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NAVIER-STOKES, DYNAMICS AND AEROELASTIC COMPUTATIONS
FOR VORTICAL FLOWS, BUFFET AND AEROELASTIC APPLICATIONS

Osama A. Kandil’

Accomplishments (10/1/91-9/30/92)

The accomplishments which have been achieved on this grant in the period of 10/1/91-9/30/92 are

listed. These accomplishments include conference and proceedings publications, journal papers,

and abstracts which are either published, accepted for publication or under review. They also

include conference presentations, NASA highlight publications and status of graduate students.

I. Conference and Proceedings Publications

The following papers have been presented at national or international conferences and have been

published in conference proceedings or as refereed conference papers.

l.

Kandil, O. A. and Salman, A. A., “Prediction and Control of Slender Wing Rock,” Interna-
tional Congress of Aeronautical Sciences, ICAS Paper No. 92-4.7.2, Beijing, PRC, September
20-25, 1992 (a copy is attached).

Kandil, O. A. and Salman, A. A., “Three-Dimensional Simulation of Slender Delta Wing
Rock and Divergence,” AIAA Paper No. 92-0280, ASM, Reno, Nevada, January 6-9, £1992
(a copy is attached).

Kandil, O. A. and Liu, C. H., “Unsteady Vortex Flows and Flow Control Around Slender
Bodies and Delta Wings,” Invited Paper, Workshop on Supermaneuverability, AFOSR, Lehigh
University, April 9-10, 1992, pp. 383-417.

Kandil, O. A. and Salman, A. H., “Recent Advances in Unsteady Computations and Ap-
plications of Vortex Dominated Flows,” Invited Paper, Proceedings of the 4th International
Symposium on Computational Fluid Dynamics, University of California, Davis, September
9-12, 1991, Vol. L, pp. 570-575.

Ph.D. Dissertation: Unsteady Euler and Navier-Stokes Computations Around Oscillating
Delta Wing Including Dynamics, Department of Mechanical Engineering and Mechanics, Old
Dominion University, April 1992. Advisor: Prof. Osama A. Kandil, members of committee:
Drs. Woodrow Whitlow, Jr. (Head UAB) and Samuel R. Bland (UAB). Copies of the
Dissertation have been delivered to Drs. Whitlow and Bland (copies of cover page, abstract
and Table of Contents are attached).

* Professor and Eminent Scholar, Dept. of Mechanical Engineering and Mechanics






IL.

2

Kandil, O. A. and Salman, A. A., “Unsteady Flow Around Delta Wings with Symmetric
and Asymmetric Oscillations of Leading-Edge Flaps,” NAS Technical Summaries, March
1990-Feb. 1991, p. 57.

Journal Papers

. Kandil, O. A. and Salman, A. A., “Unsteady Flow Around Delta Wings with Oscillating

Leading-Edge Flaps,” Accepted for Publication in the Journal of Aircraft, to appear in August
1993.

Kandil, O. A., Salman, A. A. and Chuang, H. A., “Unsteady Flow Computations of Oscillating
Flexible Wings,” Accepted for Publication in the Journal of Aircraft, to appear in August 1993.

Kandil, O. A. and Salman, A. A., “Computational Simulation and Flaps Active Control of
Delta Wing Rock,” Accepted for Publication in the AIAA Journal, to appear in September
1993.

III. Talks and Presentations

1.

Kandil, O. A., “Recent Advances in Unsteady Computations and Applications of Vortex
Dominated Flows,” International Symposium on Computational Fluid Dynamics, University
of California, Davis, September 9-12, 1991.

Kandil, O. A., “Three-Dimensional Simulation of Slender Delta Wing Rock and Divergence,”
Aerospace Sciences Meeting, Reno, Nevada, January 6-9, 1992.

Kandil, O. A., “Unsteady Vortex Flows and Flow Control Around Slender Bodies and Delta
Wings,” Workshop on Supermaneuverability, AFOSR, Lehigh University, April 9-10, 1992.

Salman, A. A., “Unsteady Euler and Navier-Stokes Computations Around Oscillating Delta
Wing Including Dynamics,” Ph.D. Dissertation Defense, MEM Dept., Old Dominion Uni-
versity, April 1992.

Kandil, O. A., “Unsteady Vortex Flows and Flow Control Around Slender Bodies and Delta
Wings,” Canadian Air Force Group, Unsteady Aerodynamics Branch, May 14, 1992. A
Simulation movie has been shown for 3 flow solutions (a copy is delivered to Dr. Whitlow).

Kandil, O. A., “Prediction and Control of Slender Wing Rock,” International Congress of
Aeronautical Sciences, Beijing, PRC, September 20-25, 1992.







IV. Graduate Students

- Dr. Ahmed A. Salman: finished his Ph.D. dissertation in May 1992. He spent three months
as a Research Associate, and he is leaving on August 21, 1992 to Egypt where he is appointed

as an assistant professor, Faculty of Engineering, Zagazig University, Egypt.

-~ Mr. Mark Flanagan (US Citizen): Started his M.S. program in September 1991. He was
supported through the MEM Department from September 1991-May 1992. Currently, he is
supported through the present grant. He started working on his M.S. thesis in January 1992 and
his effort is directed toward the quasiaxisymmetric tail-buffet model in a configured duct. He 1s
expected to finish his M.S. thesis in March 1993. He will be staying for his Ph.D. degree. His
Ph.D. research work will focus on a generic model for three-dimensional tail-buffet problem

where combined bending and torsion modes are considered along with its control.

— Mr. Steven Massey (US Citizen): Started his M.S. program in January 1992. He will start
working on his M.S. thesis as of September 1992. His effort will be directed toward the three-
dimensional tail-buffet problem in an unbound domain consisting of a delta wing followed by

a vertical tail. He will be supported from the present grant as of October 1992.

— Mrs. Tahani Amer (US Citizen): She is finishing her B.S. project under the Virginia Space
Grant in December 1992. She is staying for her M.S. degree and will be supported under
this grant. Her effort will be directed toward active control using leading-edge injection of

the wing rock motion.
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THREE-DIMENSIONAL SIMULATION OF SLENDER DELTA
WING ROCK AND DIVERGENCE

Osama A. Kandil* and Ahmed A. Salman®**
Old Dominion University, Norfolk, VA 23529

Abstract

Computational simulation of three-dimensional flows
around a delta wing undergoing rock and roll-divergence
motions is presented. The problem is a multidisci-
plinary one where fluid-dynamics equations and rigid-
body-dynamics equations are sequentially solved. For the
fluid-dynamics part, the unsteady Euler equations, which
are written relative to a moving frame of reference, are
solved using an implicit, approximately-factored, central-
difference, finite-volume scheme. For the rigid-body-
dynamics part, the Euler equation of rigid-body rolling
motion is solved using a four-stage Runge-Kutta scheme.
Since the applications do not include deforming wings
or relative-rigid-body motions, the computational-fluid-
dynamics grid, which is fixed in the moving frame of ref-
erence, does not need to be updated once it is generated.

Introduction

The dynamic phenomenon of wing rock is character-
ized by large-amplitude, high-frequency, rolling oscilla-
tion with a limit-cycle amplitude. The rolling oscillation
is self excited and it is triggered by vortex-flow asymme-
ry or vortex breakdown on highly swept delta wings at
high angles of attack. The study of this phenomenon is
vital for the dynamic stability and controllability of high
performance aircraft during maneuvering and landing.

