subsystem. This Boolean property is
initialized to load the diagnostic knowledge base that corresponds to a particular

subsystem. The details of this are discussed in the following chapter.

Code Segment 4.6: Properties of the SUBSYSTEMS Class

(@PROPERTY = DIAGNOSTIC_MODULE @TYPE=Boolean;)
(@PROPERTY = ISOLATED @TYPE=Boolean;)
(@PROPERTY = LEVEL_IN @TYPE=S5tring;}
(@PROPERTY = LEVEL_OUT @TYPE=S5tring;)
(@PROPERTY = READING_IN @TYPE=String;)
(@PROPERTY = READING_OUT @TYPE=String;)
(@PROPERTY = SENSOR_IN @TYPE=String;)
(@PROPERTY = SENSOR_OUT @TYPE=String;)
(@PROPERTY = SUBSYSTEM_IN @TYPE=String;)
(@PROPERTY = SUBSYSTEM_OUT @TYPE=String;)

The Boolean property called ISOLATED is used to flag a subsystem as being the
probable source of a detected fault. The rule knowledge used in isolating a fault is
discussed in chapter 7. The actions of these rules set this flag to indicate a subsystem

has been isolated.
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The next four definitions in Code Segment 4.6 are for string properties to describe
the signal power levels at the input and output of a subsystem. The READING IN and
READING OUT properties are set to the qualitative descriptions, "GoOD" or “BAD, " ascribed
to sensor readings during the fault detection. The LEVEL_IN and LEVEL_OUT properties are
set to the qualitative descriptions, "HIGH,” "LOW", "ZERO,* or "OK," that are also ascribed
to signal power levels during fault detection.

The remaining definitions create properties to describe structural information
about the subsystems of the transponder. The string properties SENSOR_IN and
SENSOR_OUT are initialized to the name of the sensor object at a subsystem’s input and
output respectively. Similarly, the string properties SUBSYSTEM_IN and SUBSYSTEM_OUT
are initialized to the name of the subsystem object at a subsystem’s input and output

respectively.

4.2.2 Class Definition

The next definition, Code Segment 4.7, creates a class frame called SUBSYSTEMS
in the object space of the expert system. The properties discussed in the previous section

are assigned to this class and are inherited by all attached object frames.
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Code Segment 4.7: Definition of the SUBSYSTEMS Class

(@CLASS = SUBSYSTEMS
(@PROPERTIES =

DIAGNOSTIC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT
SUBSYSTEM_IN
SUBSYSTEM_OUT ) )

4.2.3 Object Definitions

There are seven subsystems in the transponder system. Each is represented by
an object attached as a child of the SUBSYSTEMS class. Code Segment 4.8 lists the
definition for six of these.

First, an object is created to represent the Channel 1 Amplifier Subsystem. Its
object name is cH14MP. The GaAs FET amplifier is the only transponder component in
this subsystem. The object that represents this component, GAASFET, is attached as a
subobject of the CHIAMP object.

Second, the Channel 1 Receiver Subsystem is represented by creating an object
called CHIRCVR and attaching it to the SUBSYSTEMS class. There are four components in
this subsystem. The objects which represent these components, IFPC_AMP_1, IFPC_ATIN_1,
RCVR_1, and RCVR_LO, are attached as subobjects of the CHIRCVR subsystem.

The object that represents the Channel 1 Up-converter Subsystem is defined in
Code Segment 4.8 as CHiUPX. Its subobjects are the HPAPC_AMP_1, HPAPC ATIN_I,

HPAPC_ATIN_ 2, MULT_1, and UPX_LO.
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Code Segment 4.8: Objects of the SUBSYSTEMS Class

(@ORIECT= CHIAMP
(@CLASSES = SUBSYSTEMS )
(@SUBOBIECTS=  GAASFET) )
(GOBJECT= CHIRCVR
(@CLASSES= SUBSYSTEMS )
(@SUBOBJECTS=  IFPC_AMP_}
IFPC_ATTN_1
RCVR_1
RCVR_LO) )
(@OBJECT = CHIUPX
(@CLASSES = SUBSYSTEMS )

(@SUBOBIECTS=  HPAPC_AMP_1
HPAPC_ATTN_1

HPAPC_ATTN_2
MULT_1
UPX_LO ) )
(GOBJECT= CH2AMP
(@CLASSES= SUBSYSTEMS )
(GSUBOBIECTS= TWTA ) )
(@OBJECT= CH2RCVR
(@CLASSES = SUBSYSTEMS )
(@SUBOBJECTS=  IFPC_AMP_2
IFPC_ATTN_2
RCVR_2
RCVR_LO) )
(@OBJECT= CH2UPX
(@CLASSES = SUBSYSTEMS )

(@SUBOBJECTS=  HPAPC_AMP 2
HPAPC_ATTN_3
HPAPC_ATTN_4
MULT_2
UPX_LO ) )

Fourth, an object is created to represent the Channel 2 Amplifier Subsystem. Its
object name is CH24aMP. The Traveling Wave Tube amplifier is the only transponder
component in this subsystem. The object that represents this component, TWTA, is
attached as a subobject of the CH24MP object.

Next, the Channel 2 Receiver Subsystem is represented by creating an object
called CH2RCVR and attaching it to the SUBSYSTEMS class. There are four components in
this subsystem. The objects which represent these components, IFPC_AMP_2, IFPC_ATIN_2,

RCVR_2, and RCVR Lo, are attached as subobjects of the CH2RCVR subsystem.
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Finally, the object that represents the Channel 2 Up-converter Subsystem is
defined in Code Segment 4.8 as CH2UPX. Its subobjects are the HPAPC_AMP_2,
HPAPC_ATIN 3, HPAPC ATTN 4, MULT_2, and UPX_LO.

The remaining subsystem is the Matrix Switch Subsystem. There are five
components associated with this subsystem. These are represented by the IFPC_AMP_3,
IFPC AMP 4, IFPC_ATIN 3, IFPC_ATIN 4, and MSWITCH component objects. However, the
definition of the SUBSYSTEMS objects that represent this group of components differs from
the previous.

Recall from section 1.2.2 of the introduction that there are multiple permutations
through the matrix switch. The interconnectivity through the matrix switch was detailed
in Table 1.2 in chapter 1. To represent each of these signal paths, four objects are
required. The definitions for these are given in Code Segments 4.9a and 4.9b.

These objects are not attached as children of the SUBSYSTEMS class. Rather, they
are left independent. During run time, two of these objects are dynamically linked to the
SUBSYSTEMS class. This dynamic attachment is based upon the configuration of the matrix
switch at the time a diagnostic session begins. The dynamics of this configuration is
discussed in the next chapter.

The objects defined in Code Segment 4.9a represent the signal paths through the
matrix switch subsystem in its primary configuration. This configuration is: Channel 1
Input routed to Channel 1 Output and Channel 2 Input routed to Channel 2 Output. In

later discussions, this configuration is referred to as matrix switch configuration 4.
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Code Segment 4.9a: Dynamic Objects of the SUBSYSTEMS Class

(QOBJECT= MSWITCH_CH11
(@SUBOBJECTS=  MSWITCH
[FPC_AMP_3
IFPC_ATTN_3 )
(@PROPERTIES =
DIAGNOSTIC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT
SUBSYSTEM_IN
SUBSYSTEM_OUT ) )

(@OBIECT = MSWITCH_CH22
(@SUBORJECTS=  MSWITCH
IFPC_AMP_4
IFPC_ATTN_4 )
{(@PROPERTIES =
DIAGNOSTIC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT
SUBSYSTEM_IN
SUBSYSTEM_OUT ) )

The objects defined in Code Segment 4.9b represent the signal paths through the
matrix switch subsystem in its secondary configuration. This configuration is: Channel
1 Input routed to Channel 2 Output and Channel 2 Input routed to Channel 1 Output.

In later discussions, this configuration is referred to as matrix switch configuration B.
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Code Segment 4.9b: Dynamic Objects of the SUBSYSTEMS Class

(QORIECT= MSWITCH_CH12
(@SUBOBJECTS=  MSWITCH
IFPC_AMP 4
IFPC_ATTN_4 )
(@PROPERTIES =
DIAGNOSTIC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT
SUBSYSTEM_IN
SUBSYSTEM_OUT ) )

(@OBIECT= MSWITCH_CH22
(@SUBOBJECTS=  MSWITCH
[FPC_AMP_3
IFPC_ATTN_3 )
(@PROPERTIES =
DIAGNOSTIC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT
SUBSYSTEM_IN
SUBSYSTEM_OUT ) )

As these frames represent components of the transponder, they are attached to the
COMPONENTS class structure as well. This linking of component object frames to the
components world can be interpreted'as an Is-A Link. Links to the subsystems world
represents Part-Of Links. That is, the IFPC Amplifier Is An amplifier and is Part Of the
Channel 1 Receiver system.

This approach not only aids the diagnostic tasks, but provides an efficient coding
approach. Through multiple inheritance, each subsystem component acquires information
from two parents. One provides information on performance while the other on

structure.
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4.3 Representation of Sensory Components

Two types of sensory elements monitor both the response of the transponder and
the relayed signal. The first type is signal power level sensors. The other type
represents the data stream bit error rate (BER) registers located within the ground
terminal systems. The information used for diagnosis is provided by these sensors.

This structure is divided into subclasses according to the two types of sensors.
Each sensor is then represented by an object attached to the appropriate type subclass.
The following code segments create this structure in the object space of the expert

system.

4.3.1 Property Definitions

Properties are defined in Code Segment 4.10 to describe the DATA reported by a
sensor, its NOMINAL value, the corresponding ERROR, and the TOLERANCE band of
acceptable error magnitudes. A string property called READING is used for the qualitative
descriptions which were introduced in section 1.3.

The string property LEVEL is used for a qualitative description of the signal power
level reported by a sensor. This property is very important to the modules which
perform diagnostics on the individual subsystems of the transponder. Its utility is
discussed in great detail in subsequent chapters. However, the floating point property
ZERO LEVEL is associated with this qualitative description. This property value is
initialized to the sensor reading below which the sensor can be assumed to be reporting

a "Zero” value.



Code Segment 4.10: Properties of the SENSORS Class

(@PROPERTY = DATA @TYPE=Float;)
(@PROPERTY = ERROR @TYPE=Float;)
(@PROPERTY = EVALUATED @TYPE=Boolean;)
(@PROPERTY = LEVEL @TYPE=String;)
(@PROPERTY = NOMINAL @TYPE=Float;)
(@PROPERTY = READING @TYPE=String;)
(@PROPERTY = RTN_LEVEL @TYPE=Boolean;)
(@PROPERTY = RTN_NOMINAL @TYPE=Boolean;)
(@PROPERTY = RTN_READING @TYPE=Boolean;)
(@PROPERTY = TOLERANCE @TYPE=Float;)
(@PROPERTY = TYPE @TYPE=String;)
(@PROPERTY = ZERO_LEVEL @TYPE=Float;)

Once a sensor has been evaluated, a Boolean property called EVALUATED is set to
TRUE. This property is used to poll a sensor to determine if its reported sensor data has
been evaluated. A value of TRUE implies that the current descriptions of READING and
LEVEL reflect the current reported DATA value.

The remaining properties for SENSORS class are those required by the ToolBook™
Graphical User Interface (GUI). The string property TYPE is used to communicate the
type of sensor, “BER" or "PM,” which is communicating information to the GUIL. The
other properties, prefixed with RTN_, are used to initiate communication of sensor LEVEL

and READING descriptions as well as NOMINAL sensor data values through the GUIL

4.3.2 Class Definitions

The SENSORS class hierarchy was introduced in chapter 3. The definitions which

create the structure shown in Figure 3.3 are given in Code Segment 4.11.
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Code Segment 4.11: SENSORS Class Hierarchy

(@CLASS= SENSORS
(@SUBCLASSES=
PWR_SENSORS
BER_SENSORS )
(@PROPERTIES =
DATA
ERROR
EVALUATED
LEVEL
NAME
NOMINAL
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL ) )

(@CLASS= PWR_SENSORS )
(@CLASS = BER_SENSORS
(@SUBCLASSES=
CH1_BERs
CH2_BERs ) )
(@CLASS = CH1_BERs )
(@CLASS = CH2_BERs )

(@CLASS= BAD_SENSORS
(@PROPERTIES = RTN_READING ) )

The first definition creates the SENSORS class in the object space of the FIDEX
system. This definition attaches two subclasses to the SENSORs frame. The class called
PWR_SENSORS is used to classify objects which represent signal power level sensors. The
second class, called BER_SENSORS is used to classify objects which represent data stream
bit error rate registers. The remainder of the definition for the SENSORs class attaches
the properties discussed in the previous section to this hierarchy.

Notice that the string property NAME is also associated with the SENSORS class.
This property was defined with the COMPONENTs class and was therefore not redefined

in Code Segment 4.10. This property is used in the same context with sensors as it was



66
for components. It allows sensor objects to post their names in blackboard property
values and communicate with other objects and generic rules.

The next two definitions in Code Segment 4.11 create the classes PWR_SENSORS
and BER_SENSORS in the object space of the FIDEX system. The BER SENSORS class is also
divided into two subclasses according to their channel; cHI_BERs and CH2_BERs. This was
done to simplify the analysis of frequency dependant fault states. It also demonstrates
how class structures can be cascaded to further describe component function and
organization. The fourth and fifth definitions create these classes.

The final definition is Code Segment 4.11 creates a class called BAD_SENSORS.
This class is used as a list of sensors which report "B4D" sensor readings. This class is
not a SENSORS subclass, but it is associated with the SENSORS world. The only property
used in connection with this class is the RTN_READING property. This is required to return

a list of the sensors evaluated as having "BAD" readings to the GUI.

4.3.3 Object Definitions

Each sensory component is represented by an object frame. These frames are
linked to their appropriate type subclass in both the components world, and the sensors
world. The definitions which create objects to represent sensory components are given
in Code Segments 4.12a and 4.12b. Code Segment 4.12a lists the definitions for the
BER registers. BER_I, BER 2, and BER_3 are associated with the channel 1 user data
stream. They are therefore attached to the SENSORS hierarchy as CHI_BERs. BER 4, BER 5,
and BER 6 are associated with the channel 2 user data stream. They are therefore
attached to the SENSORs hierarchy as CH2_BERs.

Like all other transponder components, sensory elements could potentially fail.

Therefore, each BER sensor is also represented FIDEX as a member of the component
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world; belonging to the class of BER_REGISTERS that was discussed in section 2.3 and

section 4.1.

Code Segment 4.12a; BER_SENSOR Objects

(QOBJECT= BER_]
{(@CLASSES=
CHI_BERs
BER_REGISTERS ) )

(@OBIECT = BER_2
(@CLASSES=
CH1_BERs
BER_REGISTERS ) )

(@ORJECT= BER_3
(@CLASSES=
CHI_BERs
BER_REGISTERS ) )

(@OBIECT= BER 4
(@CLASSES=
CH2_BERs
BER_REGISTERS ) )

(GQORIECT= BER_S
(@CLASSES=
CH2_BERs
BER_REGISTERS ) )

(@ORIECT= BER_6
(@CLASSES=
CH2_BERs
BER_REGISTERS ) )

Code Segment 4.12b lists the definitions for the signal power level sensors.
These eight sensors were listed in Table 1.1. The objects which represent PM_1 through
PM_8 are attached to the SE}VSORS hierarchy at the PWR_SENSORS node. To represent their
role as transponder components which could potentially fail, each signal power level
sensor is also represented FIDEX as a member of the component world; belonging to the

class of POWER_METERS.
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Code Segment 4.12b: PWR_SENSOR Objects

(QOBJECT= PM_1
(@CLASSES =
POWER_METERS
PWR_SENSORS ) )

(@OBIECT = PM_2
(@CLASSES =
POWER_METERS
PWR_SENSORS ) )

(GQOBJECT= PM_3
(@CLASSES=
POWER_METERS
PWR_SENSORS ) )

(@OBIECT= PM_4
(@CLASSES =
POWER_METERS
PWR_SENSORS ) )

{(@OBJECT = PM_S
(@CLASSES=
POWER_METERS
PWR_SENSORS ) )

(@OBIECT= PM_6
(@CLASSES=
POWER_METERS
PWR_SENSORS ) )

(@QOBJECT = PM_?
(@CLASSES =
POWER_METERS
PWR_SENSORS ) )

(@ORIECT= PM_$
(@CLASSES=
POWER_METERS
PWR_SENSORS ) )

4.4 Representation of Fault States

The transponder fault states are represented as objects in a class structure called
FAULT STATES. This class is also divided into several subclasses. Each subclass frame
represents the association of fault states to component types; such as amplifier faults,

attenuator faults, etc. Object frames representing the specific failure modes of the
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transponder are then attached to the appropriate subclasses. This structure enables
FIDEX to reason about both known and abstract faults.

The code segment which defines this structure is nearly identical to that of the
COMPONENTs class. This is because the types of fault states are associated with the types

of components.
4.4.1 Property Definitions

The properties associated with the FAULT STATES class are listed in the next code
segment. These describe which COMPONENT the fault is associated with, its INFeRence
CATEGORY or priority, and the POWER SYMPTOM GROUP with which is associated. A
Boolean property, VERIFIED, is used to flag fault states which have been verified by the
diagnostic process. The final property listed is Value. This property is a reserved by
NEXPERT"™. The fault states represent the hypotheses of rules used during diagnosis.

This property is assigned the results of rule evaluations.

Code Segment 4.13: Properties of the FAULT _STATES Class

(@PROPERTY = COMPONENT @TYPE=String;)
(@PROPERTY = INF_CAT @TYPE=Float;)
(@PROPERTY = POWER_SYMPTOM_GROUP @TYPE=Slring;)
(@PROPERTY = Value @TYPE=S8pecial;)

(@PROPERTY = VERIFIED @TYPE =Boolean;)

In chapter 3, the CERTAINTY ANALYSIS class was introduced. This is a superclass
of the FAULT STATES class. It is used to define the overhead required for inexact and
abstract reasoning; as discussed in section 3.3. Code Segment 4.14 gives the definition

of properties required for the CERTAINTY_ANALYSIS superclass.



Code Segment 4.14: Properties of the CERTAINTY_ANALYSIS Class

(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =
(@PROPERTY =

AB

AD

CF
CONFIDENCE
MB

MD

@TYPE=Float;)
@TYPE=Float;)
@TYPE=Float;)
@TYPE=String))
@TYPE=Float;)
@TYPE=Float;)

70

Five floating point properties are used to represent each quantity in the MYCIN

equations. The current measures of belief and disbelief are represented by the MB and

MD properties. The accumulated belief and disbelief are represented by the 48 and 4D

properties. Finally, the overall confidence is represented by the CF property. A string

property called CONFIDENCE is used for a qualitative description of confidence.

4.4.2 Class Definitions

The definitions for classes in the FAULT STATES hierarchy are given in the

remaining code segments.

First, the definition in Code Segment 4.15 creates the

superclass for CERTAINTY_ANALYsIS. The FAULT_STATES class is attached as a subclass, and

the properties discussed above are defined with this class.

Code Segment 4.15: Definition of CERTAINTY_ANALYSIS Class

(@CLASS=

CERTAINTY_ANALYSIS

(@SUBCLASSES=  FAULT_STATES )

(@PROPERTIES =
AB
AD
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Code Segment 4.16 defines the class for FAULT STATES in the object space of the
FIDEX system. The properties in Code Segment 4.13 are assigned and class for each
type of fault state attached as subclasses. The definitions for the classes which represent

these fault state types are given in Code Segment 4.17.

Code Segment 4.16: Definition of the FAULT STATES Class

(@CLASS = FAULT_STATES
(@SUBCLASSES =

AMPLIFIER_FAULTS
ATTENUATOR_FAULTS
GaAs_FET_FAULTS
LO_FAULTS
MIXER_FAULTS
RECEIVER_FAULTS
SWITCH_FAULTS
TWTA_FAULTS ) )

Each class defined in Code Segment 4.17 represents an association of a fault state
with a type of transponder component. The class called AMPLIFIER_FAULTS is used to
classify all fault states associated with AMPLIFIER components. The class called
ATTENUATOR FAULTS is used to classify all fault states associated with ATTENUATOR
components. The class called Gads FET FAULTS is used to classify all fault states
associated with Gads FET components. The class called Lo_FAULTS is used to classify all
fault states associated with LOCAL OSCILLATOR components. The class called
MIXER_FAULTS is used to classify all fault states associated with MIXER components. The
class called RECEIVER_FAULTS is used to c]assify all fault states associated with RECEIVER
components. The class called SWITCH_FAULTS is used to classify all fault states associated
with sWITCH components. And finally, the class called TWIA_FAULTS is used to classify

all fault states associated with TWr4 components.
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Code Segment 4.17: Subclasses of the FAULT_STATES Hierarchy

(@CLASS=
(@CLASS=
(@CLASS=
(@CLASS=
(@CLASS=
(@CLASS =
(@CLASS=

(@CLASS =

AMPLIFIER_FAULTS )
ATTENUATOR_FAULTS )
GaAs_FET_FAULTS )
LO_FAULTS )
MIXER_FAULTS )
RECEIVER_FAULTS )
SWITCH_FAULTS )

TWTA_FAULTS )

The discussion of the objects which represent the fault states in this hierarchy is

presented in later chapters. As each diagnostic module is presented, the fault states

associated with that subsystem are discussed.



CHAPTER V
FIDEX KERNEL KNOWLEDGE BASE

This chapter continues discussion on the kernel of the frame-based knowledge of
the FIDEX system. The previous chapter discussed the definition of classes, objects, and
properties to represent the structure, operation, and fault states of the ACTS transponder
system. In this chapter, the object dynamics of the FIDEX.tkb knowledge base are

discussed.

5.1 Inference Strategies

The first topic of importance is the definition of the global inheritance and
inference strategies used by the FIDEX system, see Code Segment 5.1. The first two
definitions establish the global strategy for value inheritance within frame hierarchies.
Upward value inheritance is disabled and downward value inheritance is enabled.

The next two definitions establish the inheritance strategies for property
inheritance within an object/subobject hierarchy. These are only included for
completeness. There is no property inheritance in the object/subobject hierarchies within
the FIDEX system. All such inheritances, both upward and downward, are disabled.

The fifth and sixth definitions establish inheritance strategies within class
hierarchies. As for the value inheritance, class properties are inherited downward only.
The seventh definition in Code Segment 5.1 enables breadthwise inheritance through a

lattice of hierarchies. This definition is very important. NEXPERT s default setting

73
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for this global is FALSE. It must be set to TRUE for the lattice structure of the FIDEX
system to function properly. The eighth definition disables parent-to-child inheritance
during run time. Setting this global to FALSE enables class level properties to be assigned
values which are not inherited by its child objects. The importance of this is elaborated

upon in the discussion of abstract fault states.

Code Segment 5.1: Global Inference Strategy Definitions

(@VERSION= 020)

(@GLOBALS= G@INHVALUP=FALSE;
@INHVALDOWN=TRUE;
@INHOBJUP=FALSE;
@INHOBJDOWN =FALSE;
@INHCLASSUP=FALSE;
@INHCLASSDOWN =TRUE;
@INHBREADTH=TRUE;
@INHPARENT =FALSE;
@PWTRUE=TRUE;
@PWFALSE=TRUE;
@PWNOTKNOWN =TRUE;
GEXHBWRD=TRUE;
@PTGATES=TRUE;
@PFACTIONS=TRUE;
@SOURCESON=TRUE;
@CACTIONSON=TRUE; )

The next six deﬁnitions establish the global strategy for propagation of
inferencing. These definitions are changed periodically by certain methods. However,
this global strategy is maintained throughout most of the knowledgebase. To enable
foreword chaining, full propagation is required. Therefore, propagation while true,
false, and notknown are enabled. Since foreword chaining in NEXPERT" is
accomplished through a mechanism called gating, propagation through gates must also
be enabled. And finally, since many foreword chaining strategies are initiated from
meta-slot actions, propagation from actions must also be enabled. The exhaustive
backward strategy is enabled to allow foreword actions to evaluate contexts in which one

hypothesis is supported by multiple rules.
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The final two definitions in Code Segment 5.1 enable the order-of-sources (OS),
(@SOURCES=...), and if-change (IC) actions, (@CACTIONS=...), within property slots. These

are fundamental to the performance of the FIDEX system. Both must be set to TRUE.

5.2 Initialization of Object/Class Parameters

The values of many of the properties introduced in chapter 4 represent constant
quantities. Such properties are those used to represent object names, input/output
parameters, and nominal parameter values. This section discusses the initialization of
these properties using both hard-coded and dynamic assignments.

Property values can be initialized through it meta-slots in two manners. The
FIDEX kernel knowledge base uses both of these. The first way to initialize a property
value is by using the initial value, (@INITVAL=...), definition within a slot definition.
When this method is used, the value of the slot is initialized to the defined value during
the initialization of the knowledge base.

The second method is to include a run time value directive in the OS of the slot
that is associated with an object or class property. This directive provides the sources

for a constant value during the run time of the inference process.

5.2.1 Initialization of COMPONENTS Parameters

The properties associated with the COMPONENTs class were introduced in section
4.1 and defined in Code Segment 4.1. Several of these provide information on the
structure of the transponder system or nominal values for other component parameters.

Specifically, these properties are COMPONENT_IN, COMPONENT_OUT, DESCRIPTION, NAME,
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NASA_ID, as well as the NOMINAL_ values for FREQUENCY, FREQUENCY_IN, FREQUENCY_OUT,

GAIN, POWER_IN, and POWER_OUT.

Names of Component Objects

The slot definitions for initializing the name of COMPONENTS objects are given in

Code Segments 5.2a through 5.2c. These definitions initialize the NAME property of each

object that represents components of the transponder system. Both initial value and run

time value techniques are used.

Code Segment 5.2a: Initialization of <|COMPONENTS|>.NAME

(@SLOT= GAASFET.NAME
(@INITVAL= "GAASFET")
(@SOURCES = (RunTimeValue

(@SLOT= HPAPC_AMP_I1.NAME
(@INITVAL= *HPAPC_AMP_1")
(@SOURCES= (RunTimeValue

(@SLOT= HPAPC_AMP_2.NAME
(@INITVAL= *HPAPC_AMP_2")
(@SOURCES= (RunTimeValue

(@SLOT= HPAPC_ATTN_1.NAME
(@INITVAL= "HPAPC_ATTN_I1")
(@SOURCES= (RunTimeValue

(@SLOT= HPAPC_ATTN_2.NAME
(@INITVAL= "HPAPC_ATTN_2%)
(@SOURCES= (RunTimeValue

(@SLOT= HPAPC_ATTN_3.NAME
(@INITVAL= "HPAPC_ATTN_3")
(@SOURCES = (RunTimeValue

(@SLOT= HPAPC_ATTN_4.NAME
(@INITVAL= *"HPAPC_ATTN_4%)

(@SOURCES=  (RunTimeValue

("GAASFET")

("HPAPC_AMP_1"))

("HPAPC_AMP_2"))

("HPAPC_ATTN_1")

("HPAPC_ATTN_2")

("HPAPC_ATTN_3")

("HPAPC_ATTN_4%)




Code Segment 5.2b: Initialization of <|COMPONENTS|>.NAME

(@SLOT= IFPC_AMP_I .NAME
(@INITVAL= *IFPC_AMP_1")
(@SOURCES= (RunTimeValue

(@SLOT= IFPC_AMP_2.NAME
(@INITVAL= *IFPC_AMP_2")
(@SOURCES = (RunTimeValue

(@SLOT= IFPC_AMP_3.NAME
(@INITVAL= "IFPC_AMP_3%)
(@SOURCES= (RunTimeValue

(@SLOT= IFPC_AMP_4.NAME
(@INITVAL= *IFPC_AMP_47)
(@SOURCES= (RunTimeValue

(@SLOT= IFPC_ATTN_| NAME
(@INITVAL= "IFPC_ATTN_17)

(@SOURCES= RunTimeValue
(@SLOT= I[FPC_ATTN_2.NAME
(@INITVAL= "IFPC_ATTN_2")
(@SOURCES = (RunTimeValue
(@SLOT= IFPC_ATTN_3.NAME
(@INITVAL= "IFPC_ATTN_3")
(@SOURCES= (RunTimeValue
(@SLOT= IFPC_ATTN_4. NAME
(@INITVAL= "IFPC_ATTN_47)
(@SOURCES= (RunTimeValue
(@SLOT= MSWITCH.NAME
(QINITVAL= *MSWITCH")
(@SOURCES= (RunTimeValue
(@SLOT= MULT_1 .NAME
(@INITVAL= "MULT_1")
{@SOURCES= (RunTimeValue
(@SLOT= MULT_2.NAME
(@INITVAL= *MULT_2")
(@SOURCES = (RunTimeValue
(@SLOT= RCVR_1.NAME
(@INITVAL= "RCVR_1")
(@SOURCES= (RunTimeValue
(@SLOT= RCVR_2.NAME
(@INITVAL= "RCVR_2")
(@SOURCES= (RunTimeValue
(@SLOT= RCVR_LO.NAME
(@INITVAL= *RCVR_LO")
(@SOURCES= (RunTimeValue

(IFPC_AMP_17)) )

("IFPC_AMP_27)) )

("IFPC_AMP_3") )

("IFPC_AMP_4%)) )

CIFPC_ATTN_1") )

("IFPC_ATTN_2%) )

('IFPC_ATTN_3%) )

("IFPC_ATTN_47)) )

("MSWITCH")) )

("MULT_1") )
("MULT_2") )
("RCVR_1") )
(RCVR_27) )

("RCVR_LO") )

)
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Code Segment 5.2c: Initialization of <|COMPONENTS| >.NAME

(@SLOT= TWTA.NAME

(@INITVAL= "TWTA")

(@SOURCES = (RunTimeValue ("TWTA")) ) )
(@SLOT= UPX_LO.NAME

(@INITVAL= "UPX_LO")

(@SOURCES= (RunTimeValue ("UPX_LO") ) )

Descriptions of Component Objects

The slot definitions for initializing the descriptions of COMPONENTS objects are
given in Code Segments 5.2a through 5.2c. These definitions initialize the DESCRIPTION

property of each object that represents components of the transponder system.

