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ABSTRACT

We study the invariant properties of the convection equation Ou/Ot + a Ou/Ox = 0 with respect to
spatial reflection, time reversal, and space-time inversion. Generally, a finite-difference analogue
of this equation may possess some or none of these properties. It is shown that, under certain
conditions, the von Neumann amplification factor of an analogue satisfies a special relation for
each invariant property this analogue possesses. Particularly, an analogue is neutrally stable and
thus free of numerical diffusion if it possesses the invariant property related to space-time
inversion. It is also explained why generally (i) an upwind scheme possesses neither the invariant

property related to spatial reflection nor that related to space-time inversion, and (ii) an explicit
scheme possesses neither the invariant property related to time reversal nor that related to space-
time inversion. Extension to the viscous case and a remarkable connection between the current

work and a new numerical framework for solving conservation laws are also discussed.

1. _TRODUCTION

Many physical equations are invariant (i.e., they do not change their forms) under certain
transformations. As a simple example, consider the convection equation

_u _u

_---_-+ a _ = 0 (1.1)

where a is an arbitrary real constant. Eq. (1.1) is equivalent to

bu 3u
+ a' - 0 (1.2)

_t' /)x'

if

or

(i) x' =-x, t' = t, and a' =-a (1.3)

(ii) x" = x, t" =-t, and a' =-a (1.4)

In other words, Eq. (1.1) is mapped into the same equation under the mapping

x _ x', t ---) t', and a _ a" (1.5)

ifx', t', and a" are defined either by Eq. (1.3) or Eq. (1.4). Since the mapping defined by Eq.
(1.5) with

(iii) x" =-x, t' =-t, and a" = a (1.6)

can be considered as the product of the first two mappings (in either order), Eq. (1.1) is also
mapped into itself under the third mapping.
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Sincethemapping(x,t) --_ (x',t') represents (i) spatial reflection with respect to the reference
plane x = 0 ifx' = -x and t" = t, (ii) rune reversal with respect to the reference plane t = 0 ifx' =
x and t' = -t, and (iii) space-time inversion with respect to the origin ifx' = -x and t' = -t, Eq.

(1.1) is said to possess invariant properties with respect to spatial reflection, time reversal, and
space-time inversion respectively.

As a result of the above properties, solutions to Eq. (1.1) also possess similar invariant properties.
Let F be a function of a real variable. Then, for any a,

u = Uo(X,t;a) d_ff F(x-at) (1.7)

is a solution to Eq. (1.1) if the derivative of F exists. Since (i) u = Uo(X,t;a) is a solution to Eq.
(1.1) if and only if u = u o(X', t" ;a') is a solution to Eq. (1.2), and (ii) Eq. (1.1) is equivalent to Eq.
(1.2) if x', t', and a" are related to x, t and a by either Eq. (1.3) or Eq. (1.4) or Eq. (1.6), one
concludes that

and

u = Uo(-X,t;-a) , (1.8)

u = uo(x,-t;-a) , (1.9)

u = Uo(-X,-t;a) (1.10)

are also solutions to Eq. (1.1) (Note: do not alter the sign of a in Eq. (1.1)). The above
conclusion can also be verified directly by using the facts that Uo(-X,t;-a) = F(-(x-at)),

Uo(X,-t ;-a) = F(x-at), and Uo(-X,-t ;a) = F(-(x-at)).

Numerical schemes generally are constructed without considering the invariant properties of the
physical equations to be solved [1]. As a result, numerical solutions generally do not share the
same invariant properties of physical solutions. Using numerical analogues of Eq. (1.1) as
examples, it will be explained in this paper how violation of the invariant property with respect to
space-time inversion is related to the numerical diffusion of these analogues. Particularly, it will
be shown that a two-level constant-coefficient difference analogue of Eq. (1.1) is neutrally stable

and thus free of numerical diffusion if it preserves the invariant property related to space-time
inversion.

