
NASA-CR-19ObI9

Department of

Electrical and Computer Engineering
P.O. Drawer EE

Mississippi State, MS 39762

August 3, 1992

Walter Robinson

EB32
NASA

MSFC, AL 35812

Telephone: (601) 325-3912
TELEX: 785045

FAX: (601) 325-2298

./l&- o 7&

Dear Mr. Settle:

With regards to NASA Grant NAG8-866, please find a six month progress report enclosed.
If you have any questions, please feel free to contact either of us.

Sincerely,

Dr. Robert J. Moorhead II

Principal Investigator

Dr. mith

Co-Principal Investigator

cc: NASA Scientific & Technical Information Facility
P.O. Box 8757

Baltimore/Washington International Airport
Maryland 21240

(NASA-CR-190619) MONTHLY PROGRESS

REPORT (Mississippi State Univ.)

44 p

N92-3_139

Unclas

G3/20 0115076

https://ntrs.nasa.gov/search.jsp?R=19920024895 2020-03-17T09:57:16+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42811326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

This report is the mid-year report intended for the design concepts for the communication network

for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, MS.

The overall network is to include heterogeneous computers, to use various protocols, and to have

different bandwidths. Performance consideration must be given to the potential network applica-

tions in the network environment. The performance evalution of X window applications has been

given the major emphasis in this report. A simulation study using Bones will be included later.

This mid-year report has three parts: Part i is an investigation of X window traffic using TCP/IP

over Ethernet networks; part[I is a survey study of performance concepts of X window applications

with Macintosh computers; and the last part is a tutorial on DECnet protocols. The results of this

report should be useful in the design and operation of the ASRM communication network.

!
i

i

J

I. X WINDOW TRAFFIC

Introduction

About X Window system

The X window system, or just X for short, is a combination of several software components working

together to provide a high performance graphical interface to users. In the X environment, users do

their jobs on network-based and bit-mapped windows that axe controlled and managed by a termi-

nal server. X supports multiple windows so that it provides users with a multitask application envi-

ronment. Users may open a window for each interactive applications. The X components are many

things. From the user's point of view, they include a window server, a window manager, a display

manager (or none), and a collection of application programs (called clients). To the X programmer,

they also contain a communication protocol and a structured library that is the lowest level routines

with access to the X protocol. Programmers use this library to build user interfaces.

The X window system is well described by a client-server model with a communication protocol

between the client and the server. The serveris a software program residing at the terminal. It takes

user inputs (from the keyboard, mouse, etc.) and sends them to relevant programs (clients). Then

it receives the client display requests and does the actual drawing on the screen. The client is the

application program the user runs. It may run locally if the terminal is a workstation, orrun remotely

at a mainframe with results being displayed at simple terminals. The X protocol controls the various

client-server interactions supported by X. It is defined as a set of primitives: request, event, reply,

and error. The request is an order sent from a client to the server as a response to a user input/action

to request the server to make some changes to the graphics display, e.g. creating/closing a window.

The client may also send a request to the server for some information from the server. In this case,

no drawing action will be taken. The event, sent from the server to a client, is used to indicate a

device action has been initiated by the user. The difference from conventional client-server relation-

ships is that the server gets inputs from users then produces relevant events to inform clients. A reply

is used by the server to send some information a client requested. A client may request and retain

theserverinformationwhenbeingcreatedsothattheamountof interaction traffic is reduced. The

server sends error messages to the client to report errors.

History, Standards, and Application Development

X was originally developed at the Massachusetts Institute of Technology with the help of various

manufacturers in 1984. The first commercial implementation of X was introduced by DEC, running

on the VAXstation under the Ultrix operating system. The latest version of X is the Version 11

(X 11). It is a joint effort by major computer vendors. The first release of X 11 (named X I 1R 1) be-

came available in 1987. Then came the MIT X Consortium, a large and influential collection of soft-

ware and hardware companies, to keep the X open to all. The X Consortium conducts the current

development of the X window system. The latest version is X1 IR5, released in Dec. 1991. Howev-

er, XllR4 is still the most widely used. The X window system has been widely accepted as a de

facto standard for distributed window management.

The X11 standard consists of a C programming library Xlib and an inter-client communication pro-

tocol (often called the X11 protocol). The Xlib is a large collection of C language routines which

provide a lot of basic windowing functionality. It is the lowest programming interface to the under-

lying X protocol. Since X was designed to be "policy free", it does not specify a standard user inter-

face. It is up to the X programmer to write his/her favorite user interface. X allows any style of user

interface by providing a very flexible set of routines in Xlib. The Xll protocol is the core of the

X window standard. All the communications between the client and server are through this protocol.

To implement a X system is to implement the protocol. It is a bidirectional asynchronous stream-ori-

ented protocol. It may operate on top of any network layer as long as the underlying network layer

provides a sequenced and unduplicated byte delivery service. If the client and server are on the same

machine (workstation style), the protocol is typically supported by an interprocess communication

mechanism. Otherwise, a network connection is assumed. With asynchronous communication,

there is no explicit acknowledgement by the client/server. The client/server process does not have

to wait for the consequences of previous packets, but assumes reliable receipt and processing. This

approachspeedsupthesystemoperationandimprovesthenetworkperformance.Anotherimprove-

ment to thenetworkefficiencyof theX protocol is its ability to group a number of requests into a

single packet before sending them over the lower network layer. This can greatly reduce the network

overhead.

The X11 standard is the heart of the X window system. It was designed to be terminal device inde-

pendent and network transparent. X developers are encouraged to develop window systems most

suited to users interests. They do not have to have the knowledge of the underlying network that

is to support the X protocol. The display and the applications can be running on different machines

over a network. This distribution ability allows X users to access almost all network resources and

to take advantage of different platform capabilities via the network.

The only device dependent part in X system is the server. Running at the terminal (or workstation),

the window server takes display requests issued by clients through the X protocol and generates the

graphic output on the screen. Platform vendors are free to optimize their server software for their

hardware.

Although Xlib is a basic interface for X programmers to build up application programs, it does not

provide programming efficiency. To create a simple display object will involve a number of Xlib

routines. This can be analog to programming with assembly language. To allow easy application

creation, X vendors put extensive effort into the development of toolkits, e.g., MIT's X Toolkit In-

trinsic (also known as Xt Intrinsic) and OSF's Motif. Motif is even built upon the Xt Intrinsic. These

toolkits are the high-level languages of the X window system. A general X window system structure

is shown in Figure 1.

Another thing that needs to be pointed out is that X is intended to be operating system independent.

It only requires a reliable data communication service between the server and clients. However,

some network protocols reside in the operating system kernel, e.g., TCP/IP in the B SD UNIX operat-

ing system and the DECnet protocol with DEC's VAX/VMS machines. Certain factors related to

the operating system may need be taken into account for X implementation. But as long as there

Underl_,in_:Network
. I-........................ I........ ,
: [XlX protocol I [X11 protocol [

' I- i
I ' iX server i Xlib

I

display _"

keyboard mouse

i x oo iti
i

X Applications

!

I

I

' "_'--X Standard
I

_ J

Figure 1

exists a data communication channel between the server and clients, the server can take the request

and produce output for the client no matter what operating system the client is running on.

Some special client programs

There are two special client programs: the window manager and the display manager.

The standard release of the X window manager from MIT is called twin. Several other window man-

agers, such as mwm (the Motif window manager from OSF), awm (Ardent window manager), rtl

(tilted window manager, developed at Siemens Research and Technology Laboratories, RTL), and

olwm (the OPENLOOK window manager from AT&T and Sun) are also widely used. The window

manager takes care of the layout of the windows. It allows users to move and resize windows without

client interactions. The reason for having the X window manager be a client program separated from

the X server is to let users be able to choose the window manager they like, so that the design of

the graphical user interface is freed from the manufacturer-selected graphics system. Another im-

portant functionality of a window manager is to provide a means for inter-client communications.

A typical example is the cut andpaste procedure between two windows on a display. The inter-cli-

ent communication of X is directed by the ICCCM (Inter--Client Communications Conventions

Manual) [3, 6].