Code Segment 5.3a: Initialization of <|COMPONENTS|>.DESCRIPTION

(@SLOT= GAASFET.DESCRIPTION

(@INITVAL= *Gallium-Arsenide Field Effect Transistor Amplifier®)

(@SOURCES = (RunTimeValue ("Gallium-Arsenide Field Effect Transistor Amplifier”™)) )]
(@SLOT= HPAPC_AMP_1 .DESCRIPTION

(@INITVAL= "Channel 1 HPAIPC Driver Amplifier®)

(@SOURCES= (RunTimeValue ("Channel 1 HPAIPC Driver Amplifier”)) ) )
(@SLOT= HPAPC_AMP_2.DESCRIPTION

(@INITVAL= *Channel 2 HPAIPC Driver Amplifier”)

(@SOURCES = (RunTimeValue ("Channel 2 HPAIPC Driver Amplifier”) ) )
(@SLOT= HPAPC_ATTN_1.DESCRIPTION

(@INITVAL= *Channel 1 High Power Amplifier Input Attenuator”)

(@SOURCES = (RunTimeValue ("Channel 1 High Power Amplifier Input Attenuator”)) »
(@SLOT= HPAPC_ATTN_2.DESCRIPTION

(@INITVAL= *Channel 1 HPAIPC Driver Input Attenuator”)

"(@SOURCES = (RunTimeValue ("Channel 1 HPAIPC Driver Input Attenuator”)) ) )

(@SLOT= HPAPC_ATTN_3.DESCRIPTION

(@INITVAL= *Channel 2 HPAIPC Driver Input Attenuator™)

(@SOURCES= (RunTimeValue ("Channel 2 HPAIPC Driver Input Attenuator”)) ) )
(@SLOT= HPAPC_A’ITN_4.DESCRIPT'ION

(@INITVAL= "Channel 2 High Power Amplifier Input Attenuator”)

(@SOURCES= (RunTimeValue ("Channel 2 High Power Amplifier Input Atienuator™)) )»




Code Segment 5.3b: Initialization of <|COMPONENTS|>.DESCRIPTION
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(@SLOT= IFPC_AMP_1 .DESCRIPTION

(@INITVAL= *Channel 1 Matrix Switch Input IFPC Amplifier”)

(@SOURCES = (RunTimeValue ("Channel 1 Matrix Switch Input IFPC Amplifier”))
(@SLOT= IFPC_AMP_2.DESCRIPTION

(@INITVAL= *Channel 2 Matrix Switch Input IFPC Amplifier”)

(@SOURCES= (RunTimeValue ("Channel 2 Matrix Switch Input IFPC Amplifier™))
(@SLOT= IFPC_AMP_3.DESCRIPTION

(@INITVAL= "Channel 1 Up-converter Input IFPC Amplifier”)

(@SOURCES= (RunTimeValue ("Channel 1 Up-converter Input IFPC Amplifier”))
(@SLOT= IFPC_AMP_4.DESCRIPTION

(@INITVAL= "Channel 2 Up~converter Input IFPC Amplifier”)

(@SOURCES= (RunTimeValue ("Channel 2 Up-~converter Input IFPC Amplifier”))
(@SLOT= IFPC_ATTN_1.DESCRIPTION

(@INITVAL= "Channel 1 Matrix Switch Input [IFPC Attenuator”)

(@SOURCES = (RunTimeValue ("Channel 1 Matrix Switch Input IFPC Attenuator”))
(@SLOT= IFPC_ATTN_2.DESCRIPTION

(@INITVAL= *Channel 2 Matrix Switch Input IFPC Attenuator®)

(@SOURCES= (RunTimeValue ("Channel 2 Matrix Switch Input [FPC Attenuator”))
(@SLOT= IFPC_ATTN_3.DESCRIPFTION

(@INITVAL= "Channel 1 Up-converter Input IFPC Attenuator”)

(@SOURCES = (RunTimeValue ("Channel 1 Up-converter Input IFPC Attenuator™))
(@SLOT= IFPC_ATTN_4.DESCRIPTION

(@INITVAL= "Channel 2 Up-converter Input I[FPC Attenuator®)

(@SOURCES= (RunTimeValue ("Channel 2 Up-converter Input IFPC Attenuator™))
(@SLOT= MSWITCH.DESCRIPTION

(@INITVAL= "Ford Matrix Switch®)

{(@SOURCES= (RunTimeValue ("Ford Matrix Switch™)) ) )
(@SLOT= MULT_1.DESCRIPTION

(@INITVAL= "Channel 1 Up—<onverter Mixer”)

(@SOURCES = (RunTimeValue ("Channel 1 Up-converter Mixer")) )
(@SLOT= MULT_2.DESCRIPTION

(@INITVAL= "Channel 2 Up-converter Mixer”)

(@SOURCES= (RunTimeValue ("Channel 2 Up-converter Mixer™)) )
(@SLOT= RCVR_1.DESCRIPTION

(@INITVAL = "Channel 1 Receiver Unit™)

(@SOURCES = (RunTimeValue ("Channel 1 Receiver Unit")) ) )
(@SLOT= RCVR_2.DESCRIPTION

(@INITVAL= *Channel 2 Receiver Unit”)

(@SOURCES= (RunTimeValue ("Channel 2 Receiver Unit™)) ) )
(@SLOT= RCVR_LO.DESCRIPTION

(QINITVAL= "Receiver Units Local Oscillator”)

(@SOURCES = (RunTimeValue ("Receiver Units Local Oscillator™)) )

)

)

)

)
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Code Segment 5.3c: Initialization of <|COMPONENTS| >.DESCRIPTION

(@SLOT = TWTA.DESCRIPTION

(@PIERCED= "Traveling Wave Tube Amplifier”)

(@SOURCES = (Pierced  ("Traveling Wave Tube Amplifier)) ) )
(@SLOT= PERSUADE_LO.DESCRIPTION

(@PIERCED= *Up-converter Mixer Units Local Oscillator®)

(@SOURCES= (Pierced  ("Up-converter Mixer Units Local Oscillator™)) ) )

Retrieval of Remaining Propérty Values from Database

Only the values of properties for NAME and DESCRIPTION were hard-coded into the
frame structure of the cOMPONENTsS world. The values for the remainder of the
initialized properties are retrieved from COMPONT.nxp database. This database is
included in section A.2 of Appendix A. Code Segments 5.4a through 5.4c give the
definitions for OS slot actions which retrieve these values. The source actions for each
of these slots are identical. Therefore, only the first slot definition in Code Segment 5.4a
are discussed.

Whenever the value any of these properties for an object in the COMPONENTS class
is unknown, it is retrieved from a database. The first argument of the retrieve directive
defines the name of the databasé to retrieve from. The type, or format, of the database
is set to the NEXPERT" DataBase type. Forward chaining is disabled so that changes
to these i)roperty values do not affect the agenda. And, the retrieve unknown is set

active; enabling unknown values to be retrieved from the database.



Code Segment 5.4a: Slot Actions to Retrieve & Initialize Properties of COMPONENTS Class

(@SLOT= COMPONENTS.COMPONENT _IN
(@SOURCES= (Retrieve ("COMPONT.nxp")
(@TYPE=NXPDB;
@FWRD=FALSE;
@UNKNOWN=TRUE;
@PROPS =NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;
@FIELDS="NAME", "COMPONENT_IN", "COMPONENT_OUT", "NASA_ID", \

P

"NOM_FREQ", "NOM_FREQ_IN", "NOM_FREQ_OUT", \
*NOM_GAIN", "NOM_POWER_IN", "N OM_POWER_OUT"; \

@ATOMS =SELF;)) ) )

(@SLOT= COMPONENTS.COMPONENT_OUT
(@SOURCES= (Retrieve ("COMPONT.nxp")
(@TYPE=NXPDB;
@FWRD=FALSE;
@UNKNOWN=TRUE;

@PROPS = NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS ="NAME", “COMPONENT_IN*, "COMPONENT_OUT", "NASA_ID",\

P i

"NOM_FREQ", "NOM_FREQ_IN", "NOM_FREQ_OUT", \
*NOM_GAIN*", "NOM_POWER_IN", "NOM_POWER_OUT"; \

@ATOMS =SELF;)) ) )

(@SLOT= COMPONENTS.NASA_ID

(@SOURCES=  (Retrieve ("COMPONT.nxp")

(@TYPE=NXPDB;
@FWRD=FALSE;
@UNKNOWN=TRUE;

@PROPS=NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS ="NAME", "COMPONENT_IN*, "COMPONENT_OUT", "NASA_ID", \

e ot o o

"NOM_FREQ", “NOM_FREQ_IN", "NOM_FREQ_OUT", \
"NOM_GAIN", "NOM_POWER_IN", "NOM_POWER_OUT"; \
@ATOMS=SELF))) ) )
(@SLOT= COMPONENTS.NOMINAL_FREQUENCY
(@SOURCES = (Retrieve ("COMPONT.nxp")
' (@TYPE=NXPDB;

@FWRD=FALSE;

@UNKNOWN=TRUE;

@PROPS=NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS = "NAME", "COMPONENT_IN*, *COMPONENT_OUT", "NASA_ID",\
"NOM_FREQ", “NOM_FREQ_IN", "NOM_FREQ_OUT", \
"NOM_GAIN*, "NOM_POWER_IN", "NOM_POWER_OUT"; \

@ATOMS=SELF;)) ) )

e e




Code Segment 5.4b: Slot Actions to Retrieve & Initialize Properties of COMPONENTS Class

(@SLOT= COMPONENTS.NOMINAL_FREQUENCY_IN
(@SOURCES= (Retrieve ("COMPONT.nxp")
(@TYPE=NXPDB;
@FWRD=FALSE;
@UNKNOWN=TRUE;
@PROPS =NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL POWER_OUT;
@FIELDS="NAME", "COMPONENT_IN", *COMPONENT_OUT", "NASA_ID",\

P

"NOM_FREQ", "NOM_FREQ_IN", "NOM_FREQ_OUT", \
*NOM_GAIN", "NOM_POWER_IN", "NOM_POWER_OUT"; \
@ATOMS =SELF;)) ) )
(@SLOT= COMPONENTS.NOMINAL_FREQUENCY_OUT
(@SOURCES=  (Retrieve ("COMPONT.nxp")
(@TYPE=NXPDB;

@FWRD=FALSE;

@UNKNOWN=TRUE;

@PROPS =NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS ="NAME", "COMPONENT _IN", "COMPONENT_OUT", "NASA_ID",\

P e

"NOM_FREQ", "NOM_FREQ_IN", "NOM_FREQ_OUT", \
"NOM_GAIN", "NOM_POWER_IN", "NOM_POWER_OUT"; \
@ATOMS =SELF;)) ) )
(@SLOT= COMPONENTS.NOMINAL_GAIN
(@SOURCES= (Retricve ("COMPONT .nxp")

(@TYPE=NXPDB;

@FWRD=FALSE;

@UNKNOWN=TRUE;

@PROPS =NAME, COMPONENT _IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS="NAME", "COMPONENT_IN*, “COMPONENT_OUT", "NASA_ID",\
*NOM_FREQ", “NOM_FREQ_IN", "NOM_FREQ_OUT", \
*NOM_GAIN", "NOM_POWER_IN", "NOM_POWER_OUT"; \

@ATOMS=SELF;)) ) )

PP A e e

(@SLOT= COMPONENTS .NOMINAL_POWER_IN
(@SOURCES=  (Retrieve ("COMPONT.nxp")
‘ (@TYPE=NXPDB;

@FWRD=FALSE;

@UNKNOWN=TRUE;

@PROPS =NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS ="NAME", "COMPONENT_IN*, "COMPONENT_OUT", "NASA_ID",\
*NOM_FREQ", "NOM_FREQ_IN", "NOM_FREQ_OUT", \
*NOM_GAIN*, "NOM_POWER_IN", "NOM_POWER_OUT"; \

@ATOMS =SELF;)) ) )

P e
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Code Segment 5.4c: Slot Actions to Retrieve & Initialize Properties of COMPONENTS Class

(@SLOT= COMPONENTS.NOMINAL_POWER_OUT
(@SOURCES=  (Retrieve ("COMPONT.nxp”)

(@TYPE=NXPDB;

@FWRD=FALSE;

@UNKNOWN=TRUE;

@PROPS =NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID,
NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN,
NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,
NOMINAL_POWER_IN, NOMINAL_POWER_OUT;

@FIELDS="NAME", "COMPONENT_IN", "COMPONENT_OUT", "NASA_ID",\

P I

"NOM_FREQ", "NOM_FREQ_IN", "NOM_FREQ_OUT", \
“NOM_GAIN", "NOM_POWER_IN", "NOM_POWER_OUT"; \
@ATOMS =SELF;)) ) )

The next two parameters list the property ﬁames for which values are to be
retrieved and a corresponding list of database field names. Notice that whenever any of
these property values is pursued all of them are retrieved from the database. This was
done to make the data accesses more efficient. Because the entire record is retrieved on
the first access, only one database access is required for each COMPONENTs object. The
final parameter of the retrieve directive lists the atoms for which the retrieve is effected.
This is a class level definition of sources that are inherited by each COMPONENTS object.
Defining the atom as SELF causes only the record that corresponds to the current object

to be retrieved.
5.2.2 Initialization of SUBSYSTEMS Parameters

The properties associated with the SUBSYSTEMS class were introduced in section
4.2 and defined in Code Segment 4.6. Several of these provide information on the
structure of the transponder subsystems or nominal values for other parameters.
Specifically, these properties are NAME, SENSOR_IN, SENSOR_OUT, SUBSYSTEM_IN, and

SUBSYSTEM_OUT.
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Names of Subsystem Objects

The slot definitions for initializing the NAME property of SUBSYSTEMS objects are
given in Code Segment 5.5. This segment also lists definitions for the dynamic objects

which represent the channels through the matrix switch.

Code Segment 5.5: Initialization of < |SUBSYSTEMS|>.NAME

(@SLOT= CH1AMP.NAME

(@INITVAL= *"CHI1AMP")

(@SOURCES = (RunTimeValue ("CH1AMP") ) )
(@SLOT= CHIRCVR.NAME

(@INITVAL= *CHIRCVR")

(@SOURCES= (RunTimeValue ("CHIRCVR")) ) )
(@SLOT= CHIUPX.NAME

(@INITVAL = "CHIUPX")

(@SOURCES= (RunTimeValue ("CHIUPX™) ) )
(@SLOT= CH2AMP.NAME

(@INITVAL= "CH2AMP")

(@SOURCES = (RunTimeValue ("CH2AMP")) ) )
(@SLOT= CH2RCVR.NAME

(@INITVAL= "CH2RCVR")

(@SOURCES = (RunTimeValue ("CH2RCVR")) ) )
(@SLOT= CH2UPX.NAME

(@INITVAL= "CH2UPX")

(@SOURCES = (RunTimeValue ("CH2UPX") ) )
(@SLOT= MSWITCH_CH11.NAME

(@INITVAL= "MSWITCH_11")

(@SOURCES= (RunTimeValue ("MSWITCH_11%)) ) )
(@SLOT= MSWITCH_CHI12.NAME

(@INITVAL= "MSWITCH_12"%)

(@SOURCES= (RunTimeValue ("MSWITCH_12") ) )
(@SLOT= MSWITCH_CH21.NAME

(@INITVAL= "MSWITCH_CH21")

(@SOURCES = (RunTimeValue ("MSWITCH_CH21%)) ) )
(@SLOT= MSWITCH_CH22.NAME

(@INITVAL= "MSWITCH_CH22")
(@SOURCES = RunTimeValue - ("MSWITCH_CH22%) ) )
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Linking of Subsystem Input/Output Properties

The slot definitions for initializing the input/output parameters of SUBSYSTEMS
objects are given in Code Segment 5.6a through 5.6d. These definitions initialize the
SENSOR_IN, SENSOR_OUT, SUBSYSTEM_IN, and SUBSYSTEM_OUT properties of each object that

represents subsystems of the transponder system.



Code Segment 5.6a: Initialization of < |SUBSYSTEMS| >.SENSOR_IN /_OUT

(@SLOT= CH1AMP.SENSOR_IN

(@INITVAL= "PM_5")

(@SOURCES = (RunTimeValue ("PM_5") ). )
(@SLOT= CH1AMP.SENSOR_OUT

(@INITVAL= PM_T7)

(@SOURCES= (RunTimeValue ("PM_T") ) )
(@SLOT= CHIRCVR.SENSOR_IN

(@INITVAL= "PM_0")

(@SOURCES = RunTimeValue ("PM_0") ) )
(@SLOT= CHIRCVR.SENSOR_OUT

(@INITVAL= "PM_17)

(@SOURCES= (RunTimeValue ("PM_17)) ) )
(@SLOT= CHI1UPX.SENSOR_IN

(@INITVAL= “PM_3")

(@SOURCES= (RunTimeValue ("PM_3") ) )
(@SLOT= CHIUPX.SENSOR_OUT

(@INITVAL= "PM_5")

(@SOURCES = (RunTimeValue ("PM_5")) ) )
(@SLOT= CH2AMP.SENSOR_IN

(@INITVAL= "PM_6")

(@SOURCES = (RunTimeValue ("PM_67)) ) )
(@SLOT= CH2AMP.SENSOR_OUT

(@INITVAL= "PM_8")

(@SOURCES= (RunTimeValue ("PM_8") ) )
(@SLOT= CH2RCVR.SENSOR_IN

(@INITVAL= "PM_07)

(@SOURCES = (RunTimeValue ("PM_07)) ) )
(@SLOT= CH2RCVR.SENSOR_OUT

(@INITVAL= “PM_27)

(@SOURCES= RunTimeValue ("PM_2") ) )
(@SLOT= CH2UPX.SENSOR_IN

(@INITVAL= "PM_4%)

(@SOURCES= (RunTimeValue ("PM_4") ) )
(@SLOT= CH2UPX.SENSOR_OUT

(@INITVAL= ‘PM_6")

(@SOURCES = (RunTimeValue ("PM_67)) ) )




Code Segment 5.6b: Initialization of < |SUBSYSTEMS|>.SENSOR_IN / _OUT

(@SLOT= MSWITCH_CHI11.SENSOR_IN

(@INITVAL= "PM_17)

(@SOURCES = (RunTimeValue ("PM_17))
(@SLOT= MSWITCH_CHI1 .SENSOR_OUT

(@INITVAL= "PM_3")

(@SOURCES= (RunTimeValue (PM_37)
(@SLOT= MSWITCH_CHI12.SENSOR_IN

(@INITVAL= "PM_I1")

(@SOURCES= (RunTimeValue ("PM_17)
(@SLOT= MSWI'I'CH_CH12.SENSOR_OUT

(@INITVAL= "PM_4")

(@SOURCES = RunTimeValue ("PM_47)
(@SLOT= MSWITCH_CH21.SENSOR_IN

(@INITVAL= "PM_29)

(@SOURCES= (RunTimeValue ("PM_2"))
(@SLOT= MSWITCH_CH21.SENSOR_OUT

(@INITVAL= "PM_37)

(@SOURCES = (RunTimeValue (‘PM_§ )

(@SLOT= MSWITCH_CH22.SENSOR_IN
(@INITVAL= "PM_2")
(@SOURCES= (RunTimeValue ("PM_2%)

(@SLOT= MSWITCH_CH22.SENSOR_OUT
(@INITVAL= *PM_4)
(@SOURCES= (RunTimeValue ("PM_47)

¢ -2
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Code Segment 5.6¢c: Initialization of < |SUBSYSTEMS|>.SUBSYSTEM_IN /_OUT

(@SLOT= CH1AMP.SUBSYSTEM_IN

(@INITVAL= *CHIUPX")

(@SOURCES = (RunTimeValue ("CH1UPX")) ) )
(@SLOT= CH1AMP.SUBSYSTEM_OUT

(@INITVAL= “NONE")

(@SOURCES= (RunTimeValue ("NONE")) ) )
(@SLOT= CHIRCVR.SUBSYSTEM_IN

(@INITVAL= *NONE")

(@SOURCES= (RunTimeValue ("NONE™) ) )
(@SLOT= CHIRCVR.SUBSYSTEM_OUT

(@INITVAL= =~ "MSWITCH")

(@SOURCES= (RunTimeValue ("MSWITCH")) ) )
(@SLOT= CHIUPX.SUBSYSTEM_IN

(@INITVAL= "MSWITCH")

(@SOURCES= (RunTimeValue ("MSWITCH™)) ) )
(@SLOT= CH1UPX.SUBSYSTEM_OUT

(@INITVAL= "CH1AMP")

(@SOURCES = (RunTimeValue ("CHI1AMP"™)) ) )
(@SLOT= CH2AMP.SUBSYSTEM_IN

(@INITVAL = *CH2UPX"™)

(@SOURCES= (RunTimeValue ("CH2UPX"™)) ) )
(@SLOT= CH2AMP.SUBSYSTEM_OUT

(@INITVAL= "NONE")

(@SOURCES= (RunTimeValue ("NONE")) ) )
(@SLOT= CH2RCVR.SUBSYSTEM_IN

(@INITVAL= "NONE")

(@SOURCES= (RunTimeValue ("NONE") ) )
(@SLOT= CH2RCVR.SUBSYSTEM_OUT

(@INITVAL= "MSWITCH")

(@SOURCES= (RunTimeValue ("MSWITCH")) ) )
(@SLOT= CH2UPX.SUBSYSTEM_IN

(@INITVAL= *MSWITCH")

(@SOURCES = (RunTimeValue ("MSWITCH")) ) )
(@SLOT= CH2UPX.SUBSYSTEM_OUT

(@INITVAL = "CH2AMP")
(@SOURCES = (RunTimeValue ("CH2AMP")) ) )

88
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Code Segment 5.6d: Initialization of < |SUBSYSTEMS|>.SUBSYSTEM_IN /_our

(@SLOT= MSWITCH_CH11.SUBSYSTEM_IN

(@INITVAL= "CHIRCVR")

(@SOURCES= (RunTimeValue ("CHIRCVR")) ) )
(@SLOT= MSWITCH_CH11.SUBSYSTEM_OUT

(@INITVAL= *CHI1UPX")

(@SOURCES = (RunTimeValue ("CHI1UPX") ) )
(@SLOT= MSWITCH_CH12.SUBSYSTEM_IN

(@INITVAL= *CHIRCVR")

(@SOURCES= (RunTimeValue ("CHIRCVR™) ) )
(@SLOT= MSWITCH_CH12.SUBSYSTEM_OUT

(@INITVAL = *CH2UPX")

(@SOURCES= (RunTimeValue ("CH2UPX")) ) )
(@SLOT= MSWITCH_CH21.SUBSYSTEM_IN

(@INITVAL= "CH2RCVR")

(@SOURCES= (RunTimeValue {("CH2RCVR")) ) )
(@SLOT= MSWITCH_CH21.SUBSYSTEM_OUT

(@INITVAL = "CHIUPX")

(@SOURCES= (RunTimeValue ("CH2UPX")) ) )
(@SLOT= MSWITCH_CH22.SUBSYSTEM_IN

(@INITVAL= "CH2RCVR")

(@SOURCES= (RunTimeValue ("CH2RCVR")) ) )
(@SLOT= MSWITCH_CH22.SUBSYSTEM_OUT

(@INITVAL= "CH2UPX")

(@SOURCES= (RunTimeValue ("CH2UPX™)) ) )

5.2.3 Initialization of SENSORS Parameters

The properties associated with the SENSORS class were introduced in section 4.3
and defined in Code Segment 4.10. Several of these provide information on nominal
values and for other parameters. Specifically, these properties are DESCRIPTION, NAME,
NOMINAL, TOLERANCE, TYPE and zErRo LEVEL. However, before the code segments that
define these initializations can be discussed, another object must be introduced.

Recall from Figure 1.2 that there are no signal power level sensors at the input

to the receiver units at the channel 1 and channel 2 inputs. Also in chapter 3, the
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concept of a subsystem for isolating faults was defined as a group of components between

power sensors. Furthermore, the criteria for isolating a fault to find a subsystem who’s

input signal power level was "GooD" and output signal power level was "B4D.* This

situation resulted in a conflict in defining the channel 1 and 2 receiver subsystems.

This conflict was resolved by creating a hypothetical signal power level sensor

for the inputs to the channel 1 and channel 2 receiver subsystems. This sensor would

always report a “GooD" reading; as it must be assumed that the uplink signal to the

transponder is within its parametric range. This hypothetical sensor was represented by

creating an object called PM_0 and initializing its READING and LEVEL properties to “GOOD*

and "0k~ respectively. Code Segment 5.7 gives these definitions.

Code Segment 5.7: Definition of Hypothetical Signal Power Level Sensor PM_0

(@OBJECT= PM_0
(@PROPERTIES =
LEVEL
NAME
READING )

(@SLOT= PM_0.LEVEL
(@INITVAL= *OK")
(@SOURCES= (RunTimeValue)

(@SLOT= PM_0.NAME
(@INITVAL= "PM_07)
(@SOURCES= (RunTimeValue)

(@SLOT= PM_0.READING
(@INITVAL= *GOOD")
(@SOURCES=  (RunTimeValue)

("OK™) )

("PM_07))

("*GOOD)

Names of Sensor Objects

The slot definitions for initializing the NAME property of SENSORS objects are given

in Code Segments 5.8.



Code Segment 5.8: Initialization of < |SENSORS| >.NAME

(@SLOT= BER_I1.NAME
(@INITVAL= "BER_1")
(@SOURCES= (RunTimeValue

(@SLOT= BER_2.NAME
(@INITVAL= *BER_2")
(@SOURCES= (RunTimeValue

(@SLOT= BER_3.NAME
(@INITVAL= *BER_3")
(@SOURCES= (RunTimeValue

(@SLOT= BER_4.NAME
(@INITVAL= "BER_4")
(@SOURCES= (RunTimeValue

(@SLOT= BER_S.NAME
(@INITVAL= "BER_5")
(@SOURCES= (RunTimeValue

(@SLOT= BER_6.NAME
(@INITVAL= "BER_6")
(@SOURCES = (RunTimeValue

(@SLOT= PM_L.NAME
(@INITVAL= "PM_1")
(@SOURCES= (RunTimeValue

(@SLOT= PM_2.NAME
(@INITVAL= "PM_27)
(@SOURCES= (RunTimeValue

(@SLOT= PM_3.NAME
(@INITVAL= *PM_37)

(@SOURCES= (RunTimeValue

(@SLOT= PM_4.NAME
(@INTTVAL= *PM_4%)
(@SOURCES= (RunTimeValue

(@SLOT= PM_S.NAME
(@INITVAL= *PM_S57)
(@SOURCES= (RunTimeValue

(@SLOT= PM_6.NAME
(@INITVAL= "PM_6")
(@SOURCES= (RunTimeValue

(@SLOT= PM_7.NAME
(@INITVAL= *PM_T77)
(@SOURCES= (RunTimeValue

(@SLOT= PM_8.NAME
(@INITVAL= "PM_8")
(@SOURCES= (RunTimeValue

("BER_17))

("BER_27))

("BER_3")

("BER_47)

("BER_3"))

(BER_67)

CPM_I%)

("PM_2%)

("PM_3%)

("PM_4%)

(PM_5%)

("PM_67)

CPM_7™)

("PM_87)

91



92

Descriptions of Sensor Objects
The slot definitions for initializing the descriptions of PWR_SENSORS objects are
given in Code Segment 5.9. These definitions initialize the DESCRIPTION property of each

object that represents a signal power level sensor in the transponder system.

Code Segment 5.9: Initialization of <|SENSORS|>.DESCRIPTION

(@SLOT= PM_1.DESCRIPTION

(@INITVAL= *Channel 1 Matrix Switch Input Signal Power Level Sensor”)

(@SOURCES= (RunTimeValue ("Channel 1 Matrix Switch Input Signal Power Level Sensor®)) »
(@SLOT = PM_2.DESCRIPTION

(@INITVAL= *Channel 2 Matrix Switch Input Signal Power Level Sensor”)

(@SOURCES= (RunTimeValue ("Channel 2 Matrix Switch Input Signal Power Level Sensor™) )
(@SLOT= PM_3.DESCRIPTION

(@INITVAL= *Channel 1 Up-converter Input Signal Power Level Sensor”)

(@SOURCES= (RunTimeValue ("Channel 1 Up—converter Input Signal Power Level Sensor™) )
(@SLOT= PM_4.DESCRIPTION

(@INITVAL= "Channel 2 Up-converier Input Signal Power Level Sensor”)

(@SOURCES= (RunTimeValue ("Channel 2 Up-converter Input Signal Power Level Sensor™) )
(@SLOT= PM_S.DESCRIPTION

(@INITVAL= "Channel 1 HPA Input Signal Power Level Sensor”)

(@SOURCES= (RunTimeValue ("Channel 1 HPA Input Signal Power Level Sensor™)) »
(@SLOT= PM_6.DESCRIPTION

(@INITVAL= *Channel 2 HPA Input Signal Power Level Sensor”)

(@SOURCES= (RunTimeValue ("Channel 2 HPA Input Signal Power Level Sensor™)) »
(@SLOT= PM_7.DESCRIPTION

(@INITVAL= "Channel 1 HPA Output Signal Power Level Sensor”)

(@SOURCES = (RunTimeValue ("Channel 1 HPA Output Signal Power Level Sensor®)) »
(@SLOT= PM_8.DESCRIPTION

(@INITVAL= *Channel 2 HPA Output Signal Power Level Sensor™)

(@SOURCES = (RunTimeValue ("Channel 2 HPA Output Signal Power Level Sensor®)) »
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Types of Sensor Objects

The slot definitions for initializing the TYPE property of SENSORS objects are given
in Code Segment 5.10. Each sensor type is initialized at the subclass level for signal

PWR_SENSORS and data stream BER_SENSORS.

Code Segment 5.10: Initialization of <|BER_/ PWR_SENSOR| >.TYPE

(@SLOT= BER_SENSORS.TYPE

(@INITVAL= "BER")

(@SOURCES= (RunTimeValue ("BER") ) )
(@SLOT= PWR_SENSORS.TYPE

(@INITVAL= ‘PM™)

(@SOURCES= (RunTimeValue ("PM™) ) )

Retrieval of Remaining Property Values from Database

Only the values of the property NAME are hard-coded into the frame structure of
the SENSORs world. The values for the remainder of the initialized properties are
retrieved from SENSOR.nxp database. This database is included in section A.l of
Appendix A. Code Segment 5.11 gives the definitions for OS slot actions that retrieve
these values.

Also associated with the slot for SENSORS.NOMINAL is an IC definition. This
definition is not related to the initialization of parameters. It is only included here
because it is attached to the listed slot. This action is required for the ToolBook™

interface and is discussed in that section of this chapter.
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Code Segment 5.11: Slot Actions to Retrieve & Initialize Properties of the SENSORS Class

(@SLOT= SENSORS.NAME
(@SOURCES = (Retrieve ("SENSOR.nxp")
(@TYPE= NXPDB;
@FWRD= FALSE;
@UNKNOWN = TRUE;
@PROPS= NAME, NOMINAL, TOLERANCE, ZERO_LEVEL;
@FIELDS = "NAME", "NOMINAL", "TOLERANCE", "ZERO_LEVEL";

PRl d

@ATOMS= SELF})) ) )
(@SLOT= SENSORS.NOMINAL
(@SOURCES = (Retrieve ("SENSOR.nxp")

(@TYPE= NXPDB;

@FWRD= FALSE;

@UNKNOWN= TRUE;

@PROPS= NAME, NOMINAL, TOLERANCE, ZERO_LEVEL;
@FIELDS = "NAME", "NOMINAL", "TOLERANCE", "ZERO_LEVEL";

P A

@ATOMS = SELF;)) ) )
(@CACTIONS = (Execute ("ReturnNominalData”) \
(@ATOMID= SELF; \
@STRING="@V(@SELF.NOMINAL)"})) ) )
(@SLOT= SENSORS.TOLERANCE
(@SOURCES= (Retrieve ("SENSOR.nxp")

(@TYPE= NXPDB;

@FWRD= FALSE;

@UNKNOWN= TRUE;

@PROPS = NAME, NOMINAL, TOLERANCE, ZERO_LEVEL;
@FIELDS = "NAME", "NOMINAL", "TOLERANCE", "ZERO_LEVEL";

P

@ATOMS= SELF})) ) )
(@SLOT= SENSORS.ZERO_LEVEL
(@SOURCES = (Retrieve ("SENSOR.nxp*®)

(@TYPE= NXPDB;

@FWRD= FALSE;

@UNKNOWN = TRUE;

@PROPS= NAME, NOMINAL, TOLERANCE, ZERO_LEVEL;
@FIELDS = *“NAME", "NOMINAL", "TOLERANCE", "ZERO_LEVEL";
@ATOMS = SELF;)) ) )

e

5.2.4 Initialization of FAULT STATES Parameters

There are many parameters of the FAULT_STATES hierarchy which have initialized
values. However, these initializations are very specific to the knowledge of the
individual diagnostic modules. They are not defined in the FIDEX kernel knowledge

base. Therefore, they ware discussed when applicable in chapter 8.



_ 95
5.3 Definition of Blackboard Objects

The strength of any frame-based expert system lies in the efficient encoding of
rule knowledge. Its rules should be generic and operate on conditions that are germane
rather than specific to certain instances. A common approach that is used to increase the
efficiency of rule knowledge in frame-based systems is to use a structure called a
blackboard.

By using a blackboard, rules can be written to operate on information posted in
a global structure. The FIDEX system uses this approach. Its rules operate on
properties associated with four objects. The definitions for these objects are given in

Code Segment 5.12.

Code Segment 5.12: Definition of Blackboard Objects

(@OBJECT= CURRENT_COMPONENT
(@PROPERTIES= NAME ) )
(@QOBJECT= CURRENT_FAULT
(@PROPERTIES= NAME ) )
(@OBJECT= CURRENT_SENSOR
(@PROPERTIES= NAME ) )
(@OBJECT= CURRENT_SUBSYSTEM
(@PROPERTIES =
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT ) )

5.4 Definition of Objects/Properties for Rule Hypotheses

This section, and the last section, are leading to a discussion of object/class

dynamics and slot actions that begins in section 5.5. Several of these dynamics use rule
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knowledge. NEXPERT" requires that all properties and objects used in a rule, whether
as conditions or hypotheses, to be defined before the definition of the rule. To facilitate
the discussion in the following section, all such definitions have been grouped together
in Code Segment 5.13. The meanings of each object and property are discussed when

appropriate in section 5.5.

