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1. Summary

This paper presents the theoretical development of a modified optimal control pilot model

based upon the optimal control model (OCM) of the human operator developed by Kleinman,

Baron, and Levison (Automatica, May 1970). This model is input compatible with the OCM and

retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with
inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for

attention allocation and perception threshold effects. Unlike the OCM, however, the structure
of this model allows for direct calculation of pilot and system transfer functions in pole-zero

form. An algorithm designed for easy implementation in current dynamic systems analysis and

design software is presented. This implementation may be used for interactive modification of

pilot-plant parameters, direct calculation of system and pilot transfer flmctions, system transfer
function manipulation, and determination of system frequency responses. Example results

based upon the analysis of a tracking task using three basic dynamic systems are compared
with measured results and with similar analyses performed with the OCM and two previously

proposed simplified optimal pilot models. The pilot frequency responses and error statistics
obtained with this modified optimal control model arc shown to compare more favorably with

the measured results than tile other previously proposed simplified models evaluated. Also, the

impact on the modelling results of changing the approximation of the pilot's effective time delay

is presented.

2. Introduction

Manual vehicular control system analysis, commonly referred to as pilot modelling, has
been a useful tool for the analysis of pilot-in-the-loop systems. Research into the modelling

of the pilot control behavior t_as its origins in studies of the human operator performed in

the 1940's (Elkind 1964). From then until the 1960's, research was predominantly devoted to
understanding the human as a controller of single-input/single-output systems using frequency

domain models (McRuer 1980). Since the 1960's, research has concentrated on the analysis

of more complex multivariate systems. Two basic approaches to analyzing these systems have

emerged. One is based upon extending the frequency domain methods and insights developed
for single-input/single-output systems to the multivariate case, and the other is based upon

time domain methods and optimization theory (hmocenti 1988). This report focuses on a time

domain approach.

The first attempt to describe the behavior of the human pilot in a time domain optimal
control framework, the optimal control model (OCM), was by Kleinman, Baron, and Levison

(Kleinman, Baron, and Levison 1970; Baron, Kleinman, and Levison 1970). The OCM is
based upon the assumption that the well-trained and motivated human controller behaves

optimally in some sense, adjusting the pilot's compensation for a given vehicle and task,

subject to human limitations. The OCM has been widely used and has been validated in a
number of tasks. It has been used to model task performance and to assess flying qualities, to

model human-controller-describing flmctions, and for both the analysis and synthesis of manual

control loops (Innocenti 1988). In the OCM, the pilot's compensation is modelled by linear-

quadratic-regulator gains (Kwakernaak and Sivan 1972), a Kalman-Bucy filter (Kwakernaak

and Sivan 1972), and a linear predictor (Kleinman, Baron, and Levison 1970).

This paper presents the theoretical development of a modified optimal control pilot model

(MOCM) based upon the OCM of Kleinman, Baron, and Levison. This MOCM is a variation
of simplified optimal pilot models developed by Hess (1976), Schmidt (1979 and 1981), and

Broussard and Stengel (1977). This model is input compatible with the OCM and retains other

key aspects of the OCM. Unlike the OCM, however, the structure allows for the direct calculation

of pilot and system transfer functions in pole-zero form and is designed for easy implementation



in currentdynamicsystemsanalysisanddesignsoftware.Thus,this implementationmayalso
be usedfor interactivemodificationof pilot and plant parameters,systemtransfer function
manipulation,anddeterminationof systemfrequencyresponses.

Section4 providesa theoreticaldevelopmentof the MOCM. In section5, exampleresults
baseduponthe analysisof a trackingtask usingthreebasicdynamicsystemsare compared
with measuredexperimentalresults(Kleinman,Baron,andLevison1970)andsimilaranalyses
performedusingthe OCM andtwopreviouslyproposedsimplifiedoptimalcontrolpilot models
(Hess1976;Schmidt1979).
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Superscripts:

T

-1

transpose

inverse

optimal

A dot over a symbol denotes a derivative with respect to time; a carat over a symbol denotes
an estimate.

4. Theoretical Development

This section presents a theoretical development of the modified optimal control pilot model

(MOCM). A block diagram of the model components of the MOCM is given in figure 1. The

notation has been chosen to be compatible with the OCM development (Kleinman, Baron, and

Levison 1970). To simplify" the notation, this development considers the case of a single control

input, although the algorithm can easily be extended to account for multiple inputs.

The plant dynamics to be controlled, augmented with plant disturbance dynamics, are given

by the state space time invariant linear equations:

x=Ax+B$+Ew}y=Cx+D_
(4.1)

where x(t) is an nx-dimensional state vector composed of both plant and system disturbance

states, _(t) is a scalar plant input, w(t) is an nw-dimensional disturbance vector modelled as a

zero mean Gaussian white noise process with intensity W, and y(t) is an ny-dimensionaI output
vector.