The remainder of this paper is briefly described as follows: In Section 2, we investigate the
invariant properties of several well known numerical analogues of Eq. (1.1). It is shown that the
Wendroff scheme Eq. (2.1) and the Crank-Nicolson scheme Eq. (2.11) are invariant under (i)
spatial reflection, (ii) time reversal, and (iii) space-time inversion, in a sense to be defined. Note
that invariance under any two of (i) - (iii) implies invariance under the third. We also show that
the invariance of a scheme under any one of (i) - (iii) cannot occur unless the configuration of its
stencil satisfies a certain necessary condition. This explains why generally an upwind scheme
cannot be invariant under either spatial reflection or space-time inversion while a two-level
explicit scheme cannot he invariant under either time reversal or space-time inversion.

In Section 3, we consider an arbitrary two-level constant-coefficient finite-difference analogue of
Eq. (1.1). It is shown that the yon Neumann amplification factor of this analogue must satisfy
certain relation if it is invariant under any one of the transformations referred to above. As a
result, one can show that a scheme must be neutrally stable if it is invariant under space-time
inversion.

In Section 4, the discussion is extended to the convection-diffusion equation Eq. (4.1). We also

consider the Leapfrog/DuFort-Frankel scheme Eq. (4.22), which involves three time levels and
also is invariant under all three transformations referred to above.



In Section5, wesummarizethekeyresultsobtainedin thecurrentstudyandexplainhowthey
canbeusedinamorecomplicatedsituation.Wealsoshowthat,contrarytotraditionaltwo-level
explicitscheme,anewtwo-levelexplicitanalogueof Eq.(4.1),whichis constructedbyusinga
numericalframeworkcurrentlybeingdevelopedby ChangandTo [2], is invariantunderspatial
reflection,time reversalandspace-timeinversion.It is also shown that there is a remarkable

similarity between the forms of the amplification factors of the new scheme and the
Leapfrog/DuFort-Frankel scheme. The implication of this similarity is also discussed.

2. INVARIANT PROPERTIES OF NUMERICAL SCHEMES

A two-level difference scheme which can be used to solve Eq. (1.1) is the Wendroff scheme
[p.503, 3], i.e.,

n . n+! n
(1 +V)(U;++I 1 --Uj ) + (1--V)(Uj --Uj+t ) = 0 (2.1)

where

v d_e_faAt
Ax

is the Courant number. We assume that Eq. (2.1) is valid for j,n = 0, +1, _+_2, • • •.

(2.2)

Given any pair of integers Jo and no, there is one equation in Eq. (2.1) with j =Jo and n = no.

The image of this equation under the mapping SR defined by u_ --, u__j (j,n =0, +1, +_2, ... )
and v _ -v is

• . no+l no .. no+l no

(1 -v)(,u_o.o+t) -U_do ) + (1 +v)tu_jo -u_(jo+ 0 ) = 0 (2.3)

Eq. (2.3) can be rewritten as
no+l no . no+l no

( 1 + v ) (u_(/o+l)+ 1 - u-0o+l) ) + ( 1 - v ) t u-0o+l ) - u-(jo+l)+ 1 ) = 0 (2.4)

A comparison between Eq. (2.4) and (2.1) reveals that the image of the original equation is also
one of Eq. (2.1) with j = --(jo+l), n = no and the same Courant number v.

Since Jo and no are arbitrary integers, one concludes that the system of equations represented by
Eq. (2.1) is mapped into itself under the mapping SR. In other words, the system of equations
represented by

( 1 _+1-v)(u_0.+D-un_j) + (l+v)(u"_Ta-un_(/+l)) = 0 , j,n = 0, +l, _+_2, .-. (2.5)

is identical to that represented by Eq. (2.1). In this paper, a scheme with this property is said to
be invariant under spatial reflection.

Let R 1 be a set of real numbers such that the negative of an element is also an element. For any
w R 1, let

uj') = _uo(j,n;v) , j,n =0, +1, _-k2, .-- (2.6)

be a solution to Eq. (2.1). Since Eqs. (2.1) and (2.5) are identical, Eq. (2.6) is also a solution to
Eq. (2.5), i.e.,

( 1 - V) [ Uo(-(j +1), n +1 ;V) - U_o(-j, n ;v) ]

+ (1 +v)[uo(-j,n+l;v)-uo(-(j+l),n;v)] = 0 , j,n =0, +1, _-k2, -.. (2.7)

Since Eq. (2.7) is valid for any w Rl, it is also valid if v is replaced by -v. A comparison
between this new form and Eq. (2.1) reveals that, for any wR 1,

n

uj = Uo(-j,n;-v) , j,n =0, +1, +9, ..- (2.8)



is alsoa solutionto Eq. (2.1). Obviously,this propertyis sharedby anyschemewhich is
invariantunderspatialreflection.Sincej is the numerical analogy of x and v = aat/Ax, this

property is similar to the property that Eq. (1.8) must satisfy Eq. (1.1) ifEq. (1.7) does.

