N93-11852

1.12

95536

The Structures, Binding Energies and Vibrational Frequencies of Ca_3 and Ca_4 — An Application of the CCSD(T) Method P- 20 +73657 P- 491029

Timothy J. Lee and Alistair P. Rendell[†]

NASA Ames Research Center, Moffett Field, California 94035

Peter R. Taylor[‡]

ELORET Institute, Palo Alto, California 94303

Abstract

The Ca_3 and Ca_4 metallic clusters have been investigated using state-of-the art abinitio quantum mechanical methods. Large atomic natural orbital basis sets have been used in conjunction with the singles and doubles coupled-cluster (CCSD) method, a coupledcluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), and the multireference configuration interaction (MRCI) method. The equilibrium geometries, binding energies and harmonic vibrational frequencies have been determined with each of the methods so that the accuracy of the coupled-cluster methods may be assessed. Since the CCSD(T) method reproduces the MRCI results very well, cubic and quartic force fields of Ca3 and Ca4 have been determined using this approach and used to evaluate the fundamental vibrational frequencies. The infrared intensities of both the e' mode of Ca₃ and the t_2 mode of Ca₄ are found to be small. The results obtained in this study are compared and contrasted with those from our earlier studies on small Be and Mg clusters.

[†] Present Address: SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK.

[‡] Mailing Address: NASA Ames Research Center, Moffett Field, California 94035

Introduction

There has been considerable recent interest in the properties of small clusters (see for example Refs. 1-10), motivated principally by two issues. The first is the question of convergence of cluster properties towards the bulk values. Of course some properties will approach the bulk value more quickly than others as the cluster size is increased. The second issue is interaction between theory and experiment. The study of small clusters has progressed very rapidly since accurate experimental studies may be used to evaluate the predictive reliability of different theoretical methods, and then accurate theoretical studies may be used to evaluate or aid in the design of new experimental techniques.

Our studies of small clusters^{11,12} have focused on computing the structures, binding energies, vibrational frequencies and infrared intensities of the trimers and tetramers of the alkaline-earth elements beryllium and magnesium using elaborate treatments of electron correlation. We have also examined¹³ the equilibrium structures and binding energies of the pentamers, Be₅ and Mg₅. In the present study we extend our investigations to include Ca₃ and Ca₄. There are three previous studies^{14,15} of Ca₄ (and none of Ca₃) that have incorporated electron correlation effects. In one Ca₄ study a total binding energy of 18.3 kcal/mol, relative to four Ca atoms, was obtained at the single-reference single and double excitation configuration interaction (CISD) level of theory, including Davidson's correction¹⁶ for higher excitations. In the other, a binding energy of xx.x kcal/mol was obtained using a multireference CI approach (based on SCF orbitals). Based on our previous studies of the Be and Mg clusters, it is likely that even the higher value is a substantial underestimate of the true binding energy.

Another important component of our earlier studies^{11-13,17} is the comparison of geometries and binding energies obtained with various electron correlation methods. The s-p near-degeneracy effects in the alkaline-earth valence shell are very large, and strongly influence the binding in the small clusters. It is not only essential to describe these nondynamical effects accurately, however, but also to account properly for dynamical correlation in order to obtain reliable binding energies for these systems. Hence the most desirable treatment might appear to be a full valence complete-active-space SCF (CASSCF) calculation followed by a multireference configuration-interaction (MRCI) calculation. This is indeed an excellent level of treatment, but unfortunately it becomes very expensive to apply in large basis sets and at many geometries.

In our studies of the lighter alkaline-earth clusters, we have made extensive use of the single and double excitation coupled-cluster approach (CCSD) corrected with a perturbational estimate of triple excitations (CCSD(T)).¹⁸ The CCSD(T) method performs very well in comparison with MRCI results for the lighter alkaline-earth clusters, and appears to treat both the non-dynamical and dynamical correlation effects in these systems accurately. We have also established the reliability of the CCSD(T) method by full CI comparisons on Be₃.²⁰ compared results obtained at the MRCI level of treatment with those obtained using the single and double excitation coupled-cluster (CCSD) approach and the CCSD(T) method, in which a perturbational estimate of the effects of connected triple excitations has been included.¹⁸ In these studies we established that the CCSD(T)method performs very well in reproducing results obtained from the MRCI approach. Based on many comparisons of full configuration interaction (FCI) and MRCI energies,¹⁹ it has been asserted that the MRCI results should be very close to the n-particle limit, and we have established²⁰ that the MRCI and CCSD(T) results for Be₃ are indeed very close to the analogous FCI quantities. For comparison purposes, we have again used the CCSD, CCSD(T) and MRCI methods in examining the potential energy surfaces of Ca₃ and Ca_4 so that it may be determined how well the coupled-cluster methods perform for the series of alkaline-earth metals.