The vector Yobs(L), of dimension ny, represents variables the pilot can perceive, either by,

observation or feel. The outputs observed by the pilot are assumed to be corrupted by an

observation noise, vy(t), a zero mean Gaussian white noise process with intensity Vy:

Yobs=Cx+D_+vy

In the MOCM, the pilot's effective time delay is modelled by a Pade approximation. The

pilot's effective time delay is placed at each of the pilot's outputs and is treated as part of the

plant dynamics for determination of the pilot's regulation and filter gains. Since typically the

Disturbances
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V11 Observation

Pilol Control noise noise

!_ I

Figalre 1. Conceptual block diagram of modified optimal control model.



pilot is modelled as having more inputs (observations) than outputs (plant inputs), placing the

effective time delay at his output yields a lower order representation than placing the delay

at his input. A second-order Pade approximation is chosen because it provides a very good

approximation to a pure delay over the pilot's frequency range of interest (approximately 0.1

to 10 rad/sec). Use of at least a second-order Pade approximation is assumed to be necessary

to accurately model pilot magnitude and phase compensation at the high end of the pilot's

bandwidth, such as the pilot high fl'equency neuromotor resonant peak. Accurate representations
of the pilot's resonant peak and phase compensation near crossover are necessary when concerned

with using the model to explore pilot-vehicle dynamic interactions or predict pilot workload in

a given task (Anderson and Schmidt 1987; Bacon and Schmidt 1983).

A second-order Pade approximation is given by

U_dd= 1 -- ½ (Ts) + } (_-s) 2 (4.2)
up 1 + ½ (7s) + ½ (rs) 2

where r is the delay interval (in seconds), Up is the pilot's output, and u d is the delayed pilot's
output. In state space form, this can be expressed by

Xd = AdXd + BdUp

!= u d = CdX d + Up

(4.3)

where x d is a two-element vector of Pade delay states.

The plant dynamics augmented with the pilot's effective time delay are given by

{}[ 1{}[]
d x A BC d x B Up + w

x d --- 0 A d x d + B d

y=[C DCd] { x } + DUpxd

(4.4a)

or

±s = Asxs + Bsttp + Esw

1y = Csxs + Dsup
(4.4b)

The pilot's observation vector is given by

Yobs = Csxs + Dsup + vy

This model makes the assumption that the pilot's control task can be defined by the

minimization of the quadratic performance index Jp given by

Jp = E_c {yrQyy + u2r + @f} (4.5)

subject to pilot observations Yobs with cost functional weightings Qy > 0, r > 0, and f > 0. By
defining a new state vector as

xT= [X s Up] T



the system given by equations (4.4) can be expressed in a control-rate formulation (Kwakernaak
and Sivan 1972) as

or

ocdB]{x}[i] [i]Xd = A d B d x d + /tp +
Up 0 0 Up

{x}Yobs=[C DC d D] x d +Vy

Up

W

(4.6a)

= AoX + Bo@ + Eow ],
(4.6b)fYobs = CoX + Vy

The minimizing control law is obtained by application of LQG solution techniques (Kwaker-
naak and Sivan 1972) to the augmented system (eqs. (4.6)); this leads to the full-state feedback
relation

{tp = --gp_ = -- [gl, ..-, gn, gn+l] X = _f-1 (Bo)T K_: (4.7)

where n = nx + 2 (system states plus two Pade states), _: is the estimate of the state X, and K

is the unique positive definite matrix solution of the Ricatti equation

0 = (Ao)T K + KAo + Qo - KBof -1 (Bo)T K (48)

where

Qo -- - (Cs)T QyCs (Cs) T QyDs ]

(DJQ C TQyD + ]

By expanding the optimal control law (eq. (4.7)) in terms of is and @

Up = - [gl, ..., gn]is- gn+lUp (4.9)

and letting

and

one obtains

1

gn+ l

lp = 7-_[gl, ..-, gn]

rvUp + Up = uc

where the pilot's commanded control Uc is given by

(4.10)

uc = -lpis (4.11)

To account for the uncertainty of the human operator's control input, control noise Vu is added
to the commanded control Uc:

Tt]%tp q- Up = U c "}- V u (4.12)

where vu(t) is a zero mean Gaussian white noise process with intensity Vu. As in the OCM

development, the controller gains are assumed not to be affected by the inclusion of the control
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noise(Kleinman,Baron,andLevison1970).ThisassumptionreducesthesolutionoftheMOCM
to asuboptimalcontrollaw. Solvingfor @,oneobtains

-1 1 1 (4.13)
itp= --_Up + --UcT_+ --Vu77

Combining equations (4.6) and (4.13) gives

x} I 0x d = A d B d x d + Uc + 0 0

Up 0 - 1/7rl Up 1/rv O 1/rV

{x}Yobs= [C DC d D] x d +vy

Up

]{vW}/ (4.14a)

or

= A1X +Bluc + Elwl

JYobs = CIX + Vy

The current estimate of the state _: is given by a Kalman filter

(4.14b)

_: = A1X +Bluc + F (YoUs - _r) "[

/= (A1 - FC1) _ + FCIX + Bluc + Fvy

(4.15)

where

F = E1 (C1) T (Vy) -1

The covariance matrix of the estimation error ]E1 is the unique positive definite solution of

the Ricatti equation:

0 = A1]E1 + ]El (A1) T -t- Wl - ]El (C1) T (Vy) -1 C1]E1 (4.16)

where Wl = diag(W, Vu) with W > 0, Vu > 0, and Vy > 0.

