
NASA Technical Memorandum 104259 �oj?

Experience With Ada on the F-18
High Alpha Research Vehicle
Flight Test Program

Victoria A. Regenie, Michael Earls, Jeanette Le, and
Michael Thomson

(NASA-TM-104259) EXPERIENCE WITH

Ada ON THE F-18 HIGH ALPHA RESEARCH

VEHICLE FLIGHT TEST PROGRAM (NASA)

17 p

N92-34039

Unclas

G3/05 0121334

October 1992

National Aeronautics and

Space Administration

https://ntrs.nasa.gov/search.jsp?R=19920024795 2020-03-17T09:58:05+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42811341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




NASA Technical Memorandum 104259

Experience With Ada on the F-18
High Alpha Research Vehicle
Flight Test Program

Victoria A. Regenie, Michael Earls, and Jeanette Le
NASA Dryden Flight Research Facility, Edwards, California

Michael Thomson
PRC Inc., Edwards, California

1992

National Aeronautics and
Space Administration

Dryden Flight Research Facility
Edwards, California 93523-0273





Experience With Ada on the F-18 High Alpha Research Vehicle

Flight Test Program

VictoriaA. Regenie, Michael Earls,and Jeanette Le

NASA Dryden F_ightResearch Facility

Edwards, California

Mi_aelThomson
PRC Inc.

Edwards, California

Abstract JOVIAL Jules' Own Version of the International

Algorithmetic Language

leading-edge flaps

McDonnell Aircraft Division, McDonnell

Douglas Corporation, St. Louis,
Missouri

MDTOT parameter identifier

MIL-STD military standard

on-board excitation system

Philips Automatic Sequence CALculator

random-access memory

research flight control system

read-only memory

trailing-edge flaps

universal asynchronous receiver-
transmitter

UMN universal memory network

UVPROM ultraviolet programmable read-only

memory

Introduction

Higher order languages have not been extensively

used to develop flight control systems because of the

lack of speed and capacity in the flight control comput-

ers. With the large improvements in computer speed,

or throughput, and in memory, use of higher order lan-

guages is now practical. Examples of higher order lan-

guages used for aircraft include PASCAL (Philips Au-
tomatic Sequence CALculator), JOVIAL (Jules' Own

Version of the International Algorithmetic Language),
and Ada.

Because the United States military selected Ada

for use as the common language, more aircraft will

be flown using this software. Thus, NASA Dryden

Flight Research Facility (DFRF) personnel must be-

come familiar with the language and its capabilities.

Considerable experience has been acquired with Ada
at the NASA Dryden Flight Research Facility during LEF

the on-going High Alpha Technology Program. In this McAir

program, an F-18 aircraft has been highly modified by

the addition of thrust-vectoring vanes to the airframe.
In addition, substantial alteration was made in the

original quadruplex flight control system. The result

is the High Alpha Research Vehicle. An additional re-
search flight control computer was incorporated in each OBES

of the four channels. Software for the research flig_ht PASCAL

control computer was written in Ada. To date, six re-
RAM

leases of this software have been flown. This paper pro-

vides a detailed description of the modifications to the RFCS

research flight control system. Efficient ground-testing ROM
of the software was accomplished by using simulations
that used the Ada for portions of their software. These TEF

simulations are also described. Modifying and transfer- UART

ring the Ada flight software to the software simulation

configuration has allowed evaluation of this language.

This paper also discusses such significant issues in us-
ing Ada as portability, modifiability, and testability as

well as documentation requirements.

Nomenclature

A/D analog-to-digital

D/A digital-to-analog

DDI digital display indicator

DPRAM dual port random-access memory

EEPROM electrically erasable programmable read-

only memory

FAST F-18 FCS automated software testing

FCS flight control system

FORTRAN FORmula TRANslation _

GE General Electric, Lynn, Massachusetts

HARV High Alpha Research Vehicle

HUD head-up display



AnF-18testbedaircraft,theHigh Alpha Research Ve-

hicle (HARV), offered an opportunity to acquire experi-
ence with the use of Ada for flight control applications. 1

The aircraft was built by the McDonnell Aircraft

Division (McAir), McDonnell Douglas Corporation, St.

Louis, Missouri, and the Northrop Corporation, New-

bury Park, California.

This paper describes the DFRF experience with Ada

and details the observed advantages and disadvantages

to using this language. The conclusions reached here

through the use of Ada in the real-time control envi-

ronment are applicable to other control areas as well.

