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ABSTRACT

The use of unstructured mesh techniques for solving complex aerodynamic flows is dis-

cussed. The principle advantages of unstructured mesh strategies, as they relate to complex

geometries, adaptive meshing capabilities, and parallel processing are emphasized. The

various aspects required for the efficient and accurate solution of aerodynamic flows are ad-

dressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence

acceleration and turbulence modeling. Computations of viscous turbulent two-dimensional

flows and inviscid three-dimensional flows about complex configurations are demonstrated.

Remaining obstacles and directions for future research are also outlined.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NAS1-18605 and NAS1-19480 while the author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, tlampton, VA 23665.





1. INTRODUCTION

Over the last decade, much attention has been devoted to the development and use of

unstructured mesh methodologies within the research community. This enthusiasm however,

has not always been shared by the applications and industrial community. The promise of

easily enabling the discretization of complex geometries has been counterbalanced by questions

of accuracy and efficiency. Furthermore, the dearth of results conceming viscous flow calcula-

tions using unstructured meshes has produced skepticism concerning the value of unstructured

mesh techniques for practical aerodynamic calculations.

There is no doubt that block-structured techniques have proved extremely effective in

discretizing very complex geometries. However, unstructured grid techniques offer additional

inherent advantages which may not at first appear evident. The possibility of easily performing

adaptive meshing is perhaps the largest advantage of unstructured grid methods. In fact, the

implementation of adaptive meshing techniques for structured meshes has generally been found

to incur unstructured-mesh type overheads [1]. Furthermore, although unstructured grid data-

sets are irregular, they are homogeneous (as opposed to block structured grids where

differentiation between block boundaries and interiors must be made). One of the consequences

of this property is that unstructured-mesh type solvers are relatively easily parallelizable. While

unstructured mesh solvers always incur additional memory and CPU-time overheads due to the

random nature of their data-sets, large gains in efficiency can be obtained by careful choices of

data-structures, and by resorting to more efficient implicit or multi-level solution procedures.

When combined with adaptive meshing and parallelization, these can result in truly competitive

solution procedures.

In the following sections, a brief outline of some of the various approaches currently in

use in unstructured mesh solution strategies is given, and the various advantages and trade-offs

of each method are discussed. This is followed by a set of illustrative example solutions taken

from the author's own work, which include two-dimensional viscous flows and three-

dimensional inviscid flow solutions on sequential and parallel machine architectures.

2. DISCRETIZATIONS

2.1. Vertex Based and Cell-Centered Schemes

The first choice which arises in the context of unstructured mesh discretizations is the

issue of cell-centered versus vertex-based schemes. Unlike the situation for structured grids,

where the differences between these two types of schemes consist principally of different boun-

dary condition treatments, the situation for unstructured meshes is quite different. Whereas a

hexahedral structured mesh contains the same number of cells as vertices (asymptotically

neglecting boundary effects), an unstructured tetrahedral mesh with N vertices contains a N

tetrahedral cells, where a is usually between 5 or 6 (there are twice as many triangles as ver-

tices in two dimensions). Thus a cell centered scheme for unstructured meshes requires the

solution of 5 to 6 times more unknowns than a vertex based scheme operating on the same

grid. Therefore, a cell-centered scheme can be expected to incur substantially higher memory

and CPU overheads on a given grid than a vertex scheme.

On the other hand, the solution of a larger number of unknowns would suggest that

higher accuracy may be achieved on the same grid using a cell-centered scheme. If one visual-

izes an unstructured mesh as a simple graph (i.e. a collection of vertices joined together by a

set of edges or links), then the vertex scheme is seen to operate on the original graph of the
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grid, andthecell-centeredschemeon adualgraph,i.e. thedualobtainedby placingavertexat
thecenterof eachtetrahedron,and associating a link with each triangular face of the tetrahe-

dra, thus joining neighboring cell centers. The original graph thus contains N vertices and

(_ + I)N links, whereas the dual graph contains aN vertices and 2_N links. In the original

graph, the degree of each vertex (number of incident links) is variable, but averages out to

2(a + 1). In the dual graph, the degree of each vertex is fixed and equal to 4. By comparison,

the degree of each vertex in a hexahedrai mesh is 6, for both cell centered and vertex schemes.

Thus, although the vertex scheme contains 5 to 6 times less unknowns on a given grid

than the cell-centered scheme, these vertices are more tightly coupled than those of the cell-

centered scheme. This in tum suggests that, although there are less vertices, the discretization

at each vertex may be more accurate than in the cell-centered scheme.

Practical evidence indicates that on a given grid, for inviscid flows, cell-centered schemes

appear to yield somewhat higher accuracy than vertex schemes. The crucial question is thus

whether this perceived increase in accuracy is sufficient to overcome the substantial memory

and CPU overheads incurred by the cell centered schemes. Unfortunately, few direct com-

parisons have been made between vertex and cell-centered unstructured schemes, and these

have usually been hindered by the use of different discretization schemes and/or different grids.
This is an area which should be further investigated in the future. Furthermore, the above dis-

cussion illustrates the dangers of comparing vertex and cell-centered unstructured schemes with

each other or with structured grid solvers based on the number of unknowns, without regard
for the amount of connectivity between the unknowns.