In the next section we describe the computational methods employed in this study and in the following section our results are presented and discussed. A comparison of our new results for the Ca clusters and our previous results for the Be and Mg clusters is also given. The final section contains our conclusions.

Computational methods

Two atomic natural orbital²¹ (ANO) basis sets have been used in this study. The $(22s \ 17p)$ primitive basis set is that of Partridge²² and was augmented with a $(4d \ 3f)$ even tempered polarization set defined by $\alpha = 2.5^n \alpha_0$ for n = 0,...,k. The α_0 values for the d and f functions are 0.0232 and 0.0440, respectively. The smallest basis set consists of 5s, 4p and 1d ANOs and will be denoted $[5s \ 4p \ 1d]$. The larger basis consists of 6s, 5p, 2d and 1f ANOs and will be denoted $[6s \ 5p \ 2d \ 1f]$. The ANO contraction coefficients were obtained by averaging the natural orbitals from single and double configuration interaction (CISD) calculations on the lowest ${}^{1}S$ and ${}^{1}P$ states of atomic Ca. Only the pure spherical

harmonic components of the d and f functions have been used.

As discussed in the Introduction, the CCSD, CCSD(T) and MRCI methods have been used to treat electron correlation. In all cases, only the Ca 4s electrons have been included in the correlation procedure. The coupled-cluster wave functions are based on self-consistent field (SCF) molecular orbitals while the MRCI wave functions are based on CASSCF molecular orbitals. All valence electrons were allowed variable occupancy in all valence orbitals in the CASSCF calculations. References for the MRCI wave functions were selected using a 0.05 threshold — that is, all occupations having a component spincoupling with a coefficient of 0.05 or larger in the CASSCF wave function were used as references in the MRCI procedure.

In analogy with small Be and Mg clusters, the equilibrium geometries of Ca₃ and Ca₄ were constrained to have D_{3h} and T_d symmetry, respectively. Harmonic frequency analyses demonstrate explicitly that these geometries are indeed minima on the Ca₃ and Ca₄ potential energy surfaces. In addition, a linear structure for Ca₃ was optimized and found to be significantly higher in energy than the equilateral triangle. Hence it is expected that the equilateral triangle and tetrahedron are the global minima on the Ca₃ and Ca₄ potential energy surfaces, respectively.

The quadratic, cubic and quartic force constants of Ca₃ and Ca₄ have been determined numerically and are given in symmetry internal coordinates. The symmetry internal coordinate definitions are:

 Ca_3

$$S_1(a_1') = \frac{1}{\sqrt{3}}(r_1 + r_2 + r_3) \tag{1}$$

$$S_{2a}(e') = \frac{1}{\sqrt{6}}(2r_1 - r_2 - r_3) \tag{2}$$

$$S_{2b}(e') = \frac{1}{\sqrt{2}}(r_2 - r_3) \tag{3}$$

 Ca_4

$$S_1(a_1) = \frac{1}{\sqrt{6}}(r_1 + r_2 + r_3 + r_4 + r_5 + r_6)$$
(4)

$$S_{2a}(e) = \frac{1}{\sqrt{12}} (2r_1 - r_2 - r_3 + 2r_4 - r_5 - r_6)$$
(5)

$$S_{2b}(e) = \frac{1}{\sqrt{4}}(r_2 - r_3 + r_5 - r_6)$$
(6)

$$S_{3x}(t_2) = \frac{1}{\sqrt{2}}(r_2 - r_5) \tag{7}$$

$$S_{3y}(t_2) = \frac{1}{\sqrt{2}}(r_3 - r_6) \tag{8}$$

$$S_{3z}(t_2) = \frac{1}{\sqrt{2}}(r_1 - r_4).$$
(9)