4

Thedisplaymanageris aclient programdesignedto starttheX serverautomaticallyandto keep

it running. The xdm is a X display manager released from MIT. It is started by the root, not the

user, at the system startup. When first run, xdm reads in some configuration parameters from a file

namedxdm-config in the xdm directory. This file indicates which servers xdm will manage. After

reading the list of servers, xdm starts up these servers. For remote servers, xdm opens network con-

nections. Then the display manager emulates the getty and login procedure on the displays, prompt-

ing for a user's name and password. When a user enters a name and password, xdm checks them

and, if correct, executes initialization of a window application, creating the selected clients and a

window manager defined in the file named .Xsession in the user's home directory. The file .Xsession

is similar to .xinitrc. When the user logs out, xdm will destroys all windows by running a cleanup

script called .Xreset and then goes back to the login prompt. The big difference when using an X

display manager is that the X server is kept alive when the user logs off, waiting for a connection.

In fact, when xdm is started up at system initialization, it brings up all the servers it manages. This

is the typical situation of implementing X windows on X terminals with all clients running on a re-

mote host.

Implementations of X

There are three ways to implement the X window system [7].

The first is to use workstations. The X server and all clients run locally. There is no extra network

traffic introduced by X windows. If a distribution of load and high processing speed are needed,

workstations are the choice.

The second way is to implement X on PCs running DOS or MS Windows. This requires adding PC

X server and network protocol software (e.g. TCP/IP) to PCs. Client programs run remotely on

some host server. The advantage of using PCs is to make full use of already installed PCs which

still can run DOS or MS Windows applications. The PC hardware needs at least 4M bytes of RAM,

an 80386SX or faster processor, and higher resolution graphics monitor/boards. High-performance

5

graphicscontrollerboardsbasedon graphicsprocessors(e.g.,TexasInstrumentsTMS34010/20

products)canalleviatethePCCPUof runningtheserversoftware.

Thethird implementationof X isby usingX terminals.Thestrengthof X terminalsis thattheyare

designedtorunX windows.Theyhavepowerfulprocessorsandhigh-resolutiongraphicsdisplays,

andtheyarelessexpensivethanworkstations.TheX terminalsonly runX serversandnetworkpro-

tocol software.Butthecentralizedhostwhichrunsall X applicationsneedslotsof memoryandpro-

cessingpower. OneX terminalmayrequireup to 1MIPSof processingpower, 1M byteof main

memory,and20Mdisk spaceon thehost. In addition,eachX terminalwill produceanX traffic

streamandloadtheunderlyingnetwork. Thereforeextracareshouldbe takenduring thedesign

period. Figure2 illustratesthethreenetworkimplementations.

Mainframeor
hostserver

- X clients
- X toolkit
- Xlib
- X protocol .

r_etworksoftware

LocalAreaNetwork

X terminal

Workstation

- X server
- X clients
- Networksoftware

PC

- PCX server
- X protocol
- Networksoftware

X terminal

- X server
- X protocol

- Network software

Figure 2 Implementations of X over LAN

In summary, the X window system provides a high-resolution, multitasking, graphics interface to

end users. At the same time it imposes extra processing power requirements on the terminals and

hosts, and data traffic on local area networks.

Thefollowing partof thisreportis dividedinto two sections.Thefirst sectionclassifies generally

theX traffic flows overa localareanetworkfor variousX implementations.The secondsection

is an investigationof X traffic overTCP/IPandEthernet.

Traffic Flows: Workstation vs. X Terminal

The X window system is a distributed system. Applications can be run at any node on a network

provided that there exists a connection path between the application and the server. On the other

hand, X supports a high-resolution, bit-mapped, multi-window interface to the end users. So it will

produce extra data traffic compared with the conventional text-based, single screen terminal ap-

plications. The X protocol was developed for the data exchanges between the client and server. As

previously stated, it has four primitives: request, reply, event, and error.

The request is the only primitive generated by the client and sent to the server. It may carry either

an order to the server to draw, to change colors, etc. in a window, or an inquiry for some window

information. Every request consists of a 4-byte header followed by optional additional data bytes.

The maximum length of a request is 218 - 1 bytes. The server sends a reply to the client to reply

to an information inquiry contained in a request. Each reply includes a 4-byte length field followed

by none or more additional data bytes. The maximum length of a reply is 232 - 1 bytes. Both the

event and error are 4-byte long, sent by the server. An event is used to indicate a device action taken

by the user. An error is used to report errors.

Under the X protocol is the lower layers of the network protocol function, typically UNIX TCP/IP

with Ethernet, or DEC's DECnet protocol. These lower layer protocols put additional overhead on

each of X protocol data unit. The X protocol data unit is the data unit delivered as a packet by the

underlying protocol. Since the X protocol tends to group several primitives together for transmis-

sion to reduce the overhead traffic, one X protocol data unit could comprise more than just one primi-

tive. During a window application, each client will communicate with the server. If clients are dis-

tributed at various nodes on a network, there will be a network connection for each of them, as shown

in Figure 3.

X server

X protocol

Lower layer protocols

X client

Xlib

X protocol

Lower layer protocol.,

Figure 3. X client-server communication pair

There are several aspects of X traffic composition. The total X traffic over the network is dependent

on the distribution of windowing functions. For a workstation version, the traffic may all be trans-

mitted internally by the inter-process communication mechanism. While with an X terminal ver-

sion, the network must accommodate all client-server data traffic. It is also application dependent.

This includes how many terminals are running X windows and what kinds of tasks the users carry

out under the X windows. For instance, the end users may be working in working cells equipped

with X terminals to interact with a supercomputer running various applications. The end users only

execute commands displayed on a selection menu and read the related information in the window.

This centralized control does not need much processing power at the terminals, but depends on the

speed of the host machine, the host machine interface, and the reliability of the network throughput.

Although X is intended to be network independent and encourages users to develop routines to port

the X protocol to the network protocols they want to use, the TCP/IP protocol suite and the DECnet

protocol suite are the most widely used. In this report we present an investigation of the actual X

protocol traffic and the corresponding data traffic over Ethernet in some special cases. In our study,

we assumed a number of identical terminals operating with a centralized host over an Ethernet

through X windows and similar traffic statistics, so that the total amount of X protocol traffic on the

network is simply the linear combination of traffic of all terminals. The investigation of the actual

statistical behavior of aggregated traffic could lead to a further simulation study. We also assumed

that each terminal has only one client-server connection active, since the user can only work within

one window at a time.

X over Ethernet with TCP/IP

Measurement Configuration

In the study, a client-server connection was made over a 10--Mbits/s Ethernet LAN. Under the X

protocol and on top of the Ethernet was the TCP/IP protocol suite. The layered structure is depicted

in Figure 4 below. Both the machines running the server and client application were Sun SPARCsta-

tion 2. The X server was theX11/NeWS which supports both the Xll and NeWS protocols. The

window manager was the olwrn, the standard window manager from Sun OpenWindows product.

We compared olwm with the M.I.T.'s standard window manager twm. They showed minimal differ-

ence in terms of X protocol data traffic.

X server I
X protocol

TCP/IP

X client

X protocol

TCP/IP

I Ethernet I
I

Figure zV

Traffic Monitors

The traffic monitor tools employed included a perfrneter and an xscope. The perfmeter measured

the Ethernet packets to and from the server. It recorded the number of packets in each second during

the client-server transaction. The perfmeter was not able to display the timed characteristics, such

as packet delay. But since the measurement took place when the Ethernet LAN was almost idle, the

network delay was negligible. The xscope utility was a useful program in monitoring X protocol

traffic. It sat between the client and server, working as a relay station and at the same time observing

and recording all protocol requests, events, error reports, and replies into an output file. Each entry

in the output is tagged with a direction, a connection number and a time of day. The data extraction

was done by a separate program. Xscope is an independent process. It may run on the same machine

as the server, or as the client, or on a different host. It makes use of explicit TCP ports to connect

theclientandserver.In ourmeasurement,wesetupthexscope at the server host and let the xscope

and perfmeter monitor the X traffic in a synchronous manner. Thus the two traffic meters collected

the same stream of traffic at two different levels. One displayed the traffic generated directly by the

application programs, and the other showed the actual traffic on the network. The statistical differ-

ential of the two reflected the overhead of lower layer protocols (TCP/IP and Ethernet).

Application Load

We ran three different client applications.