2.2. Central Difference and Upwind Schemes

The same benefits, trade-offs and controversies exist concerning the use of central-

difference schemes (with additional artificial dissipation) and upwind schemes on unstructured

meshes as in the structured mesh context. The equivalent of a central-difference discretization

can be formulated on an unstructured mesh as a Galerkin finite-element discretization where

the variables are stored at the vertices of the mesh and the fluxes are assumed to vary piece-

wise linearly over the cells of the mesh [2,3]. This results in a nearest neighbor stencil which

is non-dissipative. Additional dissipative terms are thus constructed as a blend of a Laplacian

and a biharmonic operator, which correspond to the second and fourth differences employed in

the structured mesh context for damping out oscillations in the vicinity of shocks, and in

smooth regions of the flow, respectively. These schemes are simple to construct and relatively

inexpensive to compute. Furthermore, they are easily linearizable for use with implicit schemes

I4]. The explicit control over the amount of dissipation in the scheme can be viewed either as

an advantage (additional control) or as a disadvantage (additional input parameters). Addi-

tional improvements to central difference schemes are possible, such as the use of matrix

valued dissipation [5], which attempts to scale the dissipative terms among the various wave

components of the goveming equations.

Upwind schemes are more complex and expensive than simple Galerkin finite-element

schemes, but offer the possibility of capturing shocks with higher resolution. The amount of

dissipation is automatically determined by the scheme and split appropriately between the vari-

ous wave components of the goveming equations. The most successful upwind schemes for

unstructured meshes have been those based on flux differencing [6,7,8]. The introduction of

multi-dimensional reconstruction for the extension to second-order schemes [8] has put these
methods on a more solid theoretical foundation. On the other hand, one-dimensional Rieman
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solversarestill required,althoughmuch researchis currentlydevotedto developingtruly
multi-dimensionalupwind schemes[9]. The useof limiters with suchschemes,which is
requiredin the presenceof shockwaves,hasoftenbeenfound to inhibit convergenceto
steady-state.

Higherorderschemeshavealsobeeninvestigatedby a numberof researchers(seefor
example[10,11]). Suchschemesoffer thepossibilityof resolvingcomplexflows in a more
efficientmannerusinga moreaccurate(andexpensive)representationof thedataon a smaller
numberof meshpoints. Althoughfewif anysuchschemesareroutinelyusedtoday,theywill
probablyplayanimportantrolein thefuturefor thesolutionof highReynoldsnumberviscous
flowswhichpresenOyrequiretheuseof tensof millionsof gridpoints. It is interestingto note
thatin thestructuresfield,unstructuredhigherorderdiscretizationsarethemethodof choice.

In the contextof unstructuredmeshes,the increasedcost of upwindor higherorder
methodsmustbeweighedagainstthecostof retaininganinexpensivediscretizafionandmak-
ing useof adaptivemeshingtechniques,which constituteone of the main advantagesof
unstructuredmeshes.The combinationof h-refinement(adaptivemeshing)andP refinement
(higher-ordermethods)shouldalsobe furtherpursuedsincethis hasbeenshownto enable
exponentialconvergence[12].

3. SOLUTION TECHNIQUES

Once the governing equations have been discretized in space, they form a large set of

coupled ordinary differential equations which must be integrated in time. The main interest in

this paper relates to the solution of steady-state problems. In this case, time accuracy of the

integration may be sacrificed in the interest of accelerating the convergence to steady-state.

This may include the use of a low-accuracy time integration scheme, the use of large time

steps, and lumping of the mass matrix for finite-element schemes. Furthermore, many of the

convergence acceleration techniques developed for structured meshes carry over in a straight

forward manner to unstructured meshes. These include the use of local time stepping, enthalpy

damping for inviscid flows, and implicit residual averaging [13,14] (which must be imple-

mented using a Jacobi iteration rather than a tridiagonal solver).

However, for large problems, the use of simple explicit schemes inevitably results in very

slow convergence rates. Many of the solution algorithms employed for structured grids exploit

the structure of the grid (e.g ADI schemes) or the limited bandwidth of the resulting Jacobian

matrix, and thus are not applicable to unstructured meshes. The lack of efficient steady-state

solution algorithms for unstructured mesh problems has been one of the main impedements

towards greater use of unstructured mesh strategies. For large stiff problems, implicit methods

based on sparse matrix technology or multi-level approaches modified for use on unstructured

data-sets are required.

The ultimate implicit method is the direct solver, or Newton's method. If an exact linear-

ization of the Jacobian is employed, and the resulting matrix is inverted at each time-step using

sparse matrix techniques, quadratic convergence can be obtained, resulting in convergence to

machine zero in under ten iterations. Direct methods have been demonstrated for both struc-

tured grids and unstructured grids [15,16,17]. Although these are among the most robust

methods available, their operation count and storage requirements for unstructured meshes are

non-optimal and are thus seldom employed in practice.
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For a second-order method, the exact linearization results in a stencil which includes

nearest neighbors as well as second to nearest neighbors. Thus, the storage requirements for

the resulting sparse matrix become excessive, particularly in three dimensions. By employing

a linearization of the corresponding first-order scheme, a nearest neighbor stencil is obtained,

and the memory requirements for storing the corresponding sparse matrix are reduced substan-

tially. However, this mismatch between the implicit and explicit operators ensures that qua-

dratic convergence rates cannot be achieved. Furthermore, the exact inversion of the implicit

matrix at each time-step is no longer necessary, since the implicit matrix itself is an inaccurate

representation of the explicit operator. Thus, the use of iterative implicit methods, in which the

implicit system of equations is only approximately solved at each time-step is more appropri-
ate.

A large variety of iterative implicit methods have been developed. These may consist of

a single iteration scheme, or a preconditioning operation followed for example by a GMRES

(generalized minimum residual) technique. These implicit methods may be divided into

methods which operate pointwise (such as Jacobi and Gauss-Siedel methods), and those which

require storing the entire implicit matrix (such as LU factorization schemes).

