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COMPARISON OF TRUNCATION ERROR OF

FINITE-DIFFERENCE AND FINITE-VOLUME

FORMULATIONS OF CONVECTION TERMS

B.P. Leonard*

Center for Computational Mechanics

The University of Akron

SUMMARY

Judging by errors in the computational-fluid-dynamics literature in recent years, it is not

generally well understood that (above first-order) there are significant differences in spatial

truncation error between formulations of convection involving a finite-difference approxima-

tion of the first derivative, on the one hand, and a finite-volume model of flux differences

across a control-volume cell, on the other. The difference between the two formulations

involves a second-order truncation-error term (proportional to the third-derivative of the

convected variable). Hence, for example, a third (or higher) order finite-difference approxi-

mation for the first-derivative convection term is only second-order accurate when written

in conservative control-volume form as a finite-volume formulation, and vice versa.

FINITE-DIFFERENCE AND FINITE-VOLUME FORMULATIONS

Consider the model constant-coefficient one-dimensional pure convection equation for a

scalar 4,

a___ + u a_b = S(x,t) (1)
Ot ax

where S is a known source term, and assume that a numerical solution is sought using a

discrete grid of constant step-width h. As usual, let ffi represent the numerical approxi-

mation of 4_ at grid-point i.

*Work funded under Space Act Agreement NCC3-233.



A finite-difference formulation of Equation (1) attempts to simulate

c9_ _ (c94_) + S_(t) (2)Ot - u

and, in particular, the spatial first-derivative convection term is written in terms of node-

values of 4_. The modelled first derivative is then equal to the true first derivative at i, plus

truncation error terms:

The leading term in (T.E.)FD (i.e., the term involving the lowest power of h) is conven-

tionally called the "order" of the finite-difference discretization.

On the other hand, consider integrating Equation (2) with respect to x, from -h/2 to

+ h/2, and dividing by h. This gives

a._,_ . _ u(_b - _bt) + _(t_ (4)
at h

where the bars refer to spatial averages, and left and right control-volume face-values are

indicated. This is the finite-volume formulation of Equation (1).

In this case, one writes

= . + (T.E.)Fv (5)
h h

where the right-hand side involves the true face-value difference. Once again, the leading

term in (T.E.)Fv is the order of the finite-volume discretization.



It is often assumed(especially in recentCFD literature) that, if a finite-difference model is

written in flux-difference form, then (T.E.)FDis the sameas (T.E.)Fv. But, as will be

shown, except for the leading term in first-order formulations,

(T.E.)pD _ (T.E.)FV (6)

The confusion is apparently basedon the fact that the finite-difference model of the first

derivative canoften be split into two parts; i.e.,

- (7)

where ff;(i) = _br(i-1), and this is sometimes treated as a finite-volume formulation (with

the assumption that the truncation error is the same). But if Equation (7) is to be treated as

a finite-volume model, one must recompute the truncation error according to Equation (5).

FACE-CENTERED TAYLOR EXPANSIONS

For definiteness, consider the classical second-order central finite-difference approximation

for the first derivative:

_OXl/O_lmod©l - _i÷l-_i-12h (8)

First, make Taylor expansions about grid-point i. For example,

and

so that

,t re,

¢t÷1 = _l + 4'ih + ± _b_h 2 + i cbi h' + ... (9)
2 6

' 1 "h 2 _ I '"h 3
4)i - ¢'i h + _ ¢_ Z ¢'i + ... (10)

' , "' 3 * 4)_V)h 5 (11)
_i+1 - _i-I = 24)i h + _ ffi h + --60 + "'"



thus giving the well-known result that

1 h 2 t th(.v) h 4 (12)61.1 6_-i _ 06 +_6, +-- +
2h _ 12o "' "'"

verifying that this is, indeed, a second-order approximation to the first derivative.

But this model can be rewritten in the form of Equation (7) by identifying

and

67 - 6i.I + 6, (13)
2

6; ---- 61 + 6i-1 (14)
2

In other words, the modelled left and right face-values are taken to be just the arithmetic

means of the node-values on adjacent sides of the individual faces. Note, as required by

conservation, that

6t'(i) = 6;(i-1) (15)

Now the model can be considered as a finite-volume formulation simply by writing

6, -6: _ 2 -( - _ (6,-6t)

h h h
+ (T.E.)F v (16)

In order to assess the truncation error, expand the node-values about individual control-

volume face locations:

61.i = 6, + 6, + _"6, + _ 6, + ... (17)
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4,, = 4, -4, +_4,, -_4,, +...
(18)