A state space representation of tile closed-loop pilot-vehicle system is given by

X -Bill X Wl
_t {_} : [_ 1 AI-BIll-FCII {X}+ [ El O] {Vy } /{'r}: °0]{:}

(4.17)

where 11 = [lp 0] and C 5 --- [0 C d 1].

A block diagram of the model components of the pilot's dynamics is given in figure 2.

state space representation of the pilot's dynamics is given by

{ _: } [A1-FC1-Blll 0 0 I { X } [i I [i 0 ] { }}

d = --1/Trl 0 + Y vuUp ll/r_ Up + 1/% Vy
x d 0 B d A d x d 0

5=[0 1 Cd] up
Xd

A

(4.1Sa)
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or

5_p = Apxp + Bpy + Epvp

f5 _- Cpxp

(4.18b)

Disturbances
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Figure 2. Conceptual block diagram of optimal control model.

4.1. OCM Overview

For reference, a brief description of the OCM is presented. A conceptual block diagram of

the OCM is given in figure 2. For a more detailed description the reader is referred to Kleinman,
Baron, and Levison 1970. The OCM of the pilot is based on the assumption that the pilot

chooses the control input in such a way as to minimize the quadratic cost flmction:

orOCM : E_z {yTQyy + U2pr+ i_2pf}

The weighting matrices in the cost function are chosen to reflect the task objectives and pilot

physiological limitations. The human perception characteristics that are modelled involve pilot

observations passed through a pure time delay and corrupted by white noise vy:

Yobs (t) = y (t-- r) + vy (t -- T)

The solution to this optimization problem yields a Kalman filter to estimate the delayed

states and a least-mean-squares predictor to obtain a current estimate of the states :_. The

control law, obtained from minimizing the cost flmction JOCM for a scalar control input Up is
given by

r_% + up = Uc (t) + _ (t)

Uc (t) = -Koc M _ (t)

where KOC M is the optimal pilot control gain vector and wr/is the pilot neuromotor lag obtained
by including control rate in the cost function.

The MOCM is based on the same premise as the OCM-- the assumption that the well-trained

and motivated human controller adjusts his compensation, subject to human limitations, for a

given vehicle and task to minimize an objective flmction. Similarities to the OCM structure

include a linear quadratic solution for the pilot gains with inclusion of control rate in the cost

function, a Kalman estimator, and the ability to account for attention allocation and perception
threshold effects. The major difference between the OCM and the MOCM is the replacement of
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the linearpredictorof the OCM by the augmentationof the systemdynamicswith the pilot's
effectivetime delaybeforecalculationof pilot control and estimationgains. This difference
allowsfor the direct calculationof the pilot andsystemtransferfunctionsin pole-zeroform in
theMOCM.

4.2. MOCM Pilot Parameters

The pilot cost function weightingmatricesQ and r are chosen to reflect the pilot task

objective. Values for effective time delay, neuromotor lag, observation, and control noise
intensities are chosen in the same manner as for the OCM (Kleinman, Baron, and Levison

1970). Appropriate values of neuromotor lag _-7_are obtained by appropriate choice of pilot cost
function control-rate weighting f. Manual control experiments have shown that the effective

time delay of the pilot T is typically 0.1 to 0.2 second (Kleinman, Baron, and Levison 1970).

The covariance of the observation noise Vy is dependent upon the nature of the display,

human limitations, and the pilot's environment. Over a wide range of viewing conditions, each

diagonal element of the observation noise intensity matrix is proportional to the variance of its
associated observed output variable. The diagonal elements of the noise intensity matrix are

given by

7rPYi a2i (i = 1,2, ., ny) (4.19)Vy i = ..
fYi erfc (athi/Cryi V_)

where PYi is the nominal full-attention observation signal-to-noise ratio, fYi is the fraction of
total attention spent on the ith observation variable, ath i is the minimum observation threshold

of the ith observation variable, and ay2i is the variance of the ith observation. Single-axis manual
tracking control tasks have shown that, on the average, Pyi = 0.01, which corresponds to a
normalized observation noise of -20 dB (Kleinman, Baron, and Levison 1970).