Jacobi and Gauss-Siedel approaches have been employed successfully both as iteration

schemes and as preconditioners for GMRES [4,7,18,19,20]. Improved efficiency over explicit

schemes with minimal memory overheads have been demonstrated for a variety of problems.

However, for large problems and very stiff equation sets, such as those encountered in the

solution of high Reynolds number viscous flows, the local nature of these methods results in a

degradation of the convergence rate.

Methods which operate on the entire implicit matrix such as LU factorization are of a

more global nature; such methods promote the rapid transmittal of information across the entire

domain. As such, these methods are more robust and their convergence degrades less

significantly for very large and stiff problems. An incomplete LU factorization employed as a

preconditioner followed by a GMRES technique has been found to yield one of the most com-

petitive solution strategies for high-Reynolds number viscous two-dimensional flows [4].

However, such methods require the storage of the entire implicit matrix. While this is feasible

in two-dimensions, for three dimensional calculations this matrix alone requires of the order of

300 N words of storage for a vertex scheme, where N represents the number of mesh vertices.

An interesting altemative approach which is not entirely local, but which obviates the

need to store the implicit Jacobian matrix is based on the use of additional data-structures

called linelets or snakes [21,22]. By joining series of neighboring points together in the

unstructured mesh, a set of lines can be identified and employed to mimick the alternating

direction implicit (ADI) type algorithms commonly employed on structured meshes. Such

methods may be viewed as a compromise between the low storage requirements of point-wise

methods and the global nature of LU factorization methods, and thus their performance can be

expected to fall somewhere in this region. However, for problems where the stiffness is

strongly directional, such as for high Reynolds number boundary layers, this approach may be

capable of resolving much of the stiffness.

An entirely different approach involves the use of multi-level or multigrid strategies.

These are hierarchical methods which make use of a sequence of coarser grids to accelerate the

solution on a fine grid. The advantages of time stepping on coarse meshes are twofold: first,

the permissible time-step is much larger, since it is proportional to the cell size, and secondly,

the work is much less because of the smaller number of grid points. Generally, a simple
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explicitschemeis employedon each grid of the sequence. The process begins by performing

a time-step on the finest grid of the sequence, and then interpolating the flow variables and

residuals up to the next coarser grid of the sequence. On this grid, a correction equation is for-

mulated, which consists of the governing flow equations augmented by a forcing function

which represents the fine grid solution. This correction equation is time-stepped and the result-

ing flow variables and residuals are interpolated up to the next coarser grid, where the process

is repeated recursively until the coarsest grid of the sequence is reached. The computed

corrections are then recursively interpolated back down to the finest grid where they are

employed to update the solution. This entire procedure constitutes one multigrid cycle. These

cycles are repeated until convergence is obtained.

The use of a multigrid method with unstructured meshes presents an additional challenge.

Consistent coarse tetrahedral grids can no longer be formed by simply grouping together neigh-

boring sets of tetrahedra. An altemative would be to generate the fine mesh by repeatedly sub-

dividing an initial coarse mesh in some manner. However, generally poor topological control of

the fine mesh results from such a procedure. A strategy which has proven successful involves

the use of independent non-nested coarse and fine grids. This approach provides great flexibil-

ity in determining the configuration of the coarsest and finest meshes. Coarse meshes may be

designed to optimize the speed of convergence, whereas fine meshes may be constructed based

on solution accuracy considerations. In general, beginning from a fine grid, a coarser level is

constructed which contains roughly half the resolution in each coordinate direction throughout

the domain (about 1/8 the number of vertices in three dimensions, or 1/4 in two dimensions).

This process is repeated until the coarsest grid capable of representing the geometry topology

is obtained. In the context of adaptive meshing, new finer meshes may be added to the mul-

tigrid sequence, using any given adaptive refinement technique, since no relation is assumed

between the various meshes of the sequence. The key to the success of such a strategy lies in

the ability to efficiently transfer variables, residuals and corrections back and forth between

unrelated unstructured meshes. This may be performed using linear interpolation. For each

vertex of a given grid, the tetrahedron which contains this vertex on the grid to which variables

are to be interpolated is determined. The variable at this node is then linearly distributed to the

four vertices of the enclosing tetrahedron (three vertices of the enclosing triangle in two dimen-

sions). The main difficulty lies in efficiently determining the enclosing cell for each grid point.

A naive search over all cells would lead to an O(N 2) complexity algorithm, where N is the

total number of grid points, and would be more expensive than the flow solution itself. Thus,

an efficient search strategy such as a graph-traversal algorithm or a quad-tree approach is

required.

This particular unstructured muitigrid approach has been shown to be very effective

[3,23,24,25]. Near grid independent convergence rates can be obtained while incurring

minimal memory overheads. However, the need to manually generate a complete sequence of

grids is viewed as tedious in a production environment, and several efforts at automating this

process have been developed. On approach agglomerates or fuses together neighboring cells to

form coarse super-cells which are generally not tetrahedral but polyhedral [26,27]. A second

approach constructs triangular or tetrahedral grids by filtering a portion of the fine grid points

and retriangulating the remaining points [28,29]. All of these approaches involve various

tradeoffs. However, they all make use of extra geometrical constructs (i.e. coarse grids) to

solve what is essentially an algebraic matrix inversion problem. This may be viewed as an

inconvenience. However, unstructured multigrid methods are probably the most efficient
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solutionmethodsavailablepresentlyin termsof CPUandmemoryoverheadfor steady-state
solutions.