Many real-time control systems using Ada to control

complex systems would be expected to have similar

experiences.

Research Flight Control System

Description

The following subsections describe the hardware,
control laws, and software of the system in which Ada
was used:

Hardware

The HARV is a modified preproduction F-18 aircraft

equipped with spin chute and emergency hydraulic and

electrical systems. These modifications include a sim-

ple, low cost, thrust-vectoring system. This installa-

tion required modifications to the flight control system

and mission computer. 2

The basic F-18 flight control system consists of

quadruplex redundant GE 701E (General Electric,
Lynn, Massachusetts) computers and was modified for

HARV by adding an analog interface to the thrust-

vectoring vane actuators and a research flight control

system (RFCS). Figure 1 shows the F-18 HARV com-

puter architecture. The analog input card and RFCS

were added to spare card slots in the basic flight control

computer. This basic flight control computer main-

tains control of the aircraft; controls input, output, or

both processing functions; communicates with the F-18
mission computer for outer loop control; and displays

information through a military standard (MIL-STD)

1553 data bus. The RFCS was added to provide a

flexible system for control law research. Ada was cho-

sen as the programming language for the RFCS.

The RFCS central processing unit is a MIL-STD-

1750A processor with a 20-MHz clock slaved to the

GE 701E computer (Fig. 1). The RFCS contains

32,000 words of electrically erasable programmable

read-only memory (EEPROM), 16,000 words of ultra-
violet programmable read-only memory (UVPROM),

2,000 words of random-access memory (RAM), and

2,000 words of dual port RAM (DPRAM). The RFCS

communicates to the basic flight control computer

through the DPRAM. Hence, RFCS may be called an

embedded control system. It, however, has no direct
control of the aircraft. The aircraft is under RFCS

control only during the research phases of a HARV

flight. First, the RFCS is armed or enabled by a cock-

pit switch. Then, it is engaged or activated through
use of a switch on the control stick. The RFCS is man-

ually disengaged via the arm switch or a control-stick-

mounted paddle switch. Autodisengagement occurs as

a result of internally defined limits on rates, accelera-

tions, engine sensors, and airdata sensors.

Control Laws

The longitudinal control laws contain an angle
of-attack command system that uses angle-of-

attack, pitch rate, and inertial coupling feedbacks

(Fig. 2). 3 The lateral-directional control laws contain
a feet-on-the-floor stability axis roll rate command sys-

tem (Fig. 3). This system provides the control for the

roll and yaw axes. 3 The lateral-directional system uses

roll, yaw, and sideslip rates as well as lateral accelera-
tion and inertial coupling as feedback signals.

Figure 4 shows a simplified diagram of the thrust
vane mixer section. This section converts the com-

mand pitch and yaw-vectoring moments computed in

the longitudinal and lateral-directional control laws
into vane commands. The mixer also uses estimated

thrust and current vane positions to calculate new vane

commands. The RFCS gross thrust estimator uses noz-

zle pressure ratio, nozzle exit radius, power level angle,

and static pressure to calculate gross thrust.

Software

The RFCS software is programmed in Ada and

was developed on a separate minicomputer system

and cross-compiled to the MIL-STD-1750A processor.

The software is loaded into the flight control com-

puters through an RS232 serial port using a personal

computer.

The original RFCS software was designed and tested

by McDonnell Douglas Corporation under a NASA
contract. None of the real-time kernel capabilities or el-

ements available with Ada, such as taskings, priorities,

terminations, and exceptions, were used for this sys-

tem because of concerns about timing. 4-6 The RFCS

software consists mainly of the control laws with a few

redundancy management functions. Because it can al-

ways downmode safely to the F-18 basic flight con-
trol system, the RFCS is not considered flight critical.

Choice of a language impacts neither the number of re-

dundancy management functions nor their complexity.

Redundancy management functions of the RFCS in-

clude such elements as reasonability checks and engage

logic.

2



TheRFCSsoftwareconsistsof approximately 7g in the simulation.
Ada specifications, which define the interface to the

outside world, and 13 Ada bodies, which give the de-
tails of the program. These specifications and bodies

consist of approximately 130 modules, 175 procedures,

5 functions, and 4,600 lines of code (16,302 sixteen-

bit words of EEPROM and 1,699 words of RAM)j
The RFCS software can be divided into six func-

tional areas. These areas include input-output func-

Three are for communication be-

tween the simulated and flight avionics. One is for an

aircraft model display communication path. In addi-
tion, the three MIL-STD-1553 buses model the three
HARV MIL-STD-1553 buses.