Several experimental investigations!*® have been con-
ducted to gain basic understanding of the phenomenon.
Nguyen, et al.! tested a flat-plate delta wing with 80°
leading-edge sweep for forced-oscillation, rotary and free-
to-roll tests. The free-to-roll tests showed that the wing
exhibited a rock motion at angles of attack greater than
25°, and that the rock motion reached the same limit-cycle
condition independent of the initial conditions. Levin and
Katz? tested two delta wings with leading-edge sweeps
of 76° and 80°. They found that only the wing with the
80° sweep would undergo a rock motion. Nelson and
his co-workers®*¢ have conducted a series of experimen-
tal studies to investigate the mechanisms responsible for
wing rock on a delta wing with 80° leading-edge sweep.
Their analysis revealed that the primary mechanism for
the phenomenon was a time lag in the position of the
vortices normal to the wing surface. Moreover, they con-
cluded, through the analysis of separate contributions of

*Professor and Eminent Scholar, Dept. of Mechanical Engineering and
Mechanics, Associate Fellow AIAA
**Research Assistant, Same Dept., Member AIAA

Copyright © 1992 by Professor Osama A. Kandil. Published by the
American Institute of Aeronautics and Astronautics, Inc. with Permission.

the wing upper and lower surface-pressure distributions,
that the upper surface pressure provides all of the insta-
bility and little damping in the roll moment and that the
lower surface pressure provides the classical roll damping
hysteresis. Morris and Ward® conducted dynamic mea-
surements in both a water tunnel and a wind tunnel on
a delta wing with leading-edge sweep of 80°. Their re-
sults showed that the measured hysteresis loops in the
water tunnel were opposite in direction from those of the
wind tunnel. They concluded that the hysteresis direction
does not play as decisive a role as previously thought in
initiating and sustaining wing rock.

Erickson™® analyzed experimental data for aircraft
configurations at high angles of attack in an attempt to
reveal the flow processes which generate wing rock. He
concluded that wing rock phenomenon for slender wings
is caused by asymmetric-leading-edge vortices and that
the vortex breakdown provides a limiter to the growth
of wing-rock amplitude. He also identified another two
mechanisms for limit-cycle oscillations in roll of ad-
vanced aircraft,

The literature review showed that numerical simula-
tion of this phenomenon for low speeds has recently been
presented by Konstadinopoulos, et al.®. This has been
followed by developments of analytical models to inves-
tigate the parameters affecting this phenomenon. Nayfeh,
et al.'®!! have presented two analytical models and Hsu
and Lan'? have presented one analytical model. The im-
proved analytical model of Nayfeh, et al.!' proved to
be superior in comparison with the Hsu and Lan model
and more accurate than their first model of reference!®.
The model of reference!! accurately fitted the rolling mo-
ment coefficient, which was computed by a vortex-lattice
method, using five terms which included the linear aero-
dynamic damping and restoring moments and the nonlin-
ear acrodynamic damping moments. With this model, it
was shown on the phase plane that both the wing rock
and wing-roll divergence were possible responses for the
wing. Hsu and Lan’s model cannot predict wing-roll di-
vergence. A serious question which can be raised regard-
ing the work in references 9-12 is: how accurate the fluid
dynamics solution is, using the vortex lattice method?
Moreover, the fluid dynamics model limits its applica-
bility to low-speed flows and to angles of attack below
the critical value for vortex breakdown. Moreover, the



vortex lattice model also cannot predict separated flows
from smooth surfaces.

The first computational unsteady solution for the
forced-rolling oscillation of a delta wing, which was
based on the unsteady Euler equations, was presented
by Kandil and Chuang'®. The solution used the locally-
conical flow assumption for supersonic flows in order o
reduce the computational time by an order of magnitude
as compared to that of the three-dimensional solutions.
Forced-pitching oscillation of airfoils were also consid-
ered in a later paper by Kandil and Chuang'*. The first
unsteady three-dimensional Euler solution for the forced-
pitching oscillation of a delta wing was also presented
by Kandil and Chuang!®. The unsteady Navier-Stokes
solutions were also used by Kandil and Chuang'® for
the forced-rolling oscillation of a delta wing under the
locally-conical flow assumption. Batina!? developed a
conical Euler solver, which was based on the use of un-
structured grids, and used it to solve for the flow around
a delta wing undergoing forced-rolling oscillation under
the locally-conical flow assumption. Later on, Lee and
Batina'® extended the Euler solver to include a free-to-
roll capability to solve for a freely rolling delta wing
which exhibited wing rock. The solution was based on the
locally-conical flow assumption. In Ref. 19, the present
authors studied symmetric and anti-symmetric forced-
rolling oscillations of the leading-edge flaps of a delta
wing. A hinge is considered at the 75% location of the
local half span and the leading-edge flaps are forced to
oscillate both symmetrically and anti-symmetrically. The
Navier-Stokes and Euler equations are used to solve the
problem along with the Navier-displacement equation to
account for the grid deformation due to the leading-edge
flaps motion. In a later paper by the authors?’, the effects
of symmetric and anti-symmetric flaps oscillation with
varying frequencies have been investigated for two flow
conditions. With the aid of these studies, the authors?!22
studied the wing rock phenomenon as well as its ac-
tive control using anti-symmetric tuned oscillations of the
wing leading-edge flaps. The sequential solutions of un-
steady Euler equations and the Navier-displacement equa-
tions along with the Euler equation of rigid-body rolling
motion were used to obtain the solutions for these prob-
lems. The locally-conical flow assumption was also used
throughout these solutions.

In this paper, we present the first three-dimensional
computational simulation using the Euler equations for
flows around a delta wing undergoing wing-rock and roll-
divergence motions. The solutions are obtained using the
sequential solutions of the Euler equations for fluid flows
and the Euler equations for rigid-body rolling motion.
The equations and the boundary conditions are written
with respect to a moving frame of reference. Since no
active control through the leading-edge flaps oscillations
is used in this paper, there is no need to move the
computational grid once it is generated the first time.

Formulation

The formulation of the problem consists of two sets
of equations. The first set is the unsteady Euler equations
which are written relative 10 a moving frame of reference.
This set is used to compute the flowfield for steady or
unsteady flows. The second set is the Euler equations of
rigid-body rolling motion. This set is used to compute
the wing motion when the dynamics problem is coupled
with the fluid dynamics problem.

Unsteady Euler Equations For Flowfield

Using the transformation equations from the space-
fixed frame of reference 10 a moving frame of reference
(Refs. 13-16), the non-dimensional, unsteady, Euler equa-
tions are transformed to the moving frame of reference.
Such a transformation eliminates the need to move the
computational grid for rigid wings having time-dependent
rigid-body motion. Hence, the Euler equations are given
by
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The reference parameters for the dimensionless form
of the equations are L, an, L/ay and p. for the length,
velocity, time and density, respectively. In Egs. (1)-(11),
p is the density, u, the relative fluid velocity component,
V, and &, translation velocity and acceleration of the
moving frame, V; and &, the transformation velocity and
acceleration from the space-fixed to the moving frames of
reference, @ and @ the angular velocity and acceleration
of the moving frame, L the wing chord length, 7 the fluid
position vector, p the pressure, e and h the total energy
and enthalpy per unit mass relative to the moving frame
and v the gas index which is set equal to 1.4.

Euler Equation For Rigid-Wing Rolling Motion

Here, we consider a rigid wing fixed on an axle which
rotates in bearings. The bearing damping coefficient is A.
Torsional springs of stiffness & are assumed at the ends
of the axle. If I, is the mass-moment of inertia of the
wing around the axle and if M, is the aerodynamic rolling
moment around the axle, then the governing equation of
motion is given by

M, =1.6+X0+ké (12)

where @ is the roll angle which is positive in the counter-
clockwise direction.

Computational Schemes

The computational scheme used to solve Egs. (1)-
(11) is an implicit, approximately-factored, centrally-
differenced, finite-volume scheme!* !5, Added second-
order and fourth-order explicit dissipation terms are used
in the difference equation on its right-hand side terms,
which represent the explicit part of the scheme. The Ja-
cobian matrices of the implicit operator on the left-hand
side of the difference equation are centrally-differenced
in space, and implicit second-order dissipation terms are
added for the scheme stability. The left-hand side spa-
tial operator is approximately factored and the difference
equation is solved in three sweeps in the ¢!, €2 and €3
directions, respectively.