The first was xterm, with which we generated two traffic patterns. One is the interactive UNIX com-

mand operations, such as listing directories, changing directories, copying files, cating files, and so

on. The other traffic pattern was generated by continuously moving the pointer (mouse) into and

out of the xterm window (namedxterm2 to distinguish). The second application was running plaid,

an image pattern generation program. It kept sending drawing requests to the server to display the

generated plaid patterns. It was an intensive load we used to investigate the extreme case. The last

application was ileaf5, a desktop publishing software package from Interleaf, Inc.. This scenario

included starting the ileaflS, opening a file, page scrolling in the file, closing the file, and closing

ileaf5.

Measured Data

The data measured with the xscope and perfmeter are given in Tables 1-3. All entries are measured

in bytes unless specially indicated.

Table 1. overall statistics

applications xterm xterm2 plaid ileal5

run time (sec.) 251.23 149.56 148.04 239.61

total bytes 1148533 51018 4490780 820129

total units 23919 1748 48822 17097

total X blocks 1237 1311 2287 2175

total pkts 5420 3342 27580 6569

mean pkts/sec. 21.11 21.58 179.12 25.67

max pkts/sec. 72 42 298 103

10

Table 2. clientsstatistics

applications xterm xterm2 plaid ileaf5

total bytes sent 1130173 19010 4489776 755345

percentage (%) 98.40 37.26 99.98 92.10

total units sent 23503 779 48814 15232

percentage (%) 98.26 44.57 99.98 89.19

total blocks sent 835 471 2280 1105

percentage (%) 67.50 35.93 99.69 50.81

block size
__q

40.36

4

mean 1353.5 1969.2 683.57

std. dev. 928.09 32.19 260.77 855.91

maximum 2048 404 2048 2048

minimum 12 12 4

Table 3. server statistics
i,||

applications xterm xterm2 plaid ileal5

total bytes sent 18360 32008 1004 64784

percentage (%) 1.60 62.74 0.02 7.90
re.l.

total units sent 416 969 8 1847

percentage (%) 1.74 55.43 0.02 10.81

total blocks sent 402 840 7 1070

percentage (%) 32.50 64.07 0.31 49.19

block size
,, r

mean 45.67 38.11 143.43 60.55

std. dev. I43.35 23.63 152.94 84.00

maximum 2.32 476 476 2032

minimum 32 32 32 32

The units are the four X protocol primitives: request, reply, event, and error report. The X block

(or just block) is def'med as the data block the X protocol passes to the lower layer protocol (TCP

11

in our case) for delivery. Since the X protocol works in an asynchronous manner and tries to send

units in aggregation, one X data block may contains several units.

Data Analysis

The traffic between the client and the server is highly skewed. Most of the data flows from the client

to the server, except in the extreme case, like xterm2, where the user kept generating inputs to the

server. Even so, the data flow from the server is less than 40 percent of the total.

The X protocol sends its data to the TCP/IP in blocks. Each block contains several data units. Differ-

ent policies are reflected here. At the client side, one block consists of many data units (an average

of 28.15, 21.41, and 13.78 for xterm, plaid, and ileaf5, respectively), so that a highly efficient use

of the underlying network is assumed. At the server side, however, one block only carries one data

unit or two. That is because on one hand, the data units sent by the server are mostly events whose

sizes are very small so that grouping does improve the efficiency, but on the other hand, short blocks

may help reduce the response delay, so that user input can be sent to the client application quickly.

The block size depends largely on client applications. For the xterm2 case, most of the data was

generated by the user moving the mouse pointer in and out of the client display window. So the X

server kept sending the events EnterNotify, LeaveNotify, FocusOut, FocusIn. And the client re-

sponded with short requests specifying the (x,y) coordinates and the GC value (Graphic Context).

While in the case of plaid drawing, the client program continued computing the plaid pattern and

sending the corresponding drawing requests (PolyFillRectangle) to the server to update the plaid

display. If taking the xterm2 and plaid as two extreme case data, the average block size of requests

would be around several hundred to one thousand bytes perX block, indicated by the other two cases

(1353.5 bytes forxterm, and 683.57 bytes for ileal). But the large standard deviations indicate that

the block sizes depart the means quite a lot, except in the plaid case. These can be visually illustrated

by the distribution histograms in Figure 5. Most of the time, the block sizes are significantly shorter

than the averages. With regards to the network delay performance, the shorter is better for the Ether-

net technology.

12

200,0

150,0
100,0 i

50,0 _..

0,0
0.0

' I ' l

_J...... I__ ,,I
1000,0 2000,0

a. xterm

m

i

q

i

q

i

500,0

200,0

100,0

0,0
0,0

' I

1000,0

c. plaid

l

u

i

I

3000,0

500,0

2.90,0 I
100,0

0,0
0,0

' I ' I ' I

,, I .i I l I
100.0 200,0 500,0

b. xterm2

I

400.0

400,0

500.0

200.0

100,0

0.0
0,0

_ ' I ' I

I

.... ,.......L, .,j I
1000,0 2000,0

I

I

.7£)00.0

d. ileaf5

Figure 5. block size distributions

The data block sizes from the server are much less than from the client, implying a much smaller

impact on the network performance in terms of packet size.

There is shown an upper limit on the block size, 2048 bytes in our case. This limit is determined

by the underlying protocol structure. The X protocol does not put a constraint on itself. It relies

on the underlying network and assumes a reliable network connection is available. Once the connec-

tion is established, it sends as fast as possible data units without waiting for acknowledgements.

Before being sent over the network each X data block is divided into several packets. The fragmenta-

tion is done by the TCP/IP protocol based on the lower-level network structures, protocol headers,

etc.. The Ethernet data format allows only I500 bytes per packet, certainly not enough for 2048

bytes. At the destination, an assembly procedure takes place to restore the X data blocks. The frag-

mentation adds some overhead to the data at both the TCP/IP and the Ethernet layer as shown below:

13

IEthomotoverhea CP "overhead[X protocol data unit

Figure 6. X data and overhead

Ethernet overhead [

On the other hand, the X window system is intended to be used in a general Internet environment.

The client and server may communicate via several different networks. Also the IP datagram may

take different routes to the destination point. The TCP protocol at the sending point does not have

the knowledge of the physical network properties. Therefore it is hard for TCP to decide the best

maximum packet size. The specification suggests a maximum size of 536 bytes for TCP packets,

if it is used in a heterogeneous network environment. The Ethemet packet statistics are calculated

in Table 4, where the bytes/pkt is the pure X protocol data per packet, excluding the overhead of

TCP/IP and Ethemet. The standard overheads for TCP/IP and Ethemet are assumed, i.e., 40 bytes

for TCP/IP and 26 bytes for Ethemet.

Table 4. Ethernet rocket statistics (including both the client and server data

applications xterm xterm2 plaid ileaf5

mean pkts/block 4.38 2.55 12.06 3.03

mean bytes/pkt 211.98 15.26 162.82 124.45

mean pkt length 277.97 81.26 228.82 190.45

overhead % 24 81 29 35

The packet lengths are typically around a few hundred bytes, even under a heavy load (plaid case).

It is worth noting that the packets transmitted for the plaid application are almost all requests to the

server. This is to say, for large amounts of request traffic over the network the overhead is still high.

In other words, the amount of overhead is independent of the application. This behavior may be

explained by the fact that shorter network delay requires shorter packet size, which in turn results

in higher overhead.

X traffic and Ethernet traffic

The generated X traffic has two patterns roughly. One is burst mode, like most interactive data traf-

fic. The server tracks the user's random inputs with KeyPress, KeyRelease, etc., then sends events

14

to therelatedclientto triggerthetransmissionof drawinginformationof variable length. The other

mode is when the client continuously executes a computation with some sort of algorithm and sends

the results to the server to display, such as with the plaid program. The data rate is relatively

constant, or with a small variance from the mean. To accurately characterize the bursty traffic is a

difficult job. It may be left for further study. Here, we use the observations as well as the mean values

to get some representative figures.

The instantaneous traffic intensity is determined by the amount of data arriving and the instant inter-

arrival time. A detailed observation of the data captured by xscope shows that one X data block was

generated and sent by the client side about every 0.103 seconds when displaying a large text file (in

xterm case), and about every 0.06 seconds when displaying plaid patterns. In both cases, the number

of bytes in a data bIock was very close to the upper limit, 2048 bytes, and with very small variance.