Hardware-in-the-Loop Simulation

Hardware-in-the.loop, the most frequently used sim-

ulation configuration, is the primary tool for developing

tions, disarm-disengage logic, longitudinal control laws: _:-=.... and testing software. This configuration is also used for
laterai-directional control laws, thrust vane mixer, and pilot training, flight test planning, and, to a lesser de-

gross thrust estimator. Figure 5 shows these functional

areas. Timing estimates for the current RFCS software

indicate less than 85 percent worst case throughput and

50 percent memory use.

The input-output functional area transfers data
through DPRAM, converts these data to and from

fixed point machine (the basic flight control system) to
the RFCS floating point format, and checks for data

validity. The disarm-disengage logic functional area

determines whether the RFCS should arm or engage.
This functional area includes such elements as e_ope

limits and reasonability checks on control law feedbacks
and RFCS outputs.

Simulations

Three configurations of the real-time HARV simula-

tion are used: an all-software, a hardware.in-the.loop,

and an ironbird. Figures 6, 7, and 8 show that these

configurations use many of the same elements. Detailed

descriptions of these configurations are provided next.

All-Software Simulation

Written in FORmula TRANslation (FORTRAN)
and Ada, the all-software simulation is used for en-

gineering development of control laws, for pilot train-

ing, and for flight test planning. Figure 6 shows the
elements of the all-software simulation. The aircraft

model is performed in the simulation computer and in-

cludes the basic flight control laws as well as theaero-

dynamic, propulsion, thrust-vectoring, sensor, and ac-
tuator models. The only element of the all-software

gree, engineering development. In addition, this config-

uration is extensively used for failure modes and effects

testing and for control law validation. Actual flight

control computers replace the control laws modeled in

the simulation computer and the workstation. Figure

7 shows the hardware-in-the.loop simulation. Actuator

models are also moved from the simulation computer

and modeled using analog models. All other elements
of the all-software simulation remain the same.

Ironbird Simulation

Figure 8 shows the ironbird simulation. As a final

check for the system configuration, this simulation con-
figuration is used to measure the closed-loop response

of the control laws and to verify actuator models. A
decommissioned F-18 airplane with hydraulic lines is

used. With the exception of the leading- and trailing-

edge flaps (LEF and TEF), the ironbird simulation re.

places the analog actuator models with the actual flight
actuators.

Compilers

Two Ada compilers were used: one for the RFCS
software and the other for the simulation software.

The cross-compiler used for the RFCS is a TLD Sys-

tems, Limited, Torrance, California, compiler hosted
on a minicomputer. This compiler conforms with MIL-

STD-1815A-1983 requirements. For the simulation

software, a SunPro (Sun Microsystems, Incorporated,

Mountainview, California) Ada language compiler is
used. This compiler also conforms to MIL-STD-1815A-

1983 requirements. No evaluation was done on the dif-
simulation coded in Ada is the RFC$ control laws.

ferent compilers, and only obvious differences, such as
These control laws are in the RFCS control law-corn-

puter, a Unix-based workstation. Both the simula-

tion computer and RFCS control law computer cycle

at 80 Hz. The simulation cockpit includes the flight

digital display indicators (DDI) and a head-up display

(HUD) along with the simulated instrumentation and
the pilot controls. Other flight hardware include mis-

sion computers and communication system control. An

interface between the research flight control laws and
the basic flight control laws in the simulation emulates

the actual flight system interface as closely as possi-

ble. Four MIL-STD-1553 multiplex buses are included

one compiler flagging errors that the other compiler

missed, were noted.

Software Modifications

Two major areas of software modifications are dis-
cussed in this section. These areas include modifica-

tions to the flight software and adaptations of the flight
software to the simulation. McAir developed the RFCS
software in a simulation and then transferred it to the

flight hardware. The DFRF tested the software in the



hardware-in-the-loopsimulationandlateraddedthe
RFCSsoftwareto theall-softwaresimulation.

Flight Software Modifications

The RFCS software delivered from McAir to DFRF

was not tested in a closed-loop system but was verified

by McAir in an open-loop environment on the flight
hardware. The contract stated that NASA would com-

plete the closed-loop validation testing. The compiler
that McAir and DFRF used to develop the Ada soft-

ware includes a profiling tool that allows timing esti-

mates to be generated for the target computer. Results

of the timing estimates made by MeAir using this toot

significantly underestimated the actual execution time
in the MIL-STD-1750A computer. McAir modified the

RFCS software during the open-loop tests to improve

its throughput. When the RFCS was delivered, it was
installed in the hardware-in-the-loop simulation for val-

idation testing. During the hardware-in-the-loop vali-

dation testing, RFCS exceeded the allocated cycle time
for one unusual set of conditions. The code required

modification to allow some throughput margin.

