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This report consists of the attached manuscript titled, "Series

Integration of the Diaphragm Cell Transport Equation When the Diffusion

Coefficient Depends Upon Concentration", by Judith B. Cain and James K.

Baird. The manuscript will appear as an article in the September 15, 1992

edition of The Journal of Chemical Physics. The work reported in this

article was submitted by Judity B. Cain to the Graduate School of the

University of Alabama in Huntsville as part of an M.S. thesis in chemistry.

The University awarded Ms. Cain the M.S. degree at its June 1992

Commencement.

Integration of the the diaphragm cell transport equation in series was

required in order to measure the diffusion coefficient in the system

succinonitrile/water. A report on the measurments, themselves, is being

prepared for publication.



Series Integration of the Diaphragm Cell Transport Equation

When the Diffusion Coefficient is a Function of Concentration

Judith B. Cain* and James K. Baird

Department of Chemistry
University of Alabama in Huntsville

Huntsville, AL 35899

Abstract

In the case of the diaphragm cell transport equation where the interdiffusion

coefficient is a function of concentration, we have derived an integral of the form,

t = Bo + BL In (Ac) + BI(Ac) + B2(Ac_+ ...

where t is the time and Ac is the concentration difference across the frit. The coefficient,

B0, is a constant of integration, while the coefficients, BL, B 1, B2, .... depend in general

upon the cell constant, the compartment volumes, and the interdiffusion coefficient and

various of its concentration derivatives evaluated at the mean concentration for the cell.

Explicit formulae for BL, B 1, B2, ... are given.

*Submitted in partial fulfillment of the requirements of the M.S. degree from the

University of Alabama in Huntsville.



I. Introduction

The diaphragm cell is the most convenient device for measuring diffusion

coefficients in liquids. 1-4 The cell consists of two well-stirred compartments containing

solutions of different composition on opposite sides of a membrane, which is usually a

sintered glass disk. The stirring guarantees that the contents of each compartment are

uniform, so that mixing is limited to transport through the frit. In operation, the cell is

oriented so that the normal to the plane of the frit is parallel to the gravity vector. The

heavier solution is placed in the lower compartment, while the lighter solution is placed in

the upper compartment; this arrangement obviates gravitational convection within the frit.

Because molecular diameters are small as compared with the size of the interstitial spaces

between the sintered glass beads, the diffusive transport within the frit is the same as in

bulk solution.

In the absence of volume change on mixing, the center of volume within the frit is

fixed with respect to the laboratory. Diffusion through the frit can then be referred to

volume-fixed coordinates, in which reference frame a two component solution has but

one diffusion coefficient. 5

The diaphragm cell is a relative device, since it involves a cell constant which

must be calibrated by analyzing data for a solution whose diffusion coefficient is already

known. 1-4 Once calibrated, however, the cell may be used to determine an unknown

diffusion coefficient by following the time relaxation of the concentration difference

across the frit.

For the important case where the diffusion coefficient is a function of

concentration, we have recently shown that the relation between the relaxation time, t,

and the concentration difference, Ac, is of the general form

t= BO + BLIn (Ac) + BI(Ac) +l_!_c)2 + ... (1)

The B0-coefficient is a constant of integration, while the remaining B-coefficients depend

in general upon the cell constant, the compz.-'a'ncnt volumes and the interdiffusion

coefficient and various of its concentration derivatives evaluated at the mean

concentration for the cell. 6,7 In our previous work, however, we have obtained explicit



expressionsonly for BL, B1, andB2.7 Below, we extendour proof to derive a formula

for the general B-coefficient.

2. Solution of the Transport Equation

For a planar system, Fick's In'st law states

3e
J

= - D(c)
(2)

where J is the flux, c is the concentration, D(c) is the functional form of the interdiffusion

coefficient, and x is the coordinate normal to the plane. Regardless of the initial solute

distribution within the flit, diffusion through the frit rapidly achieves a steady state. 8,9 In

that case, J is independent of coordinate, and Eq.(2) may be integrated across the flit to

obtain

2
j =_ 1 D(c) dc (3)

g
1

In Eq.(3), t is the effective thickness of the frit, and Cl and c2 are the concentrations

below and above the frit, respectively.