The covariance of the control noise Vu is assumed to be proportional to the variance of the

commanded control Uc:

= (i = 1,2, ..., (4.20)

where Pu is the control signal-to-noise ratio. Analyses of single-axis manual tracking control task

experiments have shown that typically Pu_ -- 0.003, which corresponds to a normalized control
noise ratio of -25 dB (Kleinman, Baron, and Levison 1970).

4.3. MOCM Algorithm Implementation

The MOCM algorithm is organized into four major parts. The first part involves augmen-
tation of the plant and disturbance dynamics with a Pade approximation of the pilot's effective

time delay. The second part is the calculation of the pilot's control gains, where iteration on
the cost function control-rate weighting is usually required to achieve the desired value of pilot's
neuromotor time constant. The third part is the calculation of the pilot's estimation gains. This

requires the calculation of observation and control noise covariances to yield desired signal-to-
noise ratios for the pilot model. At this step, the observation noise covariance may be adjusted

to take into account pilot scanning behavior and observation threshold effects. The fourth part

involves formation of pilot and closed-loop system matrices and calculation of transfer functions,

frequency responses, and statistics of interest. A conceptual flowchart of the MOCM algorithm

is given as appendix A.

The structure of this model is designed for easy implementation in current dynamic systems

analysis and design software. Implementation in this type of computer software environment



allowsfor rapid calculationof pilot andsystemtransferfunction descriptionsfrom statespace
models,determinationof systemfrequencyresponses,and easymanipulationof systemstate
spaceandfrequencydomainrepresentations.Also,this environmentallowsusersto interactively
modifyvariouspilot andplant parametersandquicklyascertainthe impactof thesechangeson
pilot/closed-loopperformance.

Section5presentsanevaluationof theMOCMby applyingit to modelthepiloteddynamics
of a compensatorytrackingtask.

5. Model Evaluation

In this section, experimental results based upon the analysis of the closed-loop performance

of a pilot in a tracking task for three basic dynamic systems presented in Kleinman, Baron,

and Levison 1970 are used as a benchmark to determine the merits of the MOCM. The analysis
obtained with this model is compared with similar analyses performed with the OCM and two

previously proposed LQG based pilot models an LQG approximation to the OCM presented

by Schmidt (LQG model) (Schmidt 1979), and a pilot model proposed by Hess (Hess model)
(Hess 1976). The LQG model includes a control-rate term in the pilot cost function and a

Kalman estimator but does not include an explicit model of the pilot's effective time delay. The
Hess model does not include a control-rate term in the pilot's cost function but does include a

Kahnan estimator and a modelling of the pilot's effective time delay. In this model, the pilot's

neuromotor dynamics are modelled by a first-order lag at the pilot's output. A description of
these models is given in appendixes B and C. Also, the impact of changing the order of the

Pade approximation (approximation of pilot's effective time delay) upon the MOCM results is
presented.

Descriptions of the three basic dynamic systems, the tracking task, and parameters chosen

for the modelling analysis are presented next. This discussion parallels that in Kleinman, Baron,
and Levison 1970.

5.1. Experimental Setup

The compensatory tracking task performed and analyzed by Kleinman, Baron, and Levison
used three basic command systems--a velocity command system, an acceleration command

system, and a position command system. In these experiments, the human controller had a

single control manipulator and observed tracking error on a display. The assumption was made

that the pilot could determine tracking error rate information from the tracking error display. A

system disturbance, composed of a sum of sinusoids, was applied as a velocity disturbance for the
velocity and acceleration command tasks and as a position disturbance for the position command

task. The amplitudes of the sine waves were chosen to simulate a first-order noise spectrum for

the velocity disturbance and a second-order noise spectrum for the position disturbance, both
with a break frequency of 2 rad/sec. In these tracking tasks, the human controller was instructed

to minimize mean-square tracking error. A more complete description of the experimental setup
is given in Kleinman, Baron, and Levison 1970 and Baron et al. 1970.

5.2. Task Modelling

For the pilot modelling analysis of the three tracking experiments, the pilot's objective
function Jp was modelled as

Jp= Eec {e2 + f_ 2} (5.1)

where e is pilot tracking error. The system input disturbances were modelled as a white noise

process passed through a first-order low pass filter for the velocity and acceleration command

dynamics and passed through a second-order low pass filter for the position command dynamics.
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A summaryof the pilot modelinput parametersfor analysisof eachof the plant dynamicsis
presentedin tableI. Identicalvalueswereusedfor the analysisperformedwith the OCM and
LQGmodels.FortheHessmodel,identicMinput valueswereusedwith theexceptionof control
weighting,whichwaschosento matchthe rmserror statisticsof the experimentaldata. Since
this is a single-axistask usinga singledisplayindicator,the effectsof attention Mlocationand
thresholdswereassumedsmallandwerenot modelled.