For Ca₄, the numbering of bonds is such that if r_1 connects one pair of atoms, r_4 connects the other pair, and similarly for the pairs $\{r_2, r_5\}$ and $\{r_3, r_6\}$. According to convention,²³ the *a* component of the doubly degenerate coordinates is defined such that it is symmetric with respect to a σ_v reflection plane, whereas the *b* component is antisymmetric. The *x*, *y* and *z* components of the triply degenerate coordinate are also defined according to established convention.²⁴

The precision of the central difference numerical procedures used to obtain the force constants has been closely monitored: the uncertainty in the harmonic frequencies should be less than 0.1 cm⁻¹ and in the fundamental frequencies less than 0.5 cm⁻¹. The anharmonic analyses have been performed with the SPECTRO program package²⁵ which uses second-order perturbation theory; Ca₃ has been treated as a symmetric top²³ and Ca₄ has been treated as a spherical top.²⁶ The coupled-cluster calculations were performed with the TITAN set of programs²⁷ interfaced to the MOLECULE-SWEDEN suite of programs.²⁸ The MRCI calculations were performed with MOLECULE-SWEDEN.

Results and Discussion

A. Equilibrium structures and binding energies

Table 1 contains the equilibrium bond distances, rotational constants and dissociation energies (atomization energies) of Ca₃ and Ca₄ computed in this study. For Ca₃ the CCSD level of theory substantially underestimates the D_e value (i.e., 5.7 kcal/mol or 47% compared to MRCI) and therefore yields a bond length 0.22 a_0 too long. However, the CCSD(T) level of theory exhibits a significant improvement over the CCSD results: D_e is only 0.9 kcal/mol less than the MRCI result and the equilibrium bond distance differs from the MRCI value by only 0.01 a_0 . A similar situation is found with Ca₄ — the CCSD level of theory substantially underestimates the binding energy and gives an equilibrium bond distance 0.11 a_0 too long. However, as was found for the Be and Mg clusters,^{11,12} the CCSD level of theory performs better for Ca₄ than it does for Ca₃. The CCSD(T) results for Ca₄ (using the smaller ANO basis set) are in very good agreement with the respective MRCI quantities. The CCSD(T) D_e is only 0.2 kcal/mol less than the MRCI value and the CCSD(T) r_e is actually 0.02 a_0 shorter than the MRCI r_e . As with our earlier studies^{11,12} of small Be and Mg clusters, it thus appears that the CCSD(T) level of theory provides a very good description of electron correlation effects in small Ca clusters.

It is interesting to note that comparison of the equilibrium bond distances obtained with the CCSD, CCSD(T) and MRCI methods suggests that the bonding in small Ca clusters is intermediate between the bonding in small Be and small Mg clusters, as would be expected based on the bulk binding energies.²⁹ For Be₃, where *sp* hybridization is known to play an important role in the binding, the CCSD level of theory yields a reasonable equilibrium bond distance when compared to MRCI or CCSD(T). However, for Mg₃, where the binding is more dominated by dispersion, the CCSD level of theory gives a bond distance that is significantly too long $(0.55 a_0)$. The discrepancy in the CCSD bond length for Ca₃ is between that found for Be₃ and Mg₃, but is much closer to the value obtained for Be₃ than that found for Mg₃. It therefore seems that *sp* hybridization is an important component of the bonding in Ca₃, though not as important as it is in the bonding of Be₃.

For Ca₄, only the CCSD and CCSD(T) levels of theory could be used in conjunction with the larger ANO basis set since the MRCI procedure would have been prohibitively expensive. Using the [6s 5p 2d 1f] ANO basis set, the CCSD(T) equilibrium bond distance for Ca₄ is 0.29 a_0 shorter than the analogous Ca₃ value indicating the increased importance of sp hybridization in the bonding as the cluster size becomes larger. The best D_e values for Ca₃ and Ca₄ obtained in this work are 12.1 kcal/mol and 31.5 kcal/mol, respectively. As expected, our best computed D_e for Ca₄ is substantially larger than the previously best computed value.¹⁴ Based on the fact that the separated-atom limit is described better than the molecule, the D_e values for Ca₃ and Ca₄ are probably underestimated somewhat. We say "probably" because it is not certain whether the effects of core-correlation will increase or decrease the D_e values. However, based on a recent study of Ca₂ by Dyall and McLean,³⁰ it is likely that the effects of core-correlation will not affect the D_e values by more than 1-2 kcal/mol.