4. GRID GENERATION AND ADAPTIVITY

Although one of the main motivations for the use of unstructured meshes has been the

added flexibility they offer for dealing with complex geometries, grid generation remains a pac-

ing item for unstructured mesh computations, especially in three dimensions. To be sure, part

of the problem is associated with the lack of standard and flexible geometry definition stan-

dards and interfaces to current CAD systems employed in the industrial design process. How-

ever, much difficulty still rests with the grid generation algorithms themselves.

Unstructured mesh generation algorithms have traditionally been divided into advancing

front type methods, and Delaunay triangulation methods, although this classification is some-

what arbitrary. In fact, these two approaches are not mutually exclusive. The advancing front

algorithm begins with a surface mesh on the geometry which it then marches out into the flow

field by adding points ahead of the front and joining them up to form tetrahedra with existing

front faces, until the entire region has been discretized [30,31]. This algorithm essentially

represents a point placement strategy. The reconnection strategy employed to form tetrahedral

elements is somewhat arbitrary and resorts to checking the validity of each proposed tetrahedral

cell by examining possible intersections with neighboring cells. The advantages of such a

method are that it guarantees the integrity of the boundaries. This is evident since the geometry

surface-grid constitutes the original front, and the method is of the "greedy type"; i.e. it never

undoes what has already been constructed. The resulting placement of the mesh points is gen-

erally very satisfactory and very smooth element variations can be ensured. On the other hand,

robustness is not guaranteed, due to the somewhat heuristic nature of the reconnection strategy.

Sophisticated dynamically varying data-structures are required to accelerate the spatial search-

ing routines employed in such an approach.

A Delaunay triangulation represents one of the most fundamental data-structures in com-

putational geometry [32]. Given a set of points in a three dimensional volume (or in a two

dimensional plane), the Delaunay triangulation of these points constitutes a set of non-

overlapping tetrahedra (or triangles in 2-D), the union of which define the convex hull of the

points, and for which a number of properties can be proved. Various algorithms exist for con-

structing the Delaunay triangulation [33]. A commonly employed algorithm in the mesh gen-

eration context, known as Bowyer's [34] or Watson's [35] algorithm, is based on the empty

circumsphere criterion. This property states that the circumsphere of any tetrahedron cannot

contain any other vertices of the mesh. Thus, if an initial triangulation is assumed to exist,

new mesh points can be introduced one at a time and triangulated into the mesh by first locat-

ing all tetrahedra whose circumsphere is intersected by the newly introduced point, removing

all such elements, and forming new tetrahedra by joining the new point up to the faces of the

cavity which was created by the removal of the intersected elements.

Since proofs exist for the validity of Delaunay triangulation algorithms, robustness can

potentially be built into a mesh generator by making use of such algorithms. However, the

Delatmay triangulation is only valid within the convex hull of its defining points. Thus for

geometries other than the convex hull, such as a body inside a flowfield, the integrity of the

geometry cannot be guaranteed. One approach to this problem is to triangulate the entire set of

mesh points, and then to attempt to reconstruct a prescribed surface grid on the geometry by

swapping edges and faces of the mesh [36]. Another approach ensures that the placement of



-7-

pointsin themeshis suchthatthegeometryintegrityis observed[37].
Sincea Delaunaytriangulationmerelydescribesa connectivitypatternfor a setof points,

arbitrarypointplacementstrategiescanbeemployed.In general,thepointplacementstrategies
employedaresomewhatheuristic. Pointsetsmay bepre-determinedby setsof overlapping
structuredgrids,or generatedincrementallyby subdividingelementsdeemedto be too large
[38]. Thesestrategieshavegenerallyresultedin lessthanoptimalpointdistributions,andthe
resultingmeshesare generallylesssmooththan thoseobtainedwith the advancingfront
method.

On the other hand, Delaunay triangulation mesh generation strategies based on Bowyer's

algorithm have proved to be extremely efficient and rather simple to implement. They obviate

the need for the complex data-structures required in the advancing front technique, and do not

perform tedious intersection checking. Perhaps an additional reason for such efficiency is the

fact that Bowyer type algorithms generate the mesh one point at a time, whereas advancing

front type algorithms proceed one tetrahedron at a time, and a typical unstructured mesh con-
tains 5 to 6 times more tetrahedra than vertices.

As mentioned previously, adaptive meshing represents one of the principal advantages of

the use of unstructured meshes. Similarly to the original mesh generation process, mesh adapta-

tion requires the introduction (or removal) of new points at appropriate locations, and the

reconnection of these points to neighboring points of the mesh. The simplest implementation

of adaptive mesh refinement is to subdivide existing tetrahedra into smaller cells by introducing

new points midway along the tetrahedra forming edges, and reconnecting these points accord-

ing to a predetermined set of rules. This strategy is very efficient and simple to implement but

can lead to distorted cells and vertices of very high degree after numerous refinement levels.

Bowyer's algorithm for Delaunay triangulation is ideally suited for adaptive meshing.

Assuming the flow has been solved on a mesh which constitutes a Delaunay triangulation, the

solution can be examined to determine regions of high discretization errors or large flow gra-

dients where additional grid points are required. Each new grid point is then inserted into the

mesh and locally retriangulated using Bowyer's algorithm, thus resulting in the Delaunay tri-

angulation of the new augmented point set.