TableI. Pilot ModelInput Parameters

Input Velocity Acceleration Position
parameter command command command

Effective time delay, r

Neuromotor lag, a 7,7

Observation noise ratio, py

Motor noise ratio, Pu

0.15 sec

0.08 sec

-20 dB

-25 dB

0.21 sec

0.1 sec

-20 dB

-25 dB

0.15 sec

0.11 sec

-20 dB

-25 dB

System disturbance

Disturbance intensity, W

Objective function observation weights, Qy

Objective function input weights, r

Vdist _ 1
w s +------_

8.8

diag(1,0)

bo, O, O, 0.034

Vdist _ 1
w s+_

0.217

diag(1,0)

b0, 0, 0, 0.01

Xdist _ 1
w -- s 2 + 4s + 4

10.0

diag(1,O)

b0, 0, 0, 0.0012

aCost function weighting f is chosen to achieve desired rrl in MOCM, OCM, and LQOCM.

bMOCM, OCM, LQOCM, HOCM.

5.2.1. Velocity command system. The dynamics of the system to be controlled in transfer

function form are given by
0 k

= - (5.2)s

with k = 1. The velocity disturbance was modelled by white noise passed through a first-order

filter with a break frequency of 2 rad/sec:

Vdist I

w s+2
(5.3)

In state space form, the combined plant and disturbance dynamics, expressed in terms of system

disturbance and command tracking error, are given by

ddt { vdist}e = [212 00] {Vdist}+e [_] _+ [_]w (5.4)

The observed system outputs are given by

{e} [0 10] {Vdist}+ [_] (_+VyYobs = _ = 1 e

where e and _ are pilot tracking error and pilot tracking error rate, respectively.

11



With the MOCM, a transferfunctiondescriptionof thehumanpilot's compensationcanbe
determineddirectly fromthe statespacedescription,relatingthetwo inputsto the pilot, e and

b, to the single output, 5, as follows:

= H6 e + H eb (5.5)

where H& and H_e are pilot tracking error to 5 and pilot tracking error rate to 5 transfer

functions, respectively. Since the H& and H6_ transfer functions are not directly measurable,

an equivalent transfer function must be formed for comparison with the measured data. The

equivalent pilot transfer function is given by

5
- = H& + sH_+ (5.6)
e

5.2.2. Acceleration command system. For the acceleration command system, the dynam-

ics of the system to be controlled, in transfer function form, are given by

0 k

= (5.7)

with k = 1. The disturbance to tile system was modelled as a velocity disturbance by passing
white noise through a first-order filter with a break frequency at 2 rad/sec:

Vdist 1

w s+2

In state space form, the combined plant and disturbance dynamics are given by

-- e = 0 e + 5 + w (5.8)
dt x3 0 x 3

The observed system outputs are

Yobs :

where x i is a plant state.

= e if- Vy

0 1 x3

0 40
- (5.9)

6 s+40

The position disturbance was modelled by white noise passed through a second-order filter with

a break frequency of 2 rad/sec and a damping of unity:

Xdist 1

w s2+4s+4
(5.10)

12

5.2.3. Position command system. In order to reduce high frequency noise, the pure gain

dynamics of the position command system were approximated by a low pass filter with a break

frequency at 40 rad/sec. Therefore, the plant dynamics to be controlled are given by



In state space form the combined plant and disturbance dynamics are given by

} [i]d-t Xdist2 = --4 --4 0 Xdist 2 q- _5 -I- W

x 3 0 0 --40 x 3 40

The observed system outputs are

(2.11)

I'lt 1{ I4001Yobs = _ = 0 1 --40 Xdist2 + _ + Vy

x3

where Xdist i is a disturbance state and x 3 is a plant state.

5.3. Discussion of Examples

The measured human-describing functions and model-based analysis results obtained for the

velocity command system are given in figure 3. For this command system, the MOCM pro-

vides a very good prediction of the measured magnitude and phase in the frequency range from

approximately 1 to 30 rad/sec. Note also that the MOCM prediction provides an accurate mod-

elling of the pilot's neuromotor resonant peak. The measured human-describing functions and

analysis results obtained for the acceleration command system are given in figure 4. The MOCM
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Figure 3. Measured human-describing functions and

model-based pilot transfer functions for velocity

command system. Measured data from Kleinman,

Baron, and Levison 1970.
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command system. Measured data from Kleinman,

Baron, and Levison 1970.
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providesa verygoodpredictionof the measuredmagnitudeand phasein the frequencyrange
from approximately1 to 20 rad/sec. The measuredhuman-describingfunctionsand model-
basedanalysisresultsobtainedfor the positioncommandsystemaregivenin figure5. Forthis
commandsystem,the MOCM providesa fair predictionof themeasuredmagnitudeand avery
goodpredictionofthemeasuredphasein thefrequencyrangefromapproximately1to 20rad/sec.
Ascanbeseenfrom figures3 through5 the model-basedpilot transferfunctionsobtainedwith
the MOCMcompareveryfavorablywith thepredictionsof theOCM for eachcommandsystem.
Also,overallthe MOCM providesa better matchto the measuredhuman-describingfunctions
thaneithertheLQGmodelor theHessmodelfor the givenpilot modelinput parameters.(The
readershouldnote that a better matchto the measuredhuman-describingfunctionsmaybe
possiblewith the LQGand Hessmodelsby varyingthe pilot modelinput parameters.)