The following list shows the changes made to the
RFCS software to date. Several functions were changed

from 80- to 40- and 20-Hz functions (items 1 and 2 in

list). At the same time, the code was reviewed to find

additional changes tO increase the throughput margin

(item 3 in list).

1. RFCS multirate tasking

2. Modify order of rate structure

3. RFCS Ada code cleanup

4. Code reconfiguration

5. Change mixer-predictor constant

6. Thrust estimation modification

7. Betadot sign change miscompare

8. On-board excitation system (OBES)

9. RFCS 701E fader gain

10. Fix OBES frequency sweeps by overlay*

11. Fix OBES frequency sweeps and cleanup syntax

12. Static pressure with weight on wheels

13. Fix RFCS flag word outside envelope indication

14. OBES requirements

15. Incorrect differential stabilator, TEF, and LEF

computations

*Indicates an overlay generated.

16. MDTOT sign change

17. OBES cleanup

18. Persistence on betadot and angle of attack

19. Engine parameters channel 1/3 miscompare

20. Change instrumentation scaling of error

signal

21. Update configuration identification to version 24.0

22. Sideslip rate delta tolerance--overlay*

23. Sideslip rate delta tolerance--compile

24. Add test variables for FAST command limit tests

25. Replace message 8 RFCS parameters

26. Change scales of angles of attack and sideslip in
RFCS

27. Change parameters for angle of attack and inertial

navigation system angle of attack scaling to ±!80 °

28. OBES aileron rate limit

29. Add component of alphadot and betadot in mis-

sion computer

30. Parameter identification OBES

31. Move RFCS message 17 code

32. Thrust estimator

33. Enable RFCS go

34. Angle-of-attack filter coefficient

35. Message 17 parameter change

36. Message 8 RFCS modification

37. RFCS persistence counter for channel 1/3

miscompare

38. Change constants in pitch and roll trim

processing

39. RFCS scaling for message 8 instrumentation

40. Static pressure with weight on wheels by

overlay*

41. Downlink OBES signal

42. Change configuration identification to version 22.0
in RFCS software

43. Version 22.0--message 8

44. Change instrumentation error signal by overlay*

45. Pitch rate lead and gain changes



46. Update configuration identification to version 23.0

47. Message 8 word 20-bit toggle

48. RFCS thrust failures

49. Sideslip rate delta on instrumentation

50. Angle-of-attack rate gain fix

51. Update fade rate

52. Angle-of-attack scaling and inertial components--

overlay*

53. Update configuration identification to version 25.0

54. Add test variables for FAST command limit tests

55. Parameter identification OBES modification

56. Update configuration identification to version 26.0

57. OBES command limiting

58. Collective trailing-edge flap test command

*Indicates an overlay generated.

The original RFCS control law software was devel-

oped as two parts: longitudinal and lateral-directional.
While the delivered code was modularized, some func-

tions were distributed through several modules. Air-
data was the principal segment calculated in more than

one module and was processed in the input-output
and in the lateral-directional control law sections. To

allow completion of updates to one functional group

without affecting another functional group, the soft-
ware was modified to include all airdata functions in

input-output (item 4 in list). The update rate for

airdata-dependent gain scheduling was at 80 Hz, but

airdata was updated at 20 Hz. Consequently to in-
crease the throughput margin, the code was modified

to update the airdata-dependent gains at 20 Hz. Un-
less better profiling tools are developed, these problems

in throughput margin will continue to be found in final
hardware-in-the-loop testing.

During the flight program, modifications were made

to correct problems or make improvements. The ma-

jority of these changes involved a simple constant or a

couple of line changes. A few were more extensive and
included new capabilities. An OBES was incorporated

in RFCS to generate commands to the surfaces using

a function generator for sine waves and doublets.

Simulation Software Modifications .........

The RFCS Ada code was ported to the software sim-

ulation. This code was developed on a minicomputer

system and ported to a computer where it could be

validated using the real-time, all-software simulation.

