
NASA Technical Memorandum 105696

A Graphical User-Interface for Propulsion
System Analysis

Brian E Curlett

Lewis Research Center

Cleveland, Ohio

and

Kathleen Ryall

Harvard University

Cambridge, Massachusetts

August 1992

N/ A

(_'_ASA- TM- 105696) A GRAPHICAL

USER-INTERFACE FOR PROPULSION

SYSTEM ANALYSIS (NASA) 28 p

G3/61

N92-33894

Unclas

Ollql13

https://ntrs.nasa.gov/search.jsp?R=19920024650 2020-03-17T10:01:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42811363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A GRAPHICAL USER-INTERFACE FOR PROPULSION
SYSTEM ANALYSIS

Brian P. Curlett and Kathleen Ryall

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

Introduction

For more than thirty years computer aided engineering has been conducted using

FORTRAN programming on mainframe computers. Methods of data entry into the

engineering programs have progressed from the days of punch cards, but for the most part

still requires entering large volumes of information into formatted input fields or namelist
formats. In the last ten years, personal computers, and many business applications have

progressed towards the graphical user-interface. Its ease of use and its ability to represent

information pictorially have helped to improve productivity. Personal computers are still too

small and too slow to adequately handle complex engineering problems. The workstation

class of computers, however, has made tremendous gains in performance over the last couple

of years. Today, workstation computers rival even the fastest mainframes and

supercomputers. Furthermore, today's workstation provides an ideal environment for

developing graphical user-interfaces.

The X Windows System has emerged as the standard for the development of graphical
user-interfaces on the workstation class of computers. The X Windows System has a unique

device-independent architecture that permits X applications to display windows on any

hardware that supports the X protocol, from mainframes to PCs. This and X Windows' public

domain source code has lead to its popularity. Although the X Windows System provides only

low-level graphics calls, there are several higher level tool kits that make programming in

the X Windows System much easier. One of these tool kits is Motif from the Open Software
Foundation.

X Windows with OSF/Motif running on a UNIX based workstation computer was the

environment chosen for the development of the NASA Propulsion Analysis System (NPAS).

NPAS is a graphical user-interface built on top of the NASA Engine Performance Program
(NEPP), the Weight Analysis of Turbine Engines (WATE) and the INSTAL computer codes 15.

The interface consists of a method of pictorially representing and editing the engine

configuration, forms for entering numerical data, on-line help and documentation, post-

processing of data, and a menu system to control execution. _

This paper describes the development of the NPAS graphical user-interface. This is
not a users manual for NPAS. This paper does contain a description of the user-interface,

the approach used to create the interface, and the rationale for this approach. In addition,
other information thought to be of use in the development of similar applications is included.

Propulsion System Analysis Software

NASA uses a series of computer codes for propulsion system performance and weight

analysis. This set of programs is built around the NASA Engine Performance Program

(NEPP). NEPP (a.k.a. NNEP89) was derived from the Navy/NASA Engine Program

(NNEP) 1. NEPP is a one-dimensional, steady state, thermodynamic engine performance

prediction program capable of modelling almost any type turbine engine. This is

accomplished by allowing the user to configure a propulsion system by combining specified

types of components in almost any order. The following component types are available: inlet,

duct, burner, water injector, gas generator, compressor, turbine, splitter, mixer, ejector, heat-

exchanger, nozzle, shaft, load and propeller. Off-design performance is calculated by using

component performance maps. The compressor and turbine performance maps are scaled to

match the design point of the engine being modeled. A detailed description of this code is
given in Reference 2.

Thermodynamic properties of the gas flow through a propulsion system model can be

calculated using one of two methods. The default thermodynamic properties routine is preset

for JP4 fuel. The second is a chemical equilibrium model that can predict thermodynamic

properties when chemical dissociation occurs or when using alternate fuels. This
enhancement to NEPP is discussed in Reference 3.

Engine weight and flowpath dimensions are calculated using the WATE code 4. This

program predicts component weights from the thermodynamic cycle analysis and user

supplied design specifications. Weight estimates are based on semi-empirical data. This code
functions as a sub-program to the cycle code by linking to its FORTRAN libraries.

Inlet and nozzle installation effects and weights are calculated using the INSTAL

code S. This code also functions as a sub-program to the cycle analysis code. The INSTAL

code uses sophisticated inlet and nozzle performance maps to estimate installation losses and

their effect on overall engine performance.

Together these programs enable the engineer to calculate the installed performance,

dimensions and weight of a great variety engine configurations. These codes are being

continually enhanced to provide more accurate results for an even greater variety of

propulsion systems. Unfortunately, this flexibility adds to the complexity of the programs

and to the difficulty in operating them. This is the motivation for the development of the
graphical user-interface.

Background

Many interfaces for computer aided engineering applications have been bulky and
difficult to use. Some only pre- or post-process part of the information. In some cases a

particular interface is good for an engineer who is learning the program, but with experience

the engineer begins to find the same interface limiting and slow. It is often quicker for an

experienced engineer to edit a namelist input file than to access information though a deeply

2

nested menu system.

A few pre/post-processingprograms have been developedfor the NEPP program.
KONFIG and REKONFIG, written in 1981, are the first two such programs6. KONFIG
prompts the engineer line-by-line for inputs. REKONFIG allowsusers to modify component
specification in previously created data sets. REKONFIG, however, does not allow for
configuration changesas the name suggests. Both programs are written in FORTRAN IV
and are therefore portable to most computers. However, becauseof FORTRAN's limited
input/output capacity thesetwo programsarevery difficult to use. Additionally, neither code
supports entry for control or optimization settings. Thesecodesare not of much help to
experiencedengineers.

Another much improved pre-processor is SNAP (Simplified NEPP Automated
Preprocessor)written in 1989_. This program usesa series of menus and forms to input
designpoint information for NEPP. The program waswritten using the Xedit macrosand
Rexx (Restructured Extended Executor language) on a mainframe computer running
VM/CMS. Although this systemis helpful to newusers, it is limited and includesonly design
point inputs for NEPP. It hasnot beenprogrammedto handlethe inputs required for weight
analysis or installation effects. Although Rexx and Xedit are available on other computer
systems,SNAP is not portable becauseit makesextensiveuseof systemcalls.

There arealsoseveralpost-processingprogramsusedin conjunctionwith NEPP. The
FINDIT program providesa menu systemfor creating x-y plots of propulsion systemoutput
data. The NEPTOMIS program convertsNEPP output into a form suitable for use with
mission analysis codes. This program also producesa plot of throttle curves. MAPPLOT
produces graphics of compressorand turbine maps8. Most of the capabilities of these
programs are reproducedunder the NPAS graphical user-interface.

The goal in writing the graphical user-interfacewas to developa completeinterface
that would be capable of handling all input and output processing. An additional
requirement was to present propulsionsysteminformation in a logical, easyto usemanner.
At the same time the interface had to be fast enough that an input change would be
immediately seen in the output. This meant designing an interactive version of NEPP
instead of just writing a pre/post-processor.