B. Vibrational frequencies of Ca₃

The quadratic force constants and harmonic frequencies of Ca₃ obtained at the

CCSD, CCSD(T) and MRCI levels of theory are presented in Table 2. The [6s 5p 2d 1f] ANO basis set was used with all of these methods. In view of the underestimation of the bond strength at the CCSD level, it is not surprising that the CCSD quadratic force constants and harmonic frequencies are noticeably smaller than the analogous MRCI values. Conversely, the CCSD(T) quadratic force constants and harmonic frequencies are in excellent agreement with the MRCI quantities, being only 1 cm⁻¹ and 2 cm⁻¹ smaller for the a'_1 and e' modes, respectively. The best computed harmonic frequencies of Ca₃ obtained in this work are 95 cm⁻¹ and 85 cm⁻¹ for the a'_1 and e' modes, respectively. These values should be reasonably reliable and are probably low rather than high, assuming that the binding energy is still somewhat underestimated. The harmonic frequencies of Ca₃ are small not only because the bonding in Ca₃ is relatively weak, but also because of the large mass of the Ca atom and the $1/\sqrt{m}$ dependence of the harmonic frequency, where m is the reduced mass of the system.

We have computed cubic and quartic force constants using the CCSD(T) method, since the CCSD(T) and MRCI harmonic frequencies are in excellent agreement and the former approach is significantly cheaper. The complete set of cubic and quartic force constants and the resulting anharmonic constants are presented in Table 3. Table 4 contains the fundamental vibrational frequencies of Ca_3 determined via second-order perturbation theory. In addition, Table 4 presents the infrared (IR) intensity of the e' vibration determined using the double harmonic approximation.

The absolute anharmonic contribution to the vibrational frequencies is small, only 2 cm^{-1} for both vibrations, and the percentage effect is about half that observed previously for the Mg clusters. Combining the MRCI harmonic frequencies with the anharmonic correction obtained with the CCSD(T) method gives 93 cm⁻¹ and 83 cm⁻¹ as our best estimates for the fundamental vibrational frequencies of the a'_1 and e' modes, respectively. Because the IR intensity of the e' mode is so small, the best prospect for determining the vibrational frequencies experimentally is likely to be an indirect technique such as negative ion photoelectron spectroscopy.

C. Vibrational frequencies of Ca₄

The quadratic force constants and harmonic frequencies of Ca_4 , determined at the CCSD, CCSD(T) and MRCI levels of theory, are presented in Table 5. A noteworthy point

is that the CCSD harmonic frequencies are in better agreement with the MRCI values than was found for Ca₃. This is especially true for ω_2 and ω_3 where the differences are only 4 cm⁻¹ and 8 cm⁻¹, respectively. This observation supports our earlier analysis regarding the increased importance of *sp* hybridization, and consequently covalent bonding, in Ca₄ relative to Ca₃. The CCSD(T) quadratic force constants and harmonic frequencies are in excellent agreement with the respective MRCI quantities. Indeed, ω_1 and ω_2 only differ by 1 cm⁻¹ and ω_3 differs by less than this. These comparisons suggests that the CCSD(T) level of theory is closely approaching the *n*-particle limit for Ca₄.

The CCSD and CCSD(T) harmonic frequencies obtained with the larger [6s 5p 2d 1f]ANO basis set demonstrate the importance of using large one-particle basis sets in order to obtain highly accurate harmonic frequencies. The difference between the CCSD(T) harmonic frequencies in the two basis sets used is larger than the differences due to correlation treatment among the small basis results. As with Ca₃, it is expected that the CCSD(T)/[6s 5p 2d 1f] quadratic force constants and harmonic frequencies should be very reliable.

Table 6 contains the complete cubic and quartic force field of Ca₄ obtained at the CCSD(T) level of theory with the larger ANO basis set. The resulting anharmonic constants are given in Table 7, while the fundamental vibrational frequencies and IR intensities of Ca₄ are presented in Table 8. As with Ca₃, the absolute anharmonic corrections for the vibrational modes of Ca₄ are relatively small at only 3 cm^{-1} , 1 cm^{-1} and 1 cm^{-1} for ω_1 , ω_2 and ω_3 , respectively. The percentage effect on the fundamental frequencies is also similar to that found for Ca₃. The IR intensity of the t_2 vibration is 2.1 km/mol, which is substantially larger than the IR intensity of the e' vibration in Ca₃, but again the best method to obtain fundamental frequencies from experiment may be an indirect approach.