Code Segment 5.13: Definition of Objects/Properties for Rule Hypotheses

(@PROPERTY=  BAD
(@PROPERTY=  Bad_Sensors
(@PROPERTY=  GOOD
(@PROPERTY=  HIGH
(@PROPERTY=  LOW
(@PROPERTY=  Nominal_Sensor_Data
(@PROPERTY=  OK

(@PROPERTY=  ZERO

@TYPE=Boolean;)
@TYPE=Boolean;)
@TYPE=Boolean;)
@TYPE=Boolean;)
@TYPE=Boolean;)
@TYPE = Boolean;)
@TYPE=Boolean;)
@TYPE=Boolean;)

(@OBJECT=

(@PROPERTIES= Value

(@OBIECT=

(@PROPERTIES= Value

(@OBJECT=

(@PROPERTIES= Value

(@OBIECT=

(@OBJECT= Sensor_Level_Description
(@PROPERTIES =
HIGH
LOwW
OK
ZERO ) )
{(@OBJECT= Sensor_Reading_Description .
(@PROPERTIES =
BAD
GOOD ) )
(@OBJECT = TBK_Request
(@PROPERTIES =
Bad_Sensors

Evaluate_Certainty_Factors

@TYPE=Boolean; )

Model_Matrix_Switch_SubSystem

Return_BAD_Sensors

Return_Nominal_Sensor_Data
(@PROPERTIES= Value

Nominal_Sensor_Data

@TYPE=Boolean; )

@TYPE=DBoolean; )

@TYPE=Boolean; )
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5.5 Object/Class Dynamics and Slot Actions

The values of many properties introduced in chapter 4 represent dynamic
quantities. Such properties are those used to simulate the propagation of a signal through
the transponder system, evaluate qualitative descriptions of parameter values, and drive

the inference strategies of the expert system.
5.5.1 Dynamics and Slot Actions of the COMPONENTS Class

The properties associated with the COMPONENTS class were introduced in section
4.1 and defined in Code Segment 4.1. Several of these simulate the propagation of the
communication signal through the transponder system. Specifically, these properties are

GAIN, POWER_IN, POWER_OUT, and their MODEL_ counterparts.
Propagation of Signal Power Levels Through Components

The slot definitions which simulate the propagation of signal power levels through
the components of the transponder system are given in Code Segment 5.14. The three
slots used in this simulation are <|COMPONENTS|>.GAIN, POWER_IN, and POWER_OUT.
These are class level slot definitions which are inherited by all component objects in the
COMPONENTS hierarchy.

The propagation of signal power levels is simulated using two different techniques
for driving slot actions. The first and most useful approach is called data-driven. In this
approach lthe changing of data at the input to a component is used to drive the evaluation

of other component object property values.
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Code Segment 5.14: Propagation of Signal Power Levels Through Components

(@SLOT= COMPONENTS.GAIN
(@SOURCES= (Do (SELF.POWER_OUT-SELF.POWER_IN) (SELF.GAIN)) )
(@CACTIONS = (Do (SELF.POWER_IN +SELF.GAIN) (SELF.POWER_OUT)) »
(@SLOT = COMPONENTS.POWER_IN
(@SOURCES = Do (SELF.COMPONENT_IN\.POWER_OUT) (SELF.POWER_IN}))
(@CACTIONS = Do (SELF.POWER_IN+SELF.GAIN) (SELF.POWER_OUT)) »
(@SLOT= COMPONENTS.POWER_OUT
(@SOURCES= Do (SELF.POWER_IN+SELF.GAIN) (SELF.POWER_OUT)) )
(@CACTIONS = (Do (SELF.POWER_OUT) (SELF.COMPONENT_OUT\.POWER_IN))))

Recall from section 4.1 that the signal power level at the input to a component
is represented by the property POWER_IN. Whenever the value of this property changes,
IC actions, (@CACTIONS=...), are taken. The new value of POWER_IN is added with the
current value of the component’s GAIN property to calculate a new value for the signal
power level at the output to a component. This new value is placed in the property that
represents‘ this quantity, POWER_OUT.

Changing this output power level again stimulates another IC action to be taken.
Whenever the value of a component’s POWER_OUT property changes, it posts this new
value as the signal power level at the input to the next component in the transponder’s
signal path. (The negligible attenuation of component couplings are disregarded.) To
do this, it must evaluate the string value of its COMPONENT_OUT property; which was
initialized to the object name of the component object at its output in section 5.2.1.

Posting this new signal power level as the input power level of the next
component stimulates the same sequence of IC actions in the properties of that component
object. In this manner, the signal power levels through out the transponder system are
simulated in the objects which represent the transponder components.

The propagation of signal power levels is also simulated using another technique

for driving slot actions. This approach is called source-driven. It is useful when values
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of parameters are hot known and must be calculated. In this approach the pursuit of a
value for one parameter is used to drive the evaluation of other property values.
Whenever values for a component object’s GAIN or POWER_OUT are required but
unknown, OS actions, (@SOURCES=...), provide the means for calculating them from other
properties. Should the value of a component object’s POWER_IN be required but
unknown, OS actions provide the means for it to look to the output signal power level
of its input component, COMPONENT_IN. Again, when these values are obtained, changed

from unknown, their IC actions propagate the new values.
Propagation of Modeled Signal Power Levels Through Components

Also recall from section 4.1 that a primitive model-based reasoning overhead is
included in the object dynamics of the FIDEX system. These dynamics are effected
through the MoDEL_ prefixed properties listed in Code Segment 4.1. The propagation of
these modeled signal power levels through components is implemented in the same
manner as those discussed with Code Segment 5.14. The definitions for these slot

actions are given in Code Segment 5.15.
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Code Segment 5.15: Propagation of Modeled Signal Power Levels Through Components

(@SLOT= COMPONENTS MODEL_GAIN
(@SOURCES= (Do (SELF.MODEL_POWER_OUT-SELF.MODEL_POWER_IN) \
(SELF.MODEL_GAIN)) )
(@CACTIONS= (Do (SELF.MODEL_POWER_IN + SELF.MODEL_GAIN) \
(SELF.MODEL_POWER_OUT)) ) )
(@SLOT= COMPONENTS MODEL_POWER_IN
(@SOURCES= (Do (\SELF.COMPONENT_IN\. MODEL_POWER_OUT) \
(SELF.MODEL_POWER_IN)) )
(@CACTIONS= (Do (SELF.MODEL_POWER_IN + SELF.MODEL_GAIN) \
(SELF.MODEL_POWER_OUT)) ) )
(@SLOT= COMPONENTS.MODEL_POWER_OUT
(@SOURCES= (Do (SELF.MODEL_POWER_IN+SELF.MODEL_GAIN) \
(SELF.MODEL_POWER_OUT)) )
(@CACTIONS= (Do (SELF.MODEL_POWER_OUT) \
(\SELF.COMPONENT_OUT\.MODEL_POWER_IN)) ) )

Propagation of Signal Power Levels Through MultiPort Components

As discussed in section 4.1, there are a number of multiple port components
within the transponder. The parameters which represent signal quantities at these
additional ports were represented in those component objects by the properties suffixed
by _2 in Code Segment 4.3. However, the existence of multiple ports does not
complicate the simulated propagation the transponder signal. The techniques are simply
expanded as shown in Code Segment 5.16.

This segment does not give a complete listing. The scope of such a listing would
be of great length and very redundant. Code Segment 5.16 simply provides two
examples of how the gain of the second channel -through the matrix switch is simulated.

For a complete listing, refer to Appendix A.
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Code Segment 5.16: Propagation of Signal Power Levels Through Multiple Port Components

> >* INCOMPLETE *< <

(@SLOT= SWITCHES.GAIN_2
(@SOURCES= (Do (SELF.POWER_OUT_2-SELF.POWER_IN_2) (SELF.GAIN_2)) )
(@CACTIONS= (Do (SELF.POWER_IN_2+SELF.GAIN_2) (SELF. POWER_OUT_2)) )]
(@SLOT= SWITCHES.MODEL_GAIN_2
(@SOURCES= Do (SELF.MODEL_POWER_OUT_2-SELF .MODEL_POWER_IN_2)\
(SELF.MODEL_GAIN_2)) )
(@CACTIONS= (Do (SELF.MODEL_POWER_IN_2+SELF .MODEL_GAIN_2) \
(SELF.MODEL_POWER_OUT_2)) ) )

5.5.2 Dynamics and Slot Actions of the SUBSYSTEMS Class

The properties associated with the SUBSYSTEMS class were introduced in section
4.2 and defined in Code Segment 4.6. Several of these are used to represent qualitative
descriptions of signal power sensor READINGS and LEVELS throughout the transponder
system. Another property is responsible for loading and initializing the
DIAGNOSTIC MODULE associated with the specific subsystems. And finally, recall that the
various channels through matrix switch subsystem were modeled as a series of dynamic

objects. This subsection discusses these dynamics of the SUBSYSTEMS class.
Dynamic Modeling of the Matrix Switch SubSystem

Table 1.2 listed four permutations of signal paths through the matrix switch.
Correspondingly, there are four signal paths through the matrix switch subsystem. Each
of these paths was represented by an object defined in Code Segments 4.95 and 4.9b.

However at any given time, only two of these paths are propagating a signal through the
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transponder. Which two of those four is determined by the configuration of the matrix
switch component.

To represent this configuration a string property called CONFIG was attached to
the object that represents the matrix switch component, MSWITCH. This property is set
to a character that represents a particular configuration of the switch. Code Segment

5.17 gives the definition for a slot which is used to obtain a value for this property.

Code Segment 5.17: Sources for Matrix Switch Configuration

(@SLOT= MSWITCH.CONFIG
(@SOURCES= (Execute ("RequestMatrixSwitchConfig")) ) )

The OS action of this slot execute an external handler that is associated with the
ToolBook™ Graphical User Interface (GUI). This handler ascertains a value for the
switch configuration and place it in the CONFIG property of the matrix switch.

In the current phase of development of the transponder system, only two
configurations of the matrix switch are possible. These are represented by either “4* or
“B.~ When the ToolBook™ handler sets the configuration property value, a hypothesis
called Model_Matrix_Switch_Subsystem is placed on the agenda through a process called
gating.

This hypothesis is supported by the two rules defined in Code Segment 5.18.
Based on. the value of the MSWITCH.CONFIG property, only one of these rules may fire.
Each rule provides actions, (@RHS=...) that dynamically attaches two objects to the
SUBSYSTEMS class. The single rule that fires attaches objects which represent active signal
paths through the matrix switch as subsystems of the transponder. As such, these objects

inherit all property values and slot actions associated with that class.
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Code Segment 5.18: Rules That Model the Matrix Switch Signal Paths as SUBSYSTEMS

(@RULE= RULE_012_ MODEL_MATRIX_SWITCH
(@LHS= (Is (MSWITCH.CONFIG) ()] )
(@HYPO= Model_Matrix_Switch_SubSystem)
(@RHS= (CreateObject MSWITCH_CHI12) (|SUBSYSTEMS|))
(CreateObject (MSWITCH_CH21) (|SUBSYSTEMS|)) ))
(@RULE= RULE_011__ MODEL_MATRIX_SWITCH
(@LHS= (Is (MSWITCH.CONFIG) A )
(@HYPO= Model_Matrix_Switch_SubSystem)
(@RHS= (CreateObject (MSWITCH_CHI11) (|SUBSYSTEMS|))
(CreateObject (MSWITCH_CH22) (|SUBSYSTEMS))) )

Qualitative Descriptions of Input/Output Sensor Quantities

The knowledge for isolating faults to the subsystems of the transponder is
contained in another knowledge base, called ISOLATE.tkb. Furthermore, the knowledge
bases required to diagnose faults within isolated subsystems are contained in still other
files. Each of these modules uses information provided by several properties of the
SUBSYSTEMS class. Therefore, the kernel knowledge base must provide a means for
ascertaining all required information.

Isolation requires values for the READING reported by the sensors at the input and
output of each subsystem. As discussed in section 4.2, these strings are to be placed in
the READING_IN and READING_OUT properties of a subsystem. Diagnostics requires values
for the LEVEL reported by the sensors at the input and output of each subsystem. As also
discussed in section 4.2, these strings are to be placed in the LEVEL IN and LEVEL_OUT
properties of a subsystem. The slot actions listed in Code Segment 5. 19 are defined at
the SUBSYSTEMS class level and are used to obtain values for these properties from the

SENSORS hierarchy.
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Code Segment 5.19: Qualitative Descriptions for SUBSYSTEMS Input/Output Quantities

(@SLOT= SUBSYSTEMS.LEVEL IN

(@SOURCES= (Do (SELF.SENSOR_IN\.LEVEL) (SELF.LEVEL_IN)) ) )
(@SLOT= SUBSYSTEMS.LEVEL_OUT

(@SOURCES = (Do (\SELF.SENSOR_OUT\.LEVEL) (SELF.LEVEL_OUT)) )]
(@SLOT= SUBSYSTEMS.READING_IN

(@SOURCES= (Do (\SELF.SENSOR_IN\.READING) (SELF.READING_IN)) )]
(@SLOT= SUBSYSTEMS.READING_OUT

(@SOURCES= (Do (\SELF.SENSOR_OUT\.READING) (SELF.READING_OUT)) )))

Recall from section 5.2.2 that names of the objects that represent the sensors at
a subsystems input and output are initialized within the properties SENSOR_IN and
SENSOR_oUT. Each slot action shown in Code Segment 5.19 provides the OS actions to

evaluate these sensor names and acquire the qualitative descriptions as required.

Dynamics of an Isolated Subsystem Object

The job of the isolation module is to set the ISOLATED property of the objects that
represents the subsystem that has been isolated. The knowledge required for this is
discussed later in chapter 7. For now, the dynamics which occur when this property is
set will be discussed.

Code Segment 5.20 defines a class level slot for the ISOLATED property of
subsystems. During initialization, and at run time, the value of this property is set to
FALSE for all objects in the SUBSYSTEMS class. The run time value directive in the OS
actions assures that this is the case for the dynamically attached object that were

discussed earlier.
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Code Segment 5.20: Dynamics of <|SUBSYSTEMS | >.ISOLATED

(@SLOT= SUBSYSTEMS.ISOLATED
(@INITVAL= FALSE)
(@SOURCES= (RunTimeValue (FALSE) ) )
(@CACTIONS = (Execute ("Returnlsolation”) \
(@ATOMID=SELF;@STRING = *@V(@SELF.NAME)";)) ) )

When the isolation module sets the ISOLATED property of a subsystem object to
TRUE, a IC action is initiated. This action executes an external handler that is defined
within the ToolBook™ GUI. Two parameters are passed to this handler. The first is the
name of the object atom, @4ToMID=...), for the isolated subsystem. The key word SELF
is used to pass the name of the subsystem object which triggered this IC action. Also
passed is the value of the subsystem’s NAME property. Both of these parameters are used
within the ToolBook™ GUI.

When the GUI has finished informing the user of the results from the isolation
phase, the handler for Returnisolation sets the DIAGNOSTIC MODULE property of the
subsystem object that called it. This is why the atom ID was passed as a parameter.
Code Segment 5.21 lists the definitions for slots associated with this property for each
object in the SUBSYSTEMS class. It is the IC actions associated with these slots which
effect the chaining to the spécialized diagnostic modules for the specific subsystems of

the transponder.



Code Segment 5.21: Chaining to Diagnostic Modules

(@SLOT= CH1AMP.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("CHIAMP.ikb") (@LEVEL=ENABLE)))
(@SLOT= CHIRCVR.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES = (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("CHIRCVR.tkb") (@LEVEL= ENABLE;))
(@SLOT= CH1UPX.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("CHIUPX.kb")  (@LEVEL= ENABLE;))
(@SLOT= CH2AMP.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("CH2AMP.tkb") (@LEVEL=ENABLE;))
(@SLOT= CH2RCVR.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("CH2RCVR.tkb") (@LEVEL= ENABLE)))
(@SLOT= CH2UPX.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("CH2UPX.tkb") (@LEVEL=ENABLE;))
(@SLOT= MSWITCH_CH11.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("MSWITCH.tkb") (@LEVEL=ENABLE)))

(@SLOT= MSWITCH_CH12.DIAGNOSTIC_MODULE
(@INITVAL= FALSE)
(@SOURCES= (RunTimeValue (FALSE)) )
(@CACTIONS = (LoadKB ("MSWITCH.tkb") (@LEVEL=ENABLE)

(@SLOT= MSWITCH_CH21.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES = RunTimeValue (FALSE)) )

(@CACTIONS= (LoadKB ("MSWITCH.tkb") (@LEVEL=ENABLE;))
(@SLOT= MSWITCH_CH22.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)) )

(@CACTIONS = (LoadKB ("MSWITCH.tkb") (@LEVEL=ENABLE;))

106
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As for the ISOLATED property, the value of each object’s DIAGNOSTIC_MODULE
property is set to FALSE both during initialization and at run time. When the GUI handler
sets this value to TRUE an IC action is stimulated. This action loads the specialized
diagnostic knowledge base associated with the isolated subsystem object. As there is one
diagnostic knowledge base for each subsystem, a slot must be defined at the object level

for each subsystem object.
5.5.3 Dynamics and Slot Actions of the SENSORS Class

The properties associated with the SENSORs class were introduced in section 4.3
and defined in Code Segment 4.10. Several of these are used to ascertain qualitative
descriptions of the data reported by the sensors of the transponder system. Specifically,

these properties are DATA, ERROR, LEVEL, and READING.
Slot Actions for Qualitative Descriptions of Sensor Quantities

The slot definitions which ascertain qualitative descriptions of the data reported
by sensor components are given in Code Segment 5.22. The values for sensor DATA are
provided through the GUI. As these values change, IC actions defined at the class level
drive the evaluation of qualitative discriptions for the sensor’s READING and LEVEL. The
first three actions associated with DATA reset the values of a sensors ERROR, READING, and
LEVEL to unknown values. This is done to force their re-evaluation when the next three
actions are taken. Assigning the value of a slot to itself, as done in the last three 1C
actions associated with DATA, is an efficient method for forcing the evaluation of a slot.
Neuron Data, Inc., the publishers of NEXPERT", recommends this technique for

situations such as this one.
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(@SLOT= SENSORS.DATA
(@CACTIONS = (Reset (SELF.ERROR))
(Reset (SELF.READING))
(Reset (SELF.LEVEL))
Do (SELF.ERROR) (SELF.ERROR))
Do (SELF.READING) (SELF.READING))
(Do (SELF.LEVEL) (SELF.LEVEL)) ) )
(@SLOT= SENSORS.ERROR .
(@SOURCES= Do (SELF.DATA-SELF.NOMINAL) (SELF.ERROR)) )
(@SLOT= SENSORS.READING
(@SOURCES= (Do (SELF.NAME) (CURRENT_SENSOR.NAME))
(Reset  (Sensor_Reading_Description.BAD))
(Do (Sensor_Reading_Description.BAD)
(Sensor_Reading_Description.BAD))
(Reset (Sensor_Reading_Description.GOODY)
(Do (Sensor_Reading_Description.GOOD)
(Sensor_Reading_Description.GOOD)) )
{(@CACTIONS = (Execute ("ReturnSensorReading™)
(@ATOMID=SELF;@STRING ="@V(@SELF.READING)"})) ) )
(@SLOT= SENSORS.LEVEL
(@SOURCES= (Do (SELF.NAME) (CURRENT_SENSOR.NAME))
(Reset  (Sensor_Level_Description.ZERO))
Do (Sensor_Level Description.ZERO)
(Sensor_Level_Description.ZERO))
(Reset  (Sensor_Level_Description. LOW))
Do (Sensor_Level_Description.LOW)
(Sensor_Level_Description.LOW))
(Reset  (Sensor_Level_Description. HIGH))
(Do (Sensor_Level_Description. HIGH)
(Sensor_Level_Description. HIGH))
(Reset (Sensor_Level_Description.OK))
(Do (Sensor_Level_Description.OK)
(Sensor_Level_Description.OK)) )
(@CACTIONS = (Execute ("ReturnSensorLevel”)
(@ATOMID=SELF;@STRING="@V(@SELF.LEVEL)"})) ) )

The value of the current sensors’s error, SELF.ERROR, is unknown at this time.

When its value is evaluated, the OS actions associated with the class level slot definition

calculate the difference between the current and nominal sensor data values as the signed
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error in the sensor reading. This value is used in determining values for the reading and
level. It is discussed shortly.

The sources for READING and LEVEL perform very similar functions. When values
for each of these are pursued, the OS actions do the following. First, the value for NAME
of the blackboard object CURRENT_SENSOR is set to the name of the current sensor object.
Then a sequence of slots are reset and then forced to be evaluated. These slots represent
the hypotheses of rules which ascribe the qualitative descriptions to the sensor quantities
in question. This list is pursued sequentially until a value is set. Once a value is set,
the OS actions are terminated and the remainder of the directive ignored. The rules
which ascribe qualitative descriptions to sensor readings and levels are defined in Code
Segments 5.23 and 5.24.

Also defined with the slots for SENSORS.READING and .LEVEL are IC actions which
fire when the sources establish their values. These actions communicate the new

qualitative descriptions to an external handler that is defined in the ToolBook™ GUL.
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Code Segment 5.23: Rules to Ascribe Qualitative Descriptions to Sensor Levels

(@RULE= RULE_003__QUALIFICATION_OF_HIGH_SENSOR_LEVELS
(@LHS= (> (CURRENT_SENSOR.NAME\.ERROR) (0)) )
(@HYPO= Sensor_Level_Description. HIGH)
(@RHS= (Let (CURRENT_SENSOR.NAME\.LEVEL) ("HIGH")) ) )
(@RULE= RULE_004__QUALIFICATION_OF_LOW_SENSOR_LEVELS
(@LHS= (< (\CURRENT_SENSOR.NAME\.ERROR) (0)) )
(@HYPO= Sensor_Level_Description. LOW)
(@RHS= (Let (\CURRENT_SENSOR.NAME\.LEVEL) ("LOW™)) ) )
(@RULE= RULE_005__QUALIFICATION_OF_OK_SENSOR_LEVELS
(@LHS= (<= (ABS(\CURRENT_SENSOR.NAME\.ERROR)- \
\CURRENT_SENSOR.NAME\.TOLERANCE) [(©)) )
(@HYPO= Sensor_Level_Description.OK)
(@RHS= (Let (\CURRENT_SENSOR.NAME\.LEVEL) ("OK")) ) )
(@RULE= RULE_006__QUALIFICATION_OF_ZERO_SENSOR_LEVELS
(@LHS= (<= (\CURRENT_SENSOR.NAME\.DATA- \
\CURRENT_SENSOR.NAME\.ZERO_LEVEL) ) )
(@HYPO= Sensor_Level_Description.ZERO)
(@RHS= (Let (CURRENT_SENSOR.NAME\.LEVEL) ("ZERO")) ) )

Code Segment 5.24: Rules to Ascribe Qualitative Descriptions to Sensor Readings

(@RULE= RULE_001__QUALIFICATION_OF_BAD_SENSOR_READINGS
(@LHS= (> (ABSOCURRENT_SENSOR.NAME\.ERROR)- \
\CURRENT_SENSOR.NAME\.TOLERANCE) ()} )
(@HYPO= Sensor_Reading_Description.BAD)
(@RHS= (Let (CURRENT_SENSOR.NAME\.READING) ("BAD")
(CreateObject (CURRENT_SENSOR.NAME)) (/BAD_SENSORS|))
(Let (CURRENT_SENSOR.NAME\.EVALUATED) (TRUE)) )»
(@RULE= RULE_002__QUALIFICATION_OF_GOOD_SENSOR_READINGS
(@LHS= (<= (ABSO\CURRENT_SENSOR.NAME\.ERROR)- \
\CURRENT_SENSOR.NAME\.TOLERANCE) o)) )
(@HYPO= Sensor_Reading_Description.GOOD)
(@RHS= (Let (\CURRENT_SENSOR.NAME\.READING) ("GOOD")

(Let (\CURRENT_SENSOR.NAME\.EVALUATED) (TRUBE)) ))

5.5.4 Implementation of MYCIN Technique and Certainty Analysis

The MYCIN technique for the incremental accumulation of evidence and its use
in certainty analysis was first introduced in sections 3.3.2 and 3.3.3. Then, the

representation of properties for certainty analysis were given in Code Segment 4.14.
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This section discusses the implementation of the MYCIN technique at the
CERTAINTY ANALYSIS class level.

The slot definitions for the properties involved in certainty analysis are given in

Code Segment 5.25. Supporting rules for ascribing qualitative descriptions to

CONFIDENCE in fault state hypothesis are listed in Code Segment 5.26.



Code Segment 5.25: certainty analysis
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(@SLOT = CERTAINTY_ANALYSIS.AB

(@INTTVAL=. 0.0)
(@SOURCES= (RunTimeValue ©.0) )
(@CACTIONS = Do ((SELF.AB-SELF.AD)/MIN(SELF.AB,SELF.AD))
(SELF.CP) ) o)
(@SLOT= CERTAINTY_ANALYSIS.AD
(@INITVAL= 0.0p
(@SOURCES= (RunTimeValue 0.0) )
(@CACTIONS = (Do ((SELF.AB-SELF.AD)/MIN(SELF.AB,SELF.AD))
(SELF.CF)) ) )
(@SLOT= CERTAINTY_ANALYSIS.CF
(@INITVAL= 0.0
(@SOURCES= (RunTimeValue 0.0) )
(@CACTIONS = Do - (SELF.NAME) (CURRENT_FAULT.NAME))
(Reset (Evaluate_Certainty_Factors))
(Do (Evaluate_Certainty_Factors) \
(Evaluate_Certainty_Factors)) ) )

(@SLOT= CERTAINTY_ANALYSIS.MB

(@INITVAL= 0.0)

(@SOURCES= (RunTimeValue 0.0 )

(@CACTIONS = Do (SELF.AB+SELF.MB*(1-SELF.AB)) - (SELF.AB))
(Resat (SELF.MB)) ) )

(@SLOT= CERTAINTY_ANALYSIS.MD

(@INTTVAL= 0.0)
(@SOURCES= (RunTimeValue 0.0) )
(@CACTIONS = (Do (SELF.AD+SELF.MD*(1-SELF.AD)) (SELF.AD))

(Resct (SELF.MD)) ) )




Code Segment 5.26: Rules to Ascribe Qualitative Descriptions to Fault State
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(@RULE= RULE_029_ QUALIFICATION_OF_CONFIDENCE__REJECTED
(@LHS= (<= (CURRENT_FAULT.NAME\.CF) (-0.9) )
(@HYPO= Evaluate_Certainty_Factors)
(@RHS= (L&t (\CURRENT_FAULT.NAME\.CONFIDENCE) ("REJECTED"))
(Let (CURRENT_FAULT.NAME\.VERIFIED)  (FALSE)) )
(@RULE= RULE_028_ QUA LIFICATION_OF_CONFIDENCE__VERY_IMPROBABLE
(@LHS= (<= (CURRENT_FAULT.NAME\.CF) (-0.75)
(&3 (CURRENT_FAULT.NAME\.CF) (-0.9) )
(@HYPO= Evaluate_Certainty_Factors)
(GRHS= (Let (CURRENT_FAULT.NAME\.CONFIDENCE) \
("VERY_IMPROBABLE")) ) )
(@RULE= RULE_027_ QUALIFICATION_OF_CONFIDENCE_ IMPROBABLE
(@LHS= (<= (CURRENT_FAULT.NAME\.CF) (-0.5)
> (CURRENT_FAULT.NAME\.CFH) -075)» )
(@HYPO= Evaluate_Certainty _Factors)
(@RHS= (Let (\CURRENT_FAULT.NAME\.CONFIDENCE) ("IMPROBABLE")) )
(@RULE= RULE_026__QUALIFICATION_OF_CONFIDENCE__ UNLIKELY
(@LHS= (<= (\CURRENT_FAULT.NAME\.CF) (-0.25))
(&4 (CURRENT_FAULT .NAME\.CF) -0.5) )
(@HYPO= Evaluate_Cenrtainty_Factors)
(@RHS= (Lt (\CURRENT_FAULT.NAME\.CONFIDENCE) ("UNLIKELY"))
(@RULE= RULE_025__QUALIFICATION_OF_CONFIDENCE__UNKNOWN
(@LHS= (> (CURRENT_FAULT.NAME\.CF) (-0.25))
(< (CURRENT_FAULT.NAME\.CH) (0.25) )
(@HYPO= Evaluate_Certainty_Factors)
(@RHS= (Lt (\CURRENT_FAULT.NAME\.CONFIDENCE) ("UNKNOWN"))
(BRULE= RULE_024_ QUALIFICATION_OF_CONFIDENCE__ POSSIBLE
(@LHS= (>= (CURRENT_FAULT.NAME\.CF) (0.25))
(< QCURRENT_FAULT .NAME\.CF) 0.5) )
(@HYPO= Evaluate_Certainty_Factors)
(@RHS= (Let (\CURRENT_FAULT.NAME\.CONFIDENCE) ("POSSIBLE"))
(GRULE= RULE_023__QUALIFICATION_OF_CONFIDENCE__LIKELY
(@LHS= (> = (CURRENT_FAULT.NAME\.CF) (0.5))
(< (\CURRENT_FAULT.NAME\.CP) ©715) )
(@HYPO= Evaluate_Certainty_Factors)
(@RHS= (Lt (\CURRENT_FAULT.NAME\.CONFIDENCE) ("LIKELY"))
(@QRULE= RULE_022_ QUALIFICATION_OF_CONFIDENCE_ PROBABLE
(@LHS= (>= (CURRENT_FAULT.NAME\.CF) 0.75))
(< (CURRENT_FAULT.NAME\.CF) ©.9) )
(@HYPO= Evaluate_Centainty_Factors)
(@RHS= (Lt (CURRENT_FAULT.NAME\.CONFIDENCE) ("PROBABLE"))
(@RULE= RULE_021__QUALIFICATION_OF_CONFIDENCE__ESTABLISHED
(@LHS= (> = (CURRENT_FAULT.NAME\.CF) (0.9) )
(@HYPO= Evaluate_Certainty_Factors)
(@RHS= (Lt (\CURRENT_FAULT.NAME\.CONFIDENCE) ("ESTABLISHED"))

(Let (CURRENT_FAULT.NAME\.VERIFIED) (TRUE)) )

»

»

»

»
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5.5.5 Dynamics of Interaction with ToolBook™ Interface

There are three properties of the SENSORS class that are used to communicate
information to the ToolBook™ GUI. These properties are RTN_LEVEL, RTN_NOMINAL, and
RTN_READING. They were introduced in section 4.3 and defined in Code Segment 4.10,
but their descussion was delayed to now.

Their operation is simple. Whenever the GUI needs the current value of a
sensors LEVEL, NOMINAL, or READING property, it can toggle the values of these slots
between TRUE and FALSE. The IC actions given in Code Segment 5.27 are then

stimulated to execute externally defined handlers and return the desired quantity.

Code Segment 5.27: Definition of GUI Interactive Slots

(@SLOT= SENSORS.RTN_LEVEL.

~ (@CACTIONS = (Execute ("ReturnSensorLevel”) \
(@ATOMID=SELF;@STRING="@V(@SELF.LEVEL)";)) ) )
{(@SLOT= *  SENSORS.RTN_NOMINAL
(@CACTIONS = (Execute ("ReturnNominalData") \
(@ATOMID =SELF;@STRING ="@V(@SELF.NOMINAL)";)) )]
(@SLOT= SENSORS.RTN_READING
(@CACTIONS = (Execute ("ReturnSensorReading”) \
: (@ATOMID=SELF;@STRING="@V(@SELF.READING)";)) ) )

A similar slot was defined earlier in Code Segment 5.11 for the IC actions of
SENSORS.NOMINAL. It is a redundancy of the SENSORS.RTN_NOMINAL slot in that it
communicates the value of the current sensor objects nominal data to the GUIL
However, this redundancy added efficiency in speed and was included with the slot
definition for the NOMINAL property slot.

The final code segment discussed in this chapter defines two rules which are

required for the GUI. RULE_901 is used to retrieve and return nominal sensor data to the
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GUI. RULE_%2 is used to a list of all sensors who’s readings were described as "B4D. "
Each of these use the IC actions defined in Code Segment 5.27 by toggling sensor

property values.

Code Segment 5.28: Rules Required by ToolBook™ Interface

(@RULE= RULE_90'Z_RETURN_LIST_OF_BAD_SB’ISORS_TO_ToolBook
(@LHS= (Yes (TBK_R cquest. Bad_Sensors)) )
(@HYPO= Return_BAD_Scasors)
(@RHS= (Let ({|BAD_SENSORS|}.RTN_READING) (TRUE))

(Strategy  (@CACTIONSON =FALSE;))

(Reset ({|BAD_SENSORS|} .RTN_READING))
(Strategy  (@CACTIONSON=TRUE))

(Execute  ("BadSensorReadingsReturned™)) ) )

(@RULE= RULE_901_RETRIEVE_SBJSOR_PARAMETERS_FROM_SENSOR_DATABASE_ \
AND_RETURN_NOMINAL_DATA_TO_ToolBook

(@LHS= (Yes ('l’BK_chucsl.Naniml_Smsor__Dau))
(Retrieve  ("SENSOR.nxp")
(@TYPE=NXPDB;@FWRD =FALSE;@UNKNOWN= TRUE;@PROPS=NAME,
NOMINAL, TOLERANCE,ZERO_LEVEL;@FIELDS="NAME",
*NOMINAL","TOLERANCE","ZERO_LEVEL";@ATOMS = < |SENSORS| >)))

(@HYPO= Return_Nominal_Seasor_Data) :

(@RHS= (Do (< |SENSORS{ > .NOMINAL) (< ISENSORS{ > NOMINAL)) )

R




CHAPTER VI
FAULT DETECTION MODULE KNOWLEDGE BASE

This chapter discusses the rule module for fault detection knowledge. Recall from
chapter 1 that each task in the diagnostic process was separated into an individual
knowledge base. The knowledge for the detection of faults in the ACTS transponder
system is contained in the DETECT.tkb knowledge base. A complete listing of that
module can be found in Appendix B.