Having an interactive analysiscodeallowsthe engineerto explore "what if' scenarios
with their propulsionsystem. Businessapplicationshavebeenusing the "what if' approach
to problemsolving in spreadsheetprogramsfor many years. That is, a changein an input
parameter will immediately causea changein the output. This approachis very useful in
the conceptualdesignprocessbecauseof the large latitude the engineerhas in varying the
designparameters. Of course,numerical optimization may beusedto help refine a small set
of variables, but only after the engineer has developedan understanding of the critical
operating characteristics of an engine. In older implementations of NEPP the iteration
processfor converging on a gooddesign was lengthy and tiresome. The graphical user-
interface presentedhere attempts to facilitate the trial-and-error approachto conceptual
enginedesignas much as possible.

The underlying computersystemhas a strong influence on the form of input/output

3

for a program. Programs that are run in batch modewill use files for receiving input and
generating output. Timesharing systems shifted the emphasis from creating programs
designedto run in batchmodetowardscreating programsto run interactively. Workstations
have strengthenedthis trend, and yet manyprogramsstill require strongly formatted input,
usually in a form that makesthe data difficult for a user to understand and interpret. When
usersmake mistakes in these input files (which is very easyto do) they donot realize their
error until the application tries to run and crashesdue to the error. Even at this point it is
often difficult to locate where the error was made. A graphical user-interface provides a
convenientmethod for users to generateinput to and view output from programs,and users
will usually make fewer data entry mistakes. Error checkingcanbebuilt into the interface
to immediately notify usersof incorrect data. In our interface, for example,the user is able
to modify several input fields before hitting the "Apply" button to have the changestake
effect. If one of these fields doesnot evaluate to a number, an error messageis postedand
the field is "highlighted" (it receivesthe focus)sothat the userknows wheresomethingneeds
to be changed. In this manner, the user is immediately able to identify and correct input
errors.

Text is not always the optimal media for communicating information to a user.
Although today's technologydoesnot yet support multi-media interfaces,applications in the
1990sare moving towards this goal. They will take advantageof audio and videostimuli in
addition to current capabilities. Traditional character-basedinterfaces are by nature
restricted to usingtext for their output. Today'shardware has the potential for morecomplex
forms of output and displays. A schematicdrawing of an engineconfiguration provides far
more information to a user than a FORTRAN namelist containing a table of connections
between components. The sameholds true of output generated by a program. A graph
conveysinformation to a user far more quickly and conveniently than a table of values. In
general, visual representationof data is better providedby a graphical user-interface. This
holds true even of pure "text" data in that colors and fonts can be used to increase its
readability.

One of the advantages of a graphical user-interface is its user-friendliness. Most
graphical interfaces today usevisual cuesto communicatewith its users. Colors,fonts, and
iconscan all be usedto prompt the user, to indicate options to the user. We have included
a cursor that changesshape depending upon the mode and operation of the user. For
example,when the user selects"DeleteComponent",the cursor becomesa skull and cross-
bones; a hand-shapedcursor appearswhen the user is in edit mode and can drag objects
around on the screen. We havealsoimplementedpush button and menu sensitivity in order
to guide and prompt the user. When the user selects "Delete Component", for example,
"Cancel" is the only button with its sensitivity on indicating that the user must actually
delete a componentor cancelthe command. Button sensitivity is also usedwhen a user is
drawing connectionsbetweencomponents. If an upstream componentis selectedfirst, for
example,only the two downstreamoptionsremain as choicesto finish a connection.

A graphical user-interfacecan provide on-line help and documentationfor its users
in a centralized location -- within the applicationitselfi This makesit relatively easyfor new
users to just sit downand start using an application. Whena questionarisesthey needonly
click a button to receivemore information. Menu-basedhelp also provides information on
a need to know basis; a user can locate information on a given subject without wading

4

through large amount of extraneousmaterial. Through on-line help and documentation a
graphical user-interface supports a friendly and convenientenvironment for both new and
experiencedusers.

A graphical user-interface implemented in windows (such as ours) differs from
traditional character-basedinterfaces in that it is an event-driven. In an event-driven
interface, the user maintains control throughout the executionof the application, exceptin
a few special cases (dialog boxes are one such example). The interface does some
initialization, and then enters a loop, waiting for information from the user. Based on the
action of the user, the interface will executesomeroutines, and then it will return to its loop
to await further events. Theseevents may result from user-action or from system side-
effects. Furthermore, in a window systemthere are severaldifferent methodsavailable to
the user for sending input to the application. The input may be generated by keystrokes
from the keyboard, from mousemotion, or by clicking any combination of buttons on the
mouse. The user may alsomovefrom window to window,changingthe keyboardfocusfrom
one application to another. Character-basedsystems,on the other hand, are very limited.
Oncethe interface is started, it retains control throughout its execution. It has complete
control overwhat input is permissible,and mostof the time the input will comedirectly from
the keyboard. A character-basedinterface restricts its users'actions,and enforcessequential
executionof commands. Overall, an event-drivenwindow-baseduser-interfaceprovides the
greatest flexibility for its user.

Graphics Software Selection

The X Windows System has emerged as a standard for programming graphical user-
interfaces on UNIX workstations. There are several reasons for this. First, the X Windows

System is available on most computers. Most computer manufacturers have ported the X

Windows System to their hardware and distribute the binary code with their machines for
little or no charge. If not, source code for the X Windows System is available in the public

domain. Secondly, the X Windows System is network transparent; an application running

on one machine can be displayed on a different machine, even in a heterogenous

environment. Lastly, high-level tool kits that provide convenience functions are available

with the X Windows System. These functions simplify many common graphic programming

tasks, such as creating a text input field or a menu.

The X toolkit is composed of three levels. The lowest layer of software in X (the Xlib)

provides the underlining communications and graphics protocols. Built on top of the Xlib is

the Xt Intrinsics library. This layer of software provides a framework for creating user

interface components. The third layer of software consists of a set of predefined user

interface components. These components are referred to as widgets. This software level is

not part of the X standard. There are several widget sets available. We chose to use the

Motif widget set from the Open Software Foundation for our application because it is widely

available and more robust than some of the public domain widget sets. Additionally, Motif

is the native widget set on our hardware and, therefore, the look and feel of our user-
interface will be consistent with the look and feel of commercial software on our system.

5

Another advantageto Motif is the ability for users to define much of the behavior of
the user-interface. This is done through resourcefiles. A resourcefile contains a list of
properties associatedwith a widget or classof widgets. Properties include such things as
location, size,color,and font. Even the functionality of a widget canbemodified by the user
through a resourcefile. For example,in our interface, a user can define which key is used
for activating help. Being able to change the font or size of a window may not seem
important, but this may be critical when consideringthe various types of display hardware.
Someonerunning X on a personalcomputerwith a VGA screenwould not beable to use the
samescreenlayout as someoneworking on a high resolution graphics workstation. In our
interface we allow users to changethose resourcesthat are not critical to the program's
execution. For more information on the X Windows System and Motif seeReferences9
through 12.