This implies that the transmission rate was determined by the client program, not the protocol itself,

in the measurement. The corresponding data rates are 159.068 kbits/s(xterm) and 273.067

kbits/s(plaid), respectively. This is calculated by multiplying the mean bytes per X data block with

the mean data block generation rate. The mean values of X traffic are calculated in Table 5. The

arrival rates in the first two cases indicate the user's interactive speed in front of the terminal. To

determine an accurate measurement, the procedure must be conducted over a long period of time.

For the machine-generated traffic, the arrival rate reflects the speed of the software and the hardware

associated with the client and server.

Table 5. mean values of X traffic (including both client and server)

applications xterm xterrn 2 plaid ileaf5

mean block ar-
4.93 8.77 15.38 9.09

rival rate (blk/s)

mean block size 928.47 38.91 1963.60 377.07

traffic intensity 36.62 kbits/s 2.73 kbits/s 238.28 kbits/s 27.42 kbits/s

The resultant network traffic is calculated by muIt_plying the mean packet size, derived from the

application level, with the packet rate measured at the network level. The results are summarized

15

inTable6. Thetraffic differencesfrom thenetworklevel totheapplicationlevel indicatetheover-

headof theTCP/IPandEthemetprotocols,plussomestatisticalerrors.

Table 6. Ethernet traffic

applications xterm xterm2 plaid ileaf5

traffic intensity 46.94 kbits/s 14.03 kbits/s 342.22 kbits/s 39.22 kbits/s

network util. % 0.47 0.14 3.42 0.39

The heaviest network traffic is 342.22 kbits/sec., which corresponds to 3.42 percent of the 10Mbits/

sec Ethernet capacity. Assuming the Ethemet can handle an overall load up to 20 percent of its ca-

pacity without degrading performance, 6plaid applications, or 50 xterm applications can run simul-

taneously over the network. Beyond that, the window performance constraints may shift from the

machine to the network. It should be noted that since each X application is a random process with

respect to its traffic, the mean values may not be sufficient for its description, especially for a widely

spread distribution. In that case, simulation may be required. Anotherissue is that the traffic applied

to the network is also a function of the machine speed. Software and hardware upgrades would cause

varying increments of traffic intensity to the network.

Brief summary

Operating in the TCPEP and Ethernet environment, X window applications do not generate much

traffic to the network. The X performance is not restricted by the network. The traffic overhead

due to the TCP/IP and Ethernet protocols is quite high, even though the X protocol aggregates data

units into larger blocks before transmission. These blocks are broken down into small pieces at the

lower layers to help reduce network delays. As long as the traffic volume is kept small, the overhead

is not a big deal. Graphical plots of the four applications are given in Figures 6-9.

16

o

3000.0

2000.0

1000.0

' I T I

100.0 200.0 300.0

seconds

Figure 6.a xterm

80.0

60.0

40.0

20.0

' I ' I

i I
100.0

seconds
20(3.0

Figure 6.b xterm

300.0

I7

500.0

4O0.0

300.0

200.0

100.0

0.0 U
0.0

_!I i rl r ! i I

tlVF YI I I IIIInTdII/IU/d 11llr;Irfl III ?P,tf llll 1i_1tI IlttlllllTI1111/_ll,_lTlmt_lll !lll_!_llll]l_

50.0
seconds

I J U

100.0 150.0

50.0

40.0

30.0

20.0

10.0

0.0
0.0

Fi_ 7.a xterm2

' I ' I '

1

50.0 IO0.O
seconds

150.0

Figure 7.b xterm2

18

i.)

3000.0

2000,0

I000.0

' I _ I '
mm

I

+4

tl
I1
'1

--1
I

I

I
tl

150.0

t.m

500.0

200.0

100.0

Figure 8.a plaid

' I i
I I

t m I L I ,

50.0 100.0
seconds

Figure 8.b plaid

19

%,)

:>.,,

3000.0 ' I '

2000.0

1000.0

0.0
0.0 100.0 200.0 300.0

seconds

150.0

100.0

50.0 -

0.0
0.0

Figure 9.a ileal

' I ' I '

10(i.0

rt

I

seconds
200.0

l
300.0

Figure 9.b i_leaf

2O

II. X APPLICATIONS WITH MACINTOSH

Much interest has been shown recently in optimizing X applications to make use of much less expen-

sive personal computers as the X platforms instead of powerful but relatively expensive worksta-

tions. The advantage is that it provides PC users with the access to networked supercomputers while

still maintaining all the PC's application features so that it takes full advantages of network resources

and the PC's merits. Compared with X terminals, PC's do not have to live totally at the mercy of

the central systems and are free of the inconveniences caused by the central systems maintenance

schedules. In addition, the PC market offers a variety of selections for different users needs, such

as fast computation, low cost, or high-resolution display. This wide range of choices makes it easier

to achieve a good performance/cost ratio.

In this section, we present a survey study on Apple's Macintosh machines and different networking

components with emphasize on performance aspects of X applications over Ethernet.

Network Configuration

The X applications with Macs include running Mac X servers on the Macintosh machines, and using

X's cross-network capabilities to connect to remote clients, so that the Mac user can run applications

on remotely connected workstations or minicomputers. Another possibility is the reverse situation:

X applications (clients) are running on the Macs and results are displayed on remote workstations

through the network. The first application is generally of greater interest.

Figure 10 presents a general networking situation when running X windows on networked Macs.

The components involved include the X servers, network protocols, interfaces between the Macs

and the network, and the network itself. A router/bridge may be used if the X client/server connec-

tion is being made to another network with different networking technology. Assuming that the ma-

chines running the X clients or other specific programs M with results being displayed on local Macs

through the X window system -- are much more powerful (such as DEC's VAXcluster, Sun or HP

21

Workstation File
Printer

NetworkA

I
Bridge/Router

Network B

Macs, running X servers

Figure 10. X windows on networked Macs

workstations), primary performance considerations of X applications should be given to the soft-

ware and hardware elements in the Macs and in the network.

X server

There are two main X servers currently available for Macs: Apple's MacX and White Pines Soft-

ware's exodus. MacX complies with the MIT X Window System specification X11R4. It includes

a built-in window manager that complies with the ICCCM standard. The window manager provides

title bars, close boxes, and other Mac window controls. MacX also offers support for other window

managers, such as OSF/Motif's mwm, or twm.

The latest version of MacX is MacX 1.1.7.

System requirements to use MacX by Apple include:

- Any Mac computer

- At least 2 megabytes memory

- At least two floppy disk drives (for Mac operating system 6.0.5 and later)

- A hard disk (for Mac operating system version 7.0)

- Mac operating system version 7.0, or version 6.0.5 and later

- A network connection (LocalTalk or an Ethemet connection)

Apple's UNIX system for Mac, A/UX 2.0, is an alternative operating system. In fact, A/UX has the

MacX incorporated in it, so that it provides a native X environment.

22

To useEthernetconnection,it needsApple's EthernetNB cardor equivalentproductsfrom other

vendors.Thetransportprotocolssupportedby MacX includeMacTCP(Apple's implementation

of TCP/IPprotocols),AppleTalkADSP(AppleTalkDataStreamProtocol),andDECnet.Theship-

mentof MacX includestheMacTCPpackage.

Theperformanceof MacXisaffectedbyits workingenvironment,suchasthespeedof theMacthe

MacX runson andthe operatingsystemused. A testof performanceefficiency for MacX and

eXoduswasconductedin [12] by usinga standardX window benchmarkprogramthatranall the

integralX graphicsalgorithmsin turn andthen producedthestatisticalbenchmarkmeasuredin

Xstones.TheXstonesrepresentthenumberof graphicoperationspersecond.TheMacXwasrun-

ning on a Mac IIci under the Mac operating system. The results are compared with those of MacX

running under A/UX, and a Sun SPARCstation 2 using its own server:

MacX under Mac OP MacX under A/UX Sun SPARCstation 2

Xstones 8285 13796 19374

Network protocols

AppleTalk is the network architecture Apple developed for Macs to talk to each other and to share

printers and servers. AppleTalk is a set of protocols at different OSI layers. Originally AppleTalk

only contained one data link protocol, called LocalTalk Link Access Protocol, which works on top

of Apple's LocalTalk cabling, normally twisted-pair cables or phone wires. Each Mac product has

the built-in functionality of LocalTalk. Thus it is easy for Macs to form a LAN over the existing

phone wires in a building. The major drawback of LocalTalk is that its speed is rather slow: 230,400

bits per second. Some third-party products can be used to speed up the LocalTalk transmission.