In section 1.3, the purpose of the fault detection task was defined as to detect any
misbehavior in the performance of the ACTS transponder system. It was explained how
this task involved the analysis of current sensor information in the form of qualitative
descriptions for sensor readings. The knowledge required to detect a fault was then
summarized as establishing a “BAD" reading on any sensor in the transponder.

The knowledge required to detect a fault, or determine that the transponder
system is functioning properly is defined in Code Segment 6.1. First, the objects which
represent the hypotheses of rules are defined. Then the two rules of the fault detection
module are defined.

RULE_101 represents the knowledge required to detect a fault. It first checks to
see if the ToolBook Graphical User Interface (GUI) has requested fault detection. Then
it scans the READING properties of all objects in the SENSORS class. It will fire if it finds
any sensors who’s reading is "B4D.” Then, it executes an externally defined handler

which communicates this result to the GUI.
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Code Segment 6.1: Rules for the Detection of a Fault

(@VERSION= 020)

(@OBIECT= A_Fault_Has_Been_Detected
(@PROPERTIES= Value @TYPE=Boolean; ) )

(@OBJECT= A_Fault_Has Not_Been_Detected
(@PROPERTIES= Value @TYPE=Boolean; ) )

(@OBJECT= Transponder_Functioning_Properly
(@PROPERTIES= Value @TYPE=DBoolean; ) )

(@RULE= RULE_101__DETECTION_OF_A_FAULT
(@LHS= (Yes (TBK_Request.Detection))
(s (< |SENSORS| > .READING) ("BAD") ) )
(@HYPO= A_Fault_Has_Been_Detected)
(@RHS= (Execute ("FaultDetected®)) ) )

(@RULE= RULE_102__NON_DETECTION_OF_A_FAULT
(@LHS= (Yes (TBK_Request. Detection))
(s ({!SENSORS|}.READING)  ("GOOD") )]
(@HYPO= A_Fault_Has_Not_Been_Detected)
(@RHS= (Execute ("NoFaultDetected")) ) )

When NEXPERT™ sends the message "FaultDetected” to the ToolBook™ GUI, a
handler defined there takes control from the NEXPERT" application and the inference
process is suspended. The user is informed that a fault has been detected within the
transponder system and why this conclusion was reached. The user then has two options.
He may either choose to continue the diagnostic process or stop and enter new data.

If the user decides not to pursue the rest of the diagnostic process, the fault
detection' module is unloaded. The user is then returned to the sensor data input mode
of the GUI. Should the user choose to continue with the rest of the diagnostic process,
the GUI will then load and initiate the module for the next task, the fault isolation
module. This module is discussed in the next chapter.

RULE_101 can only report results to the ToolBook™ GUI if a fault has been

detected. This is because the right hand side actions of a rule will only be executed
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when the rule fires. Furthermore, in atom-based inferencing, as used by NEXPERT",
there is no "ELSE” structure. This presents a problem in reporting to the GUI that the
fault detection module has failed to detect a fault; implying that the transponder system
is functioning properly. The result is the requirement of an additional rule.

RULE_102 represents the knowledge required to determine that the transponder is
functioning properly. It first checks to see if the ToolBook Graphical User Interface
(GUI) has requested fault detection. Then it scans the READING properties of all objects
in the SENSORS class. It will fire only if it finds that all sensors are reporting "GOOD.
Then, it executes an externally defined handler which communicates this result to the
GUL

The GUI handler for this message informs the user that the data he has entered
is consistent with the proper functioning of the transponder system. The inference
process is terminated, the fault detection module is unloaded, and the fidex kernel
knowledge base is reset. The user then has the options to either end his session or

evaluate a new set of data.



CHAPTER VII
FAULT ISOLATION MODULE KNOWLEDGE BASE

This chapter discusses the rule module for fault isolation knowledge. Recall from
chapter 1 that each task in the diagnostic process was separated into an individual
knowledge base. The knowledge for the isolation of faults is contained in the
ISOLATE.tkb knowledge base. A complete listing of that module can be found in
Appendix C.

In section 1.3, the purpose of the fault isolation task was defined as to isolate a
suspected fault to a subsystem of the transponder. It was explained how this task also
involved the analysis of current sensor information in the form of qualitative descriptions
for sensor readings. The knowledge required to isolate a fault was then summarized as
finding a subsystem who’s input sensor is reporting a “GooD” reading and who’s output
sensor is reporting a "BAD" reading.

Section 1.3 also discusses a subtask of sensor validation. This task was designed
to identify the possibility of a faulty sensor. The knowledge required to validate sensor
readings is the converse of that for isolating a fault. It can be summarizes as finding a
subsystem who’s input sensor is reporting a “B4D" reading and who’s output sensor is
reporting a “GooD" reading. The following sections discuss the representation of

knowledge required for each of these tasks.
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7.1 Isolation of Faults to a Transponder Subsystem

The knowledge required to isolate a fault is defined in Code Segment 7.1. First,
the objects which represent the hypotheses of rules are defined. Then the two rules of

the fault isolation task are defined.

Code Segment 7.1: Rules for the Isolation of a Fault

(@VERSION= 020)
(@OBIJECT= Isolate_Fault_Symptoms

(@PROPERTIES= Value @TYPE=Boolean; ) )
(@RULE= RULE_20 l_ISOLATION_OF_FAULT_TO_SUBSYSTF.M

(@LHS= (Yes (TBK_Request.Isolation))
(Yes (Model_Matrix_Switch_SubSystems) )

(Is (< |SUBSYSTEMS| >.READING_IN) ("GOOD")
(Is (< |SUBSYSTEMS| >.READING_OUT) ("BAD")))

(@HYPO= Isolate_fault_Symptoms)

(@RHS= (Let (< |SUBSYSTEMS| >.ISOLATED) (TRUE) )
(CreateObject (< |SUBSYSTEMS| >) \
(| ISOLATED_SUB_SYSTEMS)
(Execute ("Faulilsolated™)) * ) )

(@RULE= RULE_ZOZ_ISOLATION_OF_FAULT_TO_FREQUENCY_COMPONENTS

(@LHS= (Yes (TBK_Request.Isolation))
(Yes (Model_Matrix_Switch_SubSystems) )

(NotMember ({|BAD_SENSORS|}) \
(< |PWR_SENSORS| >) )
(Is (< |BER_SENSORS| > .READING) ("BAD™)))
(@HYPO= Isolate_fault_Symptoms)
(@RHS = (CreateObject (FREQ_COMPONENTS) \

(|1SOLATED_SUB_SYSTEMS)
(Let (FREQ_COMPONENTS ISOLATED) (TRUE) )
(Execute ("FaultIsolated™)) ) )

RULE_201 represents the knowledge required to isolate a fault to one of the
subsystems of the transponder. It first checks to see if the ToolBook Graphical User
Interface (GUI) has requested fault isolation. Next, it verifies that the matrix switch
paths have been modeled as subsystems of the transponder. Then it scans the READING IN

and READING OUT properties of all objects in the SUBSYSTEMS class. It will fire if it finds
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any subsystem who’s input reading is “GooD” and output reading is "B4D.* If the rule
fires, it flags the subsystem which met its conditions as ISOLATED and creates a list of
ISOLATED SUB_SYSTEMS in case more than one fault exists within the transponder. And
finally, it executes an externally defined handler in the GUL

For this case, the purpose for sending this message to the GUI is simply to
suspend the inferencing process and turn control over to the GUI. Recall from section
5.5.2 that slot dynamics associated with the ISOLATED property of SUBSYSTEMS effect the
loading and initialization of subsystem diagnostic modules.

RULE 202 represents the knowledge required to isolate a fault to the group of
frequency components in the transponder. It also first checks to see if the ToolBook
Graphical User Interface (GUI) has requested fault isolation and that the matrix switch
paths have been modeled as subsystems of the transponder. However, this rule scans the
list of bad sensors that was created during the evaluation of sensor readings. It checks
for the condition where no signal power level sensors report "BAD" readings, and at least
one bit error rate register does. If it fires, it dynamically creates an object called
FREQ COMPONENTs and attaches it to the ISOLATED_SUB_SYSTEMS class. This new object
will inherit subsystem properties, and its ISOLATED flag is set to TRUE. And finally, as
for RULE_201, it executes an externally defined handler which communicates these results

to the GUI
7.2 Validation of Sensorory Information

The knowledge required to validate sensor readings is defined in Code Segment
7.3. First, an object to represent the hypothesis of the rule is defined. Then the single
rule of the sensor validation task is defined. RULE_203 represents the knowledge réquired

to determine that the detected fault may be the result of a faulty sensor. Like those for
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fault isolation, it first checks to see if the ToolBook Graphical User Interface (GUI) has
requested fault isolation and that the matrix switch paths have been modeled as

subsystems of the transponder.

Code Segment 7.2: Rules for the Validation of Sensors

(@OBJECT= Validate_Sensors
(@PROPERTIES= Value @TYPE=Boolean; ) )
(@RULE= RULE_203__ VALIDATE_SENSOR_DATA

(@LHS= (Yes (TBK_Request.Isolation))
(Yes (Model_Matrix_Switch_SubSystems) )

(s (< |SUBSYSTEMS| > .READING_IN) ("BAD"))
(s (< |SUBSYSTEMS| > .READING_OUT) ("GOOD™)))
(@HYPO= Validate_Sensors)
(@RHS= (CreateObject (SENSOR_COMPONENTS) \

(|ISOLATED_SUB_SYSTEMS N
(Let (SENSOR_COMPONENTS.ISOLATED) (TRUE) )
(Execute ("SensorFault”)) ) )

However, this rule scans the READING_IN and READING_OUT properties of all
objects in the SUBSYSTEMS class for the condition of any subsystem who’s input reading
is "BAD" and output reading is “Goop.- If it fires, it dynamically creates an object called
SENSOR_COMPONENTS and attaches it to the ISOLATED_SUB_SYSTEMS class. This new object
will inherit subsystem properties, and its ISOLATED flag is set to TRUE. And finally, it
executes an externally defined handler which communicates these results to the GUI.

The handler for the "SensorFault” takes control and the NEXPERT inference
process is suspended. The user is informed that the data he has entered is not consistent
with the behavior of a fault in the transponder. He is also told that it is possible that this
is the result of a faulty sensor; an invalid sensor reading. The user then has the options
to reenter the sensory information, or to continue with the diagnostic process. Should

he choose to continue, the remainder of the diagnostic process is pursued as discussed
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in section 1.3. Recall from that section the special conditions that will be considered

should a sensor fault be suspected.



CHAPTER VIII
FAULT DIAGNOSIS AND RESPONSE
KNOWLEDGE BASES

This chapter discusses the community of specialized diagnostic expert systems for
the fault diagnosis and response tasks in the diagnostic process. Recall from chapter 1
that each task in the diagnostic process was separated into an individual knowledge base.
Furthermore, the rule knowledge required to diagnose faults associated with each
subsystem of the transponder were also separated into specialized diagnostic knowledge
bases. Listings for these knowledge bases can be found in Appendices D through G.

These specialized diagnostic systems use knowledge which is rule-based and
backward chaining in nature. The hypotheses for these rules represent the potential faults
in the isolated subsystem. The order in which they are placed on the agenda is based on
the history of the fault states. Maintaining this history permits FIDEX to pursue the
most likely problems first.

Each diagnostic system was also designed with an ability to perform inexact
reasoning. This was done to overcome problems which resulted from limited information
about the transponder’s performance. Such an ability was important in that the FIDEX
system would often need to make a “"guess" at thé most likely fault state. This relies
upon establishing incremental measures of belief or disbelief in rule conclusions. These
two factors are then used to establish an overall confidence when a conclusion is

supported by multiple rules.
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The final task of fault response has been incorporated within the diagnostic
modules for each subsystem. The present strategy for fault response is to provide
recommendations for reconfiguring the components or sensors. Plans are to include the
capability to reconsider fault diagnosis if the recommended action was ineffective.
FIDEX would retain its past diagnosis, including recommendations, and reconsider the
problem with information made available following the corrections to the transponder.
There are several databases used by FIDEX. Seven of these are used to provide
FIDEX a limited learning capability. FIDEX stores the failure history of the transponder
subsystems system in associated database. Each known fault state is represented by a
record that contains fields that represent the failure history of that fault state. Following
diagnostics, FIDEX increments the history of the identified fault. This record keeping
is used to direct the search strategy of future sessions toward the most likely faults. The
next section discusses how this technique was implemented in all the diagnostic

knowledgebases.

8.1 Learning and Adaptive Search Strategies

When NEXPERT’s inference mechanism needs to process a slot or rule
hypothesis, it does so according to their inference priorities. This processing occurs by
the order of highest-first. The value of a slot or hypothesis’s inference priority may be
initialized from its default value of 1 to any integer between -32,000 and 32,000.

Inference priorities can be dynamically changed to allow slots to be processed
with different priorities at different times.  This is Neuron Data’s mechanism for
allowing the application to adapt itself to changing conditions. To implement this, a

special slot called an inference slot is assigned to a slot’s inference priority. The
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inference priority then takes on the value contained by the inference slot. This value is
called the inference number of the atom.

The search strategy is adaptive in that the priorities by which known fault states
are placed on the agenda is based upon the values maintained in the history database.
A class level property of all fault states is the integer INF_CAT. The value of this property
is retrieved from the database when the diagnostic task is initialized. This property is
then assigned to the value of the inference slot of the fault state hypothesis. When the
diagnostic task establishes a known fault state, the value of its inference category is
incremented accordingly. The updated value is then stored in the learning database.

Recall the definition of INF_cAT property from section 4.4. This integer property
is shared by all objects in the FAULT STATES class. As each object in that class represents
a known fault state, this property is linked as the inference slot of fault state hypotheses.
Code Segment 4.1 shows this linking for the AMP_GENERAL_FAILURE (Amplifier General

Failure) fault state.

Code Segment 8.1: Linking of FAULT_STATE Inference Slots -

(@SLOT= AMP_GENERAL_FAILURE.VERIFIED
@INFATOM= AMP GENERAL_FAILURE.INF_CAT; )

One limitation of the NEXPERT inference mechanism is that if the value of a slot
defined as an inference slot is UNKNowN, NEXPERT will not try to evaluate a value for
that slot. Therefore, the values of <|FAULT_STATES|>.INF_CAT must be retrieved from
the database before the diagnostic session begins. This initialization is effected by
placing a rule on the agenda and forcing its evaluation. Code Segment 8.2 gives the

definition of this rule.



127

Code Segment 8.2: Retrieval of < |FAULT_STATES|>.INF_CAT

(@RULE= RULE_397__RETRIEVE_INFERENCE_CATEGORIES_FROM_DATABASE
(GLHS= (Yes (Initialize_INF_CATs) )
(@QHYPO= Retricve_INF_CATs_From_DataBasc)

(GRHS= (Retricve ("CHIRCVR.axp")
(@TYPE= NXPDB;
@FWRD= FALSE;
@UNKNOW= TRUE;
@NAME= " < |FAULT_STATES|>"
@PROPS= INF_CAT;
@FIELDS= "INF_CAT") ) ) )

- o -

During the initialization of a diagnostic module (ie. the channel 1 receiver
subsystem diagnostic module in Code Segment 8.2), a value of TRUE is volunteered for
Inirialize_INF_CATs. This places RULE_397 on the agenda and causes it to fire. The right
hand side action then retrieves all inference category values form the designated database.
In short, this discussion has addressed the recalling of inference categories from previous
sessions with FIDEX. The final topic of this section is to address how FIDEX stores,
or learns, about new inference categories for its fault state hypotheses.

During the initialization of diagnostic knowledge bases, the IC actions associated
with slots are disabled, @CACTIONSON= FALSE; . Once the initialization process has
completed, they are enabled again, @CACTIONSON= TRUE; . This allows changing the

value of a fault state’s INF_CAT slot to trigger the saving of a new inference category.

Code Segment 8.3: Storing < |FAULT_STATES| >.INF_CAT

(@SLOT = FAULT_STATES.INF_CAT
(@CACTIONS = (Write ("CHIRCVR.nxp")

(@TYPE= NXPDB;
@FWRD = FALSE;
@UNKNOW= TRUE;
@PROPS= INF_CAT;
@FIELDS = "INF_CAT";
@ATOMS= SELF;) ) ) )

P I e
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Code Segment 8.3 shows how changing the value of any FAULT_STATES inference
category will result in that new value being written to the learning database. The values
for the inference category are incremented by rules which support the fault state

hypotheses. Code Segment 8.4 gives an example of such a rule.

Code Segment 8.4: Incrementing < |FAULT_STATES| >.INF_CAT

(GRULE= RULE_301__ATTENUATOR_SETTING_ERROR
(@LHS= (> (IFPC_ATTN_1 .SETTING_ERROR) Q.o
(@HYPO= ATTENUATOR_SETTING_ERROR.VERIFIED)
(@RHS= (Do (ATTENUATOR_SETTING_ERROR.INF_CAT+1) \
(ATTENUATOR_SETTING_ERROR.INF_CAT)) ) )

Code Segment 8.4 shows a rule that supports a fault state hypothesis that an IFPC
attenuator has been set wrong. If this rule fires, its action will add 1 to the value of the

inference category for the fault state ATTENUATOR_SETTING_ERROR.
8.2 Subsystems Diagnostic Modules

The operation of all the diagnostic modules is identical. Therefore, they will be
discussed together. Complete listings may be found in the appendices. The following
discussior_i will be in a general sense for all fault states.

Again, each known fault state is represented by an object attached to the class of
FAULT STATES in the object space of the diagnostic expert systems. After initialization,
a suggestion is made that all fault states are to be verified, @SUGGESTLST=
< |FAULT STATES|>.VERIFIED. This suggestion places all fault states on the agenda. This

is, in fact, an ordered list. According to the discussion of the previous section, the order
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by which they are placed on the agenda will be based on the values of their INF_CAT
properties.

The inference strategy used in the diagnostic process to this point has been
forward chaining, or data driven. Now, the strategy for diagnosing fault states turns to
backward chaining. Each fault state hypothesis is taken from the agenda, in turn, and
pursued exhaustivly. Associative rule knowledge which supports each hypothesis will
be evaluated in an attempt to conclude the existence of a predefined fault state.

As the symptoms for these hard coded failure modes are pursued, evidence is also
accumulated toward belief in, or rejection of, cumulatively associative and abstract fault
states. Once the entire list has been evaluated, the fault state with the highest confidence
factor is then presented as the diagnosed fault. The mechanisms of this inexact reasoning
were discusses in several previous chapters.

Again, as discussed in previous chapters, it is possible that the entire list be
evaluated and no fault state indicate sufficient certainty. It is here where the
accumulation of evidence at the abstract, or class, level becomes significant. FIDEX is
able to recover from its failure to diagnose the fault state by presenting a classification
of faults as the diagnosed fault. This is to'say, FIDEX has the capacity to offer
conclusions of the form: "The observed symptoms do not correspond to any known fdult
states of the transponder system. However, they do appear to be consistent with those
of an amplifier failure.”

Another important aspect of the architecture of the fault diagnostic modules is the
facility with which diagnostic knowledge may be maintained. As the experience of the
SITE personnel grows, and more knowledge is gained about the failure modes of the
transponder, this knowledge can be appended to the knowledge bases by two simple

manners. First, should more knowledge be gained about an existing fault, new rules may
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be added. By attaching these new rules to the existing fault state hypotheses, they will
automatically be incorporated into the inference strategy of the diagnostic module.

Should a new fault state be discovered, the procedure is slightly more involved,
but not more complex. A new fault state can be added to a diagnostic module by first
creating an object to represent it and attaching that object into the FAULT_STATES
hierarchy. Then as discussed earlier, any rule knowledge which supports that new fault

state can be encoded into the inference strategy by attaching it to the new hypothesis.



CHAPTER IX
SUMMARY OF RESEARCH

FIDEX, the Fault Isolation and Diagnosis Expert System, was the result of a
research contract with the National Aeronautics and Space Administration (NASA),
Lewis Research Center, in Cleveland Ohio. It was designed to provide intelligent
computer diagnostics for a Ka-band satellite transponder system, as part of the Advanced
Communication Technology Satellite (ACTS) System. The overall goal of this research
was to enhance the reliability of the satellite by demonstrating the application of expert
system technologies as a means for providing the transponder with an autonomous
diagnosis capability.

The results of this research were more than just the development of a prototype
diagnosis expert system. The frame-based approach that was taken proved that
hierarchical structures are the best means for representing complex structures such as the
satellite’s: subsystems, components, sensors, and fault states. Furthermore, FIDEX
demonstrated that integrating these hierarchical structures into a lattice provided a flexible
representation scheme that greatly facilitated the maintenance of the system architecture.

FIDEX s ability to detect abnormalities in the sensors which provide information
on the transponder’s performance proved effective for ruling out simple sensor
malfunctions. However, The major strengths of the FIDEX system have appeared on
two different fronts.

First, FIDEX proved that inexact reasoning techniques, based on the

incrementally acquired evidence, are effective means for overcoming limitations on the

131



132
availability of information. This approach enabled FIDEX to reason in an abstract sense,
and thus recover from situations where no concrete diagnostic conclusion could be
reached. Furthermore, the frame-based architecture which resulted for the
implementation of these techniques greatly facilitates the matter of maintaining the
knowledge which supports the diagnosis of fault states.

The second major strength of the FIDEX system was that it demonstrated that a
primitive databased learning ability was an effective approach to maintaining records of
past diagnosis studies. This ability permitted FIDEX to adapt its diagnostic search
strategies to search first for those faults which are most likely to occur. Moreover, as
most diagnostic expert systems learn through adaptations of new diagnostic knowledge,
FIDEX enhanced its intelligence by learning about the diagnostic process itself.

In its present form, FIDEX is a prototype system that is practical for
demonstration purposes only. However, its overall design, with its generic structures and
innovative features, makes the FIDEX system an applicable example for other types of
diagnostic systems. Furthermore, the stress placed on the maintainability of its
architecture provides for future developments and expansions which encompass a wide
range of possibilities. Primarily however, it is the hope of its developers that the FIDEX

system will eventually be augmented into a fully autonomous diagnostic expert system.
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APPENDIX A
FIDEX KERNEL KNOWLEDGE BASE

A.1 Sensor Initialization Database

Name | NOMINAL | TOLERANCE | ZERO_LEVEL !
BER_1! 0.0} 0.005! 0.0}
BER_2! 0.0} 0.005/ 0.0}
BER_3! 0.0 0.005 0.0}
BER_4! 0.0! 0.005 0.0!
BER_S | 0.0} 0.005} 0.0}
BER_6! 0.0! 0.005! 0.0}

PM_1] -6.0} 2.0} -30.0}

PM_2! -6.0! 2.0} -30.0}

PM_3! 0.0} 2.0} -30.0}

PM_4 ! 0.0} 2.0} -30.0!

PM_5! -15.0! 2.0} -30.0}

PM_6! -15.0! 2.0} -30.0!

PM_7! 5.0/ 2.0¢ -30.0!

PM_8! 5.0/ 2.0! -30.0!

wededdedrdchkk AREAREARTAARERRAAARAAREAAEERNTNN

AAKAKAAKARERTRAAXERARRRNRRNARAARR AR wedk
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A.3 FIDEX Kernel Knowledge Base

(aVERSION=

(@APROPERTY=
(aPROPERTY=
(QPROPERTY=
(@PROPERTY=
(2PROPERTY=
(aPROPERTY=
(IPROPERTY=
(QPROPERTY=
(aPROPERTY=
(aPROPERTY=
(APROPERTY=
(APROPERTY=
(2PROPERTY=
(2PROPERTY=
(IPROPERTY=
(IPROPERTY=
(9PROPERTY=
(aPROPERTY=
(IPROPERTY=
(IPROPERTY=
{PROPERTY=
(APROPERTY=
(IPROPERTY=
(APROPERTY=
(9PROPERTY=
(QPROPERTY=
(IPROPERTY=
(9PROPERTY=
(IPROPERTY=
(IPROPERTY=
(QAPROPERTY=
(IPROPERTY=
(QPROPERTY=
(2PROPERTY=
(2PROPERTY=
(PROPERTY=
(APROPERTY=
(APROPERTY=
(IPROPERTY=
(APROPERTY=
(3PROPERTY=
(IPROPERTY=
(PROPERTY=
(QPROPERTY=
(IPROPERTY=
(QPROPERTY=
(9PROPERTY=
(QPROPERTY=
(2PROPERTY=
(QPROPERTY=
(9PROPERTY=
(aPROPERTY=
(PROPERTY=
(QPROPERTY=
(QIPROPERTY=
(IPROPERTY=
(dPROPERTY=
(IPROPERTY=
(PROPERTY=
(PROPERTY=
(aPROPERTY=
(APROPERTY=
(IPROPERTY=
(BPROPERTY=
(2PROPERTY=
(APROPERTY=

020)

AB QTYPE=Float;)

AD QTYPE=Float;)

BAD aTYPE=Boolean;)
Bad_Sensors aTYPE=Boolean;)
BIAS_CURRENT aTYPE=Float;)
BIAS_ _VOLTAGE QTYPE=Float;)
CF aTYPE=Float;)

COMPONENT aTYPE string;)
COMPONENT_IN ATYPE=String;)
COMPONENT_IN_2 ATYPE=String;)
COMPONENT _{ “ouT ATYPE=String;)
COMPONENT _| “ouT _2 aTYPE= string;)
CONFIDENCE ATYPE=String;)
CONFIG QTYPE=String;)
COUPLING QTYPE=Boolean;)
DATA QTYPE=Float;)
DESCRIPTION @TYPE=String;)
DIAGNOSTIC_MODULE  @TYPE= Boolean;)
DRAIN_VOLTAGE aTYPE=Float;)

ERROR aTYPE=Float;)
EVALUATED TYPE=Boolean;)
FREQUENCY QTYPE=Float;)

FREQUENCY_2 QaTYPE= Float;)
FREQUENCY_[N aTYPE= Float )
FREQUENCY_IN_2 QTYPE=Float;)
FREQUENCY_ “ouT @TYPE=Float;)
FREQUENCY_ “ouT_2 Q@TYPE=Float;)
GAIN STYPE=Float;)

GAIN_2 QTYPE= Float;)

GATE VOLTAGE DTYPE=Float;)
GOOD~  aTYPE=Boolean;)

HIGH aTYPE=Boolean;)

INF_CAT aTYPE=Float;)

ISOLATED aTYPE=Boolean;)

LEVEL  QTYPE=String;)

LEVEL_IN JTYPE=String;)

LEVEL OUT ATYPE=String;)

Lo_ lNPUT FREQUENCY  QTYPE=Float;)
LO INPUT_| “POWER QTYPE=Float;)

LO_| UNIT BTYPE= String;)

LOW aTYPE=Boolean;)

MB aTYPE=Float;)

MD 8TYPE=Float;)

MODEL_GAIN QTYPE=Float;)

MODEL_GAIN_ 2 aTYPE=Float;)
MODEL_| POHER IN aTYPE=Float;)
MODEL POUER IN_2 ATYPE=Float;)
MODEL POHER "OUT QTYPE= Float;)
MODEL POUER ouT_2 ATYPE= Float )
MODEL__ “SETTING QTYPE=Float;)
NAME aTYPE=String;)
NASA_ID a@TYPE=String;)
NOMINAL RTYPE=Float;)
NOMINAL_BIAS_| CURRENT
NOHINAL BIAS_! “VOLTAGE aTYPE=Float;)
NOMINAL_| DRAIN VOLTAGE aTYPE=Float;)
NOMINAL_ “FREQUENCY QTYPE=Float;)
NOMINAL_ FREQUENCY 2 aQTYPE=Float;)
NOMINAL _ FREQUENCY IN ATYPE= Float )
NOMINAL _ FREQUENCY IN_2 aTYPE=Float;)
NOMINAL _| FREQUENCY “ouT aTYPE=Float;)
NOMINAL_ FREQUENCY " ouT _2 QTYPE= Float;)
NOMINAL _ “GAIN aTYPE= Float;)

NOMINAL _ “GATE _VOLTAGE ATYPE=Float;)
NOMINAL _ LO lNPUT FREQUENCYRTYPE=Float;)
NOMINAL_ LO lNPUT POWERQTYPE=Float;)

aTYPE=Float;)

(aPROPERTY=
(QPROPERTY=
(IPROPERTY=
(IPROPERTY=
(IPROPERTY=
(BPROPERTY=
(IPROPERTY=
(QPROPERTY=
(9PROPERTY=
(QPROPERTY=
(APROPERTY=
(QAPROPERTY=
(APROPERTY=
(RPROPERTY=
(3PROPERTY=
(APROPERTY=
(APROPERTY=
(QPROPERTY=
(QPROPERTY=
(QPROPERTY=
(RPROPERTY=
(IPROPERTY=
(QPROPERTY=
(aPROPERTY=
(3PROPERTY=
(IPROPERTY=
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NOMINAL_POMER_IN
NOMINAL_| POUER IN_2
NOMINAL_| POUER “ouT aTYPE=Float;)
NOMINAL _| POUER OUT 2 @aTYPE=Float;)
Nominal Sensor pata QTYPE—Boolean )
NOMINAL_ “SETTING A@TYPE=Float;)

OK aTYPE=Boolean;)

POWER_IN aTYPE=Float;)

POHER IN_2 QTYPE= Float;)

POWER_ "ouT aTYPE=Float;)

POWER _! “out _2 aTYPE= Float;)

READING @TYPE=String;)

READING_IN aTYPE= String;)
READING_OUT ATYPE=String;)
RTN_LEVEL aTYPE=Boolean;)
RTN_NOMINAL aTYPE=Boolean;)
RTN_READING aTYPE=Boolean;)
SENSOR_IN JTYPE=String;)
SENSOR_OUT QTYPE=String;)
SETTING QTYPE=Float;)
SETTING_ERROR aTYPE=Float;)
TOLERANCE aTYPE=Float;)

TYPE QTYPE=String;)

VERIFIED @TYPE=Boolean;)

ZERO aTYPE=Boolean;)
ZERO_LEVEL JTYPE=Float;)

aTYPE=Float;)
aTYPE=Float;)



(aCLASS=  AMPLIFIER_FAULTS

(@PROPERTIES=
AB
AD
CF
COMPONENT
CONFIDENCE
INF_CAT
MB
MD
NAME
VERIFIED

)

(3CLASS=  AMPLIFIERS
(APROPERTIES=

BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

)

(SCLASS=  ATTENUATOR_FAULTS

(PROPERTIES=
AB
AD
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MD
NAME
VERIFIED

)

(CLASS=  ATTENUATORS

(@PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
MODEL_GAIN

)

(aCLASS=
(JPROPERTIES=

)

(BCLASS=
(IPROPERTIES=

)

(QCLASS=
(SUBCLASSES=
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MODEL_POWER_IN

MODEL _POWER_OUT
MODEL_SETTING

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL_SETTING
POWER_IN

POWER_OUT

SETTING
SETTING_ERROR

BAD_SENSORS

RTN_READING

BER_REGISTERS

COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

BER_SENSORS

CH1_BERs
CH2_BERs

)
(APROPERTIES=

DATA

ERROR
EVALUATED
LEVEL

NAME
NOMINAL
READ ING
RTN_LEVEL
RTN_NOMINAL
RTN_READ ING
TOLERANCE
TYPE
2ERO_LEVEL



(ACLASS= CERTAINTY_ANALYSIS
(@SUBCLASSES=
FAULT_STATES

)
(aPROPERTIES=
AB
AD
CF
CONFIDENCE
MB
MD

)

(3CLASS=  CH1_BERs

(PROPERTIES=
DATA
ERROR
EVALUATED
LEVEL
NAME
NOMINAL
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

)

(9CLASS=  CH2_BERs

(APROPERTIES=
DATA
ERROR
EVALUATED
LEVEL
NAME
NOMINAL
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

)

(ACLASS= COMPONENTS

(QSUBCLASSES=
AMPLIFIERS
ATTENUATORS
LOCAL_OSCILLATORS
RECEIVERS
POWER_METERS
BER_REGISTERS
SWITCHES
GaAsFETS
TWTAS
MIXERS

)

(IPROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
MODEL_GAIN
MODEL_POWER_IN
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MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMER_IN