Hardware/Software Compatibility

The Aeropropulsion Analysis Office at NASA Lewis Research Center has been moving

towards a distributed computing environment. Several types of workstation computers have

been purchased. The primary development platform for NPAS is the IBM RS/6000.

Currently, work is being done on an IBM RS/6000 Model 550. Smaller machines, for example

the model 320, are more than adequate to run this code. To avoid excessive paging, 32
Mbytes of RAM are recommended. The NPAS user interface has also been ported to a Silicon

Graphics Iris workstation.

NPAS should port to any UNIX machine running Motif that also has a C and

FORTRAN compiler. The interface is programmed in the ANSI standard for C. There are a

limited number of UNIX system calls in the user-interface. The Xlib, the Xt Intrinsics, and

Motif graphic libraries are required. Some convenience functions available in Motif 1.1 are

duplicated in our program to be compatible with Motif 1.0. Most of the analysis modules are

written in FORTRAN and will port to other computer systems with little or no modification.

Any device running an X server, such as an X terminal, workstation or PC, can be used for

displaying the NPAS user-interface.

Interface/Analysis Coupling

Four types of interfacing between analysis code and the user-interface have been

evaluated. These four methods are: file transfer, interprocess communication, database

management, and direct coupling. The advantages and disadvantages of each of these
methods are discussed briefly in this section.

One method for the interface to invoke the analysis code is to write an input file and

make a system call to start the analysis as a separate program. Output can be read from
another intermediate file back into the user-interface. If intermediate files are used, the

analysis code may require little or no modification. This method, however, can be slow. Also,
because it is difficult to read file formats designed for humans into the user-interface,

input/output routines may have to be changed. By using file transfer, the analysis modules

and the user-interface will execute as separate processes on the computer. In fact, the

6

separateprocessescould beexecutedon different computers. This is easily accomplishedby
writing files to a shared disk area and issuing a remoteexecutioncommand. This may not
be as elegant as some other forms of interprocess communication, but it requires little
knowledge of system commands. The advantage of running the analysis as separate
processesis that in the event that the analysiscodecrashes,the user-interfacewill continue
to run. This is important becauseprogram crashesare still very commonwith many older,
poorly written, but potentially useful engineeringanalysis codes. Communications to the
plotting portion of our codeusesintermediate files.

Thesecondmethodis to haveseparateprocessesfor eachof the different modules,but
to have theseprocessescommunicateby a moredirect manners. There are several ways to
do this; FIFOs, messagequeues,semaphores,shared memory, sockets, transport layer
interface,or remoteprocedurecallsmaybeusedfor interprocesscommunication13'14.Thelast
three methodsare intended to beusedacrossa network, but may beusedto executecodeon
the samemachine. Any form of interprocesscommunication adds to the complexity of the
programming. The selectionof what type of interprocesscommunicationto use dependson
the programming requirements andportability. Wecurrently donot useof any of thesetype
of communication. Socketsor remote procedurecalls may be added in the future to allow
executionacrossthe network. This is desirablebecausesomeprocessorson the network are
significantly faster than others.

A commercial databasemanagementsystem was not selectedfor use with NPAS
becauseof distribution considerations. Many universities and smaller organizationsusing
NEPP could not afford the high costof commercialdatabasemanagementsoftware. There
are somepublicly available databasemanagers. They are unsupported, however,and may
require porting to new hardware. The benefits of using a databasemanagementsystemdo
not seemto outweigh the programming effort, the software cost, and code distribution
problems involved with using suchsoftware.

The last method is to directly couple the analysis and the user-interface. That is,
make the analysiscodea sub-programof the user-interface. Initially, losing the advantage
of running separateprocessesmadethis method appearto bea poor choice. There is noway
to execute code across the network and potential crashes in the analysis will require
restarting the user-interface. The easeof programming and the fast interchange of data,
however, outweigh thesedrawbacks.The closelycoupledapproachwaschosenfor the initial
version of NPAS.

Although the NPAS user-interfaceand analysiscodesare closelyCoupled,an effort is
made to keep the modulesas separateas possible. Only the input and the main start-up
routines have been changedfrom the batch versions of the analysis codes. The output
routines haveremained unchanged,in casethe userprefers the old style of hard copyoutput.

Programming Languages and Interfacing

The C programming language was chosen for development of the graphical user-

interface. The C language binds to the X Windows and Motif libraries and is the native

languageonUNIX machines,making it ideally suited for systemscalls. In addition, C has
manyadvantagesoverFORTRAN,most notably: the ability to dynamically allocatememory,
the use of data structures, and pointers. These features are essential for writing good
maintainable code.

Although objectoriented programming(e.g. C++) is increasing in popularity, we felt
that C was better suited for this application. Onereasonfor this is that C++ compilersare
not available to all users. Also, usersare more likely to be familiar with C than C++ and
hence,morecapableof modifying the codefor their own needs. A rewrite of the codeinto an
object oriented programming languagemay be consideredin the future. The data and
analysis modules for engines and their sub-assembliesare well-suited to this type of
programming.

The analysisportion of the codeis doneby linking to the FORTRAN libraries. Data
are passedfrom the FORTRAN commonblocksto the C codeby making C data structures
with the same members (type and order) as in the commonblocks. If a pointer to the
structure has the samename as the commonblock, membersof the commonblock can be
accessedfrom the C code as members of the structure. Note some system append an
underscorecharacterto FORTRANnames,it is thereforenecessaryto appendan underscore
to the name of the C pointer.

The batchversionof the enginecyclecodereadsin onecaseat a time, executesit, and
prints the results. The user-interfaceneedsto store input and output information for a large
number of cases. It is therefore necessaryto store much more information than in the
FORTRANcommonblocks. TheC structuresthat overlaythe FORTRAN commonblockscan
be copied for each case. This, however,would be a waste of memory becausenot all the
information in everycommonblock needsto be saved. Furthermore, the format of the data
would be quite difficult to work with. Therefore,data are copiedout of the commonblock
format into other data structures that canbe moreeasily manipulated.

Data are storedas a link list of enginedesignand off-designcases.Each item in this
list is referred to as an enginestructure. Each enginestructure containsall the information
necessaryto run the analysiscode.Structures containing information about eachcomponent
and flow station as well as graphics information are pointed to by eachengine structure.
Memory is dynamically allocatedasneeded.The entire list of enginestructures canbesaved
to a binary file. This file can later be read, enabling a user to continue working from the
point where he had previously suspendedexecution. FORTRAN namelist reads and writes
are also available from the user-interfaceto remain compatiblewith the batch version of the
code.

Schematic Representation of Engines

Perhaps the most important feature of this user-interface is its ability to represent

propulsion system configurations schematically. An example of such a schematic is shown
in Figure 1. The schematic of the propulsion system alone would be quite helpful to the

engineer (it quickly displays important information about the connection between components

8

and the thermodynamic properties of the gaspath), but the real advantageof this diagram
is that it is alsoa mechanismfor the engineerto communicatewith the application program.
Engine componentsand flow connectionscan be added and removed directly from the
diagram asseenon the computerscreen.Detailed input specificationsand computedresults
for a given engine componentcan be called up by a simple mouse click on the diagram.
Additionally, displayed information is instantly updatedas new data are processed.There
are many complexoperations necessaryto handle the simple interaction betweenthe user,
the schematicrepresentation, andthe application code. This section explains someof these
interactions.