Because the simulations were developed on the sim-

ulation computer, the Ada RFCS code was initially

ported to this computer where it could interface with

the residing simulation through shared memory. The
simulation computer was incapable of supporting the

Ada code in the time required. The code was then

ported to a Unix-based workstation RFCS control law

computer with a different Ada compiler. Here, the
RFCS code communicated with the simulation com-

puter through the universal memory network (UMN)

instead of shared memory7 Real-time performance

speed improved significantly on this computer. This

performance improvement was the result of several fac-
tors. These factors included the limited time avail-

able on the simulation computer and the improved Ada

compiler available on the RFCS control law computer.

Additional code was added to set-up a means of ex-

changing data between the Ada RFCS code and the
real-time simulation. Because of timing restrictions,

the calling order of the routines in the executive RFCS

program was also changed. The hardware-in-the-loop
code's executive operates at a 160-Hz frame rate over-
all. The individual routines are called at various rates.

Originally, two 80-Hz tasks ran alternately on an even
or an odd frame. One task handled the longitudinal

control laws, while the other frame handled the lateral-
directional control laws. The Ada on the RFCS control

law computer was unable to support the 160-Hz sched-
ule without time overruns. As a result, the even-odd-

frame arrangement was replaced by a new calling se-

quence. This sequence first calls the longitudinal mode
calculations and then calls the lateral-directional mode

calculations. Otherwise, the source code developed on

the minicomputer system is easily transferred to the

RFCS control law computer.

Significant Issues

This section describes major issues relating to Ada
and its use in real-time embedded control systems.

T_hese issues include porting, documenting, modifying,

and testing the software. In addition, software devel-

opment is discussed.

Portability

The RFCS Ada code was fairly portable. This code

was transferred from the MIL-STD-1750A processor to

the simulation computer to the control law computer.

The majority of modifications needed for Ada to run

in the simulation were changes to account for differ-

ences in the flight control and simulation systems. Be-
cause the hardware-in-the-loop RFCS source code re-

sides on the minicomputer system and the all-software
code is on the Unix-based workstation, two Ada com-

pilers were used to achieve optimal performance on the
individual machines. Use of two compilers can also



resultindifferencesif one compiler is more nearly accu-

rate than the other. For example, the Unix-based com-

piler would flag errors that the minicomputer compiler

would accept. The two compilers provided an extra
test for errors in the Ada software.

Documentability

An often mentioned feature of Ada is the fact that it

is a self-documenting code. Although very easy to read,

Ada is self-documenting only on a detailed level; that

is, Ada is more similar to self-commenting. The self-
documenting feature of Ada does not remove the need

for developing specifications and system documenta-

tion. Any system requires a specification for the soft-

ware to be developed against; otherwise, errors prop-

agate throughout the system. Use of a higher order

language, such as Ada, makes it easier to design and
code a system without developing specifications. As

with any other programming language, such program

specifications as specification block diagrams, program

requirements, software design specifications, and pro-

gram flowcharts are needed to give an overall picture
of the entire system.

Modifiability

Use of Ada or any higher order language simplifies all

but the most difficult software updates. The compiler

can show the assembly-level code along with the Ada,

which helps when trying to understand the operation
of the software. An assembly-level listing is necessary

when the software is not performing as expected, and

debugging is required. The assembly-level listing and

the memory map are used to examine the system mem-
ory and to assist in locating errors. This technique

was used several times during the system integration

stage. The Ada code proved fairly easy to modify, but

assembly-level modifications were still used.

Updates to the RFCS software are done either by

overlay or by recompiling. To change constants, an

overlay is performed. For an overlay, no source code

is changed. The majority of overlays are then added

to later software versions by modifying the source code

and recompiling. Load files, the machine code in hex-
adecimal that is loaded onto the flight control comput-

ers, are updated on the minicomputer system. Once

completed, the newly overlaid code is downloaded to

the flight control computers. Because a recompile is

not performed, a bit-for-bit comparison can be done to

verify any memory changes.

For all other changes, the program is recompiled.

This process involves changing the source code to meet
the new requirements. Once the changes have been

added to the code, a compilation is performed. Then,
the new software is downloaded to the flight control

computers. Software changes made by recompiling

require significantly more testing than those done by
overlay. Because a bit-for-bit comparison cannot be

performed, it cannot be assumed that the source code

updates did not affect any other software functionality.

One disadvantage in using Ada is that changes in

the calling sequence, addition of new routines to the

code, or both require changes in the compilation order

of the dependent routines. The proper order or se-

quence must be established to ensure that any routine

which depends on another routine is compiled before

the calling routine is compiled. This ordering process
can become a difficult task when major changes in the

calling sequence are required.