Similarly, it can be shown that the system of equations represented by Eq. (2.1) is mapped into
itself under the mapping TR defined by u7 --->u_-n (d',n = 0, +1, +9, • • • ) and v --->-v. In this
paper, a scheme with this property is said to be invariant under time reversal. Also it may be
shown that, for any w R 1,

u7 = uo(j, -n ;-v) , j,n =0, +1, _+_2,... (2.9)

must satisfy a scheme which is invariant under time reversal if Eq. (2.6) satisfies this scheme for

any w R i.

n -n (j',n = 0, +1, :k2, • • • ) and v --->v. Since any oneLet the mapping STI be defined by uj --->u_j
of the three mappings SR, TR, and STI is the product of the other two mappings (in either order),

the system of equations represented by Eq. (2.1) is also mapped into itself under the mapping
STI. In this paper, a scheme with this property is said to be invariant under space-time inversion.

Obviously, for any ve R 1",

ujn = !to(-j, -n ;v) , j,n =0, +1, :k2, --- (2.10)

must satisfy a scheme which is invariant under space-time inversion if Eq. (2.6) satisfies this

scheme for any w R 1.

To proceed further, we now establish a necessary condition for a scheme to be invariant under
spatial reflection. Consider the equation in Eq. (2.1) with j =Jo and n =no. Its stencil So is
formed by the mesh points A = (jo,no), B = (jo+l,no), C = (jo+l,no+l), and D = (jo,n0+l) (see
Fig. 1). The image of the above equation under the mapping SR has a stencil S0 formed by the
mesh points A" = (-jo,no), B' = (--(jo+l),no), C' = (-(jo+l),no+l), and D" = (-j0,no+l).

Since the Wendroff scheme is invariant under spatial reflection, the image referred to above is

also one of Eq. (2.1) (with j = -(jo+l) and n = no). Since the configuration of the stencil of any
constant-coefficient scheme (like Eq. (2.1)) does not vary as j and n take different values, one
concludes that the configurations of So and S0 must be identical. In other words, B'A'D'C' can
be made to coincide with ABCD by a simple translation in the x--direction (which, of course, is

true).

To further explore the significance of the above discussion, consider a constant-coefficient
upwind scheme with the mesh point D missing from the stencil So (and thus D" missing from
S0). Under this circumstance, the configurations of So and S0 are different and it is obvious that
the original equation and its image cannot satisfy the same upwind scheme. As a result, the
scheme cannot be invariant under spatial reflection.

Note that the spatial-reflection image of any mesh point Q',n), j,n =0, +1, +9, -.., is (-j,n)
(Here we assume that the plane of reflection is j = 0). Because the stencil S0 is formed by the

spatial-reflection images of the mesh points of the stencil So, S0 is the spatial-reflection image of
So. As a result of this observation, one can conclude from the above discussions that a constant-
coefficient scheme cannot be invariant under spatial reflection if the configurations of its stencil

and the spatial-reflection image are different.

Similarly, one can conclude that a constant-coefficient scheme cannot be invariant under time
reversal (space-time inversion) if the configurations of its stencil and the time-reversal (space-
time-inversion) image are different. Note that the time-reversal (space-time-inversion) image of
any mesh point (j,n), j,n = 0, +1, +9, ..., is (j, -n) ((-j, -n)).
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It hasbeen shown that the Wendroff scheme is invariant under spatial reflection, time reversal,

and space-time inversion. Another scheme which possesses the same properties is the Crank-
Nicolson scheme [p.504, 3], i.e.,

un+l n V I-, n+l n rt+l n

j -- Uj + "_- tUj+l +Uj+I --Uj-I --Uj-1 ] = 0 (2.11)

Obviously the stencils of these two schemes satisfy the above necessary conditions for invariance
under spatial reflection, time reversal, and space-time inversion.