In order to take advantageof the largenumber of pre-existing data sets,the interface
was required to automatically lay out a given propulsionsystemconfiguration. Given the old
style of input (a FORTRAN namelist), we wanted to be able to generatea "standardized"
schematic representation of the propulsion system. This entails logical placement of
components,minimizing line crossingswhen depicting the flow paths and physical (shaft)
connectionsbetween components,and minimizing the total area used by the layout. In
addition, we acknowledgethat there is not necessarilyonecorrect schematicrepresentation
for eachpropulsion systemconfiguration. Individual userseachhave their own preferences.
For example,someprefer a horizontal orientation of a layout, while others prefer a vertical
layout (seeFigure 2). The user canspecifythis option in the interface, and may eventoggle
the orientation oncethe representationhasbeendrawn. Wehaveincludedothermechanisms
(discussedbelow) to modify an automatically generatedlayout.

The window containing the schematic of the propulsion system (called the layout
window) is built upon a grid, which has many roles in the interface. First, the grid is used
for scaling the objectsin the layout window. The basic unit size is determined by the font
size used, which is not hard-codedinto the interface. This is one of the "customizable
attributes" that the user may specifythrough the resourcefile or select from a menu pick.
All of the objectswithin the layout window are sizedrelative to eachother. Second,the grid
is usedfor alignment purposes. We wanted to leavethe user as much flexibility as possible
to draw and moveobjectsaround the screen. At the sametime, it is very difficult for users
to draw a truly straight line or to align objectswithin a window; they will tend to beoff by
a few pixels. Complete flexibility in placing componentswithin the layout window also
complicatedautomatically drawing connectionsbetweencomponents.Two "snap-grids"are
used for alignment purposes. The larger grid is usedfor components,and a finer grid (1/4
of the size of the larger grid) is used for drawing connectionsbetweencomponents. The
visibility of the grids canbe toggledonand off. Finally, the grids are usedasdata structures
to hold all of the graphical information associatedwith the layout window. All of the routines
associatedwith laying out and manipulating a schematic representation can accessthe
information from one global source.

Physical engine componentsare representedby push button widgets. Push buttons
have built-in functionality which easethe programmers'burden. The system detectswhen
apush button action hasbeentaken (pressingthe button, mousemotion on top of the button,
releasing the button, etc.) and signals the appropriate event. The programmer may add
callbacksand event handlers (i.e., functions) to a push button in order to specifywhat the
appropriate action is for eachevent. Push buttons alsohave labels,which in this casehave
been used to indicate the type and number of a component(e.g. "INLT 1", "SHFT 13").

Without the Motif (or other such)widget set, a great dealmore effort (and many more lines
of code)would have beennecessaryin creating the graphicsof the interface, rather than in
the behavior of the interface.

The drawing areawidget is usedasthe parent widget ofthe componentpush buttons.
This permits lower level X calls to bemadeto do the actual drawing of connections(both air
flow and physical) betweenthe enginecomponents.Each line segmentis specifiedby its end
points, and the pixels betweenthesetwo points aredrawn by the system. The line segments
have nobuilt-in functionality; unlike apush button widget, they havenobuilt-in mechanism
to detect if a mousebutton has beenpushed while the mouse pointer is on top of a line
segment. One possibleway to connectengine componentswould be to draw a straight line
from the centerof onecomponentto the centerof the other. This would, however, result in
very messydrawing, and would make editing the drawing extremely difficult. We decided
to representa single connectionby a seriesof connectedline segments.The endpoint of each
line segment is a small push button (in the caseof the end line segments, the engine
componentis the endpoint, and an additional push button is not added). Figure 3 showsa
schematicwith the line segmentendpoint pushbuttons on. Thesesmall push buttons act as
control nodesor handlesfor the line. Eachconnectionhasa minimum of two control nodes.
As a result, the connectionlines canbe reshapedand movedby the user by moving oneor
more of the control nodes. As a line segment is "moved", its old position is "erased" by
redrawing the line segmentin the samecolor as the background, before drawing the line
segmentin the new position.

A station label consistsof a station number and an associatedengine property (see
Figure 1). Although station labelsare implementedvia push buttons, they donot havea grid
to keep them aligned. The user is able to move station labels to any position within the
layout window. The leader line will remain attached to the first line segmentcontrol node
associatedwith the station. The push buttons are "flattened", and their backgroundcolor
matches that of the drawing area in order to give the illusion that only the label string is
actually written directly on the drawing area. Usersmay alsodefine their own labels to add
information to the diagram. Theseuser-definedlabels behavethe sameway that station
labels do with the exception that the push button label is input by the user, and is not
calculated by the analysis code. The user may edit an existing label, or create a new one.
Theselabelsmay alsobeplacedanywherewithin the layout window. It shouldbenoted that
rather than using push buttons for the station and user definedlabelswe couldhave simply
written the strings directly on the drawing area using low-level X calls (similar to the
methods used for drawing connection lines). This would have complicated many of the
station-related routines, including movingthe labels,updating station property values, and
redefining user defined labels. For this reason, station and user-defined labels were
implemented using push buttons.

Onemotivating fact for building a graphicaluser-interfacewasthe capability to create
a propulsion system on the screen. Also, since there are a wide variety of individual _
preferencesin display, weneededto include the ability to edit a particular layout (whether
it wasautomatically or interactively placed). Through our interface, the userhas the ability
to add componentsand connectionsto a configuration. All of the objects (components,
stations, and line segments)may bemovedor deletedby the user. For singleobjects,motion
is achievedthrough event handlers,and deletion is implementedvia callbacks. In addition,

10

the user may selecta region within the layout window to delete or move. A "rubber-band"
rectangle is usedto mark a particular region. The user marks the upper left corner of the
rectangle,and then drags the lowerright hand cornerof the rectangleto the desiredposition.
As in the caseof the lines usedto connectthe enginecomponents,the rubber-band rectangle
is drawn using Xlib calls. To get the rubber-band effect, the rectangle is "erased" (by
redrawing it in the backgroundcolor) beforebeing redrawn in the new position. Oncethe
userhas finished marking the region, the rectangleresizesitself relative to the smaller grid.
In this way an objectmust fall either completelyin or out of the region. Deletions within a
region are doneby locating all objectsthat fall within the region and deleting each object
individually. In the caseof moving a region, an event handler is used to track the mouse
motion until the user indicates the new positionof the region. After checkingthat the new
region is clear, eachobjectwithin the original region is movedto its new location.