For the wing-rock problem, Eq. (12) is solved using
a four-stage Runge-Kutta scheme. Starting from known
initial conditions for § and 6, the equation is explicitly
integrated in time in sequence with the fluid dynamics
equations, Eqs. (1-11). Equation (12) is used to solve for
6, 6 and 6 while Egs. (1-11) are used to solve for M,.
If the initial M, is nonzero, a case of asymmetric steady
flow at initial conditions, the initial values of # and 6§ are
set equal to zero and the motion is initiated by the initial
rolling moment.

Computational Applications and Discussion

A sharp-edged delta wing with a leading-edge sweep
of 80° is considered for the computational applications.
The angle of attack is set at 30° and the freestream Mach
number is chosen as 0.3 for low speed simulation. The
wing mass-moment of inertia about its axis is 0.285, the
bearings damping coefficient is 0.15 and the torsional
springs stiffness is 0.74. The unsteady Euler equations
are solved for the three-dimensional flows. The bound-
ary of the computational domain consists of a hemispher-
ical surface with it center at the wing trailing edge on
its line of geometric symmetry. The hemispherical sur-
face is connected to a cylindrical aftersurface with its
axis coinciding with the wing axis. The hemispherical
and cylindrical radii are two root-chord lengths and the
downstream, circular exit boundary is at two rootchord
lengths from the wing trailing edge. The grid consists
of 32x32x48 grid points in the axial, normal and wrap-
around directions, respectively. The grid is generated in
the crossflow planes using a modified Joukowski transfor-
mation, which is applied at the grid-chord statons with
exponential clustering at the wing surface.

Steady Flow (Initial Conditions)

Figure 1 shows the results for the steady flow at o =
30° and M, = 0.3. The results include the crossflow-
velocity vectors and static-pressure contours at three-
chord stations of 0.54, 0.79 and 0.91; and the surface-
pressure coefficient at two chord stations of 0.54 and 0.79.
The results show that although the wing is at zero sideslip
angle, the flow is asymmetric. The primary vortex on the
right side produces more suction pressure than the one on
the left side, and hence there is a net counter-clockwise
(CCW) rolling moment. Using these results for the initial
conditions of the wing-rock problem, the wing is released
from rest at zero roll angle (8, = 0) and zero roll velocity
6, = 0).

Simulation of Wing Rock

Since the steady flow solution is asymmetric, M,
in Eq. (12) is of non-zero value and hence Eq. (12) is
initially inhomogeneous. Att =0, weset 6, =8, =0
and release the wing with its initial M, value as the
driving rolling moment. At t = At, Eq. (12) of the
wing dynamics is integrated to obtain 4 and hence 6 and
§ (At = 0.005). Then, Egs. (1-11) of the fluid flow are
integrated to obtain the components of the flowfield vector
and hence p and M,. Next, t is increased to 2At and the
sequential integration of the dynamics equation and the
fluid flow equations is repeated. The sequential solutions
are repeated until the limit-cycle amplitude response is
reached

In Fig. 2, we show in the first row the roll angle,

rolling-moment coefficient, M,, and normal-force coeffi-
cient, Cx, versus time, and in the second row we show the



corresponding roll-angular velocity, rolling-moment coef-
ficient and normal-force coefficient versus the roll angle.
Significant transient responses develop in the time range
of t = 0 — 22, wherein the amplitudes of the responses
increase and decrease. Thereafter, t > 22, the amplitudes
of the responses continuously increase until ¢t = 95. At
t 2 95, the amplitudes and frequencies of the responses
become periodic reaching the limit-cycle response, which
is typical of the wing-rock motion. During the limit-cycle
response, the maximum roll angle, 6.,, is 10°, the mini-
mum roll angle, 8, is —11° and the period of oscillation
is 3.53, which comresponds to a frequency of 1.78. With
At = 0.005, each cycle of oscillation in the limit-cycle
response requires 706 time steps. The shown responses,
up to t = 140, required 28,000 time steps. It should be
noticed that the frequency of the normal-force coefficient
is twice that of the roll angle and rolling-moment coef-
ficient.

Next, we consider one cycle of the limit-cycle
response and analyze the roll angle, rolling-moment-
coefficient and normal-force-coefficient responses to gain
physical insight of the wing-rock phenomenon. For this
purpose, we show in Fig.3 6, M, and Cy vz. t in
the range of ¢ = 135.19 — 138.72 and the corresponding
8, M, and Cx vz. 8 in the range of 8 = -0° — + 0°. This
period of oscillation is marked by the numbers 1, 2, 3, 4
and 5 in Fig. 3. In the first quarter of the cycle (1 — 2),
the roll angle of the left side of the wing decreases from 0°
— ~11° and the wing rolls in the clockwise (CW) direc-
tion, the rolling-moment coefficient increases and changes
sign from -0.057 — 0.0 — + 0.023 and the normal-force
coefficient decreases and then increases from 2.68 — 2.65
— 2.75. It is important to notice that the rolling moment
changes its sign which means that the rolling moment
during the first part of this quarter of the cycle is in the
CW direction (the same direction as the motion) and in
the second part of this quarter of the cycle is in the CCW
direction (the opposite direction of the motion). Hence,
the rolling moment increases the negative angle in the first
part and then it limits the growth of the roll angle in the
second part. In the second quarter of the cycle (2 — 3)
the roll angle increases from -11° — 0 and the wing rolls
in the CCW direction, the rolling-moment coefficient in-
creases and then decreases from +0.023 — 0.045 — 0.04
and the normal-force coefficients increases and then de-
creases from 2.75 — 3.0 — 2.84. The rolling-moment
coefficient is in the CCW direction (the same direction as
the motion). In the third quarter of the cycle (3—4) the
roll angle increases from 0 — 10° and the wing keeps its
rolling motion in the CCW direction, the rolling-moment
coefficient decreases and changes sign from +0.04 — 0
— —0.038 and the normal-force coefficient decreases and
then increases from 2.84 — 2,78 — 2.86. Again, it is no-
ticed that the rolling moment changes its sign from CCW
to CW directions and limits the roll angle growth.

In Figs. 4 and 5, we show snapshots at points 2 and
4, respectively; of the cross-flow-velocity vectors and the

static-pressure contours at the chord stations of 0.54, 0.63
and 0.79 and the surface-pressure coefficient at the chord
stations of 0.54 and 0.63. In Fig. 4, the primary vortex
on the right side is nearer to the upper wing surface than
the one on the left side. Moreover, the primary vortex
on the right is further away from the plane of geometric
symmetry in comparison to the one on the left. The
surface-pressure curves show large peaks on the right side
and that the surface-pressure difference on the right side
is larger than the one on the left side. This results into
a CCW rolling moment at this maximum negative roll
angle of —-11°. In Fig. 5, the opposite process occurs;
the surface-pressure difference on the left side is larger
than the one on the right side and this results into a
CW rolling moment at this maximum positive roll angle
of +10°. These results are consistent with those of the
experimental data of Refs. 3 and 4.

In Fig. 6, we show the variations of the maximum
static pressure of the vortex cores of the primary vortices
on the left and right sides versus the roll angle for the
chord station of 0.54. The numbers on the figures corre-
spond to those in Fig. 3. Since the maximum static pres-
sure of the core is proportional to the vortex-core strength,
it is obviously seen that the primary vortex on the right
side has a greater strength at point 2 as compared to that
on the left side. The strength differential between the
right and left vortices along with the locations of the vor-
lex cores contributes substantially to the net total CCW
rolling moment which limits the negative growth of the
roll angle and reverses the wing motion. Similarly, it is
concluded that the strength differential between the left
and right vortices at point 4 substantially contributes to
the net total CW rolling moment which limits the positive
growth of the roll angle and reverses the wing motion.