The advancing front technique makes use of a field function for determining the desired

size of the mesh elements throughout the flow field. A simple adaptive remeshing strategy

consists of replacing this initial field function by a function derived from the computed flow

solution, and completely regenerating the entire mesh. This approach contains more flexibility

for generating the new adaptive mesh, but is more expensive since a non-local mesh restructur-

ing is performed, and may be impractical for transient type problems where many remeshings

are required. Alternatively, individual regions of the mesh can be cut out, thereby defining

new fronts to be advanced, and local mesh patches regenerated. (For an implementation of this

procedure for the removal of distorted elements see [39]).

The main issue which needs to be addressed for all mesh generation and adaptation stra-

tegies is that of robustness. This can only be achieved through less heuristic and more theoret-

ically sound approaches to the problem. New developments in computational geometry should

enable the formulation of fool-proof algorithms. For example, the existence and construction

methods for a constrained Delaunay triangulation in an arbitrary non-convex two-dimensional

domain are now well known [40]. A constrained Delaunay triangulation is one which contains

certain predefined edges in the final triangulation. Thus, the triangulation of a given set of
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pointsin anarbitrarytwo-dimensionaldomainwith initial geometryboundariesis a relatively
easilysolvedproblem.Whatis requiredis theextensionof suchproofsto threedimensions,
aswell assolutionsto variousoptimizationproblems,suchas:whatis theoptimaldistribution
of points? theoptimaltriangulationof thesepoints(it neednotnecessarilybeaDelaunaytri-
angulation)?how doessucha triangulationinteractwith thesolver? andhow canonecon-
stmctsucha triangulationin anefficientandrigorousmanner?

Theseissuesbecomeevenmore importantfor the solutionof high-Reynoldsnumber
viscousflows. In threedimensions,few if anypracticalhigh-Reynoldsnumberviscousflow
solutionshavebeendemonstrated.In two-dimensions,turbulentviscousflowsolutioncapabili-
tieshaveonly emergedin the lastseveralyears. Asidefrom theturbulencemodelingissues,
whichwill bedescribedin theresultssectionof thispaper,themaindifficultyfor solvingsuch
flowson unstructured meshes relates to the requirement of generating very highly stretched tri-

angular cells (or tetrahedral elements in three dimensions) which are required in order to

efficiently resolve the thin shear layers which occur in such flows. This represents a somewhat

non-standard application of unstructured meshes, since highly stretched triangular elements

have traditionally been considered detrimental to numerical accuracy, and as such have been

avoided. However, it has been shown that, while triangular elements with one large angle (-

180 degrees) are detrimental, elements with small angles, such as a highly elongated right

angle triangle are acceptable [41]. This interplay between numerical behavior and optimal tri-

angulation (for a given numerical method) is important for accurately and efficiently resolving

complex flows, and should increasingly result in a tightei" coupling between the grid generation

and flow solution processes.

The current method employed by the author for generating highly stretched two-

dimensional triangulations consists of constructing a Delaunay triangulation of the set of grid

points in a mapped space rather than in physical space [42,43]. The set of grid points is deter-

mined by generating a stretched structured grid over each individual component of the

geometry and considering the union of the points defined by these overlapping grids. The

locally mapped space is defined by the amount of local grid stretching desired, which in turn is

dictated by the aspect ratios of the underlying structured grid cells. In this mapped space, the

mesh points appear locally isotropic, and a regular Delaunay triangulation is constructed. The

projection of this triangulation back into the physical space produces the desired stretching.

Although this method does not guarantee the formation of non-obtuse triangles, the combina-

tion of the particular point distribution and reconnection strategy tends to produce nearly right-

angle triangles in regions of high stretching.

Improvements to this strategy can be sought by drawing on more rigorous computational

geometry algorithms which provide bounds on the angles of the generated triangles, or com-

bined with point placement optimization techniques. These techniques will become necessary

for the generation of suitable stretched meshes in three dimensions for viscous flow calcula-
tions.

Another altemative to the generation of highly stretched triangular or tetrahedral meshes

for the resolution of viscous flows is the use of hybrid meshes, where a thin layer of quadrila-

terals in two-dimensions, or prizms in three-dimensions [44,45] are employed in the boundary

layer regions. These methods by-pass the difficulties associated with the generation and solu-

tion of flows on highly stretched triangular and tetrahedral elements. On the other hand, the

resulting grid becomes structured in one of the directions, and part of the generality of the

unstructured approach is lost. Such trade-offs must of course be weighed in terms of the
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complexityof thegeometry.

5. TWO-DIMENSIONAL RESULTS

5.1. An lnviscid Case

In order to demonstrate the potential effectiveness of an unstructured mesh strategy, the

solution of a steady-state inviscid internal flow, which incorporates adaptive meshing in con-

junction with an unstructured multigrid algorithm is demonstrated. The basic discretization

employed consists of a Galerkin finite-element approach with added artificial dissipation. The

unstructured multigrid scheme makes use of a sequence of pre-generated unrelated coarse

meshes, and mesh adaptation is achieved by introducing new points in regions of high density

gradients and restructuring the mesh locally using Bowyer's algorithm.

The geometry consists of a two-dimensional turbine blade cascade which has been the

subject of an experimental and computational investigation at the occasion of a VKI lecture

series [46]. A total of seven meshes were used in the multigrid algorithm, with the last three

meshes generated adaptively. The coarsest mesh of the sequence contains only 51 points,

while the finest mesh, depicted in Figure 1, contains 9362 points. Extensive mesh refinement

can be seen to occur in the neighborhood of shocks, and in other regions of high gradients.