The Lax-Wendroff scheme [p. 101, 4], i.e.,

un+l V(V+l) n V2 n V(2_-l) -J - 2 uj-1 + (1- )uj + uj+l (2.12)

is invariant under spatial reflection. However, its stencil does not meet the necessary condition
for invariance under time reversal or space-time inversion. Generally, the stencil of an explicit

upwind scheme does not meet any of the necessary conditions for invariance under spatial
reflection, time reversal, and space-time inversion.

3. VON NEUMANN ANALYSIS

In this section, again we consider only the numerical analogues of Eq. (1.1). We assume that
they are two-level linear difference schemes with real constant coefficients. As in Eqs. (2.1),
(2.11), and (2.12), these coefficients are assumed to be functions of the Courant number v.

For any one of the schemes referred to above, let G(v,0), ve R I, and _ < 0 < +o_ be the
amplification factor corresponding to the Fourier component e ij°. Here i--_/-1 and 0 is the phase

angle variation over Ax. Then, for any v_ R 1 and any 0,

u'] = [G(v,O)]"e ij° , j,n =0, +1, _+_2,... (3.1)

is a solution to the scheme under consideration. Note that, given any v and 0, a two-level scheme
has only one amplification factor. For any ve R 1 and any 0, let

ujn = [_(v,O)]neiJO , j,n =0, +1, +9, ... (3.2)

be another solution to the same two-level scheme. Then one must have

G(v,0) = G(v,0) , v_ el , -oo<0<+oo (3.3)

By assumption, the coefficients of the scheme under consideration are real. It follows that the
complex conjugate of a solution is also a solution. Thus Eq. (3.1) implies that, for any w R t and
any 19,

u_ = [G(v,O)]"e -ij° , j,n =0, +1,_+_2, -.. (3.4)

is also a solution to the same scheme. Since Eq. (3.4) will take the form of Eq. (3.2) if 19 is
replaced by -0, Eq. (3.3) implies that

G(v,--0) = G(v,0) , v_ R1 , -_<19<+oo (3.5)

Let the scheme be invariant under spatial reflection, i.e., Eq. (2.8) is a solution to this scheme if
Eq. (2.6) is. Then Eq. (3.1) implies that, for any veR l and any 0,

u'] = [G(-v,O)]"e -ij° , j,n = 0, +1, :t.2, ... (3.6)

is also a solution to this scheme. Since Eq. (3.6) will take the form of Eq. (3.2) if 0 is replaced by
-0, Eq. (3.3) implies that
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G(-v,---e)=G(v,O) , v_R1 , -_<0<+_

if the scheme is invariant under spatial reflection.

(3.7)

Let the scheme be invariant under time reversal, i.e., Eq. (2.9) is a solution to this scheme if Eq.
(2.6) is. Then Eq. (3.1) implies that, for any wR 1 and any 0,

ujn = [(G(_v,O))-l],,eijO , j,n =0, +1, +9, ... (3.8)

is also a solution to this scheme. By comparing Eq. (3.8) with Eq. (3.2) and using Eq. (3.3), one
concludes that

[G(-v,0)] -1 = G(v,0) , v_Rl , -.o<0<+oo (3.9)

if the scheme is invariant under time reversal.

Similarly, it can be shown that

[G(v,--0)] -1 = G(v,0) , v_ RI

if the scheme is invariant under space-time inversion.

, -** < 0 <+_ (3.10)

Note that any two of Eqs. (3.7), (3.9), and (3.10) implies the third. This is a result of the fact that
any one of the three mappings SR, TR, and STI is the product of the other two mappings (in
either order).

By using Eqs. (3.5) and (3.10), it is easy to show that

G(v,0) = G(v,-0) = [G(v,0) ]-!

Thus we arrive at the conclusion that the scheme is neutrally stable, i.e.,

IG(v,0)l = 1 , ve R 1 , -oo<0<+oo

if the scheme is invariant under space-time inversion.