In Fig. 7, we split the rolling-moment coefficient
into restoring and damping components similar to Kon-
stadinopoulos, et al.’. First, the rolling-moment coeffi-
cient M, is fitted using the following expansions in terms
of § and 6:

M, = 6,6 + a0 + 636° + 0,626
+ a36%0 + agh® + a:6° + ag0%6
+ a90293 + 0109293 + 0“0.40 + (1129.5 (13)
The coefficients a, — a;; are determined using a least-
squares fit. A comparison of the original (-e-) and fit-
ted (=) rolling-moment coefficients is shown in Fig. 7.

Next, we split the fitted-rolling-moment coefficient into a
restoring part, M,, and a damping part, M;, as follows:

M, = (a; +a36% + auﬂ“)ﬂ
+ (a; +a mé’) 6° + a,6° (14)

Md = (ag + 0‘02 + 0304)0.
+ ((15 + 0902)0.3 + 0129.5 (15)



In Fig. 7, we also show M, and # versus time, and M,
and @ versus time. Moreover, we show on these figures
the numbers 1, 2, 3, 4 and 5 which correspond to the
same numbers in Figs. 3 and 6. In the first quarter of the
cycle (1—2), the roll angle & decreases from 0 — -11°,
the restoring rolling moment becomes negative during
the first part and positive during the second part and the
damping rolling moment, which is negative at point 1,
increases during the first part and becomes almost zero
during the second part. It is very interesting to notice that
M, and M, are negative during the first part and hence
they are in the same direction as the motion. During the
second part, M, becomes positive reaching its maximum
at point 2 when f,., = -11° and hence it limits the
angle growth. During the same second part, M, becomes
almost zero indicating a loss of damping rolling moment.
In the second quarter of the cycle (2—3), M, stays almost
constant during the first part and drops to zero in the
second part when the roll angle becomes 0°. During the
same second quarter, M, continuously increases from 0 to
a maximum positive value when the roll angle becomes 0.
In the third quarter of the cycle (34), a similar interaction
of 8, M, and M, as that of the first quarter (1-2) occurs
except with opposite signs. These conclusions are exactly
similar to those of Ref. 9. Hence, the loss of damping
rolling moment is responsible for the wing-rock motion.

Simulation of Wing Roll Divergence

In Ref. 10, it has been reported that roll divergence
has been observed for the 80° leading-edge sweep delta
wing. In fact, roll divergence has been analytically
shown'® o exist for certain initial conditions using the
phase plane analysis. In the present paper, we considered
the same wing described earlier 10 simulate roll diver-
gence. The aerodynamic conditions are kept the same as
those for the wing-rock problem. For the dynamic condi-
tions, we set A =0 and k = 0; i.e., there is neither bearings
damping nor torsional springs. The mass-moment of in-
ertia is kept at [, = 0.285. Starting with the same steady
flow solution of the previous problem, as the initial con-
ditions, we released the wing at t = 0.

In Figs. 8-12, we show the results of this case. Fig-
ure 8 shows the roll angle, rolling-moment coefficient
and normal-force coefficient versus time. The roll an-
gle increases slowly to 10° at ¢t = 4.5 (point 1) while
the rolling-moment coefficient increases at a little larger
rate until ¢ = 4.5. The rolling-moment coefficient is in
the CCW direction, which is the same direction as the
motion. The normal-force coefficient increases and then
decreases to almost its original value. Figure 9 shows
the corresponding snapshots at point 1 of the crossflow-
velocity vectors and static-pressure contours at the chord
stations of 0.54 and 0.79 and the surface-pressure coeffi-
cient at the chord station of 0.79. The primary voriex on
the right side is larger than the one on the left and it is
nearer to the plane of geometric symmetry than the one

on the left. The surface-pressure-coefficient curve shows
that a net CCW rolling-moment exists.

In the time range ¢ = 4.5 — 6 (points 1 — 2), Fig. 8
shows that the roll angle increases at a faster rate than be-
fore (8 = 35° at point 2), the rolling-moment coefficient
increases at a very fast rate and the normal-force coeffi-
cient drops. Figure 10 shows the corresponding snapshots
of results at point 2. The primary vortex on the right be-
comes larger than the one on the left. Moreover, the
primary vortex on the right expands in the spanwise di-
rection, while the one on the left moves outboard of the
left leading edge. The surface-pressure-coefficient shows
that the pressure coefficient on the left upper surface be-
comes positive. This explains the fast increase in the
rolling-moment coefficient and the fast decrease in the
normal force coefficient.

In the time range t = 6 — 6.75 (points 2—3), Fig. 8
shows that the roll angle increases at an even faster rate
than before (¢ = 64° at point 3), the rolling-moment
coefficient increases to a peak value and then decreases
and the normal-force coefficient keeps on decreasing.
Figure 11 shows the corresponding snapshots of results
at point 3. The primary vortex on the right side becomes
very large and affects a portion of the left side of the
wing. The primary vortex on the left is already off the
left leading edge. In fact, one can see the left vortex on
the left lower surface of the wing. The surface-pressure
curves clearly explain the loss of normal force and the
increase and decrease in the rolling-moment coefficient.

In the time range of ¢t = 6.75 — 8.25 (points 3—4),
Fig. 8 shows that the roll angle becomes substantially
high (8 = 138° at point 4), the rolling-moment coefficient
decreases fast and the normal-force coefficient increases
fast. Figure 12 shows the corresponding snapshots of the
results at point 4. The primary vortices on the upper sur-
face disappear and start appearing on the lower surface.
The surface pressure curve shows that the pressure coef-
ficient on the lower surface is completely negative and on
the upper surface is partially positive and partially nega-
tive. The surface pressure curve explains the sudden drop
in the rolling-moment coefficient and the sudden increase
in the normal-force coefficients.

Concluding Remarks

Computational simulation of unsteady, three-dimen-
sional, subsonic flows around a delta wing undergoing
wing-rock and roll-divergence motions is presented and
analyzed. The present multidisciplinary problem is soived
for the first time using sequential solutions of the three-
dimensional unsteady Euler equations for the flowfield
and the Euler equation of rigid-body rolling motion for
the wing kinematics. The fluid flow Euler equations are
solved using an implicit, approximately factored, central-
difference, finite-volume scheme and the rigid-body Eu-
ler equation is solved using a four-stage, Runge-Kutta
scheme. Simulation of the wing-rock problem is obtained



for a delta wing which is mounted on an axle with tor-
sional springs and the axle is free to rotate in bearings
with viscous damping. The wing starts its motion under
the effect of an initial rolling moment due to the initially
asymmeuric flow at zero roll angle and zero angular ve-
locity. For the simulation of the roll-divergence problem,
the bearings are assumed frictionless and the torsional
springs are removed. It has been shown that the hystere-
sis responses of position and strength of the asymmetric
right and left primary vortices are responsible for the wing
rock motion. Moreover, it has also been shown that the
loss of aerodynamic damping rolling moment at the zero
angular velocity value is a main reason for the wing rock
motion. These conclusions are consistent with the pre-
vious findings of the experimental®* and computational®
research work.
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PREDICTION AND CONTROL OF SLENDER-WING ROCK

Osama A. Kandil* and Abhmed A. Salman**
Old Dominion University, Norfolk, VA 23529, USA

ABSTRACT

The unsteady Euler equations and the Euler equa-
tions of rigid-body dynamics, both written in the mov-
ing frame of reference, are sequentially solved to simu-
late the limit-cycle rock motion of slender delta wings.
The governing equations of fluid flow and dynamics
of the present mult-disciplinary problem are solved us-
ing an implicit, approximately-factored, central-difference
like, finite-volume scheme and a four-stage Runge-Kutta
scheme, respectively. For the control of wing-rock
motion, leading-edge flaps are forced to oscillate anti-
symmetrically at prescribed frequency and amplitude
which are tuned in order 10 suppress the rock motion.
Since the computational grid deforms due to the leading-
edge flaps motion, the grid is dynamically deformed using
the Navier-displacement (ND) equations. Computational
applications cover locally-conical and three-dimensional
solutions for the wing-rock simulation and its control.