Another disadvantage of higher order languages ver-

sus assembly languages is that software overlays cannot
be inserted on-line. With assembly language, a logic

overlay can be inserted into the source code and re-

assembled. Overlays can be written to branch to a pre-

determined patch area in read-only memory (ROM),
execute the new code, and return to the point of ori-

gin. This type of change requires less testing than a

complete reassembly because a bit-for-bit comparison

can be performed.

Testability

The language used to implement the software has

no impact on the testing requirements. The level of
testing required is determined by the criticality of the

system. Obviously, flight-critical systems require more

testing than those systems that are less essential. Re-

gardless of the programming language used, verifica-
tion and validation tests are required to flight qualify a

new software release. Verification is the process of de-

termining that the software performs as specified. This

process is accomplished by devising individual tests for

each specified software task, conducting the test, and

observing that the task was completed according to the

specification. Validation, the broader task, seeks to de-

termine if the system of which the software is a part

performs adequately to fulfill the flight requirements.

Open- and closed-loop failure modes and effects tests

are among the techniques used in software validation.
In these tests, failures are artificially induced, and a

correct system response to those failures is verified.

Verification. When a higher order language is used,

the compiler and linker must provide outputs which

give the tester the information required to understand

and verify the code. This information includes a list-

ing of the assembly language code generated by the

compiler and a memory map showing the locations of

all modules, constants, and variables. The ability to

complete the testing without modifying in any way the

code under test is highly desirable. If the required test

interfaces exist, then the locations of the input and out-

put variables provide the interfaces to the code under



test. Thetestermayinjectandmonitorinputsand correctmicrocodeerrorswithin thecompiler,but not
outputsto determineif thecodeperformsasspecified, all errorswill benecessarilycorrected.ValidatedAda
If modificationof the software is necessary to allow the
tests to be performed, then a test patch is written.

Digital flight control systems seldom have the test in-

terfaces required to perform complete verification test-
ing without modification of the code under test. Of

course in many instances, the change being verified

involves inputs and outputs which are available dur-
ing normal system operation. Test patches are not re-

quired in these cases. When test patches are required

for higher order languages, these patches are coded in

assembly language using areas of program and variable

memory that are not used by the compiled software.

The software under test is minimally impacted.

Validation. Software is validated in conjunction

with the system of which it is a part. In the case of
the RFCS, validation is accomplished on the HARV

hardware-in-the-loop simulation. Time histories, fail-

ure modes, and effects tests are performed while the

simulated aircraft is flying closed-loop. Depending on

the interfaces available, occasionally test patches are

needed to simulate system failures which cannot be in- •
duced in any other way.

Software Development

Development of real-time code requires an under-

standing of the requirements and limitations of mem- *

ory and time. Real-time software generally requires

more time than is readily available; therefore, care

must be taken in developing the code. Use of a higher

order language makes it more difficult to control the
timing directly. The compiler generates the code and,

even if optimized, may not produce the most time- *

efficient code. As discussed in the Compiler section

and in the Portability subsection, one of the two com-

pilers used by HARV detects more errors than the

other. Although not required, use of two compilers

provides a good check-and-balance scheme for any soft-

ware development. •

The use of two or more compilers is not required and

was only used on this program to facilitate the transfer
of the Ada software to the all-software simulation. The

majority of the Ada software in the all-software simula-

tion is identical to the flight software. Using the same

software in the simulation and in the flight software
saves time when transferring the software between sys-

tems. Software implementation differences between the
hardware-in-the-loop and all-software simulations are
also minimized.

The developer also needs to be aware of any mi-

crocode errors within the target processor. Many com-

piler developers work closely with processor manu-

facturers. Such cooperation allows the developers to

compilers can also have errors. The assembly-code
listing also gives the implementer the information re-

quired to deal with possible compiler errors and with
known microcode errors in the target processor hard-

ware. Knowledge of the system is still necessary for the
development of software for real-time systems.

Concluding Remarks

The NASA Dryden Flight Research Facility experi-

ence with using Ada software for the F-18 High Alpha

Research Vehicle has been positive. Although the Ada

software developed was not for an extremely complex

system, it is representative of most uses. Compiled

Ada code can be used in a flight-critical system. The

conclusions reached in this paper are not effected by

the lack of a complex redundancy management or of a
flight-critical system.

Positive conclusions reached concerning Ada are
listed next. Ada is

Portable--Ada was transferred among three com-

puters using different compilers. The changes

made to the transported code were to account for

system changes.