For example, Dayna Communication's DaynaTalk and TOPS's FlashTalk offer some performance

improvements to running AppleTalk over LocalTalk cabling. The tests in [14] indicated an improve-

ment of anywhere from 25 percent to 50 percent in file-transfer times. Even so, FlashTalk's top

speed of 768 kbits per second and DaynaTalk's 850 kbits per second are still far below the Ethernet

capability.

23

In 1989, Apple introduced AppleTalk Phase 2 to cope with the growing network [21]. AppleTalk

Phase 2 did nothing for LocalTalk, but added Ethernet support and Token Ring support in the Apple-

Talk protocol suites. Also an extended addressing scheme was included to remove the original Ap-

pleTalk's 254-device limitation on the Mac network. To move to higher-speed networks, Ethemet

has become an inevitable alternative to the slow LocalTalk. Ethernet provides the ways for users

to quickly transfer intensive volume of data,

for the bit-mapped X window applications.

networking UNIX workstations, IBM PCs,

Ethemet makes it easier for Macs to access

such as large graphics files, so it is the natural solution

In addition, Ethernet is the most popular medium for

and DEC's VAX computers. Hooking Macs on the

those other computers.

Presentation

Session

Transport

Network

Data Link

Physical

PostScript] AppleTalkprotocol(AFp)Fiting]

iiii
::_ i!!!

Printer Acess] AppleTalk Session [Protocol (PAP) protocol (ASP)

Naming Binding

protocolCNBP) [protocol(AT'P) protocol(AEP)/pro_o_CRTMP) I

|

Datagram Delivery protocol (DDP) [
I

ilili i iii

!!!! ili iiill

Hardware Hardware Hardware

Zone Information] _ppleTalk Data Stream
protocol (ZIP) | Protocol (ADSP)

Figure 1 i. AppleTalk Protocol Suites

The transport protocols used in Macs to support MacX are AppleTalk ADSP, MacTCP, or DECnet.

DECnet transport protocol is, of course, from another companies. MacTCP is shipped with each

24

purchase of MacX. Therefore, MacTCP is the default transport protocol for MacX. It allows the

Macs to connect to any existing TCP/IP network. To use MacTCP, each Mac needs an IP address

from the network administration. MacTCP can run under AppleTalk with Ethernet connection.

Ethernet interfaces

In the past years, the number of Mac Ethernet interfaces has proliferated, and costs have come down.

These Ethernet interfaces fall into two categories: cards that plug into a slot inside the Mac, and ex-

ternal adapters that plug into the Mac's SCSI port. The internal interface cards are connected in the

Mac either to the NuBus slot or PDS (processor direct slot), depending on the Mac's type. SCSI

stands for Small Computer Systems Interface. SCSI enables the Mac to communicate with high-

speed peripherals, such as hard drives, image scanners;personal laser printers, CD ROM drives, and

tape backup devices. Externally, SCSI is a port designed to attach additional hardware to the Mac.

It works as a parallel bus, transmitting 8 bits at a time. A new version of the SCSI, SCSI-2, enhances

the bus transmission performance by expanding SCSI's parallel data path from 8 bits to 16 bits, mak-

ing a possible data transfer rates of 10--40 megabytes per second. The devices connected to SCSI

are generally in a series configuration, called daisy-chaining. That means the SCSI bandwidth must

be shared among these devices. Therefore, Mac's S(2SI bus is generally slower than both the NuBus

and PDS. For example, the 32-bit NuBus has a maximum quoted performance of 37.5 megabytes

per second. However, the SCSI connection is compatible to all types of Macs provided that they

have a SCSI port available.

There are four types of cables for Ethemet: 10BASE-5, 10BASE-2, 10BASE-T, and fiber--optic.

10BASE-5 is a thick coaxial cable with the segment length of no longer than 500 meters. It is best

used as a network backbone. To attach a Mac to the thick coax usually requires a transceiver from

the Ethernet interface card. 10BASE-2 stands for a _n coaxial cable with a segment length of up

to 200 meters. The thin coax is less expensive and more flexible. Most Mac Ethernet interfaces have

built-in transceivers for thin coax, so there is no need for external transceivers. But Apple's Ethernet

LC card and Ethernet NB card have no transceivers on board. They include a special socket, called

Apple Attachment Unit Interface (AAUI). So, using these two Ethernet cards does require an exter-

25

nal transceiver. One of the advantages of using AAUI is that one does not need to change the Ether-

net card when switching Ethernet cables, say, from 10BASE-2 to 10BASE-T. 10BASE-T runs

over twisted-pair phone wire and usually uses a star topology. A 10BASE-T cable length (the dis-

tance allowed between a node and the star hub) is limited to 100 meters. The star topology makes

10BASE-T wiring easier to modify than its coaxial cousins, because the star hub (concentrator) re-

sides at a central location. Each Mac must have either an Ethernet interface with a 10BASE-T trans-

ceiver built in or a built-in AUI (Attachment Unit Interface) port connected to a separate external

10BASE-T transceiver. The fiber-optic cable is the choice for the future. It outperforms the coax

in many ways. But currently only a few Mac Ethernet interfaces support it, e.g., Mac2000 Board

from Network Resources.

A list of main Ethemet connection interfaces is tabulated in the following tables [13,15,17,22].

Boards

Interface

EtherLink/NB

EtherLink/NB TPX

Ethemet LC Card

Ethemet NB Card

MacCon+

FriendlyNet Card

Vendor Mac

3Corn IIs

3Com

Apple LC

Apple IIs

Asant6 Technologies IIsi, SE/30
r, ,m

ditto LC

LanWay Ethemet Avatar LC

E4010-E6020 Cabletmn Systems IIs, SE/30

GatorCards/E Cayman System IIs

Ether2/Ether DS Compatible Sys. Corp IIs

DaynaPort E Dayna Comm. IIs, LC, SE/30,
SE

FastNet Dove Computer Corp.

PhoneNet Card for Ethernet

Magic Ethemet II

EtherNode 16

IIs, SE/30, and
SE

National Cemiconductor

Corp.

Farallon Computing IIs, SE/30

MacProducts USA IIs

IIs, SE

EtherNode 32 ditto SE/30, IIsi

Mac 1000 Network Resource IIs, SE

thick

X

X

X

X

X

x

x

x

X

x

thin tw.

pair

X X

X X

X X

X X

x X

X X

x x

X X

X X

X X

X X

X

X

X

X

X

X

26

NuvoLink II Nuvotech IIs x x x

MacConnect Racal-Datacom SE, SE/30, Ilsi x x x

EtherPort Shiva Corporation IIs, SE, SE/30 x x x

Note: IIs means Ilsi, II and up.

SCSI type

interface vendor mac think thin tw. pair

Asant6 EN/SC Asant6 Technologies all x x x

Ether+ Compatible Sys. Corp all x x x

DaynaPort Dayna Comm. all x x x

NuvoLink SC Nuvotech all x x x

Over the years as Mac networks moved from the slow LocalTalk to Ethernet, many studies have been

made on the performance of Ethernet interfaces to investigate the possible potential bottleneck from

the Mac to the Ethernet highway. Here we present the most interesting results from two tests [17,

22].

In [17] 15 twisted-pair Ethernet boards for Macs were tested. These boards include: 3Com's Ether-

Link/NB, Apple's Ethernet NB Card, Asant6 Technology's MacCon3 for NuBus, Avatar's LanWay

Ethernet, Cabletron's E6000 DNI, Compatible Systems's Ether2, Dayna Communications's Dayna-

Port, Dove Computer's FastNet III N, Farallon's PhoneNet Card for Ethernet, National Semicon-

ductor's EtherNode 16 NB, Network Resources Corporation's Mac 1000, Racal-Datacom's Mac-

Connect Ethernet Card, Shiva's EtherPort II, Sonic Systems's Sonic Ethernet Series, Technology

Works's Ethemet Kit. In the tests, two Mac IIci's were connected over Ethernet, and executed file

transfers between themselves. The transfer rate was timed for each Ethernet board. To eliminate

the limiting factor of the slower hard drive, a RAM disk was used instead to store the files. Thus

the affecting elements are the Ethernet interface and the processor of the Mac. The results showed

very little difference in the transfer rates among the tested boards when transferring a 5MB file. The

average rate is about 1.5 Mbits per second. Smaller file needed relatively longer time to transfer,

due to the fixed overhead of the control packets. A comparison between the RAM disk and hard

drive was also tested. Not surprisingly, RAM disk provided much better Ethernet performance,

27

which indicatesthattheharddrive, if it is involvedin theconnection,is probablythebottleneck.