INTRODUCTION

The dynamic phenomenon of wing rock is character-
ized by large-amplitude, high-frequency, rolling oscilla-
tion with a limit-cycle amplitude. The rolling oscillation
is self excited and it is triggered by vortex-flow asymme-
try or vortex breakdown on highly swept delta wings at
high angles of attack. The study of this phenomenon is
vital for the dynamic stability and controllability of high
performance aircraft during maneuvering and landing.

The literature shows that several experimental
investigations'® have been conducted to gain basic un-
derstanding of the phenomenon. Nguyen, et al.! tested
a flat-plate delta wing with 80° leading-edge sweep for
forced-oscillation, rotary and free-to-roll tests. The free-
to-roll tests showed that the wing exhibited a rock motion
at angles of attack greater than 25°, and that the rock mo-
tion reached the same limit-cycle response irrespective of
the initial conditions. Levin and Katz? tested two delta
wings with leading-edge sweeps of 76° and 80°. They
found that only the wing with the 80° sweep would un-
dergo a rock motion. Nelson and his co-workers*S con-
ducted a series of experimental studies to investigate the
mechanisms responsible for wing rock on a delta wing
with 80° leading-edge sweep. Their analysis revealed that
the primary mechanism for the phenomenon was a time
lag in the position of the vortices normal to the wing
surface. Moreover, they concluded, through the analy-
sis of separate contributions of the wing upper and lower

*Professor and Eminent Scholar, Department of Mechanical Engineering
and Mechanics, Associate Fellow AIAA
**Graduate Snudent, Same Department, Member AIAA.

surface-pressure distributions, that the upper surface pres-
sure provides all of the instability and little damping in the
roll mommtandt!mu\elowersmfacemmpmvidw
the classical roll damping hysteresis. Morris and Ward®
conducted dynamic measurements in both a water tn-
nel and a wind tunnel on a delta wing with leading-edge
sweep of 80°. Their results showed that the measured
hystemisloopsindwwalermnnelwmopposicindj-
rection to those of the wind unnel. They concluded that
the hysteresis direction does not play as decisive a role as
previously thought in initiating and sustaining wing rock.

Erickson’® analyzed experimental data for aircraft
configurations at high angles of attack in an attempt to
reveal the flow processes which generate wing rock. He
concluded that wing rock phenomenon for slender wings
is caused by asymmetric-leading-edge vortices and that
themxbrukdownpmvidualimitertoﬂwgmwth
of wing-rock amplitude. He also identified another two
mechanisms for limit-cycle oscillations in roll for ad-
vanced aircraft

The literature review showed that numerical simula-
tionofd\isphenoma:onforlowspeedshsmemlybecn
presented by Konstadinopoulos, et al.’. This has been
followed by developments of analytical models to inves-
tigate the parameters affecting this phenomenon. Nayfeh,
et aL'®!! have presented two analytical models and Hsu
and Lan'2 have presented one analytical model. The im-
proved analytical model of Nayfeh, et al.!! proved to
be superior in comparison with the Hsu and Lan model
and more accurate than their first model of reference!®.
The model of reference!! accurately fitted the rolling mo-
ment coefficient, which was computed by a vortex-lattice
method, using five terms which included the linesr aero-
dynamic damping and restoring moments and the nonlin-
car acrodynamic damping moments. With this model, it
was shown on the phase plane that both the wing rock
and wing-roll divergence were possible responses for the
wing. Hsu and Lan’s model cannot predict wing-roll di-
vergence. A serious question which can be raised regard-
ing the work in references 9-12 is: how accurate the fluid
dynamics solution is, using the vortex lattice method?
Moreover, the fluid dynamics mode! limits its applica-
bility to low-speed flows and to angles of attack below
the critical value for vortex breakdown. Moreover, the
vortex lattice model also cannot predict seperated flows
from smooth surfaces.



The first computational unsteady solution for the
forced-rolling oscillation of a delta wing, which was
based on the unsteady Euler equations, was presented

by Kandil and Chuang'®. The solution used the locally-

conical flow assumption for supersonic flows in order to
reduce the computational time by an order of magnitude
as compared to that of the three-dimensional solutions.
Forced-pitching oscillation of airfoils were also consid-
ered in a later paper by Kandil and Chuang'. The first
unsteady three-dimensional Euler solution for the forced-
pitching oscillation of a delta wing was also presented
by Kandil and Chuang'. The unsteady Navier-Stokes
solutions were also used by Kandil and Chuang'¢ for
the forced-rolling oscillation of a delta wing under the
locally-conical flow assumption. Batina!’ developed a
conical Euler solver, which was based on the use of un-
structured grids, and used it to solve for the flow around
a delta wing undergoing forced-rolling oscillation under
the locally-conical flow assumption. Later on, Lee and
Batina'* extended the Euler solver to include a free-to-
roll capability to solve for a freely rolling delta wing
which exhibited wing rock. The solution was based on the
locally-conical flow assumption. In Ref. 19, the present
authors studied symmetric and anti-symmetric forced-
rolling oscillations of the leading-edge flaps of a delta
wing. A hinge is considered at the 75% location of the
local half span and the leading-edge flaps are forced to
oscillate both symmetrically and anti-symmetrically. The
Navier-Stokes and Euler equations are used o solve the
problem along with the Navier-displacement equation to
account for the grid deformation due to the leading-edge
flaps motion. In a later paper by the authors?, the effects
of symmetric and anti-symmetric flaps oscillation with
varying frequencies have been investigated for two flow
conditions. With the aid of these studies, the authors?!2
studied the wing rock phenomenon as well as its ac-
tive control using anti-symmetric tuned oscillations of the
wing leading-edge flaps. The sequential solutions of un-
steady Euler equations and the Navier-displacement equa-
tions along with the Euler equation of rigid-body rolling
motion were used to obtain the solutions for these prob-
lems. The locally-conical flow assumption was also used
throughout these solutions. Simulation of wing-rock and
wing-divergence motions was presented by the authors
for the three-dimensional flows in Ref, 23.

In the present paper, the unsteady Euler equations and
the Euler equations of rigid-body dynamics, both written
in the moving frame of reference, are used to simulate
the limit-cycle rock motion of slender delta wings. Con-
trolling the wing-rock motion is achieved by using anti-
symmetric forced-oscillation of the wing leading-edge
flaps. For the active control of wing rock, the grid is
dynamically deformed using the ND equations.

FORMULATION

The formulation of the problem consists of three sets
of equations. The first set is the unsteady, compressible,
Euler equations which are written relative to a moving
frame of reference. This set is used to compute the
flowfield for steady or unsteady flows. The second set is
the unsteady, linearized, Navier-displacement equations
which are used in the moving frame of reference to
compute the grid displacements whenever the leading-
edge flaps oscillate. If the leading-edge flaps do not
oscillate, the ND equations are not used. The third set
is the Euler equations of rigid-body motion for the wing
only or for the wing and its flaps. This set is used to
compute the wing motion for the wing-rock problem. It
is solved in sequence with the first set. For the control
of wing-rock motion, this set is solved in sequence with
the first and second sets.