, , 4,_' + , (19)4,1 = 4,t + 4,t + _ -g 4,t + -"

, , <:o)

Then the individual modelled face-values are given by

_ 1 ,, h 2 I 4,Criv)h 4 (21)4,. 4,.1 +4,, = 4,,+_4,, +-- +-.-
2 384

and

so that

st

(4,r- 4,:) (4,,-4,,) + 1 {4,_'-4,'.ih_ + 1 {4,_i*'-4,_i"/h 4 (23)

h - h 8 _ /h 384 _ /h "'"

But, from Equations (17) and (18),

4,_' = 4 (4,m- 24,r + 4,t) +... (24)
h _

ts

and similarly for ¢t. Then, using Equation (9) together with the following expansions of

face-values about grid-point i,



and

4>, = 4>, - 4_, + 2 _b, _ - g _, _) + ... (26)

the difference of face-second-derivatives appearing in Equation (23) can be written as

-
h 2"g 192"-'-6,et

(27)

giving

+0,)_(0,+
2 2 _ (4_r- 4_t) + 1 '"h 2 I a_.v) h 4 (28)

h h _ _i + -- +123 v'z "'"

Thus, by comparing Equation (12) and (28), one sees that

whereas

r_t

(T.E.)Fr ' = _.1_b, h 2 + _ _b_"_h 4 + (29)6 120 """

Hr

(T.E.)Fv _ 1 61 h2 + I ,h!")h 4 + (30)- _" 12"_ "_ "'"

This, of course, is a significant difference, even though both formulations are second-order

accurate. Note that the difference in the truncation errors is

trs

(T.E.)F D - (T.E.)F v = --1 _b, h 2 + _ ff_')h 4 + ... (31)
24 1920

and a result similar to this will be found in general to be true for any convection formula that

can be simultaneously viewed either as a finite-difference formula for (a<b/ax)_ or a finite-
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volume formula for (_br - ¢bt)/h. In fact, referring to Equations (25) and (26), continued

through fifth-order, one finds that, irrespective of the numerical scheme,

(¢r - Ct)

h
1 "' h 2 + l ,'h(') h4

192-_ v'i "4"
(32)

which explains the difference between Equations (29) and (30).

OTHER COMMON DISCRETIZATIONS

In addition to the second-order central-difference formulation considered above, it is

convenient to summarize a number of other discretizations commonly used in convective

modelling.

First-Order Upwinding

For u > 0, the convective term in Equation (2) is written

-u(_): -u(,,-_°,_) ,33,

From Equation (10), viewed as a finite-difference formulation, this gives

h _(_0),-_-t- _ ¢j h

tew

+ _l _bi h 2 _ ... (34)
6

which, as expected, is first-order accurate. Viewed as a finite-volume model, for u > 0,

the face-values are written (with upwind bias) as

7



and

And this gives

(4 t

(6r - 4,t)., oL
h h 2

+
°°o

(36)

(37)

But, from Equations (17)-(20),

and

so that

_'r - (_bt.l - 4,) 1 '"h 2 (38)
h -_br + "'"

_b'r - _b't _ (if,.1 - 2_b, + _b,_t) _ __ (_b'/' - _'t") h2 + ... (40)

h h 2 _4 h

and the second central-difference can be written

h 2
= _bi +.i2'' 1 _bliV)h 2 + ... (41)

as is well known. This means that Equation (37) becomes

(_b - _bt)m,,dot _ (_b - _bt) _ _t qS't'h + ... (42)
h h 2

so that the leading truncation error is the same as that of the finite-difference formula,

Equation (34). This, of course, is to be expected from Equation (32).



Second-Order Upwinding

For u > 0, if one interpolates a fully upwind-biassed parabola through i, (i-1), and (i-2),

the corresponding first-derivative at i is

a_b) (3_b, - 4_b,_1 + _b,_2) (43)mod_l 2h

(0_b) 1 '"h 2 i _b[iv)h 3 += -_ -_¢i +_ ...
(44)

But the right-hand side of Equation (43) can also be written in finite-volume form as

(¢r - 6t)
h h

_ _3 _b i h 2 + _1 ,V) h 3 +
8 4

(45)

which again conforms with Equation (32). Note that, in this case, face-values are obtained

by linear extrapolation from upwind nodes.