(3.11)

(3.12)

The amplification factors of the Wendroff scheme Eq. (2.1) and the Crank-Nicolson scheme Eq.
(2.11), respectively, are

G (v, 0) = cos(0/2) - ivsin(0/2) Wendroff (3.13)
cos(0/2) + ivsin(0/2)

and

iv

1 - T sin0
G (v, 0) - Crank-Nicolson (3.14)

iv
1 + 7 sin0

2

For the Wendroff scheme, G(v,0) is not uniquely defined only when v = 0 and 0 = :ff_, +3_,
_+_5_,• • • Thus we can choose R l to be the set of all real numbers excluding 0. For the Crank-
Nicolson scheme, G(v,0) is defined for all real v and real 0. Thus R t is the set of all real
numbers. Since both schemes are invariant under spatial reflection, time reversal, and space-time
inversion, both amplification factors satisfy Eqs. (3.5), (3.7), and (3.9) - (3.12).

Contrarily, the amplification factor

G(v,0) = 1 -v2( 1 - cos0) - ivsin0 -o. < v, 0 < +oo (3.15)

of the Lax-Wendroff scheme Eq. (2.12) satisfies Eqs. (3.5) and (3.7) but not any one of Eqs. (3.9)
- (3.12). This is consistent with the fact that the Lax-Wendroff scheme is invariant under spatial
reflection but not under either time reversal or space-time inversion.
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4. EXTENSIONS

An extension to Eq. (1.1) is the convection-diffusion equation

0U 0U 02U

0--t- + a-_x - Ix 0x 2 - 0

where a and IXare arbitrary real constants. Eq. (4.1) is equivalent to

0U t)U 02U
+ a'_ - IX' - 0

/)t' /)x' _X '2

if

or

or

(4.1)

(4.2)

(i) x' =-x, t" = t, a" =-a and IX', = Ix (4.3)

(ii) x' = x, t" =-t, a" =-a, and IX' =-IX (4.4)

(iii) x' =-x, t' =-t, a' = a, and IX'=-Ix (4.5)

In other words, Eq. (4.1) is mapped into itself under the mapping

x _ x" , t _ t' , a _ a' , and IX _ _t' (4.6)

ifx', t', a', and Ix' are defined by any one of(/) - (iii). Obviously, any one of the three mappings
defined by Eqs. (4.6) and (4.3) - (4.5) can be considered as the product of the other two (in either
order). With the same reasoning given in Section 1, Eq. (4.1) is said to possess invariant
properties with respect to spatial reflection, time reversal, and space-time inversion.

Let

u = Uo(X,t;a, IX) (4.7)

be a solution to Eq. (4.1)• By using the above invariant properties and a argument similar to that
presented in Section 1, it can be shown that

u = Uo(-X,t;-a,_t) (4.8)

u = Uo(X, -t ;-a,-Ix) (4.9)

and

are also solutions to Eq. (4.1).

u = u0(-x,-t;a,-_t) (4.10)

Let

_, de_f 2__ttAt
(Ax) 2 (4.11)

Let u7 be the dependent variables at the mesh point Q',n) of a constant-coefficient finite-

difference analogue of Eq. (4.1). Let the mappings SR', TR', and STI', respectively, be defined
by (i) u_ --_ u__j (j,n = O, +1, _+_2, ... ), v -_ -v, and y--_ y, (ii) u7 --> u_n (j,n = O, ±1, _+_2, ... ),
v --_ -v, and _l---_ -'t, and (iii) u_ --_ u--7 (j,n =0, +1, ±2, • .. ), v --> v, and t,-_ -),. Obviously,

• • P • .

any one of the mappings SR, TR, and STI can be consxdered as the product of the other two (m
either order). In this paper, an analogue of Eq. (4.1) is said to be invariant under spatial reflection
(time reversal, space-time inversion) if the system of equations formed by this analogue is
mapped into itself under the mapping SR' (TR', STI').



LetR2 be a set of ordered pairs of real numbers such that both (-x,y) and (x, -y) are elements of
R 2 if (x,y) is. For any (v,_/)eR2, let

n

uj = !t0Q',n;v,)') , j,n =0, +1, +7-, ... (4.12)

be a solution to a finite-difference analogue of Eq. (4.1). Then it can be shown that, for any
(v,y) R2,

u7 = u0(-j,n;-v,_/) , j,n =0, +1, _-t.2, -.. (4.13)

u7 = tt0 (], -n ;-v,-)') , j,n =0, +1, :t:2, -. (4.14)

and

u_t = l_0(-j,-n;v,-_/) , j,n =0, +1, :t.2, ... (4.15)

respectively, are solutions to this analogue if it is invariant under spatial reflection, time reversal,
and space-time inversion, respectively. Note that the proof follows a line of arguments which
was used to obtain similar results in Section 2.