Unsteady Euler Equations

Using the transformation equations from the space-
fixed frame of reference to a moving frame of reference
(Refs. 13-15), the non-dimensional, unsteady, compress-
ible, Euler equations are transformed to the moving frame
of reference. Such a transformation eliminates the mo-
tion of the computational grid for rigid wings having
time-dependent rigid-body motion. Since the flaps of the
wings are allowed very small relative rigid-body motion
per time step of the integration scheme, one must con-
sider the computational grid as time-dependent whenever
the grid is updated, and the grid speed in Eqs. (4) and
(5) must be computed. Hence, the Euler equations are
given by

%Q + ‘;—f} =5 4))
where
Q = flowfield vector
i 1
= :q,- = 7[p,pu1,puz.puame]' @
{" =f"'(z,,zg,z;,t) (3)

E. = inviscid flux
- 1 - P of'. -
=7 (&f E+ w73 )
= %[P Un; p$1Un + 01€™p, p3 Un

+ &KE™p, puyUm + 83€™p, pUnh %p]‘ “@

Un=wul+%‘ &)



S = source term due to rigid-body motion = ;S
1 -
= 7{0, (1), p(ar);, p(ar)y, [V - &,
+ (0xF) o + Vo - (@ — 9xV) + V - (GxF)
+ (@xF) - (@xF)]}* (6)
V =V, -V = relative velocity )
Vi =V, + aoxF ®)
Gy = d, + Wxf + 2xV, + ox(oxF) ©)
V? V‘z

p—p('r—l)(e—7+7) (10)

(1n

The reference parameters for the dimensionless form
of the equations are L, Gy, L/ax and p. for the length,
velocity, time and density, respectively. Here, L is a
reference length which is taken as the wing root-chord
length,

In Egs. (1)-(11), the indicial notation is used for con-
venience. Hence the indices k,/, n and s are summation
indices and m is a free index. The range of k,!, m,n,
and s is 1-3 and §; = 3'2—..

The term % represents the mth component of the
grid velocity. It is set equal to zero when the grid is not
being updated. In Egs. (1)-(11), p is the density, u, the
relative fluid velocity component, V, and a, translation
velocity and acceleration of the moving frame, V; and
a, the ransformation velocity and acceleration from the
space-fixed to the moving frames of reference, @ and &
the angular velocity and acceleration of the moving frame,
7 the fluid position vector, p the pressure, ¢ and h the total
energy and enthalpy per unit mass relative to the moving
frame and 7 the gas index which is set equal to 1.4.

Unsteady, Linearized Navier-Displacement
Equations

The details of the derivation of these equations are
given by the authors in Ref. 20. The dimensionless form
of these equations is given by

-Vp+ %% [%V(V “u) + V’ﬁ] = p% 2

where i is the displacement vector of a grid point. For
cach grid point (a fluid element), Eq. (12) is integrated

over a shart time range (¢ — ¢,) where A, p and p are
kept constants. This yields the equation

—I/:Vpdt+%?‘M—:[%V(V-ﬁ)+V’ﬁ]

da _
=rgt Co(7) (13)

In Eq. (l2).weuseR...torefatothemeshpoim
Reynolds number which is different from the flow
Reynolds number. This has been done in order to provide
a limiter for the grid displacement to avoid grid distortion
or overlapping, particularly in regions of high flow rever-
sal, Equation(l3)ismevecta-formofﬁwNDequations
to be used for computing the grid-points displacement i
subject to displacement boundary and initial conditions.
The equation is a parabolic equation in time which is in-
tegrated by using the alternating direction implicit (ADI)
scheme. The constant C, () in Eq. (13) is computed from
the preceding time-range integrations.

Euler Equation of Rolling Rigid Wing With and
Without Oscillating Leading-Edge Flaps:

Figure 1 shows a sketch of a wing and its flaps which
are undergoing rolling motions. The rolling motion of
the flaps is anti-symmetric. The wing is fixed to an
axile which rotates in bearings. The bearings damping
coefficient is A\. Torsional springs of stiffness i are
assumed at the ends of the axle. The xyz axes which
are fixed to the wing are assumed to coincide with the
principal axes of inertia of the wing-flaps configuration.
At section A-A, the wing half span is /; and the flap
width is ;. The masses of the wing and each flap are m,
and m;, respectively, and their respective mass-moment
of inertias around their centers of mass are [,, and I,.
The generalized coordinates of the system are taken as 6,
and 6,, which are measured from the horizontal position.
If the acrodynamic moment of the wing and its flaps about
the x-axis is C, and if one uses the Lagrangian dynamics
for obtaining the governing equations of motion, one gets
the following equation for the 8, coordinate

C - (2Im - '—;113 -mylih C“an)a?l
+ mal 1,63, sin 6,
= (Issl + 255 — %13 - mall; cos 911) 4,

~ mal ;6% sin 6,,
= 2m3li 136,05, 8in 6y, + A6, + £, (14)
where 8;, = 6, -8, ;s and Iyss are the mass moment
of inertia of the wing and the flap, respectively, around
the wing axis of rotation. If the angles 9, and 6y are
assumed to be small, then the linearized equation reduces
o
Ce - (2Im - Ezzg -ml, lz) by
= (Iul + 2gez — %12 - mzh'z) 8,
+ M6, + k6, (15)



On the other hand, if the flaps are not deflected and the
wing and its flaps rol! as a rigid body, Eq. (15) becomes

C' = Ig'é‘] + Aé] + Eol (16)

where /., is the mass moment of inertial of the composite
wing-flaps configuration without relative motion.

Equation (16) governs the wing-rock problem while
Eq. (15) govemns the linearized control of wing-rock prob-
lem by using a prescribed motion of the leading-edge
Naps.

COMPUTATIONAL SCHEMES

The computational scheme used to solve Egs. (1)-
(11) is an implicit, approximately-factored, centrally-
differenced, finite-volume scheme'*'S, Added second-
order and fourth-order explicit dissipation terms are used
in the difference equation on its right-hand side terms,
which represent the explicit part of the scheme. The Ja-
cobian matrices of the implicit operator on the left-hand
side of the difference equation are centrally-differenced
in space, and implicit second-order dissipation terms are
added for the scheme stability. The left-hand side spa-
tial operator is approximately factored and the difference
equation is solved in three sweeps in the ¢!, £2 and £
directions, respectively.

For the wing-rock problem, Eq. (16) is solved using
a four-stage Runge-Kutta scheme. Starting from known
initial conditions for § and 4, the equation is explicitly
integrated in time in sequence with the fluid dynamics
equations, Egs. (1-11). Equation (16) is used to solve for
0, 0 and § while Egs. (1-11) are used to solve for C.
If the initial C, is nonzero, a case of asymmetric steady
flow at initial conditions, the initial values of ¢ and ¢ are
set equal to zero and the motion is initiated by the initial
rolling moment.

For the control of the wing-rock problem using flaps
oscillation, the motion of the faps; 03), 62 and 65, are
specified and Eq. (14) (nonlinear equation) or Eq. (15)
(linearized equation) is used to solve for 0,, 6, and 6,.
The fluid dynamics equations, Egs. (1)-(11), and the grid-
deformation equation, Eq. (13), are sequentially used to
solve for C,.

COMPUTATIONAL APPLICATIONS
AND DISCUSSION

Simulation of Wing-Rock-Motion
(Locally-Conical Flow)

A delta wing of sweep-back angle of 80°, at an angle
of attack of 35° and a Mach number of 1.4 is considered.
The wing has an elliptic section with sharpened leading
edges. The wing mass-moment of inertia about its x axis
is 0.02, the bearing damping coefficient is 0.2 and the
spring stiffness is 0.74. The unsteady Euler equations

are solved for locally-conical lows. The computational
grid is of 64 x64 x2 in the wrap around, normal and axial
directions, respectively. For these flow conditions, the
steady flow is asymmetric, and hence C, # O at t = 0,
Therefore, we set 8% = 69 = 0, The Euler equations of
fluid flow and of rigid-body dynamics are sequentially
integrated accurately in time with At = 0.002S. Figures
2 and 3 show the results of this case. Figure 2 shows the
time responses of 4,, C: and C, and the corresponding
phase planes of 8, vz 4, C, vz 6, and C, vz #,. The time
mponsesshowthelongtime.t:?.itukutobuﬂdup
the growing roll-angle response. The responses clearly
show that the 8, and C, continuously increase in time
with increasing frequencies. The limit-cycle response is
reached at t = 21 which is clearly shown on the phase
planes. The mean amplitude of 9, is -0.5°, its maximum
is 40° and its minimum is -41°, Figure 3 shows snap
shots of the surface-pressure coefficient and cross-flow
velocity at the instants corresponding to points 1 and 2
on Fig. 2. The strong asymmetric motion of the primary
vortices are clearly seen. Also, the surface-pressure-
coefficient response clearly shows the generation of the
restoring rolling moment to the wing motion.