Measuredand model-basedrms pilot performanceis presentedin tableII. As canbeseen,
themodel-basedrmspilot performanceobtainedfromtheMOCManalysisis in goodagreement
with the measuredrms statisticsfor eachtask. The OCM alsoprovidesa favorablematchto
themeasuredrmsperformance.Pilot transferfunctionsobtainedfrom the MOCM analysisare
presentedin tableIII.

The effecton the pilot transferfunction for the velocitycommandsystemof replacingthe
MOCM'smodellingof thepilot's effectivetimedelay(asecond-orderPadeapproximation)with
a first- and third-orderPadeapproximationis presentedin figure6. As canbe seen,at least

4{3 _ -- ....... _ ........ ! ....... '4

0 --_ _ _

35 "- \

3(] : _'_,., ` ' "_

_= 25- _qo _ __
6 ... ok

15 ""
"_- -- M_OCM KX°\O o o "
[_ -- - - LQG model x_,,_,,.:. ,o.

lOk" ..... OCM -_ X
.... Hess n_del \ -N,

IL ......., ".N.
10(3

o

-100

-2oo

-300

-400

-500

-- -- -- LQG model
..... OCM
.-." .-." - HO_esMmode ' x'_N"_

0 Measured data _-

i i i iiiiii 1 i i1111] _. t i i

1 l0

Frequency, rad/sec

100

Figure 5. Measured human-describing flmctions and

model-based pilot transfer functions for position

command system. Measured data from Kleinman,

Baron, and Lcvison 1970.
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a second-order Pade approximation is required to capture the pilot's high frequency dynamic

compensation characteristics in this task. This tends to suggest a connection between the pilot's

effective time delay and high frequency neuromotor resonant peak.

Table II. Measured and Model-Based rms Pilot Performance

Data

Measured a

MOCM

OCM

LQG model

Hess model

Velocity command

Error

Error 1
e

0.361

0.34 I

0.341

0.141

0.36 r

rate Control

1.76 2.05

1.75 1.97

1.72 1.94

1.03 1.63

1.53 1.70

Error

0.12

0.12

0.11

0.07

0.12

Acceleration command Position command

Error Error

rate rate Control

0.32 2.19 0.73

0.33 2.26 0.47

0.32 2.28 0.47

0.23 2.22 0.52

10.28 6.14 0.55

Control Error I

1.2010.361

1.17 0.271

1.07 0.271

0.87 0.16 I

0.68 0.361

aMeasured rms pilot performance data taken from Kleinman, Baron, and Levison 1970.

Table III. Summary of MOCM Pilot Transfer Functions

Model-based pilot transfer functions

Command (a)

Velocity 6 _ 181.2(3.26)(6.37)(12.74)(-0.707,18.86)
-- (1.99)(6.44) (12A9)(0.264,20.99)(35.33)

Acceleration a = 443.3(0.47)(2.32)(3.29)(10.03)(-0.707,13.47)
e (2.00)(3.22)(9.99)(0.256,10.08)(0.820,18.22)

Position __ = 10.19(4.14)(9.14)(11.55)(-0.707,18.86)(40.70)
e (1.45) (2.80) (9.10)(11.37)(0.389,24.76) (71.65)

a( ) = Real pole or Zero; ( , ) = ({,ca) = Damping and
Frequency of complex pole or zero pair.

6. Concluding Remarks

This paper has presented a modified optimal control model (MOCM) based upon the optimal

control model (OCM) developed by Kleinman, Baron, and Levison (Automatica, May 1970).
This model is input compatible with the OCM and retains other key aspects of the OCM, such as

the linear quadratic solution for the pilot gains with inclusion of control rate in the cost function,
a Kalman estimator, and the ability to account for attention allocation and perception threshold

effects. An algorithm designed for easy implementation in current dynamic systems analysis

and design software has been presented. Implementation in this type of environment allows for

rapid calculation of pilot and system transfer function descriptions from state space models,

determination of system frequency responses, and ease of system state space and frequency

representations.
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The MOCM wasusedto predictclosed-looppilot performancein a compensatorytracking
task for threebasicdynamicsystems.Thesepredictionswerecomparedwith measuredpilot
performanceandshownto provideaverygoodmodellingof bothpilot-describingfunctionsand
time domainperformancestatisticsfor thesedynamicsystems.Also, the predictedmodels
obtainedwith the MOCM werecomparedwith similar analysesperformedwith the OCM
and two previouslyproposedLQG (linearquadraticGaussian)basedpilot models--anLQG
approximationto the OCM anda modelproposedby Hess.The MOCM is shown to provide

results very similar to those of the OCM and to compare more favorably with the measured pilot
performance than the other pilot model predictions.