We let V1 and V2 be the respective compartment volumes. If diffusion proceeds

from V 1 into V2, conservation of mass specifies that

v dcl _
-3i- - - JA (4)

and

V2 _t 2 = JA (5)

where A is the cross-sectional area of the flit. Substitution of Eq.(3) into Eqs.(4) and (5)

leads to the coupled equations describing the diaphragm cell:

V1 d^l = - Allt- D(c) dc
dt e L

(6)

Cl
,, dc2 A D(c) de
*2--di- = e

2

(7)



Combined with the initial conditions,Cl(0) and c2(0),Eqs.(6)and (7) specify an initial

value problem satisfied by the two concentrations, cl(t) and c2(t). As a pair of coupled,

first order ordinary differential equations, Eqs.(6) and (7) are solved by two integrals.

2.1 First Integral

If Eqs. (6) and (7) are added, we obtain

v dCl xr dc2
= 0 (8)

The solution to Eq.(8) is

= Vlct(t) + V2c2(t) = Vlcl(0) + V2c2(0) (9)
VI+V2 VI+V 2

where E, the volume-averaged concentration, is a constant of the motion.

2.2 Second Integral

We divide Eq.(6) by V1 and Eq.(7) by V2 and subtract to obtain

where

©l
d(cl-c2) __ D(c)dc-"

4_

(10)

is the cell constant.

diaphragm cell. 1-4

Eq.(10)

13 = A (V--LI+V--_2) (11)

is ordinarily considered as the transport equation for the

To solve Eq.(10) for the difference, Ac(t) = cl(t) - c2(t), we introduce into the

right hand side, c = _ + y, dc = dy, and

Eq.(10) then becomes

w = V1V2Ac (12)
VI+V2

f wN!dAc = -13 D(E+y)dy (13)
dt

d -wN2



For electrolytes away from low concentration (in which regime the Debye-

Huckel-Onsager theory requires terms involving ( c 1/2 )1,4 and for nonelectrolytes at any

concentration, we can expand D( _ + y) in a Taylor series about _ :

D(_ + y) = D(b-)+ _ D(k) (c},yk
k_

k=l

(14)

where DOO(E)=(dkD(c)/dc_e_-_. Substitution of Eq.(14) into the right hand side of

Eq.(13) followed by term-by-term integration gives the result,

where

dd_t =-_D(-6)_c[1 +k._l bl_(Ac)k1= (15)

Note in the case

Dk)(_) (V2)TM - (-VI)TM
bk=

(k+ I)!D (_-) (V1 + V2}TM

Vl = V2 thatbk = 0 fork odd.

(16)

The object is now to separate the variables, t and Ac, in Eq.(15) and integrate. If

we introduce the dimensionless time

x= 13D(_)t

the reciprocalof Eq.(15) can be written

When

d_: = I+ bk(Ac

dln (Ac) k=1

(17)

(18)

E <
k=l

the right hand side of Eq.(18) can be expanded in a geometric series. The result is

d-c

dln(Ac)

=l+Y. (-1) m Ac

m--I

(19)

(20)



The multinominal theorem isstatedby Abramowitz and Stegun I0in the form,

In Eq.(21),

Xk

"k--Ac = m! E Z (n;aba2,...,an)* (x,)at(x2)a'-..(Xn_
n--m n[

(21)

(n;al,a2, .... a_}*= nt/lalal!2a2a2 !...na*an! (22)

is a multinominal coefficient. The inner sum in Eq.(21) is carried out over all integral
)

values of the aj s such that

at + a2 +...+an = m (23)

al + 2a2 +...+ nan = n (24)

The values of the aj)s may be established by considering the various partitions of n; aj is

the number of times that the integer, j, occurs in that partition, while m is the total number

of integers in the partition.