Also, it is obvious that the necessary conditions for invariance established in Section 2 regarding
the stencil's configuration remain valid for the current extension.

Let the numerical analogue under consideration be a two-level linear difference scheme with real
constant coefficients. These coefficients are assumed to be functions of v and 7. Let G(v,),,0),
(v,)')_R2 and -** < 0 <+00, be the amplification factor. Then by using a reasoning similar to
that leading to Eq. (3.5), one concludes that

G(v,y,-0) = G(v,_/,0) , (v,_/) _ R2 , -oo < 0 < +oo (4.16)

Similarly, by using Eqs. (4.13) - (4.15), it can be shown that (i)

G(-v,7,-0) = G(v,_t,0) , (v,),) _ R 2 , -,_ < 0 < +,,o (4.17)

if the scheme is invariant under spatial reflection, (ii)

[G(-v,-T,0)] -1 = G(v,7,0) , (v,7) e R2 , -oo < 0 < +oo (4.18)

if the scheme is invariant under time reversal, and (iii)

[G(v,-_/,--0)] -1 = G(v,_/,0) , (v,_/) _ R 2 , -o_ < 0 < +oo (4.19)

if the scheme is invariant under space-time inversion. Obviously, any two of Eqs. (4.17) - (4.19)
implies the third. This is a result of the fact that any one of the three mappings SR', TR', and
STI' is the product of the other two mappings (in either order).

By using Eqs. (4.16) and (4.19), one has

G(v,-v,0) = G(v,-7,-0) = [ G(v,7,0) 1-1 (4.20)

As a result, one concludes that

G(v,-_,0). G(v,)',0) = 1 , (v,_/) e R2 , -oo < 0 < +_ (4.21)

if the scheme is invariant under space-time inversion. Note that Eq. (4.21) is reduced to Eq.
(3.12) when "t= 0, i.e., Ix = 0.

Two-level implicit schemes Eqs. (2.1) and (2.11) were given in Section 2 as examples of the
numerical analogues of Eq. (1.1) which are invariant under spatial reflection, time reversal, and
space-time inversion. Also we consider only two-level schemes in Section 3 and in the derivation
of Eqs. (4.16) - (4.21). A three-level explicit scheme which is designed to solve Eq. (4.1) is the
Leapfrog/DuFort-Frankel scheme [p.161, 4], i.e.,



. n+l ._ ( 1 -- y) u] -t + (v + y) u_-l - (v - y) u]+l (4.22)( 1 +y)uj

This scheme is also invariant under spatial reflection, time reversal, and space-time inversion. It
is reduced to (i) the Leapfrog scheme if y = 0 (i.e., g = 0) and (ii) the DuFort-Frankel scheme if v
= 0 (i.e., a = 0).

The amplification factors of Eq. (4.22) are

G±(v,y,0) = Wos0 - ivsin0 + _](ycos0 - ivsin0) 2 + 1 - Y_ , y _ -1 (4.23)
l+y

Since (i) Icos01-<l and Isin01<l, and (ii) G±(0,0,0)= ±1, there exists a set R 2 of ordered pairs
of real numbers such that (i) both (-x,y) and (x,-y) are elements of R2 if (x,y) is, (ii) (x, -1) does
not belong to R 2 for all x, and (iii)

Re[G+(v,_/,0)] > 0 and Re[G_(v,y,0)] < 0 (4.24)

for all v, Y, and 0 with (vd')_R2 and -o. < 0 < +00. Here Re[G±(v,y,0)] denotes the real part of
G±(v,y,0). Note that Eq. (4.24) is equivalent to

Re[(G+(v,y,O)) -1] > 0 and Re[(G_(v,y,0)) -1] < 0 (4.25)

Let (v,_/)_R2. Let

u_' = [G(v,_,,0)]ne i;° (4.26)

be a solution to Eq. (4.22). As a result of Eq. (4.24), one has

G+(v,y,0) if Re[G(v,y,0)] >0G(v,y,0) = (4.27)
G_(v,y,0) if Re[G(v,y,0)] < 0

With the aid of Eqs. (4.24) - (4.27) and the fact that Eq. (4.22) is invariant under spatial
reflection, time reversal, and space-time inversion, a line of arguments which were used to obtain
Eqs. (3.5), (3.7), (3.9), (3.10), and (3.11) again can be invoked to show that