D. Summary of CCSD(T) Results for Small Be, Mg and Ca Clusters

A summary of the equilibrium structures, vibrational frequencies, infrared intensities and binding energies for the alkaline-earth trimers is presented in Table 9 and for the tetramers in Table 10. The beryllium and magnesium cluster results are taken from our previous studies.^{11,12} In all cases, the results are those obtained with the largest ANO basis set used in the particular investigation. For the trimers, Table 9 contains the MRCI equilibrium bond distance, harmonic frequencies and dissociation energy. The fundamental frequencies were obtained by adding the CCSD(T) anharmonicity to the MRCI harmonic frequencies. The IR intensities were determined with the CCSD(T) method. For the tetramers, all of the results were obtained at the CCSD(T) level of theory since it was not possible to use the MRCI method in conjunction with the larger ANO basis sets for the tetramers. Thus the values summarized in Tables 9 and 10 represent the best computed quantities to date for the alkaline-earth trimers and tetramers.

Examination of the binding energies in Table 9 indicates the expected trend based on bulk binding energies — that is the binding energies decrease in the order $Be_3 > Ca_3 > Mg_3$. The vibrational frequencies, on the other hand, decrease in the order $Be_3 > Mg_3 > Ca_3$, but this is determined in large part by mass effects, since the symmetry internal coordinate quadratic force constants for Mg_3 are smaller¹² than those for Ca_3 . The IR intensity of the e' mode is small for all of the alkaline-earth trimers.

Comparison of the D_e values of the tetramers shows the same trend as observed for the trimers, although the ratios are somewhat different. The binding energy of Be₄ is significantly larger than that of Be₃, though the Be₄ equilibrium bond distance is only 0.28 a_0 shorter than the Be₃ value. The ratio $D_e(M_4)/D_e(M_3)$ is largest for M = Mgand it is therefore not surprising that Mg₄ exhibits the largest reduction in bond length (0.50 a_0) relative to the trimer. The reduction in the Ca₄ bond length (relative to the trimer) is about the same as that observed for Be even though the ratio $D_e(M_4)/D_e(M_3)$ is significantly larger for M = Be than for M = Ca. This last observation is probably due to the fact that the valence orbitals of Ca are larger than those of Be.

The harmonic frequencies of the tetramers exhibit the same trend as observed for the trimers. Again, the Mg₄ vibrational frequencies are higher than the analogous Ca₄ values because of the mass effect. The fundamental frequency ν_3 for Be₄ has a large *positive* anharmonic correction that is not observed in either Mg₄ nor Ca₄. This Be₄ phenomenon was explained in some detail previously,¹¹ and relies on a symmetry argument applicable to tetrahedral X₄ species. Its apparent inapplicability to Mg₄ and Ca₄ is probably due to several factors, including the much weaker bonds present in Mg₄ and Ca₄ relative to Be₄. The IR intensities of the tetramer t_2 vibrations are much larger than those calculated for the trimers. Nevertheless, the Mg₄ and Ca₄ intensities remain very small and it is likely that the best prospect for experimental determination of these frequencies will be an indirect method like negative ion photodetachment. On the other hand, the IR intensity

of the t_2 mode of Be₄ is certainly large enough to allow direct experimental observation provided that an experiment can be designed which will produce enough Be₄.

Conclusions

The CCSD, CCSD(T) and MRCI electron correlation methods have been used to investigate the equilibrium structures, vibrational frequencies and binding energies of the Ca_3 and Ca_4 metallic clusters. In agreement with our earlier studies of the analogous Be and Mg clusters, it is found that the CCSD(T) method reproduces the MRCI r_e , harmonic frequencies and D_e values very well. The agreement between these methods is somewhat better for Ca4, but is still very good for Ca3. Complete cubic and quartic force fields of Ca_3 and Ca_4 have been determined with the CCSD(T) method in conjunction with a large ANO basis set and have been used to evaluate the anharmonic corrections needed to compute the fundamental frequencies. The anharmonic corrections have been determined via second-order perturbation theory. The absolute value of the anharmonic corrections is relatively small, although as a percentage relative to the fundamental frequencies they are similar to those observed previously for the Mg clusters. In spite of the fact that Ca is larger and more polarizable than Mg, and that Ca clusters are more strongly bound than Mg clusters, the IR intensities of the e' mode of Ca₃ and of the t_2 mode of Ca₄ are small and similar to the analogous Mg quantities. It is unlikely that direct observation of these fundamentals will be possible.