POWER_OUT

)

(CLASS=  FAULT_STATES
(@SUBCLASSES=

AMPLIFIER_FAULTS
ATTENUATOR_FAULTS
GaAs_FET_FAULTS
LO_FAULTS
MIXER_FAULTS
RECEIVER_FAULTS
SWITCH_FAULTS
TWTA_FAULTS

)
(9PROPERTIES=
AB
AD
CF
COMPONENT
CONF IDENCE
INF_CAT
M8
MD
NAME
VERIFIED

)

(ACLASS=  GaAs_FET_FAULTS

(@PROPERTIES=
AB
AD
CF
COMPONENT
CONFIDENCE
INF_CAT
M8
MD
NAME
VERIFIED

)

(CLASS=  GaAsFETS
(SPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUTY
GAIN
GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN



NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN

NOMINAL _GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

)

(3CLASS=  LO_FAULTS

(@PROPERTIES=
AB
AD
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MD
NAME
VERIFIED

)

(CLASS=  LOCAL_OSCILLATORS

(APROPERTIES=
COMPONENT _IN
COMPONENT_OUT
COMPONENT_OUT_2
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
FREQUENCY_OUT _2
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_FREQUENCY_OUT_2
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL _POWER_OUT_2
POWER_IN
POWER_OUT
POWER_OUT_2

)

(3CLASS=  MIXER_FAULTS

(QPROPERTIES=
AB
AD
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
ND
NAME
VERIFIED

)

(aCLASS= MIXERS
(AIPROPERTIES=
COMPONENT_IN

)

(QCLASS=
(2PROPERTIES=

)

(QACLASS=
(QPROPERTIES=
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COMPONENT_OUT
DESCRIPTION

FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN
LO_INPUT_FREQUENCY
LO_INPUT_POWER
LO_UNIT

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_INPUT_POWER
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

POWER_METERS

COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

MODEL_GAIN
MODEL_POWER_IN

MODEL _POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

PWR_SENSORS

DATA

ERROR
EVALUATED
LEVEL

NAME
NOMINAL
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL



(ACLASS=
(IPROPERTIES=

)

(QCLASS=
(IPROPERTIES=

)

(aCLASS=
(SUBCLASSES=

)

(aACLASS=
(IPROPERTIES=

RECEIVER_FAULTS

AB

AD

CF
COMPONENT
CONFIDENCE
INF_CAT

MB

MD

NAME
VERIFIED

RECEIVERS

COMPONENT _IN
COMPONENT_OUT
DESCRIPTION

FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN
LO_INPUT_FREQUENCY
LO_INPUT_POWER
LO_UNIT

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_INPUT_POWER
NOMINAL_POWER_IN
NOMINAL _POWER_OUT
POWER_IN

POWER_OUT

SENSORS

PWR_SENSORS
BER_SENSORS

)
(2PROPERTIES=

DATA
ERROR
EVALUATED
LEVEL

NAME
NOMINAL
READ ING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

SUBSYSTEMS

DIAGNOSTIC_MODULE
ISOLATED

LEVEL_IN
LEVEL_OUT

)

NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT

(QCLASS= SWITCH_FAULTS

)

(APROPERTIES=
AB
AD
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MD
NAME
VERIFIED

(ACLASS= SWITCHES

)

(9PROPERTIES=
COMPONENT_IN
COMPONENT_IN_2
COMPONENT_OUT
COMPONENT_OUT_2
DESCRIPTION
FREQUENCY
FREQUENCY_2
FREQUENCY_IN
FREQUENCY_IN_2
FREQUENCY_OUT
FREQUENCY_OUT_2
GAIN
GAIN_2
MODEL_GAIN
MODEL_GAIN_2
MODEL_POWER_IN
MODEL_POWER_IN_2
MODEL_POWER_OUT
MODEL _POWER_OUT_2
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_2
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_IN_2
NOMINAL_FREQUENCY_OUT
NOMINAL_FREQUENCY_OUT_2
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_IN_2
NOMINAL_POWER_OUT
NOMINAL_POWER_OUT_2
POWER_IN
POWER_IN_2
POWER_OUT
POWER_OUT_2

(QCLASS= TWTA_FAULTS

(@PROPERTIES=

AB

AD

CF
COMPONENT
CONF IDENCE
INF_CAT

MB
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)

(aCLASS=
(9PROPERTIES=

)

MD
NAME
VERIFIED

TWTAS

COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMWER_IN

POWER_OUT

(R0BJECT=  BER_1

(9CLASSES=

CH1_BERs
BER_REGISTERS

)
(2PROPERTIES=

COMPONENT _IN
COMPONENT_OUT
DATA

DESCRIPTION

ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READ ING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL

(S0BJECT=  BER_2
(SCLASSES=

CH1_BERs
BER_REGISTERS

)
(RPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DATA

DESCRIPTION

ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN
MODEL_POWER_IN
MODEL _POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL
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(0BJECT=  BER_3
(@CLASSES=
CH1_BERs
BER_REGISTERS

)

(9PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

)

(90BJECT=  BER_4
(@CLASSES=
CH2_BERs
BER_REGISTERS

)

(APROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NONINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN »
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL _POWER_IN
NOMINAL_POWER_OUT
POMER_IN
POWER_OUT
READING

)
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RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

(Q0BJECT=  BERS

)

(QCLASSES=

CH2_BERs
BER_REGISTERS

)
(aPROPERTIES=

COMPONENT _IN
COMPONENT_OUT
DATA

DESCRIPTION

ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL

(R0BJECT=  BER_6

(QACLASSES=

CH2_BERs
BER_REGISTERS

)
(QPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME

NASA_ID
NOMINAL
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NOMINAL_FREQUENCY (0BJECT=  CH2AMP
NOMINAL_FREQUENCY_IN (DCLASSES=
NOMINAL_FREQUENCY_OUT SUBSYSTEMS
NOMINAL_GAIN )
NOMINAL_POWER_IN (9PROPERTIES=
NOMINAL_POWER_OUT DIAGNOST I C_MODULE
POWER_IN 1SOLATED
POWER_OUT LEVEL_IN
READING LEVEL_OUT
RTN_LEVEL NAME
RTN_NOMINAL READING_IN
RTN_READING READING_OUT
TOLERANCE SENSOR_IN
TYPE SENSOR_OUT
ZERO_LEVEL )
) )
)
(20BJECT=  CH2RCVR
(S0BJECT=  CH1AMP (@CLASSES=
(ACLASSES= SUBSYSTEMS
SUBSYSTEMS )
) (9PROPERTIES=
(@PROPERTIES= DIAGNOSTIC_MODULE
D1AGNOST 1C_MODULE ISOLATED
I1SOLATED LEVEL_IN
LEVEL_IN LEVEL_OUT
LEVEL_OUT NAME
NAME READING_IN
READING_IN READING_OUT
READING_OUT SENSOR_IN
SENSOR_IN SENSOR_OUT
SENSOR_OUT )
) )
)
(S0BJECT=  CH2UPX
(F0BJECT=  CHIRCVR (@CLASSES=
(RCLASSES= SUBSYSTEMS
SUBSYSTEMS )
) (@PROPERTIES=
(APROPERTIES= DIAGNOSTIC_MODULE
DIAGNOST IC_MODULE ISOLATED
1SOLATED LEVEL_IN
LEVEL_IN LEVEL_OUT
LEVEL_OUT NAME
NAME READING_IN
READING_IN READING_OUT
READ ING_OUT SENSOR_IN
SENSOR_IN SENSOR_OUT
SENSOR_OUT )
) )
)
(OBJECT=  CURRENT_COMPONENT
(0BJECT=  CHTUPX (PROPERTIES=
(9CLASSES= COUPLING
SUBSYSTEMS NAME
) )
(9PROPERTIES= )
DIAGNOSTIC_MODULE
ISOLATED (ROBJECT=  CURRENT_FAULT
LEVEL_IN (PROPERTIES=
LEVEL_OUT NAME
NAME )
READING_IN )
READ ING_OUT
SENSOR_IN (0BJECT=  CURRENT_SENSOR
SENSOR_OUT (9PROPERTIES=
) NAME
) )
)
(R0BJECT=  CURRENT_SUBSYSTEM

(APROPERTIES=
LEVEL_IN



)

(F0BJECT=
(3PROPERTIES=

)

LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_TN
SENSOR_OUT

Value @TYPE=Boolean;

(A0BJECT= GAASFET

)

(DCLASSES=

GaAsFETS

)
(PROPERTIES=

COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL _GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMER_IN

POWER_OUT

(S0BJECT=  HPAPC_AMP_1

(ACLASSES=

AMPLIFIERS

)
(APROPERTIES=

BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN

Evaluate_Certainty_Factors

)

NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

(FOBJECT= HPAPC_AMP_2

)

(RCLASSES=

AMPLIFIERS

)
(IPROPERTIES=

BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL _DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_PONER_OUT
POWER_IN

POWER_OUT

(F0BJECT=  HPAPC_ATTN_1

(QCLASSES=

ATTENUATORS

(QPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
MODEL_SETTING
NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POMWER_IN
NOMINAL_POWER_OUT
NOMINAL_SETTING
POWER_IN
POWER_OUT
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SETTING
SETTING_ERROR

)

(F0BJECT=  HPAPC_ATTN_2
(QCLASSES=
ATTENUATORS

)

(PROPERTIES=
COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
MODEL_SETTING
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL_SETTING
POWER_IN
POWER_OUT
SETTING
SETTING_ERROR

)

(@0BJECT= HPAPC_ATTN_3
(QCLASSES=
ATTENUATORS

)

(PROPERTIES=
COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
MODEL_SETTING
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL_SETTING
POWER_IN
POWER_OUT
SETTING
SETTING_ERROR

(F0BJECT=  HPAPC_ATTN_4

(ACLASSES=
ATTENUATORS

)

(PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL _POWER_OUT
MODEL_SETTING
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL_SETTING
POMER_IN
POWER_OUT
SETTING
SETTING_ERROR

)

(20BJECT=  IFPC_AMP_1
(SCLASSES=
AMPLIFIERS

)

(3PROPERTIES=
BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT
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(30BJECT=  IFPC_AMP_2
(ACLASSES=
AMPLIFIERS

)

(9PROPERTIES=
BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL _POWER_OUT
NAME
NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMER_IN
POWER_OUT

)

(FOBJECT=  1FPC_AMP_3
(SCLASSES=
AMPLIFIERS

)

(PROPERTIES=
BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT
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(R0BJECT=  IFPC_AMP_&

)

(QCLASSES=

AMPLIFIERS

)
(IPROPERTIES=

BIAS_CURRENT
BIAS_VOLTAGE
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
DRAIN_VOLTAGE
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

GATE_VOLTAGE
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_BIAS_CURRENT
NOMINAL_BIAS_VOLTAGE
NOMINAL_DRAIN_VOLTAGE
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_GATE_VOLTAGE
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

(OBJECT= IFPC_ATTN_1

(ACLASSES=

ATTENUATORS

)
(APROPERTIES=

COMPONENT _IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
MODEL_SETTING
NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL_SETTING
POWER_IN
POWER_OUT

SETTING
SETTING_ERROR
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(0BJECT= IFPC_ATTN_2 FREQUENCY_IN
(DCLASSES= FREQUENCY_OUT
ATTENUATORS GAIN
) MODEL_GAIN
(QPROPERTIES= MODEL_POWER_IN
COMPONENT_IN MODEL_POWER_OUT
COMPONENT_OUT MODEL_SETTING
DESCRIPTION NAME
FREQUENCY NASA_ID
FREQUENCY_IN NOMINAL_FREQUENCY
FREQUENCY_OUT NOMINAL_FREQUENCY_IN
GAIN NOMINAL_FREQUENCY_OUT
MODEL_GAIN NOMINAL_GAIN
MODEL_POWER_IN NOMINAL_POWER_IN
MODEL_POWER_OUT NOMINAL_POWER_OUT
MODEL_SETTING NOMINAL_SETTING
NAME POWER_IN
NASA_ID POWER_OUT
NOMINAL_FREQUENCY SETTING
NOMINAL_FREQUENCY_IN SETTING_ERROR
NOMINAL_FREQUENCY_OUT )
NOMINAL_GAIN )
NOMINAL_POWER_IN
NOMINAL_POWER_OUT (AOBJECT=  Model_Matrix_Switch_SubSystem
NOMINAL_SETTING (APROPERTIES=
POWER_IN value QTYPE=Boolean;
POWER_OUT )
SETTING )
SETTING_ERROR
) (20BJECT= MSWITCH
) (ACLASSES=
SWITCHES
(Q0BJECT=  IFPC_ATTN_3 )
(ACLASSES= (@PROPERTIES=
ATTENUATORS COMPONENT_IN
) COMPONENT_IN_2
{PROPERTIES= COMPONENT_OUT
COMPONENT_IN COMPONENT_OUT_2
COMPONENT_OUT CONF1G
DESCRIPTION DESCRIPTION
FREQUENCY FREQUENCY
FREQUENCY_IN FREQUENCY_2
FREQUENCY_OQUT FREQUENCY_IN
GAIN FREQUENCY_IN_2
MODEL_GAIN FREQUENCY_OUT
MODEL_POWER_IN FREQUENCY_OUT_2
MODEL_POWER_OUT GAIN
MODEL_SETTING GAIN_2
NAME MODEL_GAIN
NASA_ID MODEL_GAIN_2
NOMINAL_FREQUENCY MODEL_POWER_IN
NOMINAL_FREQUENCY_IN MODEL_POWER_IN_2
NOMINAL_FREQUENCY_OUT MODEL_POWER_OUT
NOMINAL_GAIN MODEL_POWER_OUT_2
NOMINAL_POWER_IN NAME
NOMINAL_POWER_OUT NASA_ID
NOMINAL_SETTING NOMINAL_FREQUENCY
POWER_IN NOMINAL_FREQUENCY_2
POWER_OUT NOMINAL_FREQUENCY_IN
SETTING NOMINAL_FREQUENCY_IN_2
SETTING_ERROR NOMINAL_FREQUENCY_OUT
) NOMINAL_FREQUENCY_OUT_2
) NOMINAL_GAIN
NOMINAL_POWER_IN
(R0BJECT=  IFPC_ATTN_4 NOMINAL_POWER_IN_2
(BCLASSES= NOMINAL_POWER_OUT
ATTENUATORS NOMINAL_POWER_OUT_2
) POWER_IN
(APROPERTIES= POWER_IN_2
COMPONENT_IN POWER_OUT
COMPONENT_OUT POWER_OUT_2
DESCRIPTION )

FREQUENCY )



(ROBJECT=  MSWITCH_CH11
(PROPERTIES=

DIAGNOST IC_MODULE
I1SOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_IN
SENSOR_OUT

)

(0BJECT=  MSWITCH_CH12
(9PROPERTIES=

DIAGNOST IC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_TN
SENSOR_OUT

)

(R0BJECT=  MSWITCH_CH21
(PROPERTIES=

DIAGNOSTIC_MODULE
ISOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READING_OUT
SENSOR_TN
SENSOR_OUT

)

(0BJECT=  MSWITCH_CH22
(APROPERTIES=

DIAGNOST I C_MODULE
1SOLATED
LEVEL_IN
LEVEL_OUT
NAME
READING_IN
READ ING_OUT
SENSOR_TN
SENSOR_OUT

)

(0BJECT=  MULT_1
(@CLASSES=
MIXERS

)

(PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LO_INPUT_FREQUENCY
LO_INPUT_POMER
LO_UNIT
MODEL_GAIN
MODEL _POWER_IN

)
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MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_ INPUT_POMWER
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

(0BJECT=  MULT_2

)

(DCLASSES=

MIXERS

)
(QPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DESCRIPTION

FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN
LO_INPUT_FREQUENCY
LO_INPUT_POWER
LO_UNIT

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_ INPUT_POWER
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMER_IN

POWER_OUT

(R0BJECT= PM_0

)

(QPROPERTIES=

LEVEL
NAME
READING

(F0BJECT=  PM_1

(QCLASSES=

POWER_METERS
PWR_SENSORS

)
(BPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN



LEVEL

MODEL_GAIN
MODEL_POWER_IN
MODEL _POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY _IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL

)

(ROBJECT=  PM_2
(ACLASSES=
POWER_METERS
PWR_SENSORS

)

(@PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

)

(FOBJECT=  PM_3
(QCLASSES=
POWER_METERS
PWR_SENSORS

)
(9PROPERTIES=
COMPONENT_IN

)

151

COMPONENT_OUT
DATA

DESCRIPTION

ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN
MODEL_POMWER_IN
MODEL_POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL

(0BJECT=  PM_4
(ACLASSES=

POWER_METERS
PWR_SENSORS

)
(DPROPERTIES=

N

COMPONENT_IN
COMPONENT_OUT
DATA

DESCRIPTION

ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY _IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL



(S0BJECT=  PM_S
(SCLASSES=
POWER_METERS
PWR_SENSORS

)

(@PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL
MODEL_GAIN
MODEL _POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT
READING
RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

)

(S0BJECT=  PM_6
(ACLASSES=
POMER_METERS
PWR_SENSORS

)

(aPROPERTIES=
COMPONENT _IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR
EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL
MODEL_GAIN
MODEL_POMWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMER_IN
POMER_OUT
READING

)
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RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE
TYPE
ZERO_LEVEL

(0BJECT=  PM_7

)

(QCLASSES=

POWER_METERS
PWR_SENSORS

(OPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DATA

DESCRIPTION

ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN
MODEL_POMWER_IN
MODEL_POWER_OUT
NAME

NASA_ID

NOMINAL
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN
POWER_OUT

READING

RTN_LEVEL
RTN_NOMINAL
RTN_READING
TOLERANCE

TYPE

ZERO_LEVEL

(F0BJECT=  PM_8

(DCLASSES=

POWER_METERS
PWR_SENSORS

)
(QPROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION
ERROR

EVALUATED
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN

LEVEL
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME

NASA_ID

NOMINAL



NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINALGAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POWER_IN

POWER_OUT

READING

RTN_LEVEL

RTN_NOMINAL
RTN_READING

TOLERANCE

TYPE

ZERO_LEVEL

)

(R0BJECT=  RCVR_1
(RCLASSES=
RECEIVERS

)

(SPROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LO_INPUT_FREQUENCY
LO_INPUT_POWER
LO_UNIT
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_INPUT_POWER
NOMINAL_POWER_IN
NOMINAL_PONER_OUT
POMWER_IN
POWER_OUT

)

(R0BJECT=  RCVR_2
(@CLASSES=
RECEIVERS

)

(@PROPERTIES=
COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
GAIN
LO_INPUT_FREQUENCY
LO_INPUT_POWER
LO_UNIT
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL _FREQUENCY _IN
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NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_LO_INPUT_FREQUENCY
NOMINAL_LO_INPUT_POWER
NOMINAL_POWER_IN
NOMINAL_POWER_OUT

POWER_IN

POWER_OUT

)

(Q0BJECT= RCVR_LO
(QCLASSES=
LOCAL_OSCILLATORS

)

(APROPERTIES=
COMPONENT _IN
COMPONENT_OUT
COMPONENT_OUT_2
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
FREQUENCY_OUT_2
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_FREQUENCY_OUT_2
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
NOMINAL_POWER_OUT_2
POWER_IN
POWER_OUT
POWER_OUT_2

)

(ROBJECT=  Return_BAD_Sensors
(PROPERTIES=
value @aTYPE=Boolean;
)
)

(R0BJECT=  Return_Nominal_Sensor_Data
(9PROPERTIES=
value @TYPE=Boolean;
)
)

(0BJECT=  Sensor_Level_Description
(JPROPERTIES=
HIGH
LOW
0K
ZERO

)

(Q0BJECT=  Sensor_Reading_Description
(APROPERTIES=
BAD
GOOD



(A0BJECT=  TBK_Request

)

(3PROPERTIES=

Bad_Sensors
Nominal_Sensor_Data

(QOBJECT=  TWTA

)

(ICLASSES=

TWTAS

)
(APROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT

GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL_POWER_IN
NOMINAL_POWER_OUT
POMWER_IN

POWER_OUT

(ROBJECT=  UPX_LO

(ACLASSES=

LOCAL_OSCILLATORS

)
(IPROPERTIES=

COMPONENT _IN
COMPONENT_OUT
COMPONENT_OUT_2
DESCRIPTION
FREQUENCY
FREQUENCY_IN
FREQUENCY_OUT
FREQUENCY_OUT_2

GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT

NAME

NASA_ID
NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT
NOMINAL_FREQUENCY_OUT_2
NOMINAL_GAIN
NOMINAL_POMWER_IN
NOMINAL_POWER_OUT
NOMINAL_POWER_OUT_2
POWER_IN

POWER_OUT
POMER_OUT_2

(@SLOT= BER_SENSORS.TYPE
(DINITVAL=  “BER"™)
(QSOURCES=

(RunTimeVatue ("BER"))
)
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(asSLOT= CERTAINTY_ANALYS!S.AB
(AINITVAL= 0.0)
(@SOURCES=

(RunTimeValue (0.0))

)
(DCACTIONS=
(Do ((SELF.AB-SELF.AD)/MIN(SELF.AB,SELF.AD)) (SELF.CF))
)
)

(DSLOT= CERTAINTY_ANALYSIS.AD
(AINITVAL= 0.0)
(QSOURCES=

(RunTimeValue (0.0))

)
(QCACTIONS=
(Do ((SELF.AB-SELF.AD)/MIN(SELF.AB,SELF.AD)) (SELF.CF))
)
)

(asSLOT= CERTAINTY_ANALYSIS.CF
(AINITVAL= 0.0)
(QSOURCES=

(RunTimeValue (0.0))

)
(ACACTIONS=
(Do (SELF.NAME) (CURRENT_FAULT.NAME))
(Reset (Evaluate_Certainty_Factors))
(Do (Evaluate_Certainty_Factors) (Evaluate_Certainty_Factors))

)

(asLoT= CERTAINTY_ANALYSIS.MB
(RANITVAL=  0.0)
(QSOURCES=

(RunTimeValue (0.0))

)

(ACACTIONS=
(Do (SELF.AB+SELF.MB*(1-SELF.AB)) (SELF.AB))
(Reset (SELF.MB))

)

(2SLOT= CERTAINTY_ANALYSIS.MD
(INITVAL= 0.0)
(@SOURCES=

(RunTimeValue (0.0))

)

(ACACTIONS=
(Do (SELF.AD+SELF.MD*(1-SELF.AD)) (SELF.AD))
(Reset (SELF.MD))

)

(QSLOT= COMPONENTS.GAIN
(ASOURCES=
(Do (SELF.POWER_OUT-SELF.POWER_IN) (SELF.GAIN))

)
(DCACTIONS=
(Do (SELF.POWER_IN+SELF.GAIN) (SELF.POWER_OUT))
)
)

(@SLOT= COMPONENTS.MODEL_GAIN
(ISOURCES=
(Do (SELF.MODEL_POUER_OUT-SELF.MODEL_POHER_IN) (SELF.MODEL_GAIN))

)
(ACACTIONS=

(Do (SELF.MODEL_POWER_IN+SELF .MODEL_GAIN) (SELF.MODEL_POWER_OUT))
)



(ASLOT= COMPONENTS.MODEL_POWER_IN
(QISOURCES=
(Do (\SELF.COMPONENT_IN\.MODEL_POWER_OUT)

)
(QACACTIONS=
(Do (SELF.MODEL_POWER_IN+SELF.MODEL_GAIN)
)
)

(@SLOT= COMPONENTS.MODEL_POWER_OUT
(@SOURCES=
(Do (SELF.MODEL_POWER_IN+SELF.MODEL_GAIN)

)
(RCACTIONS=
(Do (SELF.MODEL_POWER_OUT)
)
)

(@SLOT= COMPONENTS.POWER_IN
(SOURCES=
(Do (\SELF.COMPONENT_IN\.POWER_OUT)

)
(aCACTIONS=
(Do (SELF.POWER_IN+SELF.GAIN)
)
)

(QSLOT= COMPONENTS.POWER_OUT
(ISOURCES=
(Do (SELF.POWER_IN+SELF.GAIN)

)
(SCACTIONS=
(Do (SELF.POWER_OUT)
)
)

(2SLOT= PWR_SENSORS.TYPE

(DINITVAL=  "PM')
(ISOURCES=
(RunTimeValue ("PMM))
)
)
(3SLOT= SENSORS.DATA
(QCACTIONS=
(Reset (SELF.ERROR))
(Reset (SELF.READING))
(Reset  (SELF.LEVEL))
(Do (SELF.ERROR) (SELF.ERROR))
(Do (SELF.READING) (SELF.READING))
(Do (SELF.LEVEL) (SELF.LEVEL))
)
)
(@SLOT= SENSORS.ERROR

(@ASOURCES=
(Do (SELF.DATA-SELF.NOMINAL) (SELF.ERROR))
)
)

(@SLOT= SENSORS.LEVEL
(QASOURCES=

(Do (SELF.NAME) (CURRENT_SENSOR.NAME))
(Reset (Sensor_Level_Description.ZERO))
(Do (Sensor_Level Description.ZERO)
(Reset (Sensor_Level_Description.LOW))
(Do (Sensor_Level_Description.LOW)
(Reset (Sensor_Level_Description.HIGH))
(Do (Sensor_Level_Description.HIGH)
(Reset (Sensor_Level_Description.0K))
(Do (Sensor_Level_Description.0K)

)
(RCACTIONS=
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(SELF .MODEL_POWER_IN))

(SELF .MODEL_POWER_OUT))

(SELF.MODEL_POWER_OUT))

(\SELF.COMPONENT_OUT\.MODEL_POWER_IN))

(SELF.POMER_IN))

(SELF.POWER_OUT))

(SELF.POWER_OUT))

(\SELF.COMPONENT_OUT\.POWER_IN))

(Sensor_Level_Description.ZERO))
(Sensor_Level Description.LOW))
(Sensor_Level_Description.HIGH))

(Sensor_Level_Description.0K))
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(Execute ("ReturnSensorlevel™) (AATOMID=SELF;ASTRING="aV(ISELF.LEVEL)";\
)

)

(@SLOT= SENSORS.NAME
(@SOURCES=
(Retrieve (“SENSOR.nxp")  (ATYPE= NXPDB; 3FWRD=FAL SE ; UNKNOWN=TRUE ; QPROPS=NAME, \
NOMINAL , TOLERANCE , ZERO_LEVEL ; @F [ELDS="NAME",\
"NOMINAL" "TOLERANCE" WZERO_| LEVEL" DATOMS= SELF \
)

)

(2SLOT= SENSORS.NOMINAL
(SOURCES=
(Retrieve ("SENSOR.nxp")  (ATYPE= NXPDB;QFURD=FALSE;aUNKNOHN=TRUE;QPROPS=NAME,\
NOMINAL , TOLERANCE , ZERO_LEVEL ; QF IELDS="NAME", \
“NOM]NAL" WTOLERANCE", "ZERO LEVEL" DATOMS= SELF \

)

)
)
(ACACTIONS=
(Execute ("ReturnNominalData") (BATOMID=SELF; @STRING="aV(QSELF .NOMINAL)";\
»
)
)
(@SLOT= SENSORS.READING
(SOURCES=
(Do (SELF.NAME) (CURRENT_SENSOR.NAME))
(Reset (Sensor_Reading Descrlptlon BAD))
(Do (Sensor_| Read\ng Descrlpt|on BAD) (Sensor_Reading_Description.BAD))
(Reset (Sensor_| Readlng Description.GOOD))
(Do (Sensor_ Reading _Description.GOOD) (Sensor_Reading _Description.GOOD))
)
(ACACTIONS=
(Execute ("ReturnSensorReading") (DATOMID=SELF; @STRING="aV(QSELF .READING)";\
»
)
)
(9SLOT= SENSORS.RTN_LEVEL
(QACACTIONS=
(Execute ("ReturnSensortevel") (aATOMlD=SELF;aSTRING="8V(QSELF.LEVEL)“;\
))

)

(aSLOT= SENSORS.RTN_NOMINAL
(RCACTIONS=
(Execute ("ReturnNominalData") (DATOMID=SELF ; @STRING="aV(DSELF .NOMINAL)";\
)

)

(@SLOT= SENSORS.RTN_READING
(QACACTIONS=
(Execute ("ReturnSensorReading") (AATOMID=SELF; @STRING="aV(JSELF.READING)";\

»
)

(@SLOT= SENSORS.TOLERANCE
(ISOURCES=
(Retrieve ("SENSOR.nxp') (aTYPE-NXPDB;aFHRD=FALSE:8UNKNOUN=TRUE;0PROPS=NAME,\
NOMINAL , TOLERANCE ,ZERO_LEVEL ; @F [ELDS="NAME", \
"NOMINAL" uTDLERANCE™, "ZERO_| LEVEL" DATOMS=SELF;\
))

)

)
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(@SLOT= SENSORS.ZERO_LEVEL
(QSOURCES=
(Retrieve ("SENSOR.nxp")  (RTYPE=NXPDB;@FWRD=FALSE; AUNKNOWN=TRUE ; 3PROPS=NAME , \
NOMINAL , TOLERANCE ,ZERO_LEVEL ; AF IELDS="NAME" ,\
HNOMINAL™, "TOLERANCE", “"ZERO_LEVEL"; BATOMS=SELF; \

)
)
)
(@SLOT= SUBSYSTEMS.ISOLATED
(CACTIONS=
(Execute ("Returnisolation") (BATOMID=SELF;@STRI NG="aV(JSELF.NAME)";))
)
)
(QSLOT= SUBSYSTEMS.LEVEL_IN
(@SOURCES=

(Do (\SELF.SENSOR_IN\.LEVEL) (SELF.LEVEL_IN))
)
)

(ASLOT= SUBSYSTEMS.LEVEL_OUT
(dSOURCES=
(Do (\SELF.SENSOR_OUT\.LEVEL) (SELF.LEVEL_OUT))
)
)

(@SLOT= SUBSYSTEMS.READING_IN
(@SOURCES=
(Do (\SELF.SENSOR_IN\.READING) (SELF.READING_IN))
)

)

(ASLOT= SUBSYSTEMS.READING_OUT
(ASOURCES=
(Do (\SELF.SENSOR_OUT\.READING) (SELF .READING_OUT))
)

)

(@SLOT= SWITCHES.GAIN_2
(@SOURCES=
(Do (SELF.POMER_OUT_2-SELF.POWER_IN_2)  (SELF.GAIN_2))

)
(RCACTIONS=
(Do (SELF.POWER_IN_2+SELF.GAIN_2) (SELF.POWER_OUT_2))
)
)

(@SLOT= SWITCHES.MODEL_GAIN_2
(@SOURCES=
(Do (SELF.MODEL_POWER_OUT_2-SELF.MODEL_POWER_IN_2)  (SELF.MODEL_GAIN_2))

)
(SCACTIONS=
(Do (SELF.MODEL_POWER_IN_2+SELF .MODEL_GAIN_2) (SELF.MODEL_POWER_OUT_2))
)
)

(ASLOT= BER_1.NAME
(SINITVAL=  “BER_1*)
(QSOURCES=
(RunTimevalue ("BER_1"))
)
)

(3SLOT= BER_2.NAME
(AINITVAL= “BER_2")
(ASOURCES=
(RunTimeValue ("BER_2"))
)



(2SLOT= BER_3.NAME
(AINITVAL= “BER_3")
(@SOURCES=
(RunTimeValue (“BER_3"))
)

)

(aSLOT= BER_&4.NAME
(RINITVAL=  “BER_4™)
(@SOURCES=
(RunTimevValue ("BER_4"))
)
)

(aSLOT= BER_5.NAME
(RINITVAL= "BER_5")
(ASOURCES=
(RunTimeValue ("BER_5™))
)
)

(2SLOT= BER_6.NAME
(DINITVAL=  “BER_6")
(@SOURCES=
(RunTimevalue  ("BER_6"))
)
)

(2SLOT= CH1AMP.DIAGNOSTIC_MODULE
(DINITVAL=  FALSE)
(QSOURCES=

(RunTimeValue (FALSE))

)
(ICACTIONS=
(LoadkB ("CH1AMP.tkb")  (QLEVEL=ENABLE;))
)
)

(aSLOT= CH1AMP_NAME
(INITVAL=  “CH1AMP™)
(QSOURCES=
(RunTimeValue ("CH1AMP"))
)
)

(@SLOT= CH1AMP,SENSOR_IN
(AINITVAL=  “PM_5")
(@SOURCES=

(RunTimeValue ("PM_5"))
)
)

(aSLOT= CH1AMP.SENSOR_OUT
(DINITVAL=  “PM_7")
(QASOURCES=

(RunTimeValue ("PM_7"))
)
)