In this formulation, use of at least a second-order Pade approximation is required in order

to accurately model pilot magnitude and phase compensation at the high end of the pilot's

bandwidth, such as the pilot high frequency neuromotor resonant peak. This tends to suggest

a connection between the pilot's effective time delay and high frequency neuromotor resonant
peak.

NASA Langley Research Center

Hampton, VA 23681-0001

August 13, 1992
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Appendix A

Modified Optimal Control Pilot Model Flowchart

I Load system matrices 1

(eqs. (4.1))
and

pilot control parameters
(see table I)

Augment system matrices with
delay dynamics

(eqs. (4.4))

 e eco roatei1formulation

(eqs. (4.6))

Calculate pilot gains
(eqs. (4.7) and (4.8))

Yes

Augment system with lag
dynamics

(eqs. (4.14))

q,

No

Adjust control-rate
weighting
(eq. (4.5))

l
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Generateinitialguessforobservation
andcontrolnoiseintensities

Calculateeffects of fractions of
attentions and thresholds on

observation noise

(eq. (4.19))

Calculate estimator gains
(eqs. (4.15) and (4.16))

Form closed-loop system
(eqs. (4.17))

Calculate achieved observation and

control noise-to-signal ratios

Yes

No

Adjust values of observation and
control noise intensities
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I
Calculateclosed-loopeigenvalues[

andrmsoutputvalues I

Form pilot matrices
(eqs. (4.18))

Generate system and pilot frequency
responses and transfer functions

Adjust input parameters and
reanalyze or end analysis
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Appendix B

LQG Approximation to Optimal Pilot Model

This appendix presents a theoretical development of an LQG approximation to the optimal
pilot model (Schmidt 1979). The plant dynamics to be controlled, augmented with the

disturbance dynamics, are given by the state space time invariant linear equations

± = Ax + B6 + Ew ]

fy = Cx + D5
(B1)

where x(t) is an n-dimensional state vector, 5(t) is an nu-dimensional vector of pilot inputs,
w(t) is an nw-dimensional disturbance vector modelled as zero mean Gaussian white noise with

covariance W, and y(t) is an ny-dimensionai output vector. The vector Yobs(t), of dimension ny,
represents variables the pilot can perceive, either by observation or feel. The outputs observed

by the pilot are assumed to be corrupted by an observation noise Vy(t), a zero mean Gaussian
white noise process with covariance Vy, as follows:

Yobs = Cx + D5 + vy

The following development considers the case of a scalar pilot input 5.

The pilot's control task is assumed to be modelled as the minimization of the quadratic
performance index Jp given by

Jp = Eoc {yTQyy + sTrs + sT fs}

subject to pilot observations Yobs with cost functional weightings Qy > O, r >
By defining a new state vector as

x v = [x 6]T

the augmented system can be expressed in a control-rate formulation as

(B2)

0, andf > 0.

or

Ix0 [0]w}y=[C
(B3a)

= AoX + Bo5 + Eow )

Y = CoX i (B3b)
Yobs = CoX + Vy

The minimizing control law is obtained by application of LQG solution techniques to the
augmented system. This leads to the full-state feedback relation

= -gp_: = -[gl, ..-, gn, gn+l] _: = _f-1 (Bo)T K_: (B4)

where _5is the estimate of the state X and K is the unique positive definite solution of the matrix
Ricatti equation

0 = (Ao)T K + KAo + Qo - KBof -I (Bo)TK (B5)
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where

[CTQy C CTQyD ]Qo -= LDTQyC DTQyD +r

By expanding the optimal control law in terms of :k and 6

= - [gl, --., gn]:K - gn+16 (B6)

and letting

and

1

gn+ l

lp=Tv[gl, ..., gn]

then

%5 + 5 = uc

where the pilot's commanded control Uc is given by

(B7)

Uc = -Ip$: (B8)

To account for the uncertainty of the human operator's control input, control noise Vu is added
to the commanded control uc

%6 + 6 = Uc + Vu (B9)

leading to

___-I6 1 1= + --Uc + --vu (B10)
r. r. T,7

where Vu is a zero mean Gaussian white noise process with covariance Vu. By combining this

result with the original control-rate formulation, one obtains the augmented system

[z ]{x}[0 ] 0}{w}}
3T 6 = -i/% 6 + -I/% Uc + 1/7. Vu

{x}Yobs=[e D] 6 -Fry

(B11a)

or

= A1X + BlUc + ElWl /

fYobs = C1X + Vy

The current estimate of the state is given by a Kalman filter

(Bllb)