Various error-checking routines have been implemented in the graphical user-
interface. When a user is placing a componentor control node, the interface must ensure
that the objectbeingmovedis not placedon top of an existing object. There are restrictions
on what componentsmay be connectedto each other, and on how many upstream and
downstreamconnectionseachcomponentmayhave. Wehavebuilt in error checkingroutines
for shaft connectionsand for the number and order of connectionson eachshaft. There is
alsoa great deal of effort madeupdating and maintaining the underlying data structures for
the interface. To deletecomponent"C", for example,the componentstructure for C must be
deletedand any connectionsto Cmust beremoved. Thedata structures usedby the analysis
codemust beupdatedaswell. To connecttwo componentsthe user needonly draw in a line
betweenthem. The interface, however,needsto keep track of the path as it is drawn, and
at the sametime must ensurethat there are at least two control nodeson the path, and that
none of the new control nodesoverlapexisting nodes. A station structure must be created
and the appropriate values inserted, and finally both the upstream and downstream
componentstructures must be updated to reflect the new connection. In order to simplify
the interface for the user, a considerableamount of time was spent developing the logic
behind the interface.

The User-interface

Some of the windows used in our graphical user-interface are shown in Figure 4. The

main window, at the top of the screen, has three major components: the main menu, the

message line, and the layout window. Along the top of the main window is the main menu.

This menu controls the majority of the execution of the program. We made the look and feel

of the menu system consistent with the one that is used for most Motif applications. The
user should, therefore, be immediately familiar with the location of important menu

selections (e.g. the location of help or file retrieval). Immediately below the main menu is

the message line. Here messages will be posted in response to user commands. For example,
a successful execution of the analysis code would be indicated on this line. The layofit

window is composed of a drawing area widget inside a scrolled window widget. The details

of the layout window have already been discussed.

We have included two types of documentation in the NPAS program. One is the help

11

system. This is activated from help buttons onvarious forms or from pressingthe help key
while in a text field. Help information is then recalled from an ASCII file by searchingfor
an identifier that is associatedwith the activating widget. This information is then displayed
in a messagewindow that is poppedto the foreground for high visibility. Examplesof this
type of help are how to usea form or a detail description of an input.

The other methodusedfor documentationusesa table of contentsapproach. This is
shownin Figure 5. On the left is a list of sub-topicsfor the current documentationcategory.
The documentationcategoryis selectedfrom the help menu. In order to view a topic, the
user simply usesthe mouseto click on the desiredtopic. The correspondinginformation is
recalledinto the scrolledtext region to the right. Currently, documentationfiles exist on the
following topics: user-interface,NEPP user's manual, componentdescriptions,and usage
notes for components. The documentationfile consistsonly of topic titles followed by the
correspondinghelp information. The file will besearchedfor all topic titles and the table of
contentswill begenerated. The completecontentof the file is not read into memory. After
the user makesa selectionfrom the list, the file is searchedagain to find the corresponding
information. Although this approachmay sound slower then using a binary read on the
entire file, we found the responsetime to bealmost instantaneous. Also, becausethe on-line
documentation is recalled from an ASCII file, there is no need to recompile codeto add
additional help information.

The middle window on the bottom of Figure 4 is the configuration listing. This
window is a scrolled list widget that contains a list of componentsand their connections.
This list is neededto select "components"that don't represent physical hardware and,
therefore, are not shownin the layout window. An exampleof a non-physical componentis
a control. A control allows the user to vary input parameters to produce somedesirable
effect. Clicking on an item in this list will make that componentactive and refresh other
windows to reflect the change. Clicking on a componentin the layout window has the same
effect. The information in the configuration listing is representedin a manner similar to the
old namelist input, and sois familiar to experiencedNEPP users.

To the left of the configuration listing in Figure 4 is the off-design window. As
mentioned above, each case to be executedby the analysis module has a unique data
structure referred to asan enginestructure. This window containsa listing of all the engine
structures that have beencreated. Data in thesestructures can be viewed or modified by
selectingan item in the off-designlisting with a singlemouseclick. A doublemouseclick will
executethat casein the analysis code. The list containsthe casenumber, a flag indicating
if it is a designor off-designcase,the Machnumber and the altitude. TheMachnumber and
altitude are displayedhere becausetheseare the variables most commonlychangedduring
off-design operation. Although these values are normally set in the inlet component
specifications,input fields for thesevaluesare placedat the bottom ofthe off-designform for
convenience.After execution,the net thrust and specificfuel consumptionarealsodisplayed
in this listing. This is a goodvisual cue to the user that the casehas beenexecuted.

Much ofthe numerical input and output in the user-interfaceis doneusing forms with
a consistentlook and feel. Wefelt that this would make learning to usethe interface easier.
One exampleof a form is shownin the bottom right corner of Figure 4. This is the input
form for componentspecifications. The form consistsof a column of text input fields -- one

12

for eachnumeric input of the component.Tothe right of eachtext field is a short description
of the input. To the left of eachtext field is a push button. Thesebuttons activate help for
the correspondinginput field. The help includes a detailed description of the input and, if
applicable,a selectionlist ofvalid choices.Each time a componentis selectedfrom the layout
window or the configuration listing, the fields in these forms change to reflect the newly
selectedcomponent.

Each string entered into a text field is processedthough a scientific calculator
program. This allows inputs to be mathematical expressionsinstead of simple numeric
values. The calculator program waswritten for usewith NPASbut canbeusedin any other
program, and is also ableto standalone. Details on the calculatorprogram aregiven below.
Equations canbe recalled by typing an equal sign in the input field. This is currently the
only way to re-evaluate an equation.

In many cases,when an input is modified, the useronly wants to changethe selected
enginecase. Sometimes,however,the usermay needto changeall casesto the samevalue.
For example,when making a throttle curve the userprobably doesnot want to changethe
turbine inlet temperature in all cases. On the other hand, when changing the design
compressorpressureratio the userprobablywants the changeto be reflectedin all off-design
cases. This is accomplishedby using special flags in the input fields. Three flags are
available, they are:

#x - changeinput for all casesto x,
+x - increase input for all casesby x, and
%x - changeinput for all casesby x percent.

If one of these flags is not in column oneof the input field, only the currently selectedcase
is modified. Using these types of flags in input fields may seemcontrary to goodmouse
driven programming style. In this case,however,we felt these flags were easierto usethan
a mousedriven selection.

Formsfor configuration inputs, componentoutputs,weight inputs, andinputs for the
installation codeare similar to thoseusedfor componentspecification. In general, this type
of form is used for entering data that were previously input as someform of array. The
calculator program is only usedwhen entering real numbers. Integer and character inputs
are not processedthrough the calculator, although the global changecharacter, #, may be
used. Output fields cannot be edited.

Other types of data entry are done through menus or specialized dialog boxes.
Although data entry fields are not standardizedin these dialog boxesthe locations of the
Apply, Canceland Help buttons are made consistentthroughout the interface. The Open
SoftwareFoundation providesa Motif style guide to help programmersdevelopa consistent
look and feel to user-interfaces1_. _

A spreadsheetapproachto numeric input wasalso considered. Although this would
permit more data to be displayed on the screenat one time the advantage of having a
descriptionfor eachinput/output field seemedmoreimportant. A spreadsheetapproachalso
has the advantageof cell referencesin equations. Our solution to this was to allow variable

13

naming in the input fields. Of course,there still is no mechanismto refer to a range of data
but we had little needfor this in our application.