(ASLOT= CHIRCVR.DIAGNOSTIC_MODULE
(QINITVAL=  FALSE)
(QSOURCES=
(RunTimeValue (FALSE))

)
(ACACTIONS=

(LoadKB ("CHIRCVR.tkb") (ILEVEL=ENABLE;))
)
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(aSLOT= CHTRCVR.NAME
(QINITVAL=  MCH1RCVR™)
(@SOURCES=
(RunTimeValue ("CH1RCVR"))
)
)

(3SLOT= CHIRCVR.SENSOR_IN
(RINITVAL=  "PM_0")
(QSOURCES=

(RunTimeValue ("PM_0"))
)

)

(aSLOT= CH1RCVR.SENSOR_OUT
(DINITVAL=  “PM_1")
(ASOURCES=

(RunTimeValue ("PM_11))
)

)

(asLOT= CHIUPX.DIAGNOSTIC_MODULE
(RINITVAL=  FALSE)
(ASOURCES=

(RunTimeValue (FALSE))

)
(QCACTIONS=

(LoadKB (“CHIUPX.tkb") (@LEVEL=ENABLE;))
)

)

(ASLOT= CHIUPX.NAME
(RINITVAL=  MCHIUPXM)
(QSOURCES=
(RunTimeValue ("CHIUPX"))
)
)

(aSLOT= CHIUPX.SENSOR_IN
(RINITVAL=  “PM_3")
(QASOURCES=
(RunTimeValue ("PM_3"))
)
)

(2SLOT= CHIUPX.SENSOR_OUT
(AINITVAL=  "PM_5")
(QASOURCES=

(RunTimeValue ("PM_5"))
)

)

(RSLOT= CH2AMP.DIAGNOSTIC_MODULE
(DINITVAL=  FALSE)
(QSOURCES=
(RunTimeValue (FALSE))

)
(QCACTIONS=
(LoadkKB ("CH2AMP.tkb")  (BLEVEL=ENABLE;))
)
)

(@SLOT= CHZ2AMP.NAME
(AINITVAL=  “CH2AMPY)
(@SOURCES=
(RunTimeValue (“"CH2AMP"))
)
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(aSLOT= CH2AMP.SENSOR_IN
(RINITVAL= “PM_6%)
(ASOURCES=

(RunT imeValue ("PM_6"))
)

)

(ASLOT= CH2AMP.SENSOR_OUT
(JINITVAL=  "PM_8")
(QASOURCES=

(RunTimeValue ("PM_8"))
)

)

(@SLOT= CH2RCVR.DIAGNOSTIC_MODULE
(DINITVAL=  FALSE)
(QSOURCES=
(RunTimeValue (FALSE))

)
(ACACTIONS=
(LoadKB (“CH2RCVR.tkb") (RLEVEL=ENABLE;))
)
)

(ASLOT= CHZRCVR.NAME
(AINITVAL=  “CH2RCVR")
(ASOURCES=
(RunTimeValue ("CH2RCVR"))
)
)

(QSLOT= CHZRCVR.SENSOR_IN
(RINITVAL=  “PM_O")
(ASOURCES=

(RunTimeValue ("PM_0"))
)
)

(dSLOT= CH2RCVR.SENSOR_OUT
(AINITVAL=  "PM_2")
(ISOURCES=

(RunTimevalue ("PM_2"))
)
)

(ASLOT= CH2UPX.DIAGNOSTIC_MODULE
(RINITVAL=  FALSE)
(ASOURCES=

(RunTimeVatue (FALSE))

)
(ACACTIONS=
(LoadKB ("CH2UPX.tkb")  (QLEVEL=ENABLE;))
)
)

(DSLOT= CH2UPX.NAME
(DINITVAL=  “CH2UPX")
(ASOURCES=
(RunTimeValue (“CH2UPX™))
)
)

(@SLOT= CH2UPX.SENSOR_IN
(DINITVAL=  “PM_4")
(SOURCES=

(RunTimevalue  ("PM_4"))
3



(aSLOT= CH2UPX.SENSOR_OUT
(DINITVAL=  “PM_6")
(ASOURCES=

(RunTimeValue ("PM_6"))
)
)

(ASLOT= MSWITCH.CONFIG
(@SOURCES=
(Execute ("RequestMatrixSwitchConfig"))
)
)

(asLoT= MSH!TCH_CH11.DIAGNOSTIC_MODULE
(RINITVAL=  FALSE)
(2SOURCES=
(RunTimeValue (FALSE))

)
(ACACTIONS=
(LoadKB ("MSWITCH.tkb") (QLEVEL=ENABLE;))
)
)

(ASLOT= MSWITCH_CH11.NAME
(AINITVAL=  "MSWITCH")
(@SOURCES=
(RunTimeValue ("MSWITCH"))
)

)

(@SLOT= MSWITCH_CH11.SENSOR_IN
(RINITVAL=  “PM_1")
(DSOURCES=

(RunT imeValue ("PM_1"))
)
)

(@SLOT= MSWITCH_CH11.SENSOR_OUT
(AINITVAL=  "“PM_3")
(QASOURCES=

(RunTimeValue ("PH_3"))
)
)

(@SLOT= MSWITCH_CH12.DIAGNOSTIC_MODULE
(QINITVAL=  FALSE)
(QSOURCES=
(RunTimeValue (FALSE})

)
(ACACTIONS=

(LoadKB (“MSWITCH.tkb") (BLEVEL=ENABLE;))
)

)

(@SLOT= MSWITCH_CH12.NAME
(RINITVAL= “MSWITCH")
(ISOURCES=
(RunTimeValue ("MSWITCH"))
)
)

(asLOoT= HSHITCH_CH12.SENSOR_IN
(DINITVAL=  “PM_1")
(@SOURCES=

(RunTimeValue ("PM_1"))
)
)

(ASLOT= MSWITCH_CH12.SENSOR_OUT
(QINITVAL=  “PM_4")
(ASOURCES=

(RunTimeValue ("PM_4"))
)

162



163

(3SLOT= MSWITCH_CH21.DIAGNOSTIC_MODULE
(RINITVAL=  FALSE)
(9SOURCES=
(RunTimeValue (FALSE))

)
(ACACTIONS=

(LoadkKB ("MSWITCH.tkb") (ALEVEL=ENABLE;))
)

)

(@SLOT= MSWITCH_CH21.NAME
(DINITVAL=  VMSWITCH")
(@SOURCES=
(RunTimeValue ("MSWITCH"))
)
)

(@SLOT= MSWITCH_CH21.SENSOR_IN
(AINITVAL=  "PM_2")
(@SOURCES=

(RunTimeValue ("PM_2"))
)
)

(ASLOT= MSWITCH_CH21.SENSOR_OUT
(RINITVAL=  "PM_3")
(ASOURCES=

(RunTimeValue ("PM_3"))
)

)

(asLOT= MSHITCH_CHZZ.DIAGNOSTIC_MODULE
(RINITVAL=  FALSE)
(ASOURCES=
(RunTimeValue (FALSE))

)
(QACACTIONS=
(LoadkB ("MSWITCH.tkb") (ALEVEL=ENABLE;))
)
)

(ASLOT= MSWI TCH_CHZZ. NAME
(RINITVAL=  "MSWITCH")
(QSOURCES=
(RunTimeValue ("MSWITCH"))
)
)

(@SLOT= MSWITCH_CH22.SENSOR_IN
(RINITVAL=  "PM_2")
(QSOURCES=

(RunTimeValue ("PM_2"))
)
)

(QSLOT= MSWITCH_CH22. SENSOR_OUT
(RINITVAL=  "PM_4")
(ASOURCES=

(RunTimeValue ("PM_4"))
)
)

(@SLOT= PM_O.LEVEL
(IINITVAL=  "OK")
(2SOURCES=
(RunTimeValue ("OK"))
)



(aSLOT= PM_O.NAME
(DINITVAL=  "PM_O")
(@SOURCES=

(RunTimeValue
)
)

(2SLOT= PM_O.READING
(RINITVAL= “GOOD")
(@SOURCES=

(RunTimeValue
)
)

(2SLOT= PM_1.NAME
(INITVAL=  "PM_1")
(@SOURCES=

(RunTimeValue
)

)

(2SLOT= PM_2.NAME
(INITVAL=  "PM_2")
(QSOURCES=

(RunTimeValue
)
)

(@SLOT= PM_3.NAME
(RINITVAL=  "PM_3")
(QSOURCES=

(RunTimeValue
)
)

(QSLOT= PM_4 .NAME
(AINITVAL=  “PM_4%)
(DSOURCES=

(RunTimeValue
)
)

(2SLOT= PM_5.NAME
(RINITVAL=  "PM_5")
(@SOURCES=

(RunTimeValue
)
)

(aSLOT= PM_6.NAME
(DINITVAL=  "PM_6")
(@SOURCES=

(RunTimeValue
)
)

(@SLOT= PM_7.NAME
(RINITVAL=  "PM_7")
(ASOURCES=

(RunTimeValue
)
)

(@5L0T= PM_B8.NAME
(AINITVAL= "PM_8")
(QSOURCES=

(RunTimeValue
)

(IIP"-OII ) )

(IIGM"))

(IIPM_“ " ) )

(IIPM_ZII ) )

( IIPM_3II ) )

( IIPM_['" ) )

(IIPM—SII ) )

( llPM_6II ) )

( IlPM_?II) )

("PM_8"))
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(IRULE= RULE_029__QUALIFICATION_OF_CONFIDENCE__REJECTED
(ALHS=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.9))
)

(@HYPO= Evaluate_Certainty_Factors)

(aRHS=
(Let (\CURRENT_FAULT .NAME\ .CONF IDENCE) (“"REJECTED"))
(Let (\CURRENT_FAULT.NAME\.VERIFIED)  (FALSE))

)

(ARULE= RULE_028_ QUALIFICATION_OF_CONFIDENCE__VERY_IMPROBABLE
(ALKS=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.75))
(> (\CURRENT_FAULT.NAME\.CF) (-0.90
)
(@HYPO= Evaluate_Certainty_Factors)
(aRHS=
(Let (\CURRENT_FAULT .NAME\ .CONF IDENCE) ("VERY_IMPROBABLE"))
)

)

(DRULE= RULE_OZ?__QUAL]FlCATlON_OF_CONFIDENCE__IMPROBABLE
(aLHs=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.50
(> (\CURRENT_FAULT.NAME\.CF) (-0.75))

)
(aHYPO= Evaluate_Certainty_Factors)
(QRHS=
(Let (\CURRENT_FAULT.NAME\.CONFIDENCE) ("IMPROBABLE"))
)

)

(IRULE= RULE_OZé__QUALIFlCATION_OF_CONFlDENCE__UNLlKELY
(aLHS=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.25))
(> (\CURRENT_FAULT.NAME\.CF) (-0.5)

)
(@HYPO= Evaluate _Certainty_Factors)
(@ARHS=
(Let (\CURRENT_FAULT .NAME\ .CONFIDENCE) ("UNLIKELY"))
)
)

(IRULE= RULE_OZS__QUALIFlCATION_OF_CONFIDENCE__UNKNOHN
(aLHS=
(> (\CURRENT_FAULT.NAME\.CF) (-0.25))
(< (\CURRENT_FAULT.NAME\.CF) (0.25))

)
(9HYPO= Evaluate_Certainty_Factors)
(ARHS=
(Let (\CURRENT_FAULT .NAME\ . CONFIDENCE) ("UNKNOWN"))
)

)

(DRULE= RULE_OZA__QUALIFICATION_OF_CONFlDENCE__POSSlBLE
(ALHS=
(>= (\CURRENT_FAULT.NAME\.CF) (0.25))
(< (\CURRENT_FAULT.NAME\.CF) (0.5))
)
(@HYPO= Evaluate_Certainty_Factors)
(aRHS=
(Let (\CURRENT_FAULT .NAME\.CONFIDENCE) ("POSSIBLE"))
)
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(aRULE= RULE_023__QUALIFlCATlON_OF_CONFlDENCE__LIKELY
(ALHS=
(>= (\CURRENT_FAULT.NAME\.CF) (0.5))
(< (\CURRENT_FAULT.NAME\.CF) €0.75)

)
(aHYPO= Evaluate_Certainty_Factors)

(aRHS=
(Let (\CURRENT_FAULT .NAME\ .CONFIDENCE} ("LIKELY"))
)
)
(FRULE= RULE_OZZ__QUALIFICATION_OF_CONFIDENCE__PROBABLE
(BLHS=

(>= (\CURRENT_FAULT.NAME\.CF) (0.75))
(< (\CURRENT_FAULT.NAME\.CF) (0.90)
)
(aHYPO= Evaluate_Certainty_Factors)
(ARHS=
(Let (\CURRENT_FAULT.NAME\.CONFIDENCE) (“"PROBABLE"))
)
)

(ARULE= RULE_021__QUALIFlCATION_OF_CONFIDENCE__ESTABLISHED
(ALHS=
(>= (\CURRENT_FAULT.NAME\.CF) (0.9
)

(AHYPO= Evaluate_Certainty_Factors)

(aRHS=
(Let (\CURRENT_FAULT .NAME\ .CONFIDENCE) (“ESTABLISHED"))
(Let (\CURRENT_FAULT.NAME\.VERIFIED) (TRUE))

)

(RRULE= RULE_D12_ MODEL_MATRIX_SWITCH
(aLHS=
(Is (MSWITCH.CONFIG) ("B"))

)

(@HYPO= Model_Matrix_Switch_SubSystem)

(aRHS=
(CreateObject (MSWITCH_CH12) ('SUBSYSTEMS'))
(CreateObject (MSWITCH_ CH21) ('SUBSYSTEMS‘))

)

(RULE= RULE_011_ MODEL_MATRIX_SWITCH
(aLHs=
(Is (MSWITCH.CONFIG) (ma"))

)

(AHYPO= Model_Matrix_Switch_SubSystem)

(ARKS=
(CreateObject (MSWITCH_CH11) iSUBSYSTEMSI
(CreateObject (MSWITCH_CH22) {SUBSYSTEMS )

)

(SRULE= RULE_902__RETURN_LIST_OF_BAD_SENSORS_TO_ToolBook
(ALHS=
(Yes (TBK_Request.Bad_Sensors))

)
(@HYPO= Return_BAD_Sensors)
(IRHS=
(Let ({|BAD_SENSORS | }.RTN_READING) (TRUE))
(Strategy (aCACTIONSON FALSE ))
(Reset ({}BAD_ SENSORS | 3.RTN_| READING))
(Strategy (aCACTlONSON-TRUE »
(Execute ("BadSensorReadlngsReturned"))
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(ARULE= RULE_901_ RETRIEVE_SENSOR_PARAMETERS_ FROM_SENSOR_DATABASE_AND_RETURN\
_NOMINAL _f DATA_TO_ ToolBook
(QLHs=
(Yes (TBK_Request.Nominal_Sensor_Data))
(Retrieve ("SENSOR.nxp")  (@TYPE= =NXPDB ; aFWRD=FALSE ; QUNKNOWN=TRUE ; APROPS=NAME, \
NOMINAL , TOLERANCE ,ZERO_LEVEL ;@F IELDS="NAME", \
"NOMINAL" "TOLERANCE" "ZERO LEVEL" QATOMS= <'SENSORS >\

)
)
(@HYPO= Return_Nominal_Sensor_Data)
(ARHS=
(Do (<}SENSORS}>.NOMINAL) (<}SENSORS | >.NOMINAL))
)
)
(QRULE= RULE_003__QUALIFlCATION_OF_HlGH_SENSOR_LEVELS
(LHs=
(> (\CURRENT_SENSOR.NAME\.ERROR) 0))
)
(@HYPO= Sensor_Level_Description.HIGH)
(aRHS=
(Let (\CURRENT_SENSOR.NAME\ .LEVEL) ("HIGH"))>
)
)
(IRULE= RULE_004__QUALIFICATION_OF_LOH_SENSOR_LEVELS
(aLhs=

(< (\CURRENT_SENSOR.NAME\.ERROR) 0

)
(AHYPO= Sensor_Level_Description.LOW)
(ARHS=
(Let (\CURRENT_SENSOR .NAME\.LEVEL) ("LOW"))
)
)

(DRULE= RULE_OOS__QUALIFICATION_OF_OK_SENSOR_LEVELS
(ALHS=
(<= (ABS(\CURRENT_SENSOR.NAME\.ERROR)-\CURRENT_SENSOR.NAHE\.TOLERANCE) (0))

)
(@HYPO= Sensor_Level_Description.OK)
(aRHS=
(Let ¢\CURRENT_SENSOR .NAME\ . LEVEL) ("OK"))
)
)

(IRULE= RULE_006__QUALXFICAT[ON_OF_ZERO_SENSOR_LEVELS
(aLHs=
(<= (\CURRENT_SENSOR.NAME\.DATA-\CURRENT_SENSOR.NAME\.ZERO_LEVEL) (<1))]

)
(@HYPO= Sensor_Level Description.ZERO)
(aRHS=
(Let ¢ \CURRENT_SENSOR .NAME\.LEVEL) (MZERO"))
)
)

(@RULE= RULE_0O1__QUALIFICATION_OF_BAD_SENSOR_READINGS
(aLHS=
(> (ABS(\CURRENT_ SENSOR.NAME\.ERROR)-\CURRENT_SENSOR.NAME\.TOLERANCE) (0

)

(AHYPO= Sensor_Reading_Description.BAD)

(aRHS=
(Let (\CURRENT_SENSOR.NAME\.READING)  ("BAD"))
(CreateObject (\CURRENT_SENSOR.NAME\) ( |BAD_SENSORS}))
(Let (\CURRENT_SENSOR .NAME\ . EVALUATED) (TRUE))
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(SRULE= RULE_002_ QUALIFICATION_OF_GOOD_SENSOR_READINGS
(aLHs=
(<= (ABS(\CURRENT_SENSOR.NAME\.ERROR)-\CURRENT_SENSOR.NAME\.TOLERANCE) 0y
)

(AHYPO= Sensor_Reading_Description.GOOD)

(IRHS=
(Let (\CURRENT_SENSOR .NAME\ .READING) ("GO0D"))
(Let (\CURRENT_SENSOR .NAME\ .EVALUATED) (TRUE))

(GLOBALS=
RINHVALUP=FALSE;
@INHVALDOWN=TRUE;
@INHOBJUP=FALSE;
QINHOBJDOWN=FALSE;
@INHCLASSUP=FALSE;
@INHCLASSDOWN=TRUE;
RINHBREADTH=TRUE;
DINHPARENT=FALSE;
APWTRUE=TRUE;
APWFALSE=TRUE;
APWNOTKNOWN=TRUE;
QEXHBWRD=TRUE;
APTGATES=TRUE;
APFACTIONS=TRUE;
ASOURCESON=TRUE;
ACACTIONSON=TRUE;
AVOLLIST=PM_1.DATA;



APPENDIX B
FAULT DETECTION KNOWLEDGE BASE

(AVERSION= 020)

(0BJECT=  A_Fault_Has Been Detected
(@PROPERTIES=
value @TYPE=Boolean;
)
)

(R0BJECT=  A_Fault_Has_Not_Been_Detected
(APROPERTIES=
value  @TYPE=Boolean;
)
)

(ROBJECT=  Transponder_Functioning_Properly
(9PROPERTIES=
Value ATYPE=Boolean;
)
)

(ARULE= R1
(ALHS=
(Yes (TBK_Request.Detection))
(Is (<)SENSORS}>.READING) ("BAD"))

)
(aHYPO= A_Fault_Has_Been_Detected)
(aRHS=
(Execute ("FaultDetected"))
)
)

(ARULE= R2
(aLHS=
(Yes (TBK_Request.Detection))
(Is ({|SENSORS|).READING) ("GooD"™))

)
(@8HYPO= A_Fault_Has_Not_Been Detected)
(ARHS=

(Execute ("NoFaul thetected"))
)
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APPENDIX C

FAULT ISOLATION KNOWLEDGE BASE

(aVERSION=  020)

(R0BJECT=  Isolate_Fault_Symptoms
(APROPERTIES=
Value aTYPE=Boolean;
)

)
(QRULE= RULEOA__ISOLATlON_OF_FAULT_TO_FREQUENCY_CONPONENTS
(aLHS=
(Yes (TBK_Request.lsolation))
(NotMember ({'BAD SENSORS|)) (<:PUR_SENSORS{>))
(Is (<]BER_ SENSORS'> READING) ("BAD"))
)
(@HYPO= Isolate_Fault_Symptoms)
)
(ARULE= RULEO1__ISOLATION_OF_FAULT_TO_SUBSYSTEMS
(aLHS=
(Yes (TBK_Request.Isolation))
(Yes (Model_Matrix_Switch _SubSystems))
(Is (<}suB_ SYSTEMS'> READING TIN) ("GOOD™))
(Is (<'SUB SYSTEMS'> READING OUT) ("“BAD"))
)
(aHYPO= Isolate_Fault_Symptoms)
(DRHS=
(Let (<}sSUB_ SYSTEMS|>.ISOLATED) (TRUE))
(Createobject (<'SU8 SYSTEMS|>) ({lSOLATED_SUB_SYSTEMS{))
)
)
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APPENDIX D
RECEIVER SUBSYSTEMS
DIAGNOSTIC KNOWLEDGE BASES

D.1 CHANNEL 1 RECEIVER SUBSYSTEM

(QAVERSION=

(aPROPERTY=
(2PROPERTY=
(IPROPERTY=
(PROPERTY=
(QPROPERTY=
(aPROPERTY=
(QIPROPERTY=
(IPROPERTY=
(APROPERTY=
(QPROPERTY=
(9PROPERTY=
(aPROPERTY=
(QPROPERTY=
(SPROPERTY=
(BPROPERTY=
(9PROPERTY=
(APROPERTY=
(IPROPERTY=
(QAPROPERTY=
(IPROPERTY=
(APROPERTY=
(@PROPERTY=
(IPROPERTY=
(APROPERTY=
(QAPROPERTY=
(QPROPERTY=

(QCLASS=

020)

CF QTYPE=Float;)

COMPONENT DTYPE=String;)
COMPONENT_IN ATYPE=String;)
COMPONENT_OUT ATYPE=String;)
CONFIDENCE ATYPE=String;)
COUPLING aTYPE=Boolean;)
GAIN ATYPE=Float;)

INF_CAT aTYPE=Float;)

MB @TYPE=Float;)

MB_ACCUM aTYPE=Float;)

MD QATYPE=Float;)

MD_ACCUM aTYPE=Float;)
MODEL_GAIN QTYPE=Float;)
MODEL_POWER_IN ATYPE=Float;)
MODEL_POWER_OUT @TYPE=Float;)
NAME QTYPE=String;)
NOMINAL_GAIN QTYPE=Float;)
NOMINAL_POWER_OUT
NOMINAL_SETTING aTYPE=Float;)
NONINAL_POWER_IN
POWER_IN aTYPE=Float;)
POWER_LEVEL_IN @TYPE=String;)
POWER_LEVEL_OUT QTYPE=String;)
POWER_OUT dTYPE=Float;)
SETTING ATYPE=Float;)

VERIFIED aTYPE=Boolean;)

AMP_FAULTS

(IPROPERTIES=

CF

COMPONENT
CONF IDENCE
INF_CAT

MB_ACCUM

MD

MD_ACCUM

NAME

POWER_LEVEL_OUT
VERIFTED

)
(aACLASS=

AMPLIFIERS

(aPROPERTIES=

ATYPE=Float;)

ATYPE=Float;)

)

(QCLASS=

)

(ACLASS=
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COMPONENT_IN
COMPONENT_OUT
GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL _POWER_OUT
NAME
NOMINAL_GAIN
NOMINAL_POWER_OUT
NONINAL_POWER_IN
POWER_IN
POWER_LEVEL_IN
POWER_LEVEL_OUT
POWER_OUT

ATTEN_FAULTS
(9PROPERTIES=

CF

COMPONENT

CONF IDENCE
INF_CAT

MB

MB_ACCUM

MD

MD_ACCUM

NAME
POWER_LEVEL_OUT
VERIFTED

ATTENUATORS
(QPROPERTIES=
COMPONENT _IN
COMPONENT_OUT
GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME

NOMINAL_GAIN
NOMINAL_POWER_OUT
NOMINAL_SETTING
NONINAL_POWER_IN
POWER_IN



POWER_LEVEL_IN
POWER_LEVEL_OUT
POWER_OUT
SETTING

)

(3CLASS=  COMP_COUPLING_FAULT_STATES

(@PROPERTIES=
CF
COMPONENT
CONFIDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NANE
POWER_LEVEL_OUT
VERIFTED

)

(ACLASS= COMPONENTS
(DSUBCLASSES=
ATTENUATORS
AMPLIFIERS
RECEIVERS
LOCAL_OSCILATORS

)

(APROPERTIES=
COMPONENT_IN
COMPONENT_OUT
GAIN
MODEL_GAIN
MODEL_POMWER_IN
MODEL _POWER_OUT
NAME
NOMINAL_GAIN
NOMINAL_POWER_OUT
NONINAL_POWER_IN
POWER_IN
POWER_OUT

)

(ACLASS=  FAULT_STATES
(@SUBCLASSES=
ATTEN_FAULTS
AMP_FAULTS
RECEIVER_FAULTS
LO_FAULTS
COMP_COUPLING_FAULT_STATES

)

(9PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NANE
POWER_LEVEL_OUT
VERIFTED

)

(SCLASS=  LEVEL_1_FAULT_STATES
(PROPERTIES=
VERIFIED
)

)
(aCLASS=
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LO_FAULTS

(PROPERTIES=

)
(aCLASS=

CF
COMPONENT
CONF IDENCE
INF_CAT

MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

LOCAL_OSCILATORS

(PROPERTIES=

)

(ICLASS=
(aPR

)

(ACLASS=
(aPR

)
(ACLASS=

COMPONENT_IN
COMPONENT_OUT
GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NOMINAL_GAIN
NOMINAL_POWER_OUT
NON INAL_POWER_IN
POMWER_IN
POWER_LEVEL_IN
POWER_LEVEL_OUT
POWER_OUT

RECEIVER_FAULTS
OPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

RECEIVERS
OPERTIES=
COMPONENT_IN
COMPONENT_OUT
GAIN
MODEL_GAIN
MODEL_POWER_IN
MODEL_POWER_OUT
NAME
NOMINAL_GAIN
NOMINAL_POWER_OUT
NONINAL_POWER_IN
POWER_IN
POMER_LEVEL_IN
POWER_LEVEL_OUT
POWER_OUT

UNCERTAINTY_OVERHEAD



(9SUBCLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
CONFIDENCE
MB
MB_ACCUM
MD
MD_ACCUM

(F0BJECT=  AMP_COUPLING
(QCLASSES=
AMP_FAULTS
COMP_COUPLING_FAULT_STATES

)

(APROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM

MD

MD_ACCUM

NANE
POWER_LEVEL_OUT
VERIFIED

)

(A0BJECT=  AMP_GENERAL_FAILURE
(8CLASSES=
AMP_FAULTS

)

(@PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NANE
POWER_LEVEL_OUT
VERIFTED

)

(D0BJECT= ATTEN_COUPLING
(ACLASSES=
ATTEN_FAULTS
COMP_COUPLING_FAULT_STATES

)

(@PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM

MD

MD_ACCUM

NANE
POWER_LEVEL_OUT
VERIFTED

(R0BJECT=  ATTEN_GENERAL_FAILURE
(QCLASSES=
ATTEN_FAULTS

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM

POWER_LEVEL_OUT
VERIFTED

)

(D0BJECT=  ATTEN_SETTING
(ICLASSES=
ATTEN_FAULTS

)

(9PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

)

(Q0BJECT= CURRENT_COMPONENT
(QPROPERTIES=
COUPLING
NAME

)

(DOBJECT= CURRENT_FAULT
(JPROPERTIES=
NAME
)

)

(Q0BJECT= CURRENT_SUBSYSTEM
(IPROPERTIES=
POWER_LEVEL_OUT
)
)

(R0BJECT=  Develop_Diagnostic_Strategy

(RPROPERTIES=
value aTYPE=Boolean;
)
)

(A0BJECT=  Evaluate_Attenuator_Setting

(APROPERTIES=
value QTYPE=Boolean;
)
)
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(90BJECT=  Evaluate_Fault_State_Confidence Factors

(QAPROPERTIES=
value @TYPE=Boolean;

)



)

(30BJECT= FN
(BCLASSES=
FAULT_STATES

)

(9PROPERTIES=
CF
COMPONENT
CONFIDENCE
INF_CAT
MB
MB_ACCUM

D

MD_ACCUM

NAME
POWER_LEVEL_OUT
VERIFTED

)

(0BJECT= FO
(ICLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM

MD

MD_ACCUM

NANE
POWER_LEVEL_OUT
VERIFTED

)

(a0BJECT= FP
(RACLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

)

(F0BJECT=  FQ
(SCLASSES=
FAULT_STATES

)

(9PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME

POWER_LEVEL_OUT
VERIFTED

)

(90BJECT= FR
(QCLASSES=
FAULT_STATES

)

(@PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFIED

)

(D0BJECT= FS
(ICLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NANE
POWER_LEVEL_OUT
VERIFTED

)

(A0BJECT= FT
(ACLASSES=
FAULT_STATES

)

(9PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

)

(Q0BJECT= FU
(QCLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
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MD

MD_ACCUM

NAME
POWER_LEVEL_OUT
VERIFTED

)

(I0BJECT= FV
(QCLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
M8
MB_ACCUM
MD
MD_ACCUM
NANE
POWER_LEVEL_OUT
VERIFTED

)

(QA0BJECT= FW
(RCLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFIED

)

(0BJECT= FX
(ACLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

)

(20BJECT= FY
(9CLASSES=
FAULT_STATES

)

(QPROPERTIES=
CF
COMPONENT
CONFIDENCE
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INF_CAT
M8
MB_ACCUM

POWER_LEVEL_OUT
VERIFIED

)

(d0BJECT= FZ
(QACLASSES=
FAULT_STATES

)

(PROPERTIES=
CF
COMPONENT
CONF IDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

)

(QOBJECT= Initiatize_Database
(QPROPERTIES=
value QTYPE=Boolean;
)
)

(0BJECT=  Level_1_Diagnostics
(@PROPERTIES=
value Q@TYPE=Boolean;
)
)

(Q0BJECT= LO_COUPLING
(QCLASSES=
COMP_COUPLING_FAULT_STATES
LO_FAULTS

)

(@PROPERTIES=
CF
COMPONENT
CONFIDENCE
INF_CAT
MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

)

(R0BJECT=  LO_GENERAL_FAILURE
(@CLASSES=
LO_FAULTS

)

(@PROPERTIES=
CF
COMPONENT
CONFIDENCE
INF_CAT
MB
MB_ACCUM



)

M

MD_ACCUM

NAME
POWER_LEVEL_OUT
VERIFTED

(JOBJECT=  OPEN_GATE
(QPROPERTIES=

)
)

value aTYPE=Boolean;

(R0BJECT= RCVR_COUPLING
(ACLASSES=

COMP_COUPLING_FAULT_STATES
RECEIVER_FAULTS

)
(APROPERTIES=

)

CF
COMPONENT
CONFIDENCE
INF_CAT

MB
MB_ACCUM
MD
MD_ACCUM
NAME
POMER_LEVEL_OUT
VERIFTED

(Q0BJECT= RCVR_GENERAL_FAILURE
(QCLASSES=

RECEIVER_FAULTS

)
(RPROPERTIES=

)

CF
COMPONENT
CONFIDENCE
INF_CAT

MB
MB_ACCUM
MD
MD_ACCUM
NAME
POWER_LEVEL_OUT
VERIFTED

(R0BJECT=  Test_Component_Coupling
(JPROPERTIES=

)
)

value aTYPE=Boolean;

(ASLOT= AMP_FAULTS.COMPONENT
(RINITVAL=  “AMP_1")
(QASOURCES=

)
)

(RunTimevalue ("AMP_1"))

(ASLOT= ATTEN_FAULTS.COMPONENT
(RINITVAL=  "“SA12"™)
(QSOURCES=

)

(RunT imeValue (“SA12"))
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(@SLOT= ATTEN_FAULTS.VERIFIED
(@SOURCES=
(Do (SELF.NAME) (CURRENT_FAULT.NAME))
(Do (SELF.COMPONENT)
(CURRENT_COMPONENT.NAHE))
(Reset (Evaluate_Attenuator_Setting))
(Do (Evaluate_Attenuator_Setting)
(Evaluate_Attenuator_Setting))
)
)

(asLOT= COMP_COUPLING_FAULT_STATES.VERIFlED
(@QSOURCES=
(Do (SELF.NAME) (CURRENT_FAULT.NAME))
(Do (SELF.COMPONENT)
(CURRENT_COMPONENT .NAME))
(Reset (Test_Component_Coupling))
(Do (Test_Component_Coupling)
(Test_Component_Coupling))
)