The MRCI and CCSD(T) equilibrium structures, vibrational frequencies and binding energies of the alkali metal (Be, Mg and Ca) trimers and tetramers have been summarized. The binding energies of the trimers and tetramers follow the bulk metal binding energies although the ratios of the small cluster D_e values do not agree with the bulk metal ratios. The vibrational frequencies follow a different trend as the Mg_n (n=3,4) frequencies are larger than the respective Ca values, but this is due to the larger mass of the Ca atom, since the symmetry internal coordinate force constants (which are independent of mass) for the Ca trimer and tetramer are larger than the respective Mg quantities.

Acknowledgements

PRT was supported by NASA grant NCC 2-371 and APR was supported by an NRC Post-Doctoral Research Fellowship.

References

- 1. D. H. Levy, Annu. Rev. Phys. Chem. 31, 197 (1980).
- 2. A. C. Legon and D. J. Millen, Chem. Rev. 86, 635 (1986).
- 3. M. M. Kappas Chem. Rev. 88, 369 (1988).
- D. E. Powers, S. G. Hansen, M. E. Geusic, D. L. Michalopoulos, and R. E. Smalley, J. Chem. Phys. 78, 2866 (1983).
- 5. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981).
- S. J. Riley, E. K. Parks, C.-R. Mao, L. G. Pobo, and S. Wexler, J. Phys. Chem. 86, 3911 (1982).
- 7. C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 90, 4671 (1989).
- G. T Fraser, A. S. Pine, R. D. Suernam, D. C. Dayton, and R. E. Miller, J. Chem. Phys. 90, 1330 (1989).
- 9. J. R. Heath and R. J. Saykally, J. Chem. Phys. 94, 3271 (1991).
- 10. J. R. Heath, R. A. Sheeks, A. L. Cooksy and R. J. Saykally, Science 249, 895 (1990).
- 11. A. P. Rendell, T. J. Lee, and P. R. Taylor, J. Chem. Phys. 92, 7050 (1990).
- 12. T. J. Lee, A. P. Rendell, and P. R. Taylor, J. Chem. Phys. 93, 6636 (1990).
- 13. T. J. Lee, A. P. Rendell, and P. R. Taylor, J. Chem. Phys. 92, 489 (1990).
- 14. C. W. Bauschlicher, P. S. Bagus, and B. N. Cox, J. Chem. Phys. 77, 4032 (1982).
- 15. P. S. Bagus, C. J. Nelin, and C. W. Bauschlicher, Surface Sci. 156, 615 (1985).
- 16. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
- 17. T. J. Lee, A. P. Rendell, and P. R. Taylor, J. Phys. Chem. 94, 5463 (1990).
- 18. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
- 19. C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, Adv. Chem. Phys. 77, 103 (1990).
- J. D. Watts, I. Cernusak, J. Noga, R. J. Bartlett, C. W. Bauschlicher, T. J. Lee, A. P. Rendell, and P. R. Taylor, J. Chem. Phys. 93, 8875 (1990).
- 21. J. Almlöf and P. R. Taylor, J. Chem. Phys. 86, 4070 (1987).
- 22. H. Partridge, J. Chem. Phys. 90, 1043 (1989).

- I. M. Mills in "Molecular Spectroscopy: Modern Research", edited by K. N. Rao and C. W. Mathews (Academic, New York 1972) Vol. I, pp. 115-140.
- 24. D. L. Gray and A. G. Robiette, Mol. Phys. 37, 1901 (1979).
- 25. J. F. Gaw, A. Willetts, W. H. Green and N. C. Handy, SPECTRO program, version 1.0 (1989).
- D. P. Hodgkinson, R. K. Heenan, A. R. Hoy, A. G. Robiette, Mol. Phys. 48, 193 (1983).
- 27. TITAN is a set of electronic structure programs, written by T. J. Lee, A. P. Rendell and J. E. Rice.
- 28. MOLECULE-SWEDEN is an electronic