We have created a specialized text editing program for our user-interface. The
primary function of this editor is to display tables of output data. The editor wascreatedby
using the multi-line scrolled text widget. This widget makesa goodbeginning for an editor
program. Adding amenu systemalongwith cut andpaste function makesacompleteeditor.
The text editing window is shownin Figure 6. The "Display" menu allows the user to select
what information is to be displayedin the window. Each time the user executesa new case,
the output information in the editor is changed. Also, selectinga previously executedcase
in the off-designwindow will changethis information. An appendmodeis availablesothat
the user may compareresults from various cases. Cut and paste functions canbe used to
arrange data into a moredesirablemanner. Files can beselectedfor display from the File
menu. They include normal displaymode,NEPP output (old format), map tables,namelist
input, and plot setup files. Of course,any changesto any of these files canbesavedto disk.
Help onusing the editing programis also availablefrom the menu systemor by pressing the
help key.

Plotting Capabilities

Another important feature of this user-interface is its graphics capability. Plots can

be created for a variety of data. The user can request plots for any of NEPP's input or output

variables by simply selecting the items in a dialog box. Turbine and compressor maps can

also easily be plotted. Additionally, flow paths can be drawn from the output information of

the WATE code. Examples of a throttle curve, a compressor map and a flow path are shown

in Figures 7 through 9, respectively.

Currently, all plots are created using a modified version of the Grafic plot library from

the Massachusetts Institute of Technology. Grafic is a set of FORTRAN callable subroutines

for creating x-y, contour and 3-D plots. Grafic has device drivers for both X Windows and GL.

The source code is public domain and is easily customized for new plotting applications.

Postscript output may be generated for any plot created by NPAS.

Most of the plotting is done by writing plot files and executing a separate program to

create the plot. In this way, the user-interface is not strongly tied to any set of plot routines.

Another advantage is that the user may retain their plot files for later use. The creation of

the plot files and the execution of the separate program is transparent to the user.

Calculator Program

A customized calculator program was created to be used with NPAS. It evaluates

character strings and returns the appropriate value. This entails parsing the input string

(based on mathematical associativities and precedences), looking up the value of any

constants or user-defined variables, and doing any necessary computations. The calculator

supports pre-defined constants, logarithmic functions, trigonometric functions, and scientific

14

notation. As previously mentioned, the calculator program is an independent module that
can beused in other applicationsor by itself.

Two UNIX utilities, LEX and YACC, were used to implement the calculator
programTM. LEX is a lexical analyzer program generator that can be used for simple lexical

analysis of text. The user provides a set of regular expressions and actions to be executed,

and LEX generates a C program. YACC is a parsing program generator. The user supplies
a context-free grammar, which YACC converts into a set of tables used by an LR(1) parsing

algorithm 17. In addition, the user may specify precedences and associations to remove any

ambiguities inherent in the original grammar. YACC generates a C file which may be

incorporated into a larger program.

The calculator program receives a string as its input. It passes this string to the

lexical analyzer module, which converts it into tokens. The token stream is then passed to

the parsing modules which builds up the appropriate parse tree. The parse tree is stored as
a linked list (with the elements of the tree in prefix order). Each tree is then evaluated (by

a third module) using a stack. Although building a parse tree is more complicated than

implementing immediate evaluation, we believed it provided greater flexibility for the

calculator program, and would simplify future extensions.

Along with the traditional functions associated with a calculator, there is also support

for creating variables and binding them to values. This is implemented by maintaining a
variable table. When a variable is defined by the user, its name/identifier and corresponding
value are added to the table. Once a variable has been added to the table, it may also be re-

defined (i.e., have its value changed). Variable names must be unique, and in this respect
all variables are, in effect, global in their scope. This enables users to define their own

constants, and to define one expression based on another. The issues involved in re-

evaluation of expressions are left to the modules that call the calculator program.

Concluding Remarks

A fast effective way to do propulsion system performance and weight analysis has been

developed resulting in a substantial time savings for the engineer. This was accomplished

by building a graphical user-interface around the NEPP, WATE and INSTAL programs. The

X Windows System with OSF/Motif was found well-suited for this application. A direct

coupling between the user-interface and the analysis code was used because of its simplicity

and speed of execution. In addition to automatically laying out an existing propulsion system

configuration, the interface enables the user to interactively create a configuration from
scratch. The schematic representation of the propulsion system is not only a way for

information to be displayed but is also the mechanism which the engineer uses to

communicate with the application software. Forms have been created to simplify entry of

numeric data. A calculator program was incorporated to allow the user to inl_ut

mathematical expressions in the input fields for component and engine specifications. The

graphical user-interface was designed to be user-friendly for both new and experienced

engineers. As it is event-driven and window-based, the user-interface provides a great deal

of flexibility for its users.

15

As pointedout earlier, muchof the programmingeffort in building a user-interface is
not in writing graphicscodebut obtaining the proper behavior of the interface. X Windows
and Motif domuch of the graphicswork for you. The critical part in developingthe user-
interface is not detecting when the mouse button is pressed, but what to do with the
information that a particular mouseevent represents. This information may behandled in
a variety of ways: it may needto be checkedfor validity, stored for later access,converted
and transferred to the analysis program, checkedfor impact on other data, written to disk,
etc. Thesetasks representa great deal moreof the programming effort than, say, drawing
a line to the point where that mouseclick occurred. To easethe programming effort, it is
important to have a well thought-out data structure and data flow. CASE tools, which are
now appearingon the market, may behelpful in this regard.

Another important issue that engineerstend to overlookwhile writing codeis error
handling. This codeis no exception; initial versionsof the codehad little checkingon user
inputs. As indicated previously, it is critical to the successof the application either to
prevent users from doing things incorrectly or to inform them if they have. An event-driven
interface leavescontrol in the hands of the user, and soit must be ready to respondto any
action taken by the user. It is not possibleto anticipate all potential user-actions(especially
errors that may be made). Thus as the program matures more error handling should be
added.

Future work mayalsoincludeintegration ofmissionanalysisunder the userinterface.
It is not adequateto comparepropulsion systemsbasedsolelyon performanceand weight;
propulsion/airframe integration must be considered. This can be accomplishedfaster and
easier with a mission analysis codeintegrated under a commonuser interface.

16

References

1. Fishbach, L.H.; and Caddy, M.J.: NNEP- The Navy NASA Engine Program. NASA TM-

X-71857, 1975.

2. Plencner, R.M.; and Snyder, C.A.: The Navy�NASA Engine Program (NNEP89) - A User's

Manual. NASA TM-105186, 1991.

3. Fishbach, L.H.; and Gordon, S.: NNEPEQ - Chemical Equilibrium Version of the

Navy�NASA Engine Program. NASA TM-100851, 1988.

4. Onat, E.; and Klees, G.W.: A Method to Estimate Weight and Dimensions of Large and

Small Gas Turbine Engines. NASA CR-159481, 1979.

5. Kowalski, E.J.; and Atkins, R.A., Jr.i Computer Code for Estimating Installed

Performance of Aircraft Gas Turbine Engines, Volume H User's Manual. NASA CR-159692,

1979.