)

(2SLOT= COMPONENTS.GAIN
(SOURCES=
(Do (SELF.POWER_OUT-SELF.POWER_IN)
(SELF.GAIN))

)
(ACACTIONS=
(Do (SELF.POWER_IN+SELF.GAIN)
(SELF.POWER_OUT))
)
)

(ASLOT= COMPONENTS.MODEL_GAIN
(9SOURCES=
(Do (SELF.NOMINAL_GAIN) (SELF.MODEL_GAIN))

)
(SCACTIONS=
(Do (SELF.MODEL_POWER_IN+SELF .MODEL_GAIN)
(SELF.MODEL_POWER_OUT))
)
)

(@SLOT= COMPONENTS.MODEL_POWER_IN
(@SOURCES=
(Do (\SELF.COMPONENT_IN\.MODEL_POWER_OUT)
(SELF.MODEL_POWER_IN))

)
(ACACTIONS=
(Do (SELF.MODEL_POWER_IN+SELF .MODEL_GAIN)
(SELF .MODEL_POWER_OUT))
)
)

(SLOT= COMPONENTS.MODEL_POWER_OUT
(SOURCES=
(Do (SELF.MODEL_POWER_IN+SELF.MODEL_GAIN)
(SELF .MODEL_POWER_OUT))

)
(QCACTIONS=
(Do (SELF.MODEL_POWER_OUT)
(\SELF.COMPONENT_OUT\.MODEL_POWER_IN))
)
)

(@SLOT= COMPONENTS.POWER_IN
(@SDURCES=
(Do (\SELF.COMPONENT_IN\.POWER_OUT)
(SELF.POMER_IN))

)
(ACACTIONS=
(Do (SELF.POWER_IN+SELF.GAIN)
(SELF.POWER_OUT))



)

)

(ASLOT= COMPONENTS.POWER_OUT
(ASOURCES=

(Do (SELF.POWER_IN+SELF.GAIN)
(SELF.POWER_OUT))

)
(RCACTIONS=
(Do (SELF.POWER_OUT)
(\SELF.COMPONENT_OUT\.POWER_IN))
)
)

(ISLOT= FAULT_STATES.CF
(ACACTIONS=

(Do (SELF.NAME) (CURRENT_FAULT.NAME))

(Reset
(Evaluate_Faul t_State_Confidence_Factors))

(Do
(Evaluate_Fault_State_Confidence_Factors)
(Evaluate_Fault_State_Confidence_Factors))

)
)

(aSLOT= LO_FAULTS.COMPONENT
(RINITVAL=  “RCVRLO")
(@SOURCES=

(RunTimeValue ("RCVRLO"))
)
)

(ASLOT= RECEIVER_FAULTS.COMPONENT
(RINITVAL= “RCVR_1")
(ASOURCES=

(RunTimeValue (“RCVR_1"))
)
)

(asLOT= SENSORS.LEVEL
(ASOURCES=
(Do (SELF.NAME) (CURRENT_SENSOR.NAME))
(Reset (Sensor_Level_Description.HIGH))
(Do (Sensor_Level_Description.HIGH)
(Sensor_Level_Description.HIGH))
(Reset (Sensor_Level_Description.ZERO))
(Do (SensorPLevel_Description.ZERO)
(Sensor_Level_Description.ZERO))
(Reset (Sensor_Level_Description.LOW))
(Do (Sensor_Level Description.LOW)
(Sensor_Level_Description.LOW))
)
)

(9SLOT= UNCERTAINTY_OVERHEAD.MB
ACOMMENTS="This the Measure of Belief (MB) slot
for all objects utilizing the uncertainty
overhead";
(AINITVAL=  0.0)
(@SOURCES=
(RunTimeValue (0.0))

)
(QCACTIONS=
(Do
(SELF.HB_ACCUM+(1'SELF.MB_ACCUM)*SELF.MB)
(SELF.MB_ACCUM))
(Reset (SELF.MB))
)
)

(RSLOT= UNCERTAINTY_OVERHEAD.MB_ACCUM
(AINITVAL=  0.0)
(QSOURCES=
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(RunTimeValue (0.0))

)
(QACACTIONS=
(Do (SELF.MB_ACCUM-SELF .MD_ACCUM)
(SELF.CF))
)
)

(@SLOT= UNCERTAINTY_OVERHEAD .MD
(AINITVAL= 0.0)
(QSOURCES=

(RunTimevalue 0.0))

)
(QCACTIONS=
(Do
(SELF.MD_ACCUM*(1-SELF.MD_ACCUM)*SELF.HD)
(SELF.MD_ACCUM))
(Reset (SELF.MD))
)
)

(asSLOT= UNCERTAINTY_OVERHEAD.HD_ACCUM
(AINITVAL= 0.0)
(QSOURCES=
(RunT imevValue (0.0))

)
(aCACTIONS=
(Do (SELF.MB_ACCUM-SELF.MD_ACCUM)
(SELF.CF))
)
)

(ASLOT= AMP_COUPLING.NAME
(AINITVAL=  “AMP_COUPLING")
(9SOURCES=
(RunTimevalue  ("AMP_COUPLING"))
)
)

(asLoT= AMP_COUPLING.POHER_LEVEL_OUT
(DINITVAL= “ZERO")
(QSOURCES=
(RunTimeValue (“"ZERO"))
)

)

(2SLOT= AMP_COUPLING.VERIFIED
DINFATOM=AMP_COUPLING. INF_CAT;

)

(2SLOT= AMP_GENERAL_FAILURE.NAME
(RINITVAL= “AMP_GENERAL_FAILURE")
(QASOURCES=
(RunTimeValue (“AMP_GENERAL_FAILURE"))
)
)

(asLoT= AMP_GENERAL_FAILURE.POMER_LEVEL_OUT
(RINITVAL= “HIGH, LOW, ZERO")
(ASOURCES=

(RunTimeValue (“HIGH, LOM, ZERO"))
)
)

(2SLOT= AMP_GENERAL_FAILURE.VERIFIED
DINFATOM=AMP_GENERAL_FAILURE.INF_CAT;

)

(@SLOT= ATTEN_COUPLING.NAME
(QINITVAL=  MATTEN_COUPLING")
(@SOURCES=
(RunTimeValue ("ATTEN_COUPLING"))
)



)

(@SLOT= ATTEN_COUPLING.POWER_LEVEL_OUT
(AINITVALE  “ZERO")
(@SOURCES=
(RunTimevalue  ("ZERO"))
)
)

(@SLOT= ATTEN_COUPLING.VERIFIED
DINFATOM=ATTEN_COUPLING.INF_CAT;
)

(2SLOT= ATTEN_GENERAL_FAILURE.NAME
(RINITVALE  VATTEN _GENERAL_FATLURE")
(ISOURCES=
(RunTimeValue (“ATTEN_GENERAL_FAILURE"))
)
)

(aSLOT= ATTEN_GENERAL_FAILURE.POWER_LEVEL | ouT
(AINITVALE  “HIGH, LOW, ZERO")
(aSOURCES=

(RunT imeValue ("HIGH, LOW, ZERO™))
)
)

(@SLOT= ATTEN_GENERAL_FAILURE.VERIFIED
RINFATOM=ATTEN_| GENERAL_FAILURE. INF_CAT;
)

(@SLOT= ATTEN_SETTING.NAME
(DINITVAL=  “ATTEN_SETTING")
(QASOURCES=
(RunTimeValue (“ATTEN_SETTING"))
)
)

(ASLOT= ATTEN_SETTING.POWER_LEVEL_OUT
(SINITVAL=  “HIGH, LOW, ZERO')
(@SOURCES=

(RunTimeValue ("HIGH, LOW, ZERO"))
)
)

(ASLOT= ATTEN_SETTING.VERIFIED
AINFATOM=ATTEN_SETTING.INF_CAT;
)

(@SLOT= CURRENT_COMPONENT .COUPLING

APROMPT="Check the coupling of
@V(CURRENT_COMPONENT .NAME). Is the input or output
connection loose ?";

FCOMMENTS="This slot will implemented by
ToolBook";aWHY="1t is possible that
AV(CURRENT_COMPONENT) is not coupled to the
transponder correctly.";

(@SOURCES=

(AskaQuestion
(CURRENT_COMPONENT .COUPLING) (NOTKNOWN))
)
)

(asLOT= CURRENT_SUBSYSTEM.POUER_LEVEL_OUT
(RINITVAL= “ZERO")
(QSOURCES=
(RunTimevalue (“ZERO"))
)

)

(2SLOT= FN.VERIFIED
AINFATOM=FN.INF_CAT;
)
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(asLoT= FO.VERIFIED
AINFATOM=FO.INF_CAT;
)

(2SLOT= FP.VERIFIED
RINFATOM=FP . INF_CAT;
)

(aSLOT= FQ.VERIFIED
AINFATOM=FQ. INF_CAT;
)

(asLoT= FR.VERIFIED
DINFATOM=FR.INF_CAT;
)

(@SLOT= FS.VERIFIED
AINFATOM=FS.INF_CAT;

)

(aSLOT= FT.VERIFIED
QINFATOM=FT.INF_CAT;
)

(QsSLOT= FU.VERIFIED
QINFATOM=FU, INF_CAT;
)

(asLOT= FV.VERIFIED
SINFATOM=FV.INF_CAT;
)

(@SLOT= FW.VERIFIED
DINFATOM=FW. INF_CAT;
)

(ASLOT= FX.VERIFIED
DINFATOM=FX.INF_CAT;
)

(asLoT= FY.VERIFIED
DINFATOM=FY.INF_CAT;
)

(asLOT= FZ.VERIFIED
@INFATOM=FZ.INF_CAT;
)

(@sLOT= LO_COUPLING.VERIFIED
DINFATOM=LO_COUPLING.INF_CAT;
)

(2SLOT= LO_GENERAL_FAILURE.VERIFIED
QINFATOM=L0O_ GENERAL_FAILURE . INF_CAT;
)

(2SLOT= OPEN_GATE

QPROMPT="Something Is Wrong. The OPEN_GATE is
closed. Please enter TRUE to continue ...";

FCOMMENTS="The OPEN_GATE is a boolean slot
which is always true. "; ;OWHY="The OPEN_GATE should
always be TRUE. It is used as a condition of rules
which must always fire to effect LHS actions.";

(DINITVAL= TRUE)

(QSOURCES=

(RunTimeValue (TRUE))

)

)

(ASLOT= PM_1.NAME
(RINITVAL=  “PM_1")
(ASOURCES=
(RunTimeValue ("PM_1"))



)

(@sLOT= PM_1.ZERO_LEVEL
(AINITVAL=  -30.0)
(@SOURCES=

(RunTimevValue (-30.0))
)
)

(@SLOT= RCVR_COUPLING.VERIFIED
AINFATOM=RCVR_COUPLING. INF_CAT;

)

(@SLOT= RCVR_GENERAL_FAILURE.VERIFIED
DINFATOM=RCVR_GENERAL_FAILURE.INF_CAT;
)

(@RULE= RULE01__DEVELOP_DIAGNOSTIC_STRATEGY

SCOMMENTS="This rule tests the signal power
level symptoms of all fault states against the
obserrved level. All matches are created in class
of Level 1 Fault States.";aWHY="A diagnostic
strategy must be developed before Level 1
Diagnostics can begi
n.Y;

(aLHS=
(Retrieve ("CHIRCV.nxp*)

(3TYPE=NXPDB;HFILL=ADD;3FHRD=FALSE;aUNKNOHN=TRUE;\
3NAME=“!Name!";8PROPS=INF_CAT;9FIELDS="INF_CAT“;\

»

(Execute ("TestMultivalue")
(AATOMID=<|FAULT_STATES}>.POMER_LEVEL_OUT;\
aSTRlNG="QSUPERSET,QTEST=3V(CURRENT_SUBSYSTEM.PONE
R_LEVEL_OUT),\
3RETURN=LEVEL_1_FAULT_STATES,aCOMP=STRING":\

»

)
(@HYPO= Develop_Diagnostic_Strategy)
(JIRHS=
(Do (Level_1_Diagnostics)
(Level_1_Diagnostics))
)
)

(ARULE=
RULE11__EVALUATE_REJECTED_CONFlDENCE_FACTORS
(aLHsS=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.90

)
(IHYPO=
Evaluate_Faul t_State_Confidence_Factors)
(IRHS=
(Let ¢\CURRENT_FAULT .NAME\ .CONFIDENCE)
(“"REJECTED"))
(Let (\CURRENT_FAULT .NAME\.VERIFIED)
(FALSE))
)

)

(QRULE=
RULE10__£VALUATE_lMPROBABLE_CONFlDENCE_FACTORS
(aLHS=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.75))
(> (\CURRENT_FAULT .NAME\.CF) (-0.9))
)
(HYPO=
Evaluate_fault_State_Confidence_Factors)
(ARHS=

(Let (\CURRENT_FAULT .NAME\.CONFIDENCE)
("IMPROBABLE"))
)
)
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(QRULE=
RULE09__EVALUATE_UNLlKELY_CONF[DENCE_FACTORS
(alLHS=
(<= (\CURRENT_FAULT.NAME\.CF) (-0.5))
(> (\CURRENT_FAULT.NAME\.CF) (-0.75))

)
(QHYPO=
Evaluate_Fault_State_Confidence_Factors)
(QRHS=
(Let (\CURRENT_FAULT .NAME\ .CONFIDENCE)
("UNLIKELY"))
)

)

(ARULE= RULEO8__EVALUATE_CONFIDENCE_FACTORS
(aLHS=
(<= (\CURRENT_FAULT .NAME\.CF) (-0.25))
(> (\CURRENT_FAULT.NAME\.CF) (-0.5)

)

(aHYPO=
Evaluate_Fault_State_Confidence_Factors)

(3RHS=

(Let (\CURRENT_FAULT.NAME\ . CONF IDENCE }(

Il))

)
)

(RRULE= RULE07__EVALUATE_UNKNOHN_CONFIDENCE_FACTORS
(ALKS=
(> (\CURRENT_FAULT.NAME\.CF) (-0.25))
(< (\CURRENT_FAULT.NAME\.CF) (0.25))

)
(QHYPO=
Evaluate_Fault_State_Confidence_Factors)
(ARHS=
(Let (\CURRENT_FAULT .NAME\ .CONF IDENCE)
("UNKNOWN"))
)

)
(@RULE= RULEOS__EVALUATE_CONF IDENCE_FACTORS
(aLHS=
(>= (\CURRENT_FAULT.NAME\.CF) (0.25))
(< (\CURRENT_FAULT.NAME\.CF) 0.5)
)
(QHYPO=
Evaluate_Fault_State_Confidence_Factors)
(ARHS=
(Let (\CURRENT_FAULT .NAME\ . CONFIDENCE )X
II))
)
)
(ARULE=
RULEOS__EVALUATE_POSSIBLE_CONFlDENCE_FACTORS
(aLHS=
¢>= (\CURRENT_FAULT.NAME\.CF) (0.5
(< (\CURRENT_FAULT.NAME\.CF) (0.75))
)
(aHYPO=
Evaluate_Fault_State_Confidence_Factors)
(aRHS=

(Let (\CURRENT_FAULT.NAME\ .CONF IDENCE)
("POSSIBLE"))
)
)

(ARULE=
RULEO4__EVALUATE_PROBABLE_CONFlDENCE_FACTORS
(aLHS=
(>= (\CURRENT_FAULT.NAME\.CF) (0.75))
(< (\CURRENT_FAULT.NAME\.CF) 0.9



(AHYPO=
Evaluate_Fault_State_Confidence_factors)

(Let (\CURRENT_FAULT .NAME\ .CONFIDENCE)
("PROBABLE"))
)

)

(RULE=
RULEO3__EVALUATE_ESTABLISHED_CONFIDENCE_FACTORS
(aLHs=
(>= (\CURRENT_FAULT.NAME\.CF)  (0.9))

)
(QHYPO=
Evaluate_Fault_State_Confidence_Factors)
(QRHS=
(Let (\CURRENT_FAULT .NAME\.CONFIDENCE)
(“ESTABLISHED"))
(Let (\CURRENT_FAULT.NAME\.VERIFIED)
(TRUE))
)
)

(@RULE= RULE99__INITlALlZE_LEARNING_DATABASE

ACOMMENTS=FThis rule initializes the infefence
categorys of all fault states to 1.0 in the
CHIRCV.nxp database";aWHY="At times in may be
necessary to forget everything learned about the
diagnostic strategy.";

(aLHsS=
(Yes  (OPEN_GATE))
)
(aHYPO= Initialize_Database)
(aRHS=

(Do (1.0)  (<!FAULT_STATES}>.INF_CAT))
(Write ("CHIRCV.nxp")
(BTYPE=NXPDB;ﬂFILL=NEH;aUNKNOHN=TRUE;3NAME="<{FAUL
T_STATES|>";\
aPROPS=XNF_CAT;8FIELDS=“INF_CAT";))
)
)

(ARULE= RULEOZ__PURSUE_LEVEL_1_DIAGNOSTIC_STRATEGY

RCOMMENTS="This rule effects Level 1
Diagnostics by placing all fault states on the
agenda®; aWHY="Level 1 Diagnostics is the first step
in the diagnostic process";

(aLHS=

(Yes

(<iLEVEL_1_FAULT_STATES|>.VERIFIED))

)
(AHYPO= Level_1_Diagnostics)
)

(RRULE= RULEO3_ QUALIFICATION_OF_SENSOR_LEVEL
(aLHS=
(>= (\CURRENT_SENSOR.NAME\.ERROR) 0

)
(@HYPO= Sensor_Level_Description.HIGH)
(ARHS=
(Let (\CURRENT_SENSOR .NAME\ .LEVEL)
("HIGH"))
)
)

(ARULE= RULEZO__GENERlC_TEST_FOR_pOMPONENT_COUPLING
ACOMMENTS="This rule tests the signal power
level symptoms of all fault states against the
obserrved level. All matches are created in class
of Level 1 Fault States.";aWHY="A diagnostic
strategy must be developed before Level 1
Diagnostics can begi
n.";
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(aLHS=
(Reset (CURRENT_COMPONENT.COUPLING))
(Yes (CURRENT_COMPONENT .COUPLING))

)
(AHYPO= Test_Component_Coupling)
(aARHS=
(Do (0.9)  (\CURRENT_FAULT.NAME\.MB))
)
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D.2 CHANNEL 2 RECEIVER SUBSYSTEM

(aVERSION= 020)

(BPROPERTY= DESCRIPTION QTYPE=String;)
(BPROPERTY= INF_CATEGORY aTYPE=Float;)
(APROPERTY= POWER_LEVEL_OUT QTYPE=String;)
(APROPERTY= VERIFIED aTYPE=Boolean;)

(ACLASS=  FAULT_STATES

(@SUBCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERD_POWER_FAULT_STATES

)

(SPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(ACLASS= HIGH_POWER_FAULT_STATES
(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(aCLASS=  LOW_POWER_FAULT_STATES
(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(3CLASS=  SUBSYSTEMS
(@PROPERTIES=
POWER_LEVEL_OUT
)

)

(2CLASS= ZERO_POWER_FAULT_STATES
(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(80BJECT=  Diagnose_HIGH_Power_Fault_States
(2PROPERTIES=
value aTYPE=Boolean;
)
)

(R0BJECT=  Diagnose_LOW_Power_Fault_States
(@PROPERTIES=
value aTYPE=Boolean;
)
)

(A0BJECT=  Diagnose_ZERO_Power_Fault_States

)

(APROPERTIES=
value @TYPE=Boolean;
)

(Q0BJECT= 1FPC_Amplifier_Coupling_to_System

)

(9CLASSES=
ZERO_POWER_FAULT_STATES
)
(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

(Q0BJECT= 1FPC_Ampt ifier_General_Failure

)

(ACLASSES=
ZERO_POMER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(QA0BJECT= 1FPC_Amplifier_Power_Supply_Ffailure

)

(ACLASSES=
ZERO_POWER_FAULT_STATES
)
(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

(D0BJECT= IFPC_Attenuator_Coupling_to_System

)

(DCLASSES=
2ERO_POWER_FAULT_STATES

)

(2PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(D0BJECT=  IFPC_Attenuator_General_Failure

(GCLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED



(ROBJECT=  IFPC_Attenuator_Setting_Is_Incorrect
(ACLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POWER _ FAULT STATES
ZERO POUER FAULT STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(Q0BJECT=
Local_Oscillator_Frequency_Setting_Is_Incorrect
(@CLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(20BJECT=  Local_Oscillator_General_Failure
(QACLASSES=
LOW_POWER_FAULT_STATES
ZERO POHER FAULT STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(AOBJECT=
Local_Oscillator_Out_ of_Phase_Lock__Alarm
(ACLASSES=
ZERO_POHER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(A0BJECT=
Local_Oscillator_Out_of_Phase_Lock__Test
(ICLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)
(3PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED
)
)
(ROBJECT=  Local_Oscillator_Power_Supply_Failure

(ACLASSES=
2ERO_POWER_FAULT_STATES
LOW_| POWER _ FAULT_ STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(DOBJECT=
Local_Oscillator_Signal_Power | Level_Is_LOW
(ACLASSES=
2ERO_POWER _ FAULT_STATES
LOW_| POUER FAULT STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=
(QCLASSES=
ZERO_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=  Receiver_Unit_General_Failure
(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POHER FAULT STATES
ZERO_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=
Receiver_Unit_Primary_Power _Supply_Failure
(QCLASSES=
ZERO_POWER_FAULT_STATES

)

(2PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)
(QA0BJECT=

Receiver_Unit_Secondary_Power _Supply_Failure

(ACLASSES=
2ERO_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=  Undefined_General_Failure
(ACLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POWER _ FAULT_ STATES
ZERO POHER FAULT _STATES
)
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY

Receiver_Unit_Coupling_to_System
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VERIFIED
)

(30BJECT=
ZZ_Outstanding_Fault_States_for_Channel_Z_Receiver
_System
(BCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)
(asLOT= IFPC_Amplifier_Coupling_to_System.VERIFIED

SINFATOM=1FPC_Amplifier_Coupling_to_System.INF_CAT
EGORY;
)

(asLOT= IFPC_Amplifier_General_Failure.VERIFIED

DINFATOM=I1FPC_Amplifier_General_failure.INF_CATEGO
RY;
)

(asLoT=
1FPC_Amplifier_Power_Supply_Failure.VERIFIED

DINFATOM=1FPC_Amplifier_Power_Supply_Failure.INF_C
ATEGORY;
)

(ASLOT= [FPC_Attenuator_Coupling_to_System.VERIFIED

AINFATOM=IFPC_Attenuator_Coupling_to_System.INF_CA
TEGORY;
)

(aSLOT= 1FPC_Attenuator_General_Failure.VERIFIED

DINFATOM=1FPC_Attenuator_General_Failure.INF_CATEG
ORY;
)

(asLoT=
IFPC_Attenuator_Setting_ls_lncorrect.VERlFlED

DINFATOM=1FPC_Attenuator_Setting_Is_Incorrect.INF_
CATEGORY;
)

(asLoT=
Local_Oscillator_Frequency_Setting_Is_Incorrect.VE
RIFIED

PINFATOM=Local_Oscillator_Frequency_Setting_Is_Inc
orrect.INF_CATEGORY;
)

(aSLOT= Local_Oscillator_General_Failure.VERIFIED

QINFATOM=Local_Oscillator_General_Failure.INF_CATE
GORY;
)

(asLoT=
Local_Oscillator_Out_of_Phase_Lock__Alarm.VERlFIED

183

AINFATOM=Local Oscillator_Out_of_Phase_Lock__Alarm
. INF_CATEGORY;
)

(asLoT=
Local_Oscillator_Out_of_Phase_Lock__Test.VERIFIED

BINFATOM=Local_Oscillator_Out_of_Phase_Lock__Test.
INF_CATEGORY;
)

(asLOT=
Local_Oscillator_Power_Supply_Failure.VERIFIED

DINFATOM=Local_Oscil lator_Power_Supply_Failure.INF
_CATEGORY;
)

(asLOT=
Local_Oscillator_Signal_Pouer_Level_ls_LOH.VERIFIED

QINFATOM=Local _Oscillator_Signal_Power_Level Is_LO
W.INF_CATEGORY;
)

(aSLOT= Receiver_Unit_Coupling_to_System.VERIFIED

DINFATOM=Receiver_Unit_Coupling_to_System.INF_CATE
GORY;
)

(3SLOT= Receiver_Unit_General_Failure.VERIFIED

QINFATOM=Receiver_Unit_General_Failure.INF_CATEGOR
A
)

(asLOT=
Receiver_pnit_Primary_Pouer_Supply_Failure.VERlFlED

AINFATOM=Receiver_Unit_Primary_Power_Supply_Failur
e.INF_CATEGORY;
)

(asLoT=
Receiver_Unit_Secondary_Pouer_Supply_Failure.VERlF
IED

AINFATOM=Receiver_Unit_Secondary_Power_Supply_Fail
ure.INF_CATEGORY;
)

(@sSLOT= Undefined_General_Failure.VERIFIED

QINFATOM=Undefined_General_Failure.INF_CATEGORY;
)

(asLoT=
ZZ_Outstanding_Fault_States_for_channel_Z_Receiver
_System.VERIFIED

alNFATOH=ZZ_0utstanding_Fault_States_for_Channel_Z
_Receiver_System. INF_CATEGO\

RY;

)

(ARULE= R1
(aLHS=
(Is (<}SUBSYSTEMS{>.POUER_LEVEL_OUT) D
(Yes
(<)HIGH_POWER_FAULT_STATES}>.VERIFIED))
)



(@HYPO= Diagnose_ HIGH_Power_Fault_States)
)

(dRULE= R2
(aLHS=
(Is (<)SUBSYSTEMS|>.POWER_LEVEL_OUT)
(IILWII ))
(Yes
(<ILOH_POUER_FAULT_STATES{>.VERIFIED))

)
(@HYPO= Diagnose_LOW_Power_Fault_States)
)

(RULE= R3
(aLHS=
(Is (<!SUBSYSTEMS}>.POWER_LEVEL_OUT)
(MZEROM ))
(Yes
(<}2ERO_POWER_FAULT_STATES}|>.VERIFIED))

)
(2HYPO= Diagnose_ZERO_Power_Fault_States)

¢-3
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APPENDIX E

MATRIX SWITCH SUBSYSTEM
DIAGNOSTIC KNOWLEDGE BASE

(AVERSION=  020)

(QPROPERTY= DESCRIPTION QTYPE=String;)
(APROPERTY= INF_CATEGORY ATYPE=Float;)
(APROPERTY= POWER_LEVEL_OUT QTYPE=String;)
(IPROPERTY= VERIFIED aTYPE=Boolean;)

(3CLASS=  FAULT_STATES
(@SUBCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POMWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(3PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(CLASS=  HIGH_POWER_FAULT_STATES
(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(SCLASS=  LOW_POWER_FAULT_STATES
(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(3CLASS=  SUBSYSTEMS
(@PROPERTIES=
POWER_LEVEL_OUT
)
)

(3CLASS=  ZERO_POWER_FAULT_STATES
(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

(ROBJECT=  Diagnose_HWIGH_Power_Fault_States
(APROPERTIES=
value aTYPE=Boolean;
)
)

(0BJECT=  Diagnose_LOW_Power_Fault_States
(QPROPERTIES=
value @TYPE=Boolean;
)
)

(20BJECT=  Diagnose_ZERO_Power_Fault_States
(QPROPERTIES=
Value aTYPE=Boolean;
)
)

(Q0BJECT= IFPC_Amplifier_Coupling_to_System
(ACLASSES=
ZERO_POWER_FAULT_STATES

)

(JPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(QOBJECT= IFPC_Amplifier_General_Failure
(ACLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(D0BJECT= 1FPC_Amplifier_Power_Supply_Failure
(aACLASSES=
ZERO_POWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED
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)

(AOBJECT=  IFPC_Attenuator_Coupling_to_System
(ICLASSES=
ZERO_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT= 1FPC_Attenuator_General_Failure
(aCLASSES=
2ERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_| POHER FAULT STATES

)

(aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(ROBJECT= IFPC_Attenuator_Setting_Is_Incorrect
(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_: STATES
ZERO_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=
Matrix_Switch_Configuration_Is_Incorrect
(ACLASSES=
ZERO_POWER_FAULT_STATES

)

(DPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(AOBJECT=  Matrix_Switch_General_Failure
(QACLASSES=
2ZERO_POWER_FAULT_STATES
HIGH_| POUER FAULT_ “STATES
LOW_| POUER FAULT STATES
)
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(AOBJECT=  Matrix_Switch_Path_Setting_Is_Incorrect
(aCLASSES=
ZERO_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED
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)

(A0BJECT=  Undefined_General_Failure
(RCLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POHER FAULT STATES
ZERO POHER FAULT STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTF1ED

)

(R0OBJECT=
22_outstanding_Fault_States_ for_Matrix_Switch_Syst

(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_ FAULT STATES
ZERO_ POUER FAULY_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)
(asLOT= 1FPC_Amplifier_Coupling_to_System.VERIFIED

QINFATOM=1FPC_Amplifier_Coupling_to_System.INF_CAT
EGORY;
)

(asL0T= IFPC_Amplifier_General_Failure.VERIFIED

RINFATOM=1FPC_Amplifier_General_Failure.INF_CATEGO
RY;
)

(asLOT=
IFPC_Amplifier_Power_Supply_Failure. VERIFIED

DINFATOM=1FPC_Amplifier_Power_Supply_Failure.INF_C
ATEGORY;
)

(@sLOT= 1FPC_Attenuator_Coupling_to_System.VERIFIED

8[NFATOM=IFPC_Attenuator_Coupling_to_System.lNF_CA
TEGORY;
)

(ASLOT= I1FPC_Attenuator_General_Failure.VERIFIED
QINFATOM=IFPC_Attenuator_General_Failure.INF_CATEG
ORY;

)

(asLor=
IFPC_Attenuator_ Setting_ls_Incorrect. VERIFIED

alNFATOM=IFPC_Attenuator_Setting_ls_lncorrect.INF_
CATEGORY;
)

(@sLOT= Undefined_General_Failure.VERIFIED

AINFATOM=Undef ined_General_Failure.INF_CATEGORY;
)



(asLOoT=
ZZ_Outstanding_Fault_States_for_Matrix_Suitch_Syst
em.VERIFIED

SINFATOM=22_Outstanding_Fault_States_for_Matrix_Su
itch_System.INF_CATEGORY;
)

(RULE= R1
(ALHS=
(Is (<!SUBSYSTEMS!>.POWER_LEVEL_OUT)
(DIHIGHII))
(Yes
(<HIGH_POWER_FAULT_STATES|>.VERIFIED))

)
(aHYPO= Diagnose_HIGH_Power_Fault_States)
)

(aRULE= R2
(ALHS=
(Is (<|SUBSYSTEMS|>.POWER_LEVEL_OUT)
(IILOHII ) )
(Yes
(<!LOW_POWER_FAULT_STATES|>.VERIFIED))

)
(@HYPO= Diagnose_LOW_Power_Fault_States)
)

(ARULE= R3
(aLHS=
(Is (<:SUBSYSTEMS{>.PONER_LEVEL_0UT)
(HZEROH))
(Yes
(<{ZERO_POHER_FAULT_STATES:>.VERIFIED))

)
(@HYPO= Diagnose_ZERO_Power_Fault_States)
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APPENDIX F

UP-CONVERTER SUBSYSTEMS
DIAGNOSTIC KNOWLEDGE BASES

F.1 CHANNEL 1 UP-CONVERTER SUBSYSTEM

(aVERSION= 020)

(APROPERTY= DESCRIPTION ATYPE=String;)
(aPROPERTY= [INF_CATEGORY aTYPE=Float;)
(DPROPERTY= POWER_LEVEL_OUT &TYPE=String;)
(APROPERTY= VERIFIED aTYPE=Boolean;)

(3CLASS=  FAULT_STATES
(@SUBCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)
(9CLASS=  MIGH_POMWER_FAULT_STATES

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)
(9CLASS=  LOW_POWER_FAULT_STATES

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)
(ACLASS=  SUBSYSTEMS

(PROPERTIES=

POWER_LEVEL_OUT
)
)

(SCLASS=  ZERO_POWER_FAULT_STATES
(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

(A0BJECT=  Diagnose_HIGH_Power_Fault_States
(2PROPERTIES=
value aTYPE=Boolean;
)
)

(@0BJECT=  Diagnose_LOW_Power_Fault_States
(APROPERTIES=
value aTYPE=Boolean;
)
)

(20BJECT=  Diagnose_ZERO_Power_Fault_States
(9PROPERTIES=
Value @TYPE=Boolean;
)
)