= AI_ q- Blu c q- F (Yobs -- Y) /

f= (Ai - FC;) _ + FCIX +Biuc + Fvy
(B12)

where

F = E1 (C1) T (Vy) -1

The covariance matrix of the estimation error E1 is the unique positive definite solution of

the matrix Ricatti equation

0 -- AlE 1 q- E 1 (A1) T q- W 1 - E 1 (C1) r (Vy) -1 C1_1 (B13)
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whereWl = diag(W,Vu). A statespacerepresentationof the closed-loopsystemis given by

d(_ __ I t 1 -Bll I 0 WlFC 1 n 1.- Bill -FC1] {_}-{- [ El0 F )

_ _ }
(B14)

wherc 11 = [1p 0]. A state space reprcsentation of the pilot's dynamics is given by

(B15a)

or

Xp = Apxp + Bpy + Epvp

I= Cpx_
(Blab)
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Appendix C

Hess's LQG-Based Pilot Model

This appendixpresentsa theoreticaldevelopmentof Hess'sLQG-basedpilot model (Hess
1976). The plant dynamicsto be controlled, augmented with the disturbance dynamics, are
given by the state space time invariant linear equations

±=Ax+BS+Ew}y = Cx + D5
(C1)

where x(t) is an n-dimensional state vector, 5(t) is an nu-dimensional vector of pilot inputs,

w(t) is an nw-dimensional disturbance vector modelled as zero mean Gaussian white noise with

covariance W, and y(t) is an ny-dimensional vector of outputs. The vector Yobs, of dimension ny,
represents variables the pilot can perceive, either by observation or feel. The outputs observed

by the pilot are assumed to be corrupted by an observation noise vy(t), a zero mean Gaussian

white noise process with intensity Vy:

Yobs ---=Cx + D5 + Vy

The following development is for the case of a scalar pilot input 5.

The pilot's effective time delay is modelled by a second-order transfer fllnction given by

Ud (s - 4/7) 2
Uc (s + 4/_-) 2

(C2)

where 7 is the delay interval, u d is the pilot's delayed control input, and uc is the pilot's

commanded control. In state space form, this is expressed as

{}[0 { [0]}
_t Xdl --16/7-2] Xdl "_ + --16/7 Uc

Xd2 = --8/7" J Xd2 J

Ud=[O 1]{Xdl}+ucXd2

(C3)

where Xdi is a delay state.

To account for the uncertainty of the human operator's control input, control noise is added

to the pilot's delayed control input

u,, = Ud + vu (C4)

where Vu is a zero mean Gaussian white noise process with covariance Vu.

The pilot's neuromotor dynamics are modelled as a first-order lag given by

un 7vs + 1
(C5)

The effective time delay and first-order neuromotor lag are placed at the pilot's output and are
treated as part of the plant dynamics for determination of the pilot's regulation and filter gains.
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The combined time delay and lag dynamics, in state space form, are given by

= -8/7- 0 Xd2 + --16/r Uc +

6=[o o

Vlt

(c6a)

or

Xd = AdXd + BdUc + EdVu I

5 = CdX d

(C6b)

The plant, augmented with the neuromotor lag and effective time delay dynamics, is given by

In°  o l{x}[0].+ 0]{w}}
x d A d x d + B d 0 E d Vu

y = [C DC d] Xd

(C7a)

or

its = Asxs + Bsuc + Eswl

y = Csxs / (C7b)
Yobs = Csx_ + Vy

The pilot's control task is assumed to be modelled as the minimization of the quadratic

performance index Jp given by

Jp = Eoc {yTQyy + (uc)T ruc} (C8)

subject to pilot observations Yobs, with cost function weights qy > 0 and r > 0. The

minimizing control law is obtained by application of LQG solution techniques to the augmented

system. This leads to the full-state feedback relation

Uc = -gp:_s =- -r-1 (Bs) T K:_s (C9)

where _s is the estimate of the state xs and K is the unique positive definite solution of the

matrix Ricatti equation

0 = (As)T K + KAs + q - KBsr -1 (Bs)T K (c 0)

where q = CTQyC_.

The current estimate of the state is given by a Kahnan filter

• }f¢s = A._s + Bsuc + F (Yobs -- Y)

_ = (As - FCs) 5¢s + FCsxs + Bsuc + Fvy

(Cll)

where

F = E (c,)TVy I
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The covariancematrix of the estimationerror ]E is tile uniquepositivedefinitesohltionof the
matrix Ricatti equation

0 = AsE + E (As)T +Wl - 51 (cs)TVylCs51 (C12)

where Wl = diag(W, Vu).

A state space representation of tile closed-loop system is given by

_{_:s}=[FAcsAs-B._gp-FCs

A state space representation of the pilot's dynamics is given by

5 = [0 Cd] Xd

0 w,}}

0 }

(c_3)

(C14a)

or

±p = Apxp + Bpy + Epvp

J= Cpxp

(C14b)
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