6. Fishbach, L.H.: KONFIG and REKONFIG - Two Interactive Preprocessing Programs to

the NAVY�NASA Engine Program (NNEP). NASA TM-82636, 1981.

7. Berton, J.J.; Plencner, R.M.: An Interactive Preprocessor for the NASA Engine

Performance Program. NASA TM (to be published).

8. Plencner, R.M.: Plotting Component Maps in the Navy/NASA Engine Program (NNEP) -

A Method and Its Usage. NASA TM-101433, 1989.

9. Young, D.A.: The X Windows Programming and Applications with Xt - OSF/Motif

Edition. Prentice-Hall, 1990.

10. Open Software Foundation: OSF/Motif Programmer's Reference. Prentice-Hall, 1991.

11. Nye, A.: The Xlib Programmer's Manual. O'Reilly and Associates, 1988.

12. Nye, A.: The Xlib Reference Manual. O'Reilly and Associates, 1988.

13. Rochkind, M.J.: Advanced UNIX Programming. Prentice-Hall, 1985.

14. Stevens, W.R.: UNIX Network Programming. Prentice-Hall, 1990.

15. Open Software Foundation: OSF/MotifStyle Guide. Prentice-Hall, 1991.

16. Kernighan, B.W.; Pike, R.: The UNIX Programming Environment. Prentice-Hall, 19}34.

17. Aho, A.V.; Sethi, R.; Ullman, J.D.: Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1986.

17

oo

(16) 816

Mixed Flow Turbofan ,. _l I
I (15) 810 (17) 1358

(2) 519 :/ (4) 816 [(6} 1356-(18) 1356 (8) 3105 J J (10) 2050 (13) 1719

Displayed Station Property:
Total Temperature

Figure 1: Schematic Representation of a Propulsion System

C

q4-
0

Lm

i-
ra
0
0
12.

O0

0

I--

®

>

Automatic Layout:

bo

Layout After Editing

7 Figure 3: Layout Showing Line Segment Control Nodes

File Edit Display L_ayout Options W__ateCode Graph Help

NEPP: Execution Complete! I

• Displayed Station Property:
Total Temperature

b_
pa

0:D1 M: 0.00 Alt: 0 Fn: 8973 SFC: 1.11
:O1 M: 0.26 ,_lt: 50 Fn: 8259 SFC: 1.21

2:O1 M: 0.60 Alt: 10000 Fn: 7664 SFC: 1.31
3:O1 M: 0.90 JLlt: 25000 Fn: 7504 SFC: 1.35
4:O1 M: 1.20 Alt: 32200 Fn: 7290 SFC: 1.37
5:O1 M: 1.50 Alt: 39500 Fn: 7021 SFC: 1.39
6:O1 M: 1.80 Alt: 46800 Fn: 6617 SFC: 1.42

7:O1 M: 2.00 Alt: 50900 Fn: 6318 SFC: 1.44

9:O1 M: 3.00 Alt: 58400 Fn: 4376 SFC: 1.65

I

:CASE: 8 TYPE:lO.-Designl MACH:I2._ I

MODE:ITI I, 000 I

I

I

1 II__=T 1 0 2 0

2 COMP 2 0 3 0
3 SPLT 3 0 4 12

5 DUCT 5 0 6 0

6 TURB 6 15 7 0

7 DUCT 7 0 8 0

8 TURB 8 0 9 0

9 DUCT 9 0 I0 0

I0 HOZZ I0 0 11 0

11 DUCT 12 0 13 0

12 NOZZ 13 0 14 0
13 SHFT 4 6 0 0
14 SHFT 2 8 0 0

15 Ct;ITr. 2 0 1 0

16 ctcr5 4 0 4 0
17 ClOTh 6 0 6 o

18 ct_rn 8 0 8 0
19 CtrrL 13 0 3 0

20 CIrI'L 14 0 14 0

Figure 4: The User Interface

rI

[] 11.3 l R Value Used to Read "Fables

[] Io IBleed FIo_qotal Flow

[] I] I Scale Factor on Corrected Speed

E]110o4 I Corrected Weight Flow or Table #

[] 11 IScale Factor on Corr. Weight Flow

[] I 1005 I Adiabatic Eft. or Table #

ITI 11 IScale Factor on Adiabatic Eft.

!_-111006 I Pressure Ratio or Table#

I 111 I Scale Factor on Pressure Ratio

Io I Third Dimensional Argument Value

[] I0 I Horsepower Loss Due to Bleed

[] I°-94 I Desired Adiabatic Eft. at Design Point

[] 16 I Desired PR at R and Corrected Speed

[] I1 ICorr. Speed for Design Point on Maps

I l[o I

NPAS Main Window

L.__

NPAS Help Window

3_

bO
b_

File EdR Display Layout Options Wate Code Graph H_elp

I NEPP Executed All Cases! I

(13) 768 (14) 768 Two Spool Turbofan wl Reheat

]

2

3

4

5

'I

.help

. SYMBOLS

.ABSTRACT

•GENERAL DESCRIPTION

.COMPONENT MAPS

.COMPRESSOR MAPS

. TURBINE MAPS

. SCHEDULE MAPS

. INPUT DESCRIPTIONS

. CONFIGURING AN ENGINE

.Components & Stations

• Secondary Streams

. MULTIMODE ENGINE

•OFF-DESIGN

.REDESIGNING COMPONENTS

.CONFIGURATION LIMITATIONS

.CHEMICAL EQUILIBRIUM

• INSTALLATION CALCULATIONS

. INLET DRAGS

.NOZZLE DRAG

.TABLE DATA INPUTS FORMAT

.REFERENCES

I

CASE: 0 TYPE:I Design I MACH:I0]

MODE: [] ALT: Ig I

In 1975 the NASA Lewis Research Center in conjunction with

the Naval Air Development Center developed an engine cycle

;imulation computer code called the Navy/NASA Engine Program,

_EP (ref. i). The _EP code expanded greatly upon the

capabilities of an existing Navy code, _EPCOMP, (ref. 2) by

introducing multiple modes of operation to simulate variable cycle

engines, "stacked" component maps for variable geometry

components, and optimization capability. The program could

therefore simulate the steady-state design and off-design performance

of almost any turbine engine that the user could contemplate•

!Projected increases in engine material capabilities and recent

studies of air breathing engines for very high speed flight have

created interest in engine cycles and engine conditions that _q_EP

could not handle adequately. First, very high temperatures are

reached in many of these engine cycles. At these high temperatures,

chemical dissociation of some of the engine gas streams can occur,

which Kq_EP can not model. Therefore, the program was enhanced

by adding a chemical dissociation model to NNEP. This same model

allows _EP to model cycles using any fuels including cryogenic fuels

and slurries. Second, new component models were needed for certain

innovative cycles. These new models enable the program to simulate,

among other things, air-turbo rockets, ejector mixers, and rockets. A

new version of _EP was written to incorporate these features. This

new version was called NNEPKQ, for NNEP with EQuilibrium effects

(ref. 3&4).