(A0BJECT=  HPADIPC_Attenuator_Coupling_to_System
(QACLASSES=
ZERO_POWER_FAULT_STATES
)
(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(A0BJECT=  HPADIPC_Attenuator_General_Failure
(aCLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)
(Q0BJECT=  HPADIPC_Attenuator_Setting_Is_Incorrect
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(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POWER_ FAULT_ STATES
ZERD_ POHER FAULT _STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(Q0BJECT=  HPAIPC_Amplifier_Coupling_to_System
(QCLASSES=
ZERO_POWER_FAULT_STATES
)
(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(DOBJECT=  HPAIPC_Amplifier_General_Failure
(QCLASSES=
ZERO_POMWER_FAULT_STATES
HIGH_| POHER FAULT_ TSTATES
LOW_POWER_ FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(OBJECT=  HPAIPC_Amplifier_Power_Supply_Failure

(@CLASSES=
2ERO_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(J0BJECT=  HPAIPC_Attenuator_Coupling_to_System
(QCLASSES=
ZERO_POWER_FAULT_STATES

)

(3aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(QOBJECT=  HPAIPC_Attenuator_General_Failure
(ICLASSES=
ZERO_POWER_FAULT_STATES
HIGH_ PONER FAULT_ TSTATES
LOW_| PONER FAULT STATES
)
(®OPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT= HPAIPC_Attenuator_Setting_Is_Incorrect

(ACLASSES=
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HIGH_POWER_FAULT_STATES
LOW_POWER _ FAULT_STATES
ERO POUER FAULT _STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(QA0BJECT=
Local_Oscillator_Frequency_Setting_ls_Incorrect
(QACLASSES=
2ERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(BPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

}

(0BJECT=  Local_Oscillator_General_Failure
(ICLASSES=
LOW_POWER_FAULT_STATES
ZEROC_POMER_ FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(QOBJECT=
Local_Oscillator_Out_of_Phase_ Lock__Alarm
(QCLASSES'
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

}

(A0BJECT=
Local_Oscillator_Out_of_Phase_Lock__ Test
(ACLASSES=
2ERO_POWER_FAULT_STATES
LOW_| POWER_ FAULT_ STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(Q0BJECT=  Local_Oscillator_Power_Supply_Failure

(ACLASSES=
ZERO_POWER_FAULT_STATES
LOW_| POWER_FAULT_ STATES

)

(2PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED



(A0BJECT=
Local_Oscillator_Signal_Power_Level_Is_LOW
(DCLASSES=
2ERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)

(R0BJECT=  Mixer_Unit_Coupling_to_System
(@CLASSES=
ZERO_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(0BJECT=  Mixer_Unit_General Failure
(RCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(aAPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(AOBJECT=  Undefined_General_failure
(ACLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERG_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(I0BJECT=
ZZ_Outstanding_Fault_States_for_Channel_1_Upconver
ter_System
(ACLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(DPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(asLoT=
HPADIPC_Attenuator_Coupling_to_System.VERIFIED

DINFATOM=HPADIPC_Attenuator_Coupling_to_System.INF
_CATEGORY;
)

(3SLOT= HPADIPC_Attenuator_General_Failure.VERIFIED
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BINFATOM=HPADIPC_Attenuator_General_Failure.INF_CA
TEGORY;
)

(asioT=
HPADIPC_Attenuator_Setting_ls_lncorrect.VERlFIED

AINFATOM=HPADIPC_Attenuator_Setting_Is_Incorrect.]
NF_CATEGORY;
)

(asLoT=
HPAIPC_Amplifier_Coupling_to_System.VERIFIED

@DINFATOM=HPAIPC_Amplifier_Coupling_to_System.INF_C
ATEGORY;
)

(ASLOT= HPAIPC_Amplifier_General_Failure.VERIFIED

DINFATOM=HPAIPC_Amplifier_General_failure.INF_CATE
GORY;
)

(asLor=
HPAIPC_Amplifier_Power_Supply_Failure.VERIFIED

DINFATOM=HPAIPC_Amplifier_Power_Supply_Failure.INF
_CATEGORY;
)

(asLoT=
HPAIPC_Attenuator_Coupling_to_System.VERIFIED

QINFATOM=HPAIPC_Attenuator_Coupling_to_System.INF_
CATEGORY;
)

(ASLOT= HPAIPC_Attenuator_General_Failure.VERIFIED

QINFATOM=HPAIPC_Attenuator_General_Failure.INF_CAT
EGORY;
)

(asLoT=
HPAIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

DINFATOM=HPAIPC_Attenuator_Setting_Is_Incorrect.IN
F_CATEGORY;
)

(asLOT=
Local_Oscillator_Frequency_Setting_ls_Incorrect.VE
RIFIED

QINFATOM=Local_Oscillator_Frequency_Setting_ls_Inc
orrect.INF_CATEGORY;
)

(asLOT= Local_Oscillator_General_Failure.VERIFIED

DINFATOM=Local_Oscillator_General_Ffailure.INF_CATE
GORY;
)

(asLoT=
Local_Oscillator_Out_of_Phase_Lock__Alarm.VERlFIED

DINFATOM=Local_Oscillator_Out_of _Phase_Lock__Alarm
. INF_CATEGORY;
)



(astoT=
Local_Oscillator_Out_of_Phase_Lock__Test.VERIFIED

SINFATOM=Local_Oscillator_Out_of_Phase_Lock__Test.
INF_CATEGORY;
)

(asLoT=
Local_Oscillator_Power_Supply_Failure.VERIFIED

DINFATOM=Local_Oscillator_Paower_Supply_Failure.INF
_CATEGORY;
)

(asLOT=
Local_Oscillator_Signal_Power_Level_Is_LOW.VERIFIED

DINFATOM=Local_Oscillator_Signal_Power_Level_lIs_LO
W. INF_CATEGORY;
)

(ASLOT= Mixer_Unit_Coupling_to_System.VERIFIED

QINFATOM=Mixer_Unit_Coupling_to_System.INF_CATEGOR
Y;
)

(9SLOT= Mixer_Unit_General_Failure.VERIFIED

AINFATOM=Mixer_Unit_General_Failure.INF_CATEGORY;
)

(@SLOT= Undefined _General_Failure.VERIFIED

AINFATOM=Undefined_General_Failure.INF_CATEGORY;
)

(asLOoT=
ZZ_Outstanding_Fault_States_for_Channel_1_Upconver
ter_System.VERIFIE\

D

alNFATOH:ZZ_Outstanding_Fault_States_for_Channel_1
_Upconverter_System. INF_CAT\

EGORY;

)

(ARULE= R1
(aLHS=
(Is (<ISUBSYSTEMS{>.POUER_LEVEL_0UT)
(IIH[GHII))
(Yes
(<}HIGH_PONER_FAULT_STATES}>.VERIFIED))

)
(aHYPO= Diagnose_HI1GH_Power_Fault_States)
)

(ARULE= R2
(aLHS=
(Is (<}SUBSYSTEMS{>.POUER_LEVEL_OUT)
(IILWII))
(Yes
(<5LOH_POHER_FAULT_STATES:>.VERIF1ED))

)
(@HYPO= Diagnose_LOW_Power_Fault_States)
)

(ARULE= R3
(aLHs=
(Is (<!SUBSYSTEMS|>.POWER_LEVEL_OUT)
(MZERO"))
(Yes  (<|ZERO_POWER_FAULT_STATES|>.VERIFIED))
)

(@HYPO= Diagnose_ZERO_Power_Fault_States)
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F.2 CHANNEL 2 UPCONVERTER SUBSYSTEM

(AVERSION=  020)

(PROPERTY= DESCRIPTION QTYPE=String;)
(QPROPERTY= [INF_CATEGORY aTYPE=Float;)
(APROPERTY= POWER_LEVEL_OUT QTYPE= Strlng,)
(9PROPERTY= VERIFTED aTYPE=Boolean;)

(QCLASS= FAULT_STATES
(QSUBCLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POWER _ FAULT_ STATES
ZERO POHER FAULT STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)
(SCLASS=  HIGH_POWER_FAULT_STATES

(APROPERTIESS
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)
(ACLASS=  LOW_POWER_FAULT_STATES

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)
(9CLASS=  SUBSYSTEMS

(APROPERTIES=

POWER_LEVEL_OUT
)
)

(ACLASS= ZERO_POWER_FAULT_STATES
(2aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(ROBJECT=  Diagnose_HIGH_Power_Fault_States
(APROPERTIES=
value @TYPE=Boolean;
)
)

(QOBJECT=  Diagnose_LOW_Power_Fault_States
(APROPERTIES=
value  @TYPE=Boolean;
)
)

(@0BJECT=  Diagnose_ZERO_Power_Fault_States
(QPROPERTIES=
value aTYPE=Boolean;

)

(DOBJECT=  HPADIPC_Attenuator_Coupling_to_System

)

(SCLASSES=
ZERO_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(F0BJECT=  HPADIPC_Attenuator_General Failure

)

(QCLASSES=
2ERO_POWER_FAULT_STATES
HIGH_ POUER FAULT_ TSTATES
LOW_| POHER FAULT STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(AOBJECT=  HPADIPC_Attenuator_Setting_Is_Incorrect

)

(RCLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POWER_| FAULT_ STATES
ZERO_| PONER FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(0BJECT= HPAIPC_Amplifier_Coupling_to_System

)

(ACLASSES=
ZERO_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(ROBJECT=  HPAIPC_Amplifier_General_Failure

)

(ICLASSES=
2ERO_POWER_FAULT_STATES
HIGH POUER FAULT “STATES
LOW_| POWER _ FAULT_ STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(J0BJECT= HPAIPC_Amplifier_Power_Supply_Failure

(ACLASSES=



ZERO_POWER_FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(RO0BJECT=  HPAIPC_Attenuator_Coupling_to_System
(QCLASSES=
ZERO_POWER_FAULT_STATES

)

(RPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(DOBJECT=  HPAIPC_Attenuator_General_Failure
(RCLASSES=
ZERO_POWER_FAULT_STATES
HIGH POHER " FAULT_ “STATES
LOW_| POUER FAULT STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(20BJECT=  HPAIPC_Attenuator_Setting_ls_Incorrect
(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT STATES
ZERD_POMWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(AOBJECT=
Local_Oscillator_frequency_ Setting_Is_lIncorrect
(QCLASSES—
ZERO_POHER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(ROBJECT=  Local_Oscillator_General_Failure
(QCLASSES=
LOW_POWER_FAULT_STATES
ZERO POMER FAULT STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)

(@0BJECT=  Local_Oscillator_Out_of_Phase_Lock_Alarm
(QACLASSES=
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ZERO_POMWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED
)
)
(Q0BJECT=
Local_Oscillator_Out_of_Phase_| Lock__Test
(ACLASSES=

ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(R0BJECT=  Local_Oscillator_Power_Supply_Failure
(ACLASSES=
ZERO_POMER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(Q0BJECT=
Local_Oscillator_Signal_Power_ Level _Is_LOW
(ACLASSES=
ZERO_POWER_| FAULT_STATES
LOW_| POHER FAULT STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(0BJECT=  Mixer_Unit_Coupling_to_System
(QCLASSES=
2ERO_POWER_FAULT_STATES

)

{2PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(DOBJECT=  Mixer_Unit_General_Failure
(RCLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POHER FAULT STATES
ZERO POHER FAULT _STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)
(R0BJECT=  Undefined_General_Failure



(ACLASSES=
HIGH_POWER_FAULT_STATES
LOW_POMWER_FAULT_STATES
ZERD_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(20BJECT=
22_outstanding_Fault_States_for_Channel_2_Upconver
ter_System
(@CLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(asLoT=
HPADIPC_Attenuator_Coupling_to_System.VERIFIED

DINFATOM=HPADIPC_Attenuator_Coupling_to_System.INF
_CATEGORY;
)

(2SLOT= HPADIPC_Attenuator_General_Failure.VERIFIED

QINFATOM=HPADIPC_Attenuator_General _Failure.INF_CA
TEGORY;
)

(@sLOT=
HPADIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

DINFATOM=HPADIPC_Attenuator_Setting_Is_Incorrect.l
NF_CATEGORY;
)

(asSLOT=
HPALPC_Amplifier_Coupling_to_System.VERIFIED

DINFATOM=HPAIPC_Amplifier_Coupling_to_System.INF_C
ATEGORY;
)

(aSLOT= HPAIPC_Amplifier_General_Failure.VERIFIED

DINFATOM=HPAIPC_Amplifier_General Failture.INF_CATE
GORY;
)

(asLot=
HPAIPC_Amplifier_Power_Supply_Failure.VERIFIED

QINFATOM=HPAIPC_Ampl i fier_Power_Supply_Failure.INF
_CATEGORY;
)

(asLOT=
HPAIPC_Attenuator_Coupling_to_System.VERIFIED

DINFATOM=HPAIPC_Attenuator_Coupling_to_System.INF_
CATEGORY;
)
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(3SLOT= HPAIPC_Attenuator_General_Failure.VERIFIED

DINFATOM=HPAIPC_Attenuator_General_Failure.INF_CAT
EGORY;
)

(asLOT=
HPAIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

DINFATOM=HPAIPC_Attenuator_Setting_Is_Incorrect.IN
F_CATEGORY;
)

(asLOT=
Local_Oscillator_Frequency_Setting_lIs_Incorrect.VE
RIFIED

QINFATOM=Local_Oscillator_Frequency_Setting_Is_Inc
orrect.INF_CATEGORY;
)

(aSLOT= Local_Oscillator_General_Failure.VERIFIED

@AINFATOM=Local_Oscillator_General_Failure.INF_CATE
GORY;
)

(astoT=
Local_Oscillator_Out_of_Phase_Lock__Alarm.VERIFIED

QINFATOM=Local_Oscillator_Out_of_Phase_Lock__Alarm
. INF_CATEGORY;
)

(asLOT=
Local_Oscillator_Out_of_Phase_Lock_ Test.VERIFIED

QINFATOM=Local_Oscillator_Out_of_Phase_Lock__Test.
INF_CATEGORY;
)

(asLOT=
Local_Oscillator_Power_Supply_Failure.VERIFIED

DINFATOM=Local_Oscillator_Power_Supply_Failure.INF
CATEGORY;

3

(asLoT=
Local_Oscillator_Signal_Power_Level_Is_LOW.VERIFIED

DINFATOM=Local_Oscillator_Signal_Power_Level_Is_LO
W.INF_CATEGORY;

)

(RSLOT= Mixer_Unit_Coupling_to_System.VERIFIED
QINFATOM=Mixer_Unit_Coupling_to_System.INF_CATEGOR
Y;

)

(9SLOT= Mixer_Unit_General_Failure.VERIFIED

QAINFATOM=Mixer_Unit_General_Failure.INF_CATEGORY;
)

(@sLOT= Undefined_General_Failure.VERIFIED

AINFATOM=Undefined_General_Failure.INF_CATEGORY;
)
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(ISLOT=
ZZ_Outstanding_Fault_States_for_Channel_Z_Upconver
ter_System.VERIFIE\

D

ﬂlNFATOM=ZZ_Outstending_Fault_States_for_Channel_Z
_Upconverter_System. INF_CAT\

EGORY;

)

(IRULE= R1
(aLHS=
(Is (<{SUBSYSTEMS{>.POHER_LEVEL_OUT)
(IIH]GHII))
(Yes
(<}HIGH_POUER_FAULT_STATES}>.VERIFIED))

)
(aHYPO= Diagnose_HIGH_Power_Fault_States)
)

(ARULE= R2
(aLHS=
(Is (<:SUBSYSTEMS}>.POUER_LEVEL_0UT)
(IILwII) )
(Yes
(<!LOW_POWER_FAULT_STATES|>.VERIFIED))

)
(@HYPO= Diagnose_LOW_Power_Fault_States)
)

(@RULE= R3
(ALHS=
(Is (<!SUBSYSTEMS!>.POWER_LEVEL_OUT)
("ZERO" ) )
(Yes
(<] 2ERO_POWER_FAULT_STATES|>.VERIFIED))

)
(@HYPO= Diagnose_ZERO_Power_Fault_States)



APPENDIX G

HIGH POWER AMPLIFIER SUBSYSTEMS
DIAGNOSTIC KNOWLEDGE BASES

G.1 CHANNEL 1 AMPLIFIER SUBSYSTEM

(AVERSION= 020}

(BPROPERTY= DESCRIPTION QTYPE=String;)
(QPROPERTY= [INF_CATEGORY ATYPE=Float;)
(DPROPERTY= POWER_LEVEL_OUT aTYPE=String;)
(@APROPERTY= VERIFIED aTYPE=Boolean;)

(CLASS=  FAULT_STATES
(@SUBCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERD_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)
(ACLASS= HIGH_POWER_FAULT_STATES

(QAPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)
(ACLASS= LOW_POWER_FAULT_STATES

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)
(ICLASS= SUBSYSTEMS

(RPROPERTIES=
POWER_LEVEL_OUT

)

)
(ACLASS= 2ERO_POWER_FAULT_STATES

(WIPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(Q0BJECT=  Diagnose_HIGH_Power_Fault_States
(QAPROPERTIES=
value QTYPE=Boolean;
)
)

(20BJECT=  Diagnose_LOW_Power_Fault_States
(aPROPERTIES=
Value QTYPE=Boolean;
)

)

(R0BJECT=  Diagnose_2ERO_Power_Fault_States
(APROPERTIES=
value aTYPE=Boolean;
)

)
(AOBJECT=  HPADIPC_Attenuator_Coupling_to_System
(aCLASSES=
ZERO_POWER_FAULT_STATES
)
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED
)
)
(DOBJECT=  HPADIPC_Attenuator_General_Failure
(DCLASSES=

2ERO_POMER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)
(@0BJECT=  HPADIPC_Attenuator_Setting_Is_Incorrect
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(ACLASSES=
HIGH_POWER_FAULT_STATES
LOW_| POHER FAULT STATES
ZERO POUER FAULT _STATES

)

(aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)
(A0BJECT=  HPAIPC_Amplifier_Coupling_to_System

(SCLASSES=
ZERO_POWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)

(0BJECT=  HPAIPC_Amplifier_General_Failure
(ACLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)
(3PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED
)
)
(Q0BJECT=  HPAIPC_Amplifier_Power_Supply_Failure
(RCLASSES=
ZERO_POWER_FAULT_STATES
)
(aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED
)

)

(A0BJECT=  HPAIPC_Attenuator_Coupling_to_System
(ACLASSES=
ZERO_POWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(@0BJECT=  HPAIPC_Attenuator_General_Failure
(QCLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)

(QOBJECT=  HPAIPC_Attenuator_Setting_Is_Incorrect
(QCLASSES=
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HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERD_POWER_FAULT_STATES
)
(aPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(DOBJECT=
Local_Oscillator_Frequency Setting_Is_Incorrect
(ACLASSES=
ZERO_POWER_FAULT_ STATES
LOW_| POHER FAULT STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(20BJECT=  Local_Oscillator_General_Failure
(ACLASSES=
LOW_POWER_FAULT_STATES
ZERO POUER FAULT STATES

)

(JPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=
Local_Oscillator_Out_of_Phase_Lock__Alarm
(BCLASSES-
ZERO_POHER_FAULT_STATES
LOH_POHER_FAULT_STATES
)
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(ROBJECT=
Local_Oscillator_Out_of_Phase_Lock__Test
(ACLASSES=
ZERC_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(FBJECT=  Local_Oscillator_Power_Supply_Failure
(ACLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED



(IOBJECT=
Local_Oscillator_Signal_Power_Level_ls_LOW
(DCLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(A0BJECT=  Mixer_Unit_Coupling_to_System
(QCLASSES=
ZERO_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(@0BJECT=  Mixer_Unit_General_Failure
(@CLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
2ERO_POMWER_FAULT_STATES
)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

)

(0BJECT=  Undefined_General_Failure
(RCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(Q0BJECT=
2Z_Outstanding_Fault_States_for_Channel_1_Upconver
ter_System
(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
2ERO_POWER_FAULT_STATES
)
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(asLOT=
HPADIPC_Attenuator_Coupling_to_System.VERIFIED

QINFATOM=HPADIPC_Attenuator_Coupling_to_System.INF
_CATEGORY;
)

(@SLOT= HPADIPC_Attenuator_General_Failure.VERIFIED
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AINFATOM=KPADIPC_Attenuator_General_Failure.INF_CA
TEGORY;
)

(asLoT=
HPADIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

QINFATOM=HPADIPC_Attenuator_Setting_Is_Incorrect.l
NF_CATEGORY;
)

(asLoT=
HPAIPC_Amplifier_Coupling_to_System.VERIFIED

SINFATOM=HPAIPC_Amplifier_Coupling_to_System.INF_C
ATEGORY;
)

(2SLOT= HPAIPC_Amplifier_General_Failure.VERIFIED

DINFATOM=HPAIPC_Amplifier_General_Failure.INF_CATE
GORY;
)

(ISLOT=
HPAIPC_Amplifier_Power_Supply_Failure.VERIFIED

AINFATOM=HPAIPC_Amplifier_Power_Supply_Failure.INF
_CATEGORY;
)

(asLoT=
HPAIPC_Attenuator_Coupling_to_System.VERIFIED

DINFATOM=HPAIPC_Attenuator_Coupling_to_System.INF_
CATEGORY;
)

(2SLOT= HPAIPC_Attenuator_General_Faiture.VERIFIED

AINFATOM=HPAIPC_Attenuator_General_failure.INF_CAT
EGORY;
)

(asLor=
HPAIPC_Attenuator_Setting_Is_Incorrect.VERlFlED

QINFATOM=HPAIPC_Attenuator_Setting_ls_Incorrect.IN
F_CATEGORY;
)

(asLOT=
Local_Oscillator_Frequency_Setting_ls_lncorrect.VE
RIFIED

AINFATOM=Local_Oscillator_Frequency_Setting_ls_Inc
orrect.INF_CATEGORY;
)

(@SLOT= Local_Oscillator_General_Failure.VERIFIED

DINFATOM=Local_Oscillator_General_Failure.INF_CATE
GORY;
)

(asLOT=
Local_Oscillator_Out_of_Phase_Lock__Alarm.VERIFIED

DINFATOM=Local_Oscitlator_Out_of_Phase_Lock_ Alarm
. INF_CATEGORY;
)



(asLOT=
Local_Oscillator_Out_of_Phase_Lock__Test.VERIFIED

SINFATOM=Local_Oscillator_Out_of_Phase_Lock__Test.
INF_CATEGORY;
)

(asLOT=
Local_Oscillator_Power_Supply_Failure.VERIFIED

@INFATOM=tocal_Oscillator_Power_Supply_Failure.INF
_CATEGORY;
)

(asLoT=
Local_Oscillator_Signal_Power_Level_Is_LOW.VERIFIED

DINFATOM=Local_Oscillator_Signal_Power_Level_Is_LO
W.INF_CATEGORY;
)

(aSLOT= Mixer_Unit_Coupling_to_System.VERIFIED

DINFATOM=Mixer_Unit_Coupiing_to_System.INF_CATEGOR
Y;
)

(aSLOT= Mixer_Unit_General_failure.VERIFIED

BINFATOM=Mixer_Unit_General_Failure.INF_CATEGORY;
)

(@SLOT= Undefined_General_Failure.VERIFIED

SINFATOM=Undef ined_General_Failure.INF_CATEGORY;
)

(asLOT=
2Z_Outstanding_Fault_States_for_Channel_1_Upconver
ter_System.VERIFIE\

D

AINFATOM=2Z_Outstanding_Fault_States_for_Channel_1
_Upconverter_System.INF_CAT\

EGORY;

)

(aRULE= R1
(aLHS=
(Is (<{SUBSYSTEMS:>.POHER_LEVEL_OUT)
("HIGH"))
(Yes
(<}HIGH_POHER_FAULT_STATES:>.VERIFIED))

)
(AHYPO= Diagnose_HIGH_Power_Fault_States)
)

(ARULE= R2
(QLHS=
(Is (<|SUBSYSTEMS}>.POWER_LEVEL_OUT)
(IOLWII) )
(Yes
(<!LOW_POWER_FAULT_STATES|>.VERIFIED))

)
(AHYPO= Diagnose_LOW_Power_Fault_States)
)

(SRULE= R3
(@LHs=
(Is (<}SUBSYSTEMS}|>.POWER_LEVEL_OUT)
( [1] ZEROII ) )
(Yes  (<|ZERO_POWER_FAULT_STATES)>.VERIFIED))
)

(aHYPO= Diagnose_ZERO_Power_Fault_States)
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G.2 CHANNEL 2 AMPLIFIER SUBSYSTEM

(AVERSION=  020)

(APROPERTY= DESCRIPTION QTYPE=String;)
(DPROPERTY= INF_CATEGORY aTYPE=Float;)
(@PROPERTY= POWER_LEVEL_OUT QTYPE=String;)
(2PROPERTY= VERIFIED aTYPE=Boolean;)

(9CLASS=  FAULT_STATES
(SUBCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERG_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(QCLASS= HIGH_POWER_FAULT_STATES
(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(9CLASS=  LOW_POWER_FAULT_STATES
(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(aCLASS=  SUBSYSTEMS
(APROPERTIES=
POWER_LEVEL_OUT
)

)

(QACLASS= ZERO_POMER_FAULT_STATES
(PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(F0BJECT=  Diagnose_HIGH_Power_Fault_States
(QPROPERTIES=
value aTYPE=Boolean;
)
)

(ROBJECT=  Diagnose_LOW_Power_Fault_States
(IPROPERTIES=
value aTYPE=Boolean;
)
)

(R0BJECT=  Diagnose_ZERO_Power_Fault_States
(IPROPERTIES=
Value aTYPE=Boolean;

)

(F0BJECT=  HPADIPC_Attenuator_Coupling_to_System

)

(SCLASSES=
ZERO_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(0BJECT=  HPADIPC_Attenuator_General_Failure

)

(RCLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(QPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(R0BJECT=  HPADIPC_Attenuator_Setting_Is_Incorrect

)

(@CLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERD_POWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(A0BJECT=  HPAIPC_Amplifier_Coupling_to_System

)

(CLASSES=
ZERO_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(O0BJECT=  HPAIPC_Amplifier_General_Failure

)

(DCLASSES=
2ERO_POMWER_FAULT_STATES
HIGH_POMWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

(R0BJECT=  HPAIPC_Amplifier_Power_Supply_Failure

(@CLASSES=



ZERO_POWER_FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

)

(BOBJECT=  HPAIPC_Attenuator_Coupling_to_System
(QCLASSES=
2ERO_POWER_FAULT_STATES

)

(9PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(R0BJECT=  HPAIPC_Attenuator_General Failure

(QACLASSES=
ZERO_POWER_FAULT_STATES
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(ROBJECT=  HPAIPC_Attenuator_Setting_Is_Incorrect
(QACLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
2ERD_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(AO0BJECT=
Local_Oscitlator_Frequency_Setting_Is_Incorrect
(ACLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(Q0BJECT=  Local_Oscillator_General Failure
(ACLASSES=
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES
)
(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(A0BJECT=
Local_Oscillator_Out_of_Phase_Lock__Alarm
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(@CLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(RPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(DOBJECT=
Local_Oscillator_Out_of_Phase_Lock__Test
(QCLASSES=
ZERO_POWER_FAULT_STATES
LOW_POMER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(0BJECT=  Local_Oscil lator_Power_Supply_Failure
(DCLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(QOBJECT=
Local_Oscillator_Signal_Power_Level_Is_LOW
(ACLASSES=
ZERO_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
)
(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(A0BJECT=  Mixer_Unit_Coupling_to_System
(QCLASSES=
ZERO_POWER_FAULT_STATES

)

(JPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(R0BJECT=  Mixer_Unit_General_failure
(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(IPROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED



(A0BJECT=  Undefined_General_Failure
(QACLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(@PROPERTIES=
DESCRIPTION
INF_CATEGORY
VERTFIED

)

(R0BJECT=
22_outstanding_Fault_States_for_Channel_2_Upconver
ter_System
(QCLASSES=
HIGH_POWER_FAULT_STATES
LOW_POWER_FAULT_STATES
ZERO_POWER_FAULT_STATES

)

(APROPERTIES=
DESCRIPTION
INF_CATEGORY
VERIFIED

)

(asLoT=
HPADIPC_Attenuator_Coupling_to_System.VERIFIED

QINFATOM=HPADIPC_Attenuator_Coupling_to_System.INF
_CATEGORY;
)

(RSLOT= HPADIPC_Attenuator_General_Failure.VERIFIED

QINFATOM=HPADIPC_Attenuator_General_Failure.INF_CA
TEGORY;
)

(asLOT=
HPADIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

INFATOM=HPADIPC_Attenuator_Setting_Is_Incorrect.l
NF_CATEGORY;
)

(asSLOT=
HPAIPC_Amplifier_Coupling_to_System.VERIFIED

QINFATOM=HPAIPC_Amplifier_Coupling_to_System.INF_C
ATEGORY;
)

(aSLOT= HPAIPC_Amplifier_General_Failure.VERIFIED

QAINFATOM=HPAIPC_Amplifier_General_Failure.INF_CATE
GORY;
)

(asLoT=
HPATPC_Amplifier_Power_Supply_Failure.VERIFIED

QAINFATOM=HPAIPC_Amplifier_Power_Supply_Failure.INF
_CATEGORY;
)

(aSLOT=
HPAIPC_Attenuator_Coupling_to_System.VERIFIED

QINFATOM=HPAIPC_Attenuator_Coupling_to_System.INF_
CATEGORY;

202

)
(ASLOT= HPAIPC_Attenuator_General_Failure.VERIFIED

QINFATOM=HPAIPC_Attenuator_General_Failure.INF_CAT
EGORY;
)

(asLOT=
HPAIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

INFATOM=HPAIPC_Attenuator_Setting_Is_Incorrect.IN
F_CATEGORY;
)

(asLOT=
Local_Oscillator_Frequency_Setting_ls_Incorrect.VE
RIFIED

@INFATOM=Local_Oscillator_Frequency_Setting_Is_Inc
orrect.INF_CATEGORY;
)

(dSLOT= Local_Oscillator_General_Failure.VERIFIED

QINFATOM=Local_Oscillator_General_Failure.INF_CATE
GORY;
)

(asLOT=
Local_Oscillator_Out_of_Phase_Lock__Alarm.VERIFIED

DINFATOM=Local_Oscillator_Out_of_Phase_Lock__Alarm
. INF_CATEGORY;
)

(asLoT=
Local_Oscillator_Out_of_Phase_Lock__Test.VERIFIED

AINFATOM=Local_Oscillator_Out_of_Phase_Lock__Test.
INF_CATEGORY;
)

(asLOT=
Local_Oscillator_Power_Supply_Failure.VERIFIED

QINFATOM=Local_Oscillator_Power_Supply_Failure.INF
_CATEGORY;
)

(asLOT=
Local_Oscillator_Signal_Power_Level_Is_LOW.VERIFIED

DINFATOM=Local_Oscillator_Signal_Power_Level_Is_LO
W.INF_CATEGORY;
)

(3SLOT= Mixer_Unit_Coupling_to_System.VERIFIED
QINFATOM=Mixer_Unit_Coupling_to_System.INF_CATEGOR
!l

(9SLOT= Mixer_Unit_General_Failure.VERIFIED

QINFATOM=Mixer_Unit_General_Failure.INF_CATEGORY;
)

(asLOT= Undefined_General_Failure.VERIFIED

QINFATOM=Undefined_General_Failure.INF_CATEGORY;
)
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(asLOT=
22_outstanding_Fault_States_for_Channel_2_Upconver
ter_System.VERIFIE\

D

AINFATOM=2Z_Outstanding_Fault_States_for_Channel_2
_Upconverter_System. INF_CAT\

EGORY;

)

(3RULE= R1
(QLHS=
(Is (<{SUBSYSTEMS{>.POUER_LEVEL_OUT)
("HIGH"))
(Yes
(<!HIGH_POWER_FAULT_STATES|>.VERIFIED))

)
(AHYPO= Diagnose_HIGH_Power_Fault_States)
)

(ARULE= R2
(aLHS=
(Is (<:SUBSYSTEMS}>.POUER_LEVEL_OUT)
(IILWH ) )
(Yes
(<!LOW_POWER_FAULT_STATES}>.VERIFIED))

)
(AHYPO= Diagnose_LOW_Power_Fault_States)
)

(RULE= R3
(aLHS=
(Is (<}SUBSYSTEMS{>.POHER_LEVEL_OUT)
(“ZERO"))
(Yes
(<}ZERO_POUER_FAULT_STATES:>.VERIFIED))

)
(AHYPO= Diagnose_2ERO_Power_Fault_States)
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