The inlet flow incidence is 30 degrees, and the average inlet Mach number is 0.27. The flow is

turned 96 degrees by the blades, and the average exit isentropic Mach number is 1.3. At these

conditions, the flow becomes supersonic as it passes through the cascade, and a complex

oblique shock wave pattem is formed. These are evident from the computed Mach contours

depicted in Figure 2. All shocks are well resolved, including some of the weaker reflected

shocks, which non-adapted mesh computations often have difficulty resolving. Details of the

flow in the rounded trailing edge region of the blade, where the flow separates inviscidly and

forms a small recirculation region, are also well reproduced. Once the first four globally gen-

erated meshes were constructed, the entire flow solution - adaptive mesh enrichment cycle was

performed three times, executing 25 multigrid cycles at each stage. This entire operation

required 40 CPU seconds on a single processor of a Cray-YMP supercomputer. The residuals

on the finest mesh were reduced by two and a half orders of magnitude, which should be ade-

quate for engineering calculations.

5.2. Viscous Flows

The main difficulties involved in computing high-Reynolds-number viscous flows relate

to the grid generation and turbulence modeling requirements. Since the grid generation issues

have been previously discussed, the turbulence modeling issues will be briefly addressed in this

section.

The most common turbulence models employed for aerodynamic flows are of the alge-

braic type. Such models typically require information concerning the distance of each point

from the wall. Turbulence length scales are determined by scanning appropriate flow variables

along specified streamwise stations. In the context of unstructured meshes, such information is

not readily available and hence, the implementation of algebraic turbulence models on such

meshes introduces additional complexities. A particular approach adopted by the author [47]

consists of generating a set of background turbulence mesh stations. These are constructed by

generating a hyperbolic structured mesh about each geometry component, based on the

boundary-point distribution of the original unstructured mesh, and extracting the normal lines
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of themesh.Whenperformingadaptivemeshing,newturbulencemeshstationsmustbecon-
structedfor eachnew adaptivelygeneratedboundarypoint,as illustratedin Figure3. Each
timetheturbulencemodelis executed,theflowvariablesareinterpolatedontothenormaltur-
bulencestations,the turbulencemodelis executedon eachstation,and the resultingeddy
viscosityis interpolatedbackto theunstructuredmesh.Themethodemployedfor interpolating
variablesbackandforth betweentheunstructuredmeshandtheturbulencemeshstationsis
similarto thatpreviouslydescribedfor theunstructuredmultigridalgorithm.

Figures4 through7 illustratea calculationwhichmakesuseof thesevarioustechniques
to computea complicatedtwo-dimensionalviscousflow overa high-liftmulti-elementairfoil.
Thefinal meshemployedis depictedin Figure4, andcontainsa totalof 48,691points.This
meshwasobtainedusingthestretchedDelaunaytriangulationtechniquepreviouslydescribed,
followedby two levelsof adaptiverefinement.Theheightof thesmallestcellsat thewall is
of theorderof 2 x 10-s chords and cell aspect ratios up to 500:1 are observed. The computed

Mach number contours for this case are depicted in Figure 5. The freestream Mach number is

0.1995, the chord Reynolds number is 1.187 million, and the corrected incidence is 16.02

degrees. At these conditions, the flow remains entirely subcritical. Compressibility effects are

nevertheless important due to the large suction peaks generated about each airfoil. For example,

in the suction peak on the upper surface of the leading-edge slat, the local Mach number

achieves a value of 0.77. The computed surface pressure coefficients are compared with exper-

imental wind tunnel data [48] in Figure 6, and good overall agreement is observed, including

the prediction of the height of the suction peaks. This case provides a good illustration of the

importance of adaptive meshing in practical aerodynamic calculations. Adequate resolution of

the strong suction peak on the upper surface of the slat can only be achieved with a very fine

mesh resolution in this region. Failure to adequately capture this large suction peak results in

the generation of numerical entropy which is then convected downstream, thus contaminating

the solution in the downstream regions, and degenerating the global accuracy of the solution.

Because these suction peaks are very localized, they are efficiently resolved with adaptive tech-

niques. In order to obtain a similar resolution using global mesh refinement, of the order of

200,000 mesh points would be required, greatly increasing the cost of the computation. The

convergence history for this case, as measured by the density residuals and the total lift

coefficient versus the number of multigrid cycles, is depicted in Figure 7. A total of 400 mul-

tigrid cycles were executed, which required roughly 35 minutes of single processor CRAY-

YMP time, and 14 Mwords of memory.

The discrepancy between the computed and experimental pressure coefficients on the

trailing edge flap is due to a separated flow condition which is not reproduced by the algebraic

turbulence model. These results strongly indicate the need for more sophisticated turbulence

modeling. The use of single or multiple field-equation models appears to be the most appropri-

ate choice for turbulent unstructured mesh computations. Such models can be discretized in a

straight-forward manner on unstructured meshes. However, the task is now to ensure that such

models adequately represent the flow physics, and that they can be solved in an efficient and

robust manner. The implementation of a standard high-Reynolds-number k- e turbulence

model with low-Reynolds-number modifications proposed by Speziale, Abid and Anderson

[49], is demonstrated in the next example. The main effort was focused on devising a tech-

nique for efficiently solving the two turbulence equations in the context of the unstructured

multigrid strategy [50]. The four flow equations and the two turbulence equations are solved as

a loosely coupled system. The flow equations are solved explicitly, and the turbulence