Although the 1.5Mbits persecondresultdoesnot separatetheEthernetboardfrom theprocessor

orprovethattheEthernetboardmightnotbesaturated,it doesshowa 1.5MB rateis obtainablefor

theEthernetboards.

Anothertestwascarriedin [22] abouttwoyearsago. It testeddifferentEthernetboards,andSCSI

adaptersonMacIIs, SE/30,SE,andPlus.Theresultsshowedtheperformanceof MacIIs,andSE/30

with internalEthernetboards(NuBus,PDS)is muchbetterthanSEswith Ethernetboards,orSE/30

with SCSIadapters.It revealsthattheCPUortheSCSIport is theperformancebottleneck,not the

Ethernetinterface.A furthereffortwasmadetotesttheinterfacerawperformance.Therawperfor-

manceis thefastestspeedtheinterfacecantransferdatawithout beingheldupby theCPUor the

SCSI. NetworkGeneral'sSniffertogetherwith aspeciallydevelopedNetBasher!byMacUserNet-

WorkShopwasusedfor this test. Themaximumdatatransferratesmeasuredby the Snifferwere

about4.0-4.8 Mbits persecond,whereAsant6'sMacCon+,Racal-Datacom'sMacConnect,Cay-

man'sGatorCard,andCabletron'sE6000outperformedtheothers.

Thereareothertestson theEthernetinterfaces,someusingclient/serverfile transfer,someusing

specialprogramsto generatedatatraffic to avoidaccessingexternaldevices. Noneof thosetests

observedthebottleneckat theEthernetinterfaces.

Mac machines

For an X server running on a Mac, choosing an appropriate Mac also means having better perfor-

mance. The Macintosh family consists of many combinations at different prices to cater for different

demands. The processor speed, memory size, bus configuration, etc. all contribute to the overall

performance of a Mac. Most of the Macs in the current market include either M68030 or M68020

microprocessors, with a clock speed of 16 MHz to 32 MHz. The M68020 has an instruction cache,

while the M68030 has both an instruction and a data cache. A cache is an area of memory that can

be directly accessed by the CPU without the delays involved in reading from main memory, thereby

28

increasingtheeffectiveprocessorspeed.Theprofilesof variousMacsaresummarizedin theAppen-

dix.

MacLC is theleastexpensivecolorMacintosh.It usesa68020microprocessorrunningat 16MHz.

It doesnot includea mathcoprocessor,thetrade-off for the low price. But it hasa built-in color

video circuitry capableof generating256 colors. To take advantageof the 256 colors,Apple

introducedasharp,low--cost12-inchcolorRGBmonitor,with 512x384pixels. TheLC hasastan-

dard2MB RAM expandableto 10MB, to accommodatefor theMacoperatingsystemversion7.0.

But thememory-managementunit is not included. Without theMMU, theLC cannotutilize the

virtual memoryfeatureprovidedin Macoperatingsystemversion7.0.

TheLC II looks very muchlike theLC on its exterior. And it sellsfor nearlythesameasor less

thantheLC. Thebigdifferenceis thata68030microprocessor,insteadof 68020,is included.There

isnotmuchof performancedifferencebetweenLC andLC II. ButtheLC II offersvirtual memory

capabilityundertheMac operatingsystem7.0.

Quiteafewtestsof EthernetinterfacesusedMacII seriescomputers,of whichMacIIsi isconsidered

tohavethebetterperformance/costratio. TheIIsi is fasterthantheLC. It canacceptaNuBusexpan-

sionboard,of which thereareconsiderablymorethanthereareLC boards.And theIIsi movesdata

betweenthememoryandtheprocessorin 32-bit portionsinsteadof 16-bit astheLC II does.The

IIsi canrunApple's A/UX versionof theUNIX operatingsystem.But IIsi costshundredsof dollars

more.

Thefastestof MactheII seriesis theIIfx. Its M68030microprocessorrunsat40MHz. However,

is themostexpensive.

Other factors

Theoperatingsystemis anotherfactorthatneedsto beconsideredfor X windowapplications.Be-

sidestheMacoperatingsystems,ApplehasaUNIX operatingsystem,A/UX 2.0,for Macs. A/UX

hasthebuilt-in MacX package,andtestsin [12] indicatethatrunningMacX underA/UX provides

betterperformance.A/UX supportsstandardTCP/IPcommunicationoverEthernetto otherUNIX

29

machines.TouseTCP/IPprotocols,thereneedstobeanEthernetcardinstalledin theMacandcon-

figuredto its TCP/IPmode.A/UX alsoprovidesAppleTalkconnectivityoverLocalTalkorEther-

Talknetworks.If boththeLocalTalkandEthernetcardsareinstalled,youcanchoosebetweenthese

networks.ButA/UX requiresafasterMac,andatleast8 MB memoryinorderto achievethisbetter

performance.If theMacusersdonotneedmanyUNIX featuresandnetworkingservices,theinvest-

mentfor A/UX would not beeconomicallyjustified.

If theX clientsaregoingtorunonadifferentnetworkthantheoneto whichtheMacsareconnected,

aroutermaybeusedtoconnectthesenetworks.In thiscase,theX client/serverconnectioninvolves

datapassingthroughtherouter,whichshouldbetakeninto accountin theoverallperformanceas-

sessment.

Brief summary

Multiple factorsmustbeconsideredfor runningX serverson Macs. Tests show that the Ethernet

network has sufficient bandwidth to support X applications. The Ethernet card should not be the

bottleneck for connecting Macs to Ethernet given to the raw data traffic it can support, which means

the real world applications must be able to generate enough traffic to saturate the Ethemet and the

Ethernet cards. Using faster Macs may help improve the X window performance. And more

memory size is generally a good choice to reduce the use of slower hard drives. A/UX provides a

better environment than Mac O.S., but costs more.

30

Appendix to II: Mac Profiles

Mac H series

Mac H Mac Hx Mac Ilci Mac Ilsi Mac IIcx Mac IIfx

Processor 68020 68030 68030 68030 68030 68030

Math co- 68881 68882 68882 68882 (op- 68882 68882

processor tion)

Clock 16MHz 16MHZ 25 MHz 20MHz 16MHz 40 MHz

speed

Max. RAM 8 MB 8 MB 32 MB 17 MB 8 MB 32 MB

instructionProcess

cache

ROM

iColor/gray -
:scale sup-

port

Internal ex-

pansion slot

256K sock-

eted chips

yes

6 NuBus

instruction

and data

256K

SIMM

yes

6 NuBus

instruction

and data,
32K cache

512K

SIMM

yes

3 NuBus

instruction

and data

512K

SIMM

yes

1 NuBus

instruction

and data

256K re-

placeable

yes

3 NuBus

instruction

and data,
32K cache

512K

SIMM

13-inch,
640x480

RGB,
24-bit color

card

6 NuBus

31

Mac Plus, Mac SE, Mac SE/30, Mac Classic series, and Mac LC series

Processor

Math co-

processor

Clock

speed

RAM

Process

cache

ROM

Color/

gray-

scale sup-

port

Mac Plus Mac SE Mac

SE/30

68000

no

7.83MHz

4 MB

no

256K

socketed

no

68000

no

7.83MHZ

4 MB

no

256K

socketed

no

68030

68882

15.6672M

Hz

8 MB

instruc-

tion and

data

256K

SIMM

yes

Mac Clas-

sic

68000

no

8 MHz

4 MB

no

512K

no

Mac Clas-

sic II

68030

16 MHz

10 MB

instruc-

tion and

data

512K

SIMM

yes

Mac LC

68020

no room

16 MHz

2-10

MB

instruc-

tion

512K

socketed

yes,
16-bit

color

Mac LC

II

68030

no room

16 MHz

4- 10

MB

instruc-

tion and

data

512K

socketed

yes, 8-bit,
or 16-bit

color

32

III. DECnet Capabilities

Introduction to DECnet

DECnet is a proprietary network facility developed by Digital Equipment Corporation. It has under-

gone five phases in development from phase I through the current phase V. Most of the earlier phases

were developed around proprietary DEC protocols and services. Phase V has seen a migration to

providing more Open Systems Interconnection (OSI) services and protocols in addition to an up-

grading of the phase IV services. Since phase V was designed to remain compatible with earlier

phase IV, a short look at phase IV makes it easier to understand the components of phase V. Phase V

is also sometimes called Advantage-Networks.