Documentable--For commenting purposes, this

easy-to-read code is self-documenting. On the
other hand, the self-documenting feature of Ada

does not remove the requirement for system-level

documentation or for a specification before coding.

Modifiable--Ada is easy to modify, but it is still

easier to make simple constant changes without

recompiling. Individual changes in the code that

are of major significance and numerous changes

that are of less significance are easy to accomplish
in Ada.

Testable--Ada is no more difficult to test than any

other language. The criticality of the system--

not the language used to program the system--

defines the testing requirements. Any system can

be coded in Ada. For example, a system with com-
plex redundancy management functions can easily

be written in Ada, and the testing requirements

would not change. A flight-critical system can eas-

ily use Ada, and the testing requirements would be

the same as for other flight-critical systems.

Negative factors identified were not really Ada spe-

cific; that is, these factors are also found in other higher

order languages. If a system does not follow standard
software design practices, then problems will occur.

Software and system specifications must be developed

7



beforethesoftwareimplementations.Compilers,even
validatedAdacompilers,canhaveerrors.Asa result,

compiled software must be tested before use.

References

1Regenie, Victoria, Donald Gatlin, Robert Kempel,
and Neil Matheny, "The F-i8 High Alpha Research

Vehicle: A High-Angle-of-Attack Testbed Aircraft,"

AIAA-92-4121, Aug. 1992. (Also available as NASA

TM-104253, 1992.)

2Chacon, Vince, Joseph W. Pahle, and Victoria A.

Regenie, Validation of the F-18 High Alpha Research
Vehicle Flight Control and Avionics Systems Modifica-

tions, NASA TM-101723, 1990.

3Pahle, Joseph W., Bruce Powers, Victoria Regenie,
Vince Chaeon, Steve Degroote, and Steven Murnyak,

Research Flight-Control System Development for the

F-18 High Alpha Research Vehicle, NASA TM-104232,
1991.

4Honeywell Inc., Military Avionics Division,
DIGTAC Ill--Advanced Fault Tolerant Control Tech-

niques: Software Final Report, St. Louis Park, MN,

Sept. 1990.

5Sodano, Nancy M., Ada ReaItime Perforvnance As-
sessment Internal Research and Development Task: Fi-

nd Report, CSDL-42-5808, Charles Stark Draper Lab-

oratory, Inc., Cambridge, MA, Oct. 1985.

¢Software Productivity Consortium, Ada Quality

and Style: Guidelines for Professional Programmers,
SPC-91061-N, version 02.00.02, Herndon, VA, 1991.

7Reinwald, Carl, "Universal Memory Network

Overview," Universal Memory Network--Standalone

Memory Interface (SMI-3_) System Technical Manu_

TM/SMI32/001/00, Computer Sciences Corporation,
Lompoe, CA, June 1,1992, pp. D-2 to D-12.



E
8

LU
,ira

ILl

X

a"
eL
r_

i
J

!

E E

__L_

_m

r,l}_ ,.__.

U.
n-

a- I
,d: I

{n
n-



t- C J
4) z.. " r_o

_mE "° _ ?E

__ _ _E_

_E®0"0 c,- 0"0

0

- I •

° !_
I_

!_ = -

_g

0._1 Jz+

2N -

_ e- C

cO

W _ C_C_

_ "_' EC_
._ c._
_,. ¢- e,-

.Ca ._

"0

m

L--

Or,,)

J-_.-_ _

T T
I

!

o._

C ""

,0

r,,

t_

e-

("4

[c)



tl



T

i_ RIg ht

Pitch and yaw
vectoring

commands--_
from claws

Scaled
Thrust reference I commands

!Thrust estimate

T
Estimated

thrust

• Left and right assignment
• Command limiting
• Vane pair selection
• Inactive vane calculation

• Load limiting

Nozzle
radius pressure

ratio

Fig. 4 Simplified thrust mixer.

I Left engine I
r Top

Outboard
Inboard

I Right engine I
Top
Outboard

Inboard

92O621

DPRAM J

Thrust
vane
mixer

Input-
output

Thrust
estimator

Ii Engage"
disengage

logic

Lateral- I
directional I

control I

laws •

Longitudinal
control

laws

92O622

Fig. 5 The research flight control system software functional areas.

12



Simulation
computer

• Aerodynamic model
• Basic control laws
• Propulsion model
• Actuator models
• Sensor models

-]_

Analog and discrete
input-output

Cockpit

.),.
MIL-STD-1553 data buses

RFCS
control Mission

computers
law 1 or 2

computer

Fig. 6 The High Alpha Research Vehicle all-software simulation.