If we identify bk with xk/k, we may substitute Eq.(21) into Eq.(20). After

interchangeof summations with respect to n and m, the result is

dx = dAcI1Ac + _ (-I} m m! Z( n;al,a2,...,an)*(bt_t(2b2)a2...(nbn
n--l " --

(25)

In eq.(25), the variables x and Ac are separated, and the right hand side can be integrated

term-by-term. After reintroducing the variable) t, through Eq.(17)) we obtain for the

integrated form of Eq.(25) the result

t= Bo + BLIn (Ac) + "_ Bn(AC_ a
n--I

where BO is the constant of integration, while

and

BL =-(_ D (-_))-I

(26)

(27)



n

Bn = (BL/nn!) _ (-1)m m! _ (n;al,a2,...an)*(bl)_' (262)a2... (nbn_ (28)
m=l

Eqs.(26)-(28) solve Eq.(10) and complete the derivation of Eq.(1). Eq.(27) defines BL

while Eq.(28) is a formula for generating the polynomial B-coefficient of arbitrary order.

Abramowitz and Stegun list in their Table 24.2 all the partitions of n for n = 1 to

10 and give values for the corresponding binomial coefficients, (n;al,a2,...,an)*. 10 On the

basis of that table, it can be seen that the complexity of the double sum in Eq.(28) grows

slowly with n; specifically, as n advances from 1 to 10, the number of terms appearing in

Eq.(28) is 1, 2, 3, 5, 7, 11, 15, 22, 30, and 42, respectively. This integer sequence

represents the number of partitions of n and has been tabulated by Abramowitz at

Stegun 10 and by Sloane. 11

3. Discussion

Of physical interest is the determination of the values of D(E) and the

instantaneous derivatives, D(k) (_). This can be accomplished by fitting t vs. Ac

experimental data to Eq.(1) and treating the B-coefficients as least squares parameters.

Once the B-coefficients have been evaluated, D('ff) follows from Eq.(27) while the D(k_E)

follow from Eqs.(16) and (28). Since any t vs.Ac data set is necessarily finite in extent,

Eq.(1) must first be truncated so that the number of B-coefficients to be determined does

not exceed the number of experimental data points available. Accurate truncation is

always possible, however, since for small enough Ac, the sum of all terms dropped can be

made less than the last term retained. 12 Having derived previously expressions for BL,

B1, and B2, we have successfully carried out this procedure to determine D(6), D(I_)

and D(2_) for aqueous hydrochloric acid at _ = 1 M.7

To the extent that the accuracy of the experimental data will allow, the higher

derivatives can be evaluated using Eqs.(16) and (28). Specifically, by virtue of Eq.(16),

each bk is proportional to D(k)(c-'); the bk are in turn related to the Bn by a triangularized

system of linear, algebraic equations. Employing Eqs.(27) and (28), we have tabulated in

Table 1 explicit expressions for the f'rrst four B-coefficients. This triangularized system

can be readily solved for the bk in terms of the Bn. The first four solutions have been

listed il_ Table 2.



When integratingEq.(10), wecould haveexpandedD(c) in a Taylor series about

any fixed concentration consistent with the solution properties of electrolytes and non-

electrolytes. We chose E, however, because as is evident from Eq.(16) and Table 1, this

origin makes Bn. = 0 whenever V1 = V2 and n is odd. This property may be exploited

experimentally in situations where only the value of D ('6) is desired; since in this case the

number of polynomial coefficients is reduced by half, a finite t vs. Ac data set may be

fitted more accurately, because Eq.(1) can be extended to higher order in Ac than would

be possible otherwise. 13,14
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Table 1. Triangularized systemof linear algebraicequationsfor the Bn-coefficients in
Eq.(1)expressedin termsof thebk-coefficientsdefinedby (16). Theparameter_.=[3D(6).

1

2

3
4

bl/

(b2-bl2)/ 2_.

(b3-2blb2 + bl:) / 3_.

(b4- 2bib3 -b22+ 3bl 21>2 - bx4)/4_.



Table 2. Equations in Table 1 solved for the bk-coefficients in terms of the Bn-
coefficients. Theparameter _.= 13D(-d).

1

2

3

4

2_,B2- _,2B,2

3_,B3+ 4_.2B1B2- 3_,3B1

4X]34+ 2_,2(3B1B3+ 2B2_- 2_.2B12B2- _,4BI_"