I 12 tIOZZ 13 0 14 0 I°ll'uu°

13 SHFT 4 6 0 0 I%-Ii1
14 SHFT 2 8 0 0

15 C,_L 2 0 1 0 j'_J0

16 clrrL 4 0 4 0 rn]lo
17 C]_L 6 0 6 0

18 CI/TL 8 0 8 0 []I084

19c,=,13 0 3 0 [][6

0c=_14 014 0 _110

I APP'YI

I

Scale Factor on Pressure Ratio

Third Dimensional Argument Value

Horsepower Loss Due to Bleed

Desired Adiabatic Eft. at Design Point

Desired PR at R and Corrected Speed

Corr. Speed for Design Point on Maps

I Cancel I I Help I

Figure 5: Help Window

': :_ .';: ::':,/ ;:':" -,- L %: -.: ;: 4;:: : . • . • •

NPAE _ain Windo_

bO
CO

Eile E_dR Display L_ayout Options WateCode Graph Help

_4EPP Executed All Cases! J

F_ile Edit D__isplay Help

Data input 5 of INLT 1 changed from 0.26 to 0.6,

Data input 9 of IHLT 1 changed from 50 to I0000,

Mach Number 0.6 _ltitude I0000

Airflow (lb/sec) 100 Gross Thrust 9710.75 Fuel Flow (lb/hr) 10044.3
Net Thrust 7664.45 TSFC 1.3105 Net Thrust/Airflow 76.6445
Total Inlet Drag 2046.3 Brake shaft HP 0 Boattail Drag 0

Led Thrust 7664.45 Installed TSFC 1.3105 Inlet Drag 0
Index 0 Total Propeller HP 0

rata input 5 of IHLT 1 chan_ed from 0.6 to 0.9,
Data input 9 of INLT 1 changed from 10000 to 25000,

Mach Number 0.9 Altitnde 25000
_rflow (lb/sec) 100 Gross Thrust 10405.3 Fuel Flow (lb/hr) 10126.5
Net Thrust 7504 TSFC 1.34948 Net Thrust/Airflow 75.04

Total Inlet Drag 2901.26 Brake Shaft HP 0 Boattail Drag 0
Installed Thrust 7504 Installed TSFC 1.34948 Inlet Drag 0
Emission Index 0 Total Propeller HP 0

0:DI M: 0.00 Alt: 0 Fn: 8973 SFC: 1.11

1:01 M: 0.26 Alt: 50 Fn: 8259 SFC: 1.21

2:O1 M: 0.60 Alt: 10000 Fn: 7664 SFC: 1.31

4:01 M: 1.20 Alt: 32200 Fn: 7290 SFC: 1.37

5:O1 M: 1.50 kit: 39500 Fn: 7021 SFC: 1.39

6:O1 M: 1.80 _tlt: 46800 Fn: 6617 SFC: 1.42

7:01 M: 2.00 Aft: 50900 Fn: 6318 SFC: 1.44

8:O1 M: 2.50 Aft: 55000 Fn: 5445 SFC: 1.52

9:01 M: 3.00 Alt: 58400 Fn: 4376 SFC: 1.65

I

CASE: 3 TYPE: IOff-Designl MACH: [0.9 I

_ MODE: [_] ALT: [25000]

1 INLT I 0 2 0

2 COHP 2 0 3 0

3 SPLT 3 0 4 12

5 DUCT 5 0 fi 0

6 TURB 6 15 7 0

7 DUCT 7 0 8 0

8 TURB 8 0 9 0

9 DUCT 9 0 lO 0
10 gozz 10 0 11 0

11 DUCT 12 0 13 0
12 I_OZZ 13 0 14 0
13 SHFT 4 6 0 0

14 SHFT 2 8 0 0
15 CNTL 2 0 1 0
16 Clrl_ 4 o 4 o

17 c_rrL 6 0 6 0

18 C_¢TL 8 0 8 0

19 CNTr. 13 0 3 0

20 ct_rL 14 0 14 0

I

r_ _ R Value Used to Read Tables
I__1

Bleed Flow/Total Flow

J1004 Corn

[_11 Scal,

r_ [lOO5 Adial

FTjll Seal,

[3-]11oo6 Pres:
[-9"-] 11 Scal,

[]I0 Thir_

I"°rs
[] 10.84 I Desi,

r_j6 J Oesil

ICorr
[]I0 I

,,jl, i App'yI

Scale _ •., . • ! , • • ,, .

[]1-12 sIPowerRequired(.p)
E]I' I Physic= RMP
[] Io I StatorAngle

[_] 11.3 I R Value used on Maps

[] 128"1298 I Surge Margin in %

[] 11 JCorrected Speed

[] [38.7876 I Scale on Corrected Speed

[] [0.84 I Efficiency

[_] [6] Pressure Ratio

Figure 6: Output Text Editor

1.80

1.40

TSFC

1.00

.60

o

I I I I I

20000. 40000.

Net Thrust (Ibf)

60000.

Figure 7: Sample Throttle Curve Plot

24

4.00

PLOTS FROM COMPMAP
FL=1001 EFF=1002 PR=1003 ANG= 0

3.00

PR

2.00

1.00

.20

.70

.65

.75

1.00

.90 ,'
/

/,

t
I

I

I
I

I

I
/

t

/

1.10 .:lh
1.30
1.50
1.70

1.90

_2.10
I

I I I

.60 1.00

FLOW

1.40

1 .600

2 .650

3 .700

4 .750

5 .800

6 .850

7 .870

Figure 8: Sample Compressor Map Plot

25

60.

40.

Radius (in.)

b_

20.

.

M2.4 MXD FLO TF WEIGHT CALC. (TF8)

Total Engine Weight (Ibs.) = 6603.

11

I I I I

O. 50. 100.

, Length (in.)

Figure 9: Sample Flow Path Plot

Num

2

4

5

6

7

8

9

14

11

12

13

3

150.

Type Weight

FAN 1506.

DUCT 84.

H PC 1289.

DUCT 272.

PBUR 641.

HPT 670.

LPT 1277.

DUCT 322.

FMIX 311.

AUG 0.

NOZ 0.

23 Jan 92 14:08:42

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1992

4. TITLE AND SUBTITLE

A Graphical User-lnterface for Propulsion System Analysis

6. AUTHOR(S)

Brian P. Curlett and Kathleen Ryall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

WU-505-69-50

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-7158

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-105696

11. SUPPLEMENTARY NOTES

Brian R Curlett, NASA Lewis Research Center, Cleveland, Ohio, and Kathleen Ryall, Harvard University, 33 Oxford

Street, Cambridge, Massachusetts 02138. Responsible person, Brian P. Curlett, (216) 433-7041.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The NASA Lewis Research Center uses a series of computer codes to calculate installed propulsion system perfor-

mance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has

resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface has been developed

to allow the analyst to more quickly and easily apply these codes. This paper describes the development of this

interface and the rationale for the approach taken. The interface consists of a method of pictorially representing and

editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post

processing of data, and a menu system to control execution.

14. SUBJECT TERMS

Engine performance; Computer code; Gas turbine engines; Cycle analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
28

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