Active Control of Wing Rock Using
Leading-Edge Flaps Oscillation

Thenexts:cpismconuolmewm;mckmpmse
of the previous case. For this purpose a leading-edge
flap hinge is assumed to be at the 76% location of
the local-half-span length. The flaps motion is intro-
duced at t, = 13.02 when 6 = —4* and C, = 0.0.
The flaps motion is anti-symmetric and is given by
021(t) = 021 max 8in ke(t — &) , Where k; is the flap re-
duced frequency. With the aid of the previous values of
01.C,mdkofmewing(cmbemmm'edbymm
to feed back the leading-edge flaps motion), we chose
02tmax = -0.5° and k¢ = 6.7. Equation (15) for the wing-
ﬂapsmodonissequa:tiallyinmmdwcmmlyhﬁme.
with At = 0.0025, along with the Euler equations of fluid
flow, and the ND equation is used for the grid deforma-
tion. Figure 4 shows the time responses of 8, and C, for
the wing. Itisclurlysemﬂma.mspomeisdmped
within t - t, = 13 with a mean value of 5. However,
the wing is still oscillating periodically around this mean
position with a small amplitude. Next, the flaps motion
is modified by dividing the amplitude Oimax DY 1 + (1
- L) so that it decays with time. Figure 5 shows the
steady response of the wing at t = 30. The wing assumes
an equilibrium position of S* without any oscillation. To
checkﬂutﬂlisisambleeqﬁlibr_imnpaiﬁon.thewing
is disturbed at t = 40 with a small 4,. Figure S also shows
the time responses of ¢, and C, after the disturbance con-
firming that the equilibrium position is stable. Figure 6
showsﬂlephaseph:mofﬂnwholerupmselﬁmof
0, and C,. Figures 7-9 show the same results as those of
Figs. 4-6 when the same control is applied at t, = 23.27,
which is during the limit cycle response.



Simulation of Wing-Rock Motion (Three-
Dimensional Flow)

Next, we consider the three-dimensional-flow simula-
tion of the wing-rock problem.

A sharp-edged delta wing with a leading-edge sweep
of 80° is considered for the computational applications.
The angle of attack is set at 30° and the freestream Mach
number is chosen as 0.3 for low speed simulation. The
wing mass-moment of inertia about its axis is 0.285, the
bearings damping coefficient is 0.15 and the torsional
springs stiffness is 0.74. The unsteady Euler equations
are solved for the three-dimensional flows. The bound-
ary of the computational domain consists of a hemispher-
ical surface with it center at the wing trailing edge on
its line of geometric symmetry. The hemispherical sur-
face is connected 10 a cylindrical aftersurface with its
axis coinciding with the wing axis. The hemispherical
and cylindrical radii are two root-chord lengths and the
downstream, circular exit boundary is at two root-chord
lengths from the wing trailing edge. The grid consists of
48x32x32 grid points in the wrap-around, normal and
axial directions, respectively. The grid is generated in
the crossflow planes using a modified Joukowski transfor-
mation, which is applied at the grid-chord stations with
exponential clustering at the wing surface.

Since the steady flow solution is asymmetric, C,
in Eq. (16) is of non-zero value and hence Eq. (16) is
initially inhomogeneous. Att=0, we set ° = §° = 0
and release the wing with its initial M, value as the
driving rolling moment. At t = At, Eq. (16) of the wing
dynamics is integrated to obtain ¢, and hence 4, and 6,
(At = 0.005). Then, Egs. (1-11) of the fluid flow are
integrated to obtain the components of the flowfield vector
and hence p and C,. Next, t is increased to 2A¢ and the
sequential integration of the dynamics equation and the
fluid flow equations is repeated. The sequential solutions
are repeated until the limit-cycle amplitude response is
reached

In Fig. 10, we show the roll angle, rolling-moment
coefficient, C,, and normal-force coefficient, C,, versus
time. Significant transient responses develop in the time
range of ¢ = 0 — 22, wherein the amplitudes of the re-
sponses increase and decrease. Thereafter, t > 22, the
amplitudes of the responses continuously increase until
t =95 Att 2095, the amplitudes and frequencies of
the responses become periodic reaching the limit-cycle
response. During the limit-cycle response, the maximum
roll angle, 8, m,x, is 10°, the minimum roll angle, 0, nia.
is -11° and the period of oscillation is 3.53, which cor-
responds to a frequency of 1.78. With At = 0.005, each
cycle of oscillation in the limit-cycle response requires
706 time steps. The shown responses, up to ¢ = 140,
required 28,000 time steps.

Next, we consider one cycle of the limitcycle
response and analyze the roll angle, rolling-moment-
coeflicient and normal-force-coefficient responses o gain
physical insight of the wing-rock phenomenon. For this
purpose, we show in Fig. 11 8, C, and C, vz. t in
the range of ¢ = 135.19 — 138.72. This period of os-
cillation is marked by the numbers 1, 2, 3, 4 and $ in
Fig. 11. In the first quarter of the cycle (1 — 2), the roll
angle of the left side of the wing decreases from 0* —
~11° and the wing rolls in the clockwise (CW) direction,
the rolling-moment coefficient increases and changes sign
from -0.057 — 0.0 — + 0.023 and the normal-force co-
efficient decreases and then increases from 2.68 — 2.65
— 2.75. It is important to notice that the rolling moment
changes its sign which means that the rolling moment
during the first part of this quarter of the cycle is in the
CW direction (the same direction as the motion) and in
the second part of this quarter of the cycle is in the CCW
direction (the opposite direction of the motion). Hence,
the rolling moment increases the negative angle in the first
part and then it limits the growth of the roll angle in the
second part. In the second quarter of the cycle (2 — 3)
the roll angle increases from -11° — 0 and the wing rolls
in the CCW direction, the rolling-moment coefficient in-
creases and then decreases from +0.023 — 0.045 — 0.04
and the normal-force coefficients increases and then de-
creases from 2.75 — 3.0 — 2.84. The rolling-moment
coefficient is in the CCW direction (the same direction as
the motion). In the third quarter of the cycle (3—4) the
roll angle increases from 0 — 10° and the wing keeps its
rolling motion in the CCW direction, the rolling-moment
coefficient decreases and changes sign from +0.04 — 0
— ~0.038 and the normal-force coefficient decreases and
then increases from 2.84 — 2.78 — 2.86. Again, it is no-
ticed that the rolling moment changes its sign from CCW
to CW directions and limits the roll angle growth.

In Figs. 12 and 13, we show snapshots at points 2 and
4, respectively; of the cross-flow-velocity vectors and the
static-pressure contours at the chord stations of 0.54, 0.63
and 0.79 and the surface-pressure coefficient at the chord
stations of 0.54 and 0.63. In Fig. 12, the primary vortex
on the right side is nearer to the upper wing surface than
the one on the left side. Moreover, the primary vortex
on the right is further away from the plane of geometric
symmetry in comparison to the one on the left. The
surface-pressure curves show large peaks on the right side
and that the surface-pressure difference on the right side
is larger than the one on the left side. This results into
a CCW rolling moment at this maximum negative roll
angle of ~11°. In Fig. 13, the opposite process occurs;
the surface-pressure difference on the left side is larger
than the one on the rigit side and this results into a
CW rolling moment at this maximum positive roll angle
of +10°. These resuits are consistent with those of the
experimental data of Refs. 3 and 4.