Phase IV DECnet is generally centered on work groups that are connected together with Ethemet

facilities. These work groups are then interconnected with wide area bridges or routers. Within the

work groups, the standard Ethemet protocols are utilized. For wider distribution, Digital's Digital

Data Communications Message Protocol (DDCMP) is usually used. Above these data link protocols

are the DEC proprietary network, transport and session layers. On top of the session layer are several

applications, two of the most common of which are the Data Access Protocol (DAP) and the Com-

mand Terminal (CTERM) protocol. DAP provides access to remote data bases, and CTERM is a

remote terminal program, very similar in nature to the Telnet feature of TCP/IP.

These two services are supplemented by a number of other services, including a messaging system

over DEC's Mailbus. Other services are provided for videotext, remote consoles, booting diskless

nodes, bulletin boards, etc.

Phase V continues to include all the items from phase IV, including Ethemet, the IEEE 802.3 version

of Ethernet, DDCMP, the permanent virtual circuit portion of X.25 networks, and the IEEE token

bus protocol. In addition, phase V has added services supporting the ISO High-Level Data Link

Control (HDLC) protocol, as well as the Fiber Distributed Data Interface (FDDI) protocol. Phase V

also introduced two new proprietary DEC protocols that allow public data networks to be incorpo-

rated into DEC environments. These services are the Modem Control protocol (physical layer), and

33

theDynamicallyEstablishedDataLink (networklayer). Theseservicespermitdynamicestablish-

mentof modemconnectionthroughapublic switchednetworkusingX.25 packetswitchednet-

works. For LAN's, DECnetphaseV supportstheLogical Link Control (LLC) protocolsthatmay

useeitherEthernet,FDDI or tokenring.

At thenetworklayer,DECusesISOstandardformat8473for dataanderrorpackets.Henceinter-

operabilitywithnon-DECequipmentismaintainedthroughthisstandard.Networkroutingisdeter-

minedbyacombinationof theISO9542standardandsomeadditionalDECproprietaryroutingsoft-

ware. The 9542 protocol is primarily concernedwith routing betweenEnd Systemsand

IntermediateSystems0ES-IS), while the DEC routing algorithms deal with Intermediate System -

Intermediate System (IS-IS) routing. Non-DEC equipment that is not ISO 8473 compliant can be

connected to a DECnet by use of a common subnet such as X.25.

At the transport layer, DEC uses the Network Services Protocol (NSP). This protocol is similar to

TCP or the ISO TP4 protocols. Phase V also supports two other ISO protocols, TP0 and TP2. TP4 is

used primarily for DEC applications, and the other two for non-DEC systems.

Up through the network layer, DECnet phase V is a fairly conventional OSI system with the inclu-

sion of DDCMP to maintain compatibility with phase IV, and MCS for extra features. At the Session

layer, there is a distinct split, and DECnet provides two separate session layers. The OSI session

layer is provided to support OSI applications. A separate session layer, Digital Session Control pro-

tocol (DSC) is provided to support DEC services and to provide interconnection to proprietary DEC

services at the lower levels of phase IV and phase V.

With all these different options at many levels, it is obvious that there is an almost bewildering com-

bination of protocol stacks that are available to the users. Almost any of these combinations could be

used in certain instances. For each application, DEC keeps track of the protocol stack in use through

something called a tower. A tower is a set of addresses from the network layer on up. Each node

keeps a list of towers, representing the possible combinations of protocols that might be used for

communication. When communications is desired between two nodes or applications, the session

34

layerexaminesthetowersets,andcomesupwithacommonsetthatcanbeusedfor communication.

A partof theDSCcalledtheDomainNameService(DNS)providesadistributednamingservicethat

permitsapplicationsto communicateacrossthenetworkusinga logical name.

Thetowersaxeusedonly within theDECnetdomain.Forotherconnections,theOSIsessionlayeris

used.On topof this layer,DEC usesFileTransferAccessandManagement(FTAM) protocoland

X.400. TheFTAM implementationalsohassomethingcalledanFTAM/DAP gatewaywhichal-

lowsDECnetworksto accessnon-DECFTAM systems,DEChasalsoimplementedgatewaysfor

TelexandtheTCP/IPSMTP.

Ethernet and DECnet

The major user of the data link layer in a DECnet system is the Digital Network Architecture (DNA)

network layer. In addition, there axe two other users that do not necessarily access the data link layer

through the network layer. These users axe the Local Area Transport (LAT) and the Maintenance

Operations Protocol (MOP). LAT is a direct user of the data link layer that is used to provide terminal

to host transfer. MOP is used to download operating systems to a remote host for booting diskless

workstations and PC's. In addition, other network services may share the data link with these proto-

cols. This can include services such as the naming service, the time protocol, remote procedure calls

(RPC) and TCP/IP.

Digital originally used DDCMP as the major protocol on their networks. This protocol is still used

for some wide area communications, but it has largely been replaced with Ethernet for most local

area communications environments. Most Digital equipment is delivered with Ethemet interfaces,

and this includes not only computers, but printers and disk servers as well. A very large percentage

of the communications within a DECnet takes place over an Ethernet physical layer. This is paxticu-

laxly true for local traffic.

An appropriate model of a DECnet phase IV system would include a number of devices intercon-

nected locally with Ethemet facilities. A set of these groups of workstations would then be intercon-

nected by DDCMP facilities. For a phase V system, this model would be changed to add a number of

¢

35

differentalternativesfor theWAN interconnections.Thesewould includeFDDI, X.25andHDLC.

Themovefrom DDCMP to I-IDLCplacesDEC into positionto interfacewith thesoonto bevery

importantIntegratedServicesDigital Network (ISDN). PhaseIV alsosupportedHDLC, butit has

becomemuchmoreimportantin phaseV.

In somecases,it isdesirableto connectseveraldevicestotheEthernetatasinglepoint. Whenthisis

thecase,amultiport transceiverthatoperatesmoreor lessasadataconcentratorcanbeused.The

Digital equivalentof a multiport transceiveris calleda Digital Local Network Interconnectionor

DELNI. This deviceis sometimesreferredto as"Ethemetin a can."

MOP

Within DECnet, there are several support protocols that are of interest in the development of the Yel-

low Creek network facility. Some of these services are significant from the network standpoint, but

are of no special interest in this paper. These include the DNA naming service, the time service and

remote procedure calls service (RPC). One support protocol of particular interest at this point is the

Maintenance Operations Protocol or MOR

As was noted earlier, at the session layer and above, there are two distinct a_chitecmres in use in a

Digital network. These are DECnet and OSI. To these, a thud must be added, and this is MOE

Technically, MOP is part of the DECnet protocol, but from a oractical standpoint, it is a separate

architecture. MOP is a direct user of the data link layer, and can operate without any of the DECnet

protocols. Typically, MOP uses an Ethemet link, but it can operate over HDLC or DDCMP.

MOP is a fairly primitive protocol, and contains very limited security features. While MOP offers

three levels of functionality, including testing the co_unications link and operating as a remote

console, the main use of MOP is in download operating systems to a diskless workstation. While this

can he initiated from a console, it more commonly takes place when the workstation is initialized.

When a disldess workstation is powered up, it utilizes the MOP to broadcast an appeal for help. A

node on the network will then volunteer help. The diskless workstation responds with a memory

load message, and data messages transfer the required data from the volunteer station into the

36

memoryof theworkstation. Thedisklessworkstationstartswith aprimitive primary loaderthatis

usedto loadasecondaryloaderinto theworkstation.Thesecondaryloaderthenloadsatertiaryload-

er that canloadtheoperatingsysteminto theworkstation.