Third-Order Upwinding "

This time, for u > 0, interpolate a (partially upwinded) cubic through (i+ 1), i, (i-1), and

(i-2). The corresponding first-derivative at i is then

Written in this form, one can see that the third-difference will cancel the leading truncation

error in Equation (12), giving

model i "_ 3"'0 "ri "'"

which is indeed a third-order accurate representation of the first-derivative at i.
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On the other hand, Equation (46) can be rewritten in finite-volume form by identifying face-

values (for u > 0) as

(_br)-od., _ (_bm + _b,) _ ± (_b,.t _ 2q_, + _b,_l) (48)
2

and

(¢t),._1 - (_b, + _,-1) - ± (¢_ - 2¢,-1 + ¢,-2) (49)
2 6

But this gives

(50)

which of course is only a second-order accurate approximation.

In order to achieve a third-order accurate finite-volume representation, one needs to annihi-

late the leading truncation error in Equation (28). This is achieved by writing (for u > 0)

(¢_r)model -- (_t*1 + ¢') -- ! (_bi.1 -- 24_ + _b,-l) (51)
2 S

and

(¢,)*_,,d_, - (_b, + _b,_,) - i (_b, - 2if,_ 1 + _b,_2) (52)
2 8

giving

(¢_r - _t)model _r -- _t 1 ' -- _ _v)h4 += ÷ _ 4_}"_ h 3 (53)
h h 16 128 "'"

which is seen to be third-order accurate. Equations (51) and (52) represent the well-known

QUICK formulas for face-values, obtained by interpolating a parabola through the two
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nearestnode-valuestogether with that of the next adjacentupwind node. In summary, the

1/8 factor on the second-differenceterms is appropriate for a finite-volume formulation,

whereas the 1/6 factor correspondsto the finite-difference model of the derivative. In

practice, the difference between using 1/8 and 1/6 (in a finite-volume formulation) is

observed to be quite small. Note that second-orderupwinding can also be written in a

similar form, using a factor of 1/2 on the second-differenceterms. In this case, however,

resultsare significantly lessaccurate.

Higher-Order Formulations

The simplest way to construct higher-order formulas is to start with a known formula and

addhigher-orderdifference termsto cancelthe leadingtruncationerror. For example, if one

were trying to constructa fourth-order accurateapproximation to thefirst-derivative at i, the
H_

appropriate formula would cancel the 4', term in Equation (12) without introducing an h?

term. This can be done by using the average third-difference centered at node i given by

1

± [(4',÷2 - 34'i÷1 + 3¢/ - _b,_l) + (4'i÷1 - 34', ÷ 34',_ 12

1

= _ (4',.2 - 24',.I ÷ 24',_1 - 4',-2) (54)

SO that

04') (4',÷1 - 4'i-1) (4',.2 - 24'i.1 + 24'i_i - 4'i-2) (55)mod_l 2h 12h

On the other hand, the appropriate fourth-order finite-volume formulation would use the

average second-difference centered at a face. For example,

(56)
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so that the appropriate face-value is

(6r)modo,
(4',÷1+ ¢,) (era - ¢,,1 - ¢i + 4',-1)

2 16
(57)

with a similar formula for @, (reducing all indexes by 1).

Once again, one sees that Equation (55) could be rewritten in finite-volume form using

(¢,÷1 + ¢,) (6,.2 - ¢,1 - 6, + 6,_1) (58)(6.)modol -
2 12

with a similar formula for the left face. But this would result in a finite-volume formulation

that is only second-order accurate, as predicted by Equation (32).

CONCLUSION

Equation (32) shows that there is a significant difference between the first derivative at a

node and the face-value difference (divided by h) across a control-volume cell. If a

convection scheme is constructed on the basis of modelling (a¢/ax)t, with truncation error

(T.E.)FD, and then rewritten in conservative finite-volume form, the truncation error must

be recomputed according to Equation (5), using Taylor expansions about face values. The

difference in accuracy shows up in steady-state calculations, where acbi/Ot = agi/at = o.

Interestingly enough, if one writes, in the vicinity of grid-point i,

e _r ire •

@(x) = @i + 6, x + L 6, x 2 + L@i x 3 +--t @_,,)x 4 + (59)
2 6 24 "'"

and then computes the control-volume cell average

_, = _ @(x) dx (60)
-m

2
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the result is

I _bi'h 2 + , _b_iv)h 4 + ... (61)

This, for example, explains the difference between the 1/8 factor in the third-order steady-

state QUICK scheme and the 1/6 factor in the third-order time-accurate QUICKEST scheme,

which was pointed out thirteen years ago 1.

o
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