G±(v,y,--0) = G±(v,y,0) (4.28)

G±(-v,y,--0) = G±(v,7,0) (4.29)

[G+(-v,-y,0)1-1 = G±(v,y,0) (4.30)

[G±(v,-y,-0)] -1 = G±(v,7,0) (4.31)

and

G±(v,-y,0) .G±(v,y,0) = 1

for all v, y, and 0 with (v,y)_ R 2 and - o. < 0 < + oo.

(4.32)

Note that

G±(v,0,0) = -ivsin0 + {1 - v2sin20

Thus IG±(v,0,0)1=1 if [v[_<l. This result is consistent with Eq. (4.32).

(4.33)

5. DISCUSSION AND CONCLUSION

In this paper we study several invariant properties of the numerical analogues of Eq. (1.1).
Particularly, it is shown that an arbitrary two-level constant-coefficient finite-difference analogue
of Eq. (1.1) is neutrally stable if it is invariant under space-time inversion. A similar study for



Eq.(4.1)is alsopresented.

Since it is a common experience that the local behaviors of a nonlinear variable-mesh scheme
may be predicted by using a local analysis (such as the von Neumann analysis) in which the
dynamic coefficients and geometric parameters are frozen at their local values, the information
gained and the techniques developed in the current study may also be useful in a similar study for
a numerical analogue of nonlinear physical equations.

As noted previously, the construction of a numerical scheme generally does not take into account
the invariant properties of the physical equations to be solved. For an upwind scheme, the stencil
contains more mesh points on the upwind side than on the downwind side. Thus the
configuration of the stencil differs from those of its spatial-reflection image and space-time-
inversion image. According to a discussion given in Section 2, this implies that the scheme is not
invariant under either spatial reflection or space-time inversion. The stronger the upwind bias is,
the further away this scheme tends to be from preserving these two invariances. According to
analysis presented in Section 3, this also tends to increase numerical diffusion.

For a two-level explicit scheme, the stencil generally contains several mesh points at the lower
time level while only one at the upper time level. Thus the configuration of the stencil differs
from those of its time-reversal image and space-time-inversion image. This implies that the
scheme is not invariant under either time reversal or space-time inversion. Generally, the higher
the order of accuracy of a scheme is, the more points will be at the lower time level of the stencil.
In turn, this makes the scheme further away from preserving these two invariances.

Currently, a new numerical framework for solving conservation laws -- the method of space-
time conservation element and solution element is being developed by Chang and To [2]. This
framework is fundamentally different from the well established methods, i.e., finite difference,
finite volume, finite element, and spectral methods, in both concept and methodology. It may be
used to solve both inviscid and viscous flow problems.

A two-level explicit numerical analogue of Eq. (4.1) was constructed using this framework [2].
An unique feature of this scheme is that there are two dependent variables and two equations
associated with each solution element. These two variables may be considered as the numerical
analogues of u and Ou/Ox. Because of this feature, contrary to traditional two-level explicit
schemes, it is invariant under spatial reflection, time reversal, and space-time inversion (to be
shown in another paper). Its two amplification factors are [a±(v,'_,0)] 2 with

0 0 ,_] ^ 0 0 ]2 ^2

y^cos(_) - i v sin(_-) ± _ [ _/cos(_-) - i v sin(_-) j + l - V
(5.1)

1+i

where _ _ 2_//(1-v 2) and 1-v 2 > 0 [2]. A comparison between Eqs. (5.1) and (4.23) reveals

that the expression on the right side of Eq. (4.23) can be converted to that on the right side of Eq.
(5.1) if y, v, and 0, respectively, are replaced by "_, v, and 0/2. Because of this remarkable
similarity, it can be shown [2] that the stability condition of the new scheme, as in the case of the
Leapfrog/DuFort-Frankel scheme, is essentially the CFL condition and thus independent of the
viscosity coefficient _t. Therefore, the new scheme is unconditionally stable in the case of pure
diffusion. Also, as in the case of the Leapfrog/DuFort-Frankel scheme, the new scheme has no

numerical diffusion in the absence of viscosity.
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