____J Simulationcomputer
"_ | • Aerodynamic model

L• Propulsion model
Analog • Sensor models

and
discrete
Input-
output

/=,.--

Activator
positions

Flight
control

computer
console

JActuatorl

models I"I[

I Analog and discrete

--. Input-o_utp_ut__ _. Cockpit

MTCiT[)-1593, multll_ex I)uses ......

Mission _
computers

1 or2Analog and
discrete input-output

Actuator commands
and positions

-),.

I MIL-STD-1553
GET01E DPRAM RFCS J:umplexb:

]-. v
Flight control computers Q_,0_4

Fig. 7 The High Alpha Research Vehicle hardware-in-the-loop simulation.

13



Actuator

positions i

Analog and
discrete

Input-output

TEF and LEF
positions

Actuator
commands

and positions

Simulation
computer

• Aerodynamic model
• Propulsion model
• Sensor models

Fig. 8

.._ Flight
control

computer
console

LEF and TEF
actuator
models

Analog and discrete

input-o_ut_p_ut_--_ Cockpit

TEF and LEF
commands

and positions

r

Analog and
discrete

_, input-output >i

Actuator I
commands

and positions

Mission
computers

1 or2
FIi_lht control computers

DPRAM J RF_
GE 701E

The High Alpha Research Vehicle ironbird simulation.

14





Form Approved

REPORT DOCUMENTATION PAGE OMBNo.o7o.o1 
Publio reportingburdenfor this collectionof information is estimated to.average 1.hou.rper Tel.ponN, Including the time fo_revlowinQ.Inlttu_./or4, n_'chino ex_t_g d_ata=ou_
gathorlng&rid saints n ng the data neeDeD,and comldetlngand revmwmg the ¢ogect|onov=mormstlon. _ena comments teg=rozn9 Ibm ouroen osumme or any otrmr_ m Ir.=
collectionof Information, inctudiog=uggestiomr,for reducingthis burden, to Wad;hingtonHeadquartorl Services, Dlroctorato]or informationOperations and Ropofle, 1215 Jefforson
Darts Highway, Suite t204, Arlington,VA 22202-4302, andto the Office of Managemen! .'rodBudget, Paperwork ReductionProject(0704-0188). Walhingto,n, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1992 Technical Memorandum
i

4. TITLE AND SUBTITLE 5o FUNDING NUMBERS

Experience With Ada on the F-18 High Alpha Research Vehicle Flight

Test Program

8. AUTHOR(S)

Victoria A. Regenie, Michael Earls, Jeanette Le, and Michael Thomson

7. PERFORMING ORGANIZATION NAMEiS) AND ADDRESS(ES)

NASA Dryden Flight Research Facility
P.O. Box 273

Edwards, California 93523-0273

IL SPONSORING/I_ION'ITORiI_iGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-533-02-35

8. PERFORMING ORGANIZATION
REPORT NUMBER

H-1860

10, SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 104259

i

11. SUPPLEMENTARY NOTES

Michael Tho_ is atT_ated with PRC Inc., Edwards, California. This reportwas also presented at the IEEFJAIAA
Digital Avionics Systems Conferenoe, October 5--8, 1992, Seattle, Washington.

12b. DISTRIBUTION CODE'12a, DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 05

13. ABSTRACT (Max/mum 200 words) =- _ ° "_

Considerable experience has been acquired withAda at the NASA Dryden Flight Research Facility

during the on-going High Alpha Technology Program. In this program, an F- 18 aircraft has been highly

modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was

made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle.

An additional research flight control computer was incorporated in each of the four channels. Software

for the research flight control computer was written in Ada. To date, six releases of this software have

been flown. This paper provides a detailed description of the modifications to the research flight control

system. Efficient ground-testing of the software was accomplished by using simulations that used the

Ada for portions of their software. These simulations are also described. Modifying and transferring

theAda flight software to the software simulation configuration has allowed evaluation of this language.

This paper also discusses such significant issues in usingAda as portability, modifiability, and testability

as well as documentation requirements.

14. SUBJECT TERMS

Ada; Airborne computers; Digital systems; F-18 High Alpha Research Vehicle;

Flight control

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-55OO

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified
, ,,.F

15. NUMBER OF PAGES

18
16. PRICE CODE

A03
20. LIMITATION OF ABSTRAC3

Unlimited

Standard Form 208 (Rev. 2-89)
P;,escrlbed by ANSI Std. Z30-16

29a • 102