In Fig. 14, we show the variations of the maximum
static pressure of the vortex cores of the primary vortices



on the left and right sides versus the roll angle for the
chord station of 0.54. The numbers on the figures cor-
respond (o those in Fig. 11. Since the maximum static
pressure of the core is proportional to the vortex-core
strength, it is obviously seen that the primary vortex on
the right side has a greater strength at point 2 as compared
to that on the left side. The strength differential between
the right and left vortices along with the locations of the
vortex cores contributes substantially to the net total CCW
rolling moment which limits the negative growth of the
roll angle and reverses the wing motion. Similarly, it is
concluded that the strength differential between the left
and right vortices at point 4 substantially contributes to
the net total CW rolling moment which limits the positive
growth of the roll angle and reverses the wing motion,

In Fig. 15, we split the rolling-moment coefficient
into restoring and damping components similar to Kon-
stadinopoulos, et al.%. First, the rolling-moment coeffi-
cient C, is fitted using the following expansions in terms
of 4 and ¢:

C =ab+ dgé + 0303 + 0402é .
+ a302Q + 0503 .+ 0103 + 9,0‘0 )
+ 090293 + 0100203 + 6“0‘0 + 01:03 (17)

The coefficients @, — a,; are determined using a least-
squares fit. A comparison of the original (-e-) and fitted
(=¢) rolling-moment coefficients is shown in Fig. 15.
Next, we split the fined-rolling-moment coefficient into a
restoring part, M,, and a damping part, M;, as follows:

M, = (al +as6% + a“é‘)o
+ (03 + dloéz) g + 0703 (18)

My = (a3 + a,6% + ag6%)é
+ (as + a90%)6° + 4,56 (19)

In Fig, 15, we also show M, and @ versus time, and
Mgy and @ versus time. Moreover, we show on these
figures the numbers 1, 2, 3, 4 and § which
to the same numbers in Figs. 11 and 14. In the first
quarter of the cycle (1-+2), the roll angle @ decreases
from 0 — -11°, the restoring rolling moment becomes
negative during the first part and positive during the
second part and the damping rolling moment, which is
negative at point 1, increases during the first part and
becomes almost zero during the second part. It is very
interesting to notice that M, and M, are negative during
the first part and hence they are in the same direction
as the motion. During the second part, M, becomes
positive reaching its maximum at point 2 when 0,,, =
~11° and hence it limits the angle growth. During the
same second part, M, becomes almost zero indicating a
loss of damping rolling moment. In the second quarter

of the cycle (2—3), M, stays almost constant during the
ﬁrstpmmddmpstowoinmesecmdplnwhenme
roll angle becomes 0°. During the same second quarter,
M, continuously increases from 0 to a maximum positive
value when the roll angle becomes 0. In the third quarter
of the cycle (34), a similar interaction of 0, M, and
M, as that of the first quarter (1-2) occurs except with
opposite signs. These conclusions are exactly similar
to those of Ref. 9. Hence, the loss of damping rolling
moment is responsible for the wing-rock motion.

CONCLUDING REMARKS

The multidisciplinary problem of wing-rock motion
and its active control has been simulated using the un-
steady, compressible, Euler equations; the Euler equa-
tion of rigid-body dynamiocs and the ND equations for
the grid deformation. The fluid flow Euler equations are
solved using an implicit, approximately factored, central-
difference, finite-volume scheme; rigid-body Euler equa-
tion is solved using a four-stage, Runge-Kutta scheme and
the ND equations are solved using an ADI scheme. Sim-
ulation of the wing-rock problem is obtained for a deita
wing which is mounted on an axle with torsional springs
and the axle is free to rotate in bearings with viscous
damping. The wing starts its motion under the effect of an
initial rolling moment due to the initially asymmetric flow
axzemrollanglemdzeoanguhrvelocity. For the ac-
tive control of wing-rock motion, a tuned anti-symmetric
leading-edge flaps oscillation is used to achieve that pur-
pose. Also, ithasbealshowntlmdiehystu'esism-
sponsuofposiﬁonmdmgﬂuofdresymnwicﬁght
andlet‘tprinmymticummpmsibleforﬂnwingmck
motion. Moreover, it has also been shown that the loss
of aerodynamic damping rolling moment at the zero an-
gular velocity valueisamainreasont‘orthewingmck
motion. These conclusions are consistent with the pre-
vious findings of the experimental®* and computational®
research work.
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Fig. 1  Wing-Flaps Dynamics for Rolling Motion. .
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Abstract

Unsteady Euler and Navier-Stokes Computations Around
Oscillating Delta Wings Including Dynamics

Abmed Abd-El-Bar Ahmed Salman
0ld Dominion University, 1992

Director: Professor Osama A. Kandil

Unsteady flows around rigid or flexible delta wings with and
without oscillating leading-edge flaps are considered. These unsteady
flow problems are categorized under two classes of problems. In the
first class, the wing motion is prescribed a priori and in the second
class, the wing motion is obtained as a part of the solution. The
formulation of the first class includes either the unsteady Euler or
unsteady Navier-Stokes equations for the fluid dynamiecs and the
unsteady linearized Navier-displacement equations for the grid
deformation. For the formulation of the second class, the rigid-body
dynamics equations are used, in addition to the fluid dynamics and

grid-deformation equations, to obtain the wing motion.

Different computational schemes have been used to solve these
equations, For the fluid-dynamics equations, an implicit,
approximately-factored, central-differenced finite-volume scheme is
used. For the rigid-body dynamics equation, an explicit, four-stage
Runge-Kutta, time-stepping scheme is used. For the grid deformation
equations, an alternating direction implicit (ADI) scheme is used. A
modified Joukowski Transformation is used to generate conical and
three-dimensional grids, and an elliptic grid generator is used to

generate the two-dimensional grids.






The problem of unsteady transonijec flow past a bicircular-arc
airfoil undergoing prescribed thickening-thinning oscillation is
studied using the CFL2D code. This code is used to solve the Navier-
Stokes equations using an implicit, flux-difference splitting, finite-
volume scheme. The unsteady linearized Navier-displacement (ND)
equations are used to compute grid deformation. This application falls
under the first class of problems described above. It demonstrates the
validity of applying the developed schemes for flexible airfoils, by

comparing present results with the available computational results.

For the unsteady ‘supersonic flows around flexible delta wings
with prescribed oscillating deformation and rigid delta wings with
leading-edge-flap oscillations, the conservative, unsteady Euler and
thin-layer Navier-Stokes equations in a moving frame-of-reference.
along with the linearized ND equations, have been used. These problems
are solved under the locally-conical flow assumption which
substantially reduces the computational cost and still provides
physical understanding of the flow behavior. Two main problems are
solved to demonstrate the validity of the developed schemes. The first
problem is that of a flexible delta wing undergoing a prescribed
bending-mode oscillation. In the second problem, a rigid-delta wing
with symmetric and anti-symmetric flap oscillations is considered. For
the second problem, a parametric study of the effects of reduced
frequency and hinge location is considered. The wing-flap problem also
has been studied for different angles of attack and Mach numbers where
shock waves could be either under or above the pPrimary vortex of the

leading-edge flaps. These applications fall under the first class of
problems.

For the unsteady flow applications, wvhere the wing motion is not
prescribed a priori (second class of problems), either the unsteady
Euler or thin-layer Navier-Stokes equations and the rigid-body
dynamics equations, in a moving frame of reference, are solved
sequentijally to obtain the flow behavior and the wing motion. The main
application for this class of unsteady flow phenomena, is the wing-
rock problem. Using the locally-conical flow assumption, three

problems are solved. The first is that of a delta wing undergoing a



—;



damped rolling oscillation. The second

is that of a delta wing
undergoing a limit-cycle, wving-rock motion. In the third problem.

suppression of the wving-rock motion is demonstrated using a tuned

anti-symmetric oscillation of the leading-edge flaps. In the third

problem, the unsteady linearized Navier-displacement equations are

also used to account for the grid deformation due to the le

ading-edge
flap motion.

Next, the locally-conical-flow assumption has been relaxed and

the unsteady, three-dimensional, subsonic flow around a sharp-edged

delta wing undergoing a limit-cycle ving-rock motion has been solved.

For this problem, the unsteady Euler equations are solved sequentially

along with the rigid-body dynamics equation.
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