Insteadof loadingthenormaloperatingsystem,thetertiary loadercanalsobeusedto loadthenet-

work managementinitialization script (CMIP) into theworkstation. This script is used to set net-

work parameters such as maximum data packet sizes and retransmission timers, etc. Once the disk-

less workstation has been booted, it then performs its communications tasks over the network like

any other node on the network.

LAT

An important concept in the Digital environment is that of the VAX cluster. The purpose of the VAX

cluster is to take a disk drive (actually two) and make it available to multiple users simultaneously.

This is accomplished through internal communications protocols that are transparent to the network

users.

A VAX cluster typically consists of two or more VAX minicomputers. These computers communi-

cate via a DEC 70 Mbps dedicated system backbone called the CI bus. The computers also commu-

nicate over the same bus with two Hierarchical Storage Controllers (HSC). The HSC is a specialized

disk server that is connected to two disk drives. The disk drives are dual ported to multiple control-

lers.

All the storage facilities in the cluster are duplicated to provide redundancy and a measure of fault

tolerance. Data written to the disk is shadow written to both disks simultaneously. This also im-

proves fault tolerance. A lock manager running on the VAX system coordinates access to the disks

from all users.

The combination of the minicomputers, the CI bus, the HSC's, the disks and the lock manager consti-

tute the VAX cluster. To the users of the system, all the different VAX systems look the same. They

all have access to the same data and the same peripheral facilities. Therefore, most users don't care

37

whichsystemtheyloginto,exceptthattheywouldlike to login onthecomputerthatis likely to give

themthebestservice.

TheDECLocal Area Transport (LAT) was originally developed by Digital to solve the problem of

which system VAX system to access. Like MOP, LAT is a relatively low level protocol that accesses

the data link layer directly without reliance on many of the architectural features of DECnet. Since

LAT provides the capability to connect many differentclients to many different servers, it has a much

broader application that first envisioned, and can be used in a number of different ways.

LAT attempts to balance the load on the VAX minicomputers through the use of a rating system.

When a new session is established, LAT attempts to select the node that has the best rating at that

time, and will, at least theoretically, provide the best service. Unfortunately, if service deteriorates,

the load is not re-balanced.

LAT also provides the capability for multiplexing messages from several users (through the terminal

server) into a single message. Because of this multiplexing capability, LAT makes an excellent plat-

form for an X windows system. The terminal server can combine the many asynchronous events

associated with an X session into a single packet for transmission to the computer. This multiplexing

avoids a lot of the interrupts associated with an interactive system, and greatly reduces the load on the

CPU.

Since LAT accesses the data link layer directly, it assumes an underlying IEEE 802.2 (data link) and

a multicast capability. LAT can operate over either a CSMA/CD network or FDDI, although Ether-

net is more common. LAT is intended to utilize only a small percentage of the bandwidth on the

network.

LAT is a master/slave system based primarily on the use of timers. This philosophy greatly reduces

the complexity of the slave component. Because LAT doesn't utilize the upper layers of the DECnet

architecture, it is a relatively simple protocol, and provides little in the way of security, fault toler-

ance or transport service. LAT depends on the underlying data link layer to provide some of these

facilities.

38

Therearetwo majorlayersin LAT: thevirtual circuit layerandthesessionlayer.Thevirtual circuit

layerisconcernedwith theestablishment,maintenanceanddisconnectionof thevirtualcircuitsbe-

tweentheserverandthehost,andprovidesthoseservicesnormallyassociatedwithavirtualcircuit.

Thesessionlayerprovidestheuserinterfaceto thesystem.Thesessionlayer performsthemulti-

plexingof datafrom severalterminalsinto apacketfor transportover thenetwork. LAT alsopro-

videsadirectory servicethatmanagesnamesfor ports,nodesandserviceson thesystem.

In theLAT system,theterminalservernormallyassumestherole of themaster,andthehostis the

slave.Wheneveratimer in themasterexpires,themastertransmitsdatato theslave.Theslaveis

thenableto transmitdatabacktothemasterbypiggybackingthisdataontotheacknowledgepacket.

In theeventthatthemasterhasnodatatotransmit,apathtestmessageis usedto maintainthevirtual

circuit andalsoenabledatatransmissionfrom thesIaveto themaster.

TheLAT systemusuallyoperatesinanunbalancedmodewheretheterminalserveris themasterand

initiatesall communications.Oneexception,however,is thecaseof aprinter.Here,theprinteris the

slaveandthehostis themaster.Inthissituation,theprintercaninitiateaconnectionandalsoinitiate

communicationswhennecessary.

Flow controlin LAT takesplaceatseverallevels. Both acredit systemanda window-basedflow

controlsystemareprovidedatdifferentlevels. Thereis alsoanX- on/X-off system for the user as

well as some flow control in the underlying data link layer.

In essence, LAT is a fairly primitive communications system that is reasonably effective in commu-

nicating with the VAX cluster. By the use of the master/slave timer system and multiplexing, LAT

places a large share of the communications load on the terminal server, and thereby frees up re-

sources on the host.

Summary

In summary, DECnet V, like OSI, represents a philosophy as much as a communications system. It

incorporates much of the architecture espoused by OSI. At the same time, it provides backwards

compatibility with many features of the earlier DECnet systems. In many instances, DECnet has

39

movedin tofill gapsin theOSIarchitecturewithproprietaryprotocols. Theseprotocolsareusually

coordinatedwith otherinterestedpartiesin anattempttogainwidespreadacceptanceof theseproto-

cols.

All in aJl,DECnetis aflexible, expandablenetworkthatshouldservetheneedsof awidevarietyof

users.With theimpendinginclusionof FDDI, it shouldservewell into thenextdecade.It isaworth-

while additionto theASRM network system.

40

References

[1]

[2]

[3]

[4]

[51

[61

[7]

[8]

[9]

[lO]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

X Protocol Reference Manual, O'Reilly & Associates, Inc., 1989.

Xlib Programming Manual, O'Reilly & Associates, Inc., 1989.

Nabajyoti Barkakati, X Window System Programming, SAMS, 1991.

James Gettys, Philip L. Karlton, and Scott McGregor, The X Window System, Version 11,

Software-Practice and Experience, Vol. 20($2), Oct. 1990, $2/35-67.

Ralph Droms and Wayne R. Dyksen, Performance Measurements of the X Window System

Communication Protocol, Software-Practice and Experience, Vol. 20($2), Oct. 1990,

$2/119-136.

Glenn Widener, The Xll Inter-Client Communication Conventions Manual, Software-

Practice and Experience, Vol. 20($2), Oct. 1990, $2/109-118.

David Simpson, 3 Ways to Implement X, Systems Integration, Sept. 1991, pp 54-58.

David Simpson, Windows into Networks, Systems Inte_ation, Jan. 1990, pp 39-45.

Kevin Reichard and Eric E Johnson, X Performance, Unix Review, Vol. 9, No. 9, Sept.

1991, pp 83-89.

Rita Brennan, Kevin Thompson, and Rick Wilder, Mapping the X Window onto Open Sys-

tems Interconnection Standards, IEEE Network Magazine, May 1991, pp 32--40.

Douglas E. Comer, Internetworking with TCP/IP, Volume I, 2rid Edition, Prentice Hall,

1991.

Ian Bacon, Opening the X Window, MacUser, June, 1992, pp205.

Dave Kosiur, Network Connections, Macworld, Nov., 1989, pp152

Dave Kosiur, Kee Nethery, Network Speed Trials, Macworld, Dec. 1989, pp169.

Dave Kosiur, On the Ethernet Highway, Macworld, March, 1990, pp133.

Dave Kosiur, Going the Ethernet Route, Macworld, April, 1991, ppl31.

Dave Kosiur, Moving up to Ethernet, Marworld, May, 1992, pp150.

Standford Diehl, Mac Adapters Embrace Ethernet, BYTE, Jan. 1990, pp203.

Sharon Fisher, Dave Hull, Macs on the lnternet: Talking TCP/IP, MacUser, July, 1990,

pp210.

Lon PoNe, Hubs: Connecting to Ethernet, Marworld, June, 1992, pp166.

Mark L. Van Name, Bill Catchings, AppleTalk Phase 2 and You, BYTE, Jan. 1990, pp145.

41

[22] Ethernet Interface Tests By MacUser Lab, MacUser, June 1990.

42