-11-

equationspoint-implicitly,usinga time-steplimit whichensuresstabilityandpositivityof k

and e. In the context of the unstructured multigrid algorithm, the turbulence eddy viscosity is

assumed constant on all but the finest grid level where it is recomputed at each time-step. The

transonic flow over a two-element airfoil configuration has been computed using this imple-

mentation of the model. For this case, the freestream Mach number is 0.5, the incidence is 7.5

degrees, and the Reynolds number is 4.5 million. Figures 8 and 9 depict the mesh and the

solution obtained with the k -e turbulence model. Four meshes were employed in the mul-

tigrid sequence, with the finest mesh containing a total of 28,871 points. The convergence rates

of the various equations for this case are plotted in Figure 10. As can be seen, the turbulence

equations and flow equations converge at approximately the same rates. All flow variables and

turbulence quantities are initialized with freestream values, and convergence to steady-state is

achieved in several hundred multigrid cycles. The computed flow field exhibits regions of

transonic flow with a small region of separated flow at the foot of the shock. These features

are well reproduced by the turbulence model. Future efforts should concentrate on computa-

tionally predicting flows with large regions of separation, such as that inferred by Figure 6, and

on developing models which better represent the flow physics.

6. THREE DIMENSIONAL RESULTS

Due to the limitations of present day supercomputers, and the difficulties associated with

generating highly stretched tetrahedral meshes, three-dimensional computations have generally

been confined to inviscid flows. Most of the techniques described in the context of two-

dimensional inviscid flows extend readily to three dimensions. In particular, the unstructured

multigrid algorithm and the adaptive meshing strategy have been found to be particular

effective for three-dimensional computations [23]. As an example, an adaptive multigrid calcu-

lation of transonic flow about an ONERA M6 wing is illustrated in Figures 11 through 13.

The final mesh, depicted in Figure 11, contains a total of 174,412 points and just over 1 mil-

lion tetrahedral volumes. This represents the fourth mesh in the multigrid sequence and the

second adaptive refinement level. Mesh refinement was based on the undivided gradient of

density. The freestream Mach number and incidence for this case are 0.84 and 3.06 degrees

respectively. The well known double shock pattern for this case is reproduced in the computed

Mach contours of the solution in Figure 12. The leading edge expansion and shocks are well

resolved due to the extensive mesh refinement in these regions. A globally refined mesh of this

resolution would result in roughly 600,000 points and would thus require 3 to 4 times more

computational resources. The multigrid convergence rate for this case is depicted in Figure 13,

where 50 cycles were performed on the original grid, prior to adaptation, 50 cycles on the first

adapted mesh, and 100 cycles on the finest adapted mesh. On this final mesh, the residuals

were reduced by 5 orders of magnitude over 100 cycles, requiring a total of 35 CRAY-YMP

single CPU minutes and 22 MW of memory.

6.1. Parallel Computing Results

As mentioned previously, due to their homogeneous (although random) nature, unstruc-

tured mesh data-sets are particularly well suited for parallel processing. An unstructured mesh

solver typically consists of a single (indirect addressed) loop over all interior mesh edges, and

another similar loop over all boundary elements. On a vector machine, each loop may be split

into groups (colors) such that within each group, no recurrences occur. Each group can then be

vectorized. A simple parallelization strategy for a shared memory machine is to further split
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eachgroupinto n subgroups,where n is the number of available processors. Each subgroup

can then be vectorized and run in parallel on its associated processor. Because the original

number of groups is not large (usually 20 to 30), the vector lengths within each subgroup are

still long enough to obtain the full vector speedup of the machine, for a moderate number of

processors. For more massively parallel distributed-memory scalar machines, the entire mesh

must be subdivided and each resulting partition associated with a single processor. On each

processor, the single scalar interior and boundary loops are then executed, with inter-processor

communication occurring at the beginning and end of each loop. The mesh partitioning strategy

must ensure good load balancing on all processors while minimizing the amount of inter-

processor communication required.

6.2. CRAY-YMP-8 Results

Figure 14 illustrates an unstructured mesh generated over a three-dimensional aircraft

configuration. This mesh contains a total of 106,064 points and 575,986 tetrahedra. This

represents the second finest mesh employed in the multigrid sequence. The finest mesh, which

is not shown due to printing resolution limitations, contains a total of 804,056 points and

approximately 4.5 million tetrahedra. This is believed to be the largest unstructured grid prob-

lem attempted to date. The inviscid flow was solved on this mesh using all eight processors

running in parallel on the CRAY-YMP supercomputer. A total of 4 meshes were used in the

multigrid sequence. The convergence rate for this case is depicted in Figure 16. In 100 mul-

tigrid cycles, the residuals were reduced by almost 6 orders of magnitude. This run required a

total of 16 minutes wall clock time running in dedicated mode on the 8 processor CRAY-

YMP, including the time to read in all the grid files, write out the solution, and monitor the

convergence by summing and printing out the average residual throughout the flow field at

each multigrid cycle. The total memory requirements for this job were 94 million words. The

ratio of CPU time to wall clock time was 7.7 on 8 processors, and the average speed of calcu-

lation was 750 Mflops, as measured by the CRAY hardware performance monitor [51]. For

this case, the freestream Mach number is 0.768 and the incidence is 1.116 degrees. The com-

puted Mach contours are shown in Figure 15, where good resolution of the shock on the wing

is observed, due to the large number of mesh points employed.

6.3. Intel Touchstone Delta Results

The implementation of the unstructured multigrid Euler solver on the Intel Touchstone

Delta distributed memory scalar multiprocessor machine, has been pursued using a set of

software primitives designed to ease the porting of scientific codes to parallel machines [52].

The present implementation was undertaken as part of a more general project aimed at design-

ing and constructing such primitives with experience gained from various implementations. The

net effect of the use of such primitives is to relieve the programmer of most of the low level

machine dependent software programming tasks. The mesh was partitioned using a spectral

partioning algorithm which had previously been shown to produce good load balancing and

minimize inter-processor communication [53]. The flow over the aircraft configuration previ-

ously described using the 804,056 vertex mesh was recomputed on the Intel Touchstone Delta

machine using both an explicit single grid unstructured euler solver, and the unstructured mul-

tigrid euler solver. The single grid solver achieved a computational rate of 1.5 gigaflops on

512 processors, whereas the multigrid solver, using a V-cycle strategy achieved a rate of 1.2

gigafiops on the same number of processors. This represents a computational efficiency of
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50% to 60%. Thesenumbersarebasedon a singleprocessorspeedof approximately 5

Mflops, which corresponds to the computational rate achieved for a series of small meshes

which were run on a single processor. The computational efficiencies are seen to vary with the

particular solution strategy employed, and were also observed to vary with the size of the

mesh. On the other hand, the CRAY-YMP-8 results were found to be relatively insensitive to

the solution algorithm or the problem size. This is presumably due to the large bandwidth and

shared-memory architecture of the machine. However, on the Intel Touchstone Delta, the mul-

tigrid strategy is still the method of choice, since in spite of its slightly lower computational

efficiency, the numerical efficiency (convergence rate) achieved by this approach is approxi-

mately an order of magnitude greater than that of the simple single-grid explicit scheme. For

this case, convergence to steady-state could be achieved in approximately 10 minutes of wall

clock time using 512 processors.

7. CONCLUSION

This paper has illustrated the application of unstructured mesh techniques to various types

of aerodynamic flows, and emphasized the advantages which can be obtained for complex

geometries using adaptive meshing and parallelization. In two dimensions, a viscous flow solu-

tion capability has been demonstrated, while in three dimensions, efficient Euler solutions are

possible. The main problems associated with three-dimensional viscous solutions are related to

the development of reliable grid generation strategies, particularly with regards to the genera-

tion of highly stretched tetrahedral elements for capturing thin viscous layers. Turbulence

modeling is also a limiting factor, although this difficulty is not particular to the field of

unstructured meshes. Future work should also concentrate on more complete parallelization of

the entire solution process, including items such as grid generation, partitioning, and adaptive

meshing.
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Figure 1

Adaptive Mesh Employed for Computing Transonic Inviscid Flow Through
a Periodic Turbine Blade Cascade Geometry; Number of Nodes = 9362
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Figure 2
Computed Mach Contours for Flow Through a Periodic Turbine Blade

Cascade Geometry
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Figure 3
Illustration of Turbulence Mesh Stations Employed in Algebraic Model

for an Adaptively Generated Mesh
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Figure 4
Adaptively Generated Unstructured Mesh about Four-Element Airfoil;

Number of Nodes = 48,691
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Figure 5

Computed Mach Contours for Flow over Four-Element Airfoil;
Mach = 0.1995, Reynolds Number = 1.187 million, Incidence = 16.02 degrees
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Figure 6

Comparison of Computed Surface Pressure Distribution with Experimental

Wind-Tunnel Data for Flow Over Four-Element Airfoil Configuration;

Mach = 0.1995, Reynolds Number = 1.187 million, Incidence = 16.02 degrees
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Convergence as Measured by the Computed Lift Coefficient and the Density
Residuals Versus the Number of Multigrid Cycles for Flow Past a Four-Element Airfoil



\

!
"p¢¢

\

1
\

K_

/

f

\

-24-

Figure 8

Global View of Coarse Unslructured Mesh and Close-Up View of Fine

Unstructured Mesh Employed for Computing Flow Past a Two-Element Airfoil

(Coarse Mesh Points = 7272, Fine Mesh Points = 28871)
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Figure 9
Computed Mach Contours Using Low-Reynolds Number Modification for Turbulence

Equations for Supercritical Flow over a Two-Element Airfoil
(Mach= 0.5, Re = 4.5 million, Incidence = 7.5 degrees)
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Multigrid Convergence Rate of the Density Equation and the Two Turbulence

Equations Using Low-Reynolds Number Modifications for Flow Over

Two-Element Airfoil (Mach = 0.5, Re = 4.5 million, Incidence = 7.5 degrees)
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Figure11
Finest Adapted Mesh Generated About ONERA M6 Wing

(Number of Nodes = 173,412 Number of Tetrahedra = 1,013,718)
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Figure 12
Computed Mach Contours on the Adaptively Generated Mesh About the ONERA M6 Wing

(Mach = 0.84, Incidence = 3.06 degrees)
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Figure 13

Convergence Rate of the Unstructured Multigrid Algorithm on the

Adaptively Generated Sequence of Meshes about the ONERA M6 Wing

as Measured by the Average Density Residuals Versus the Number of Multigrid Cycles
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Figure14

Coarse Unsuuctured Mesh about an Aircraft Configuration with Single Nacelle;
Number of Points = 106,064, Number of Tetrahedra = 575,986

(Finest Mesh Not Shown)
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Figure 15

Mach Contours for Flow over Aircraft Configuration Computed

on Fine Mesh of 804,056 Vertices and 4.5 million Tetrahedra

(Mach = 0.768, Incidence = 1.116 degrees)
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Multigrid Convergence Rate on Finest Mesh of the Multigrid Sequence

for Transonic Flow over Aircraft-with-Nacelle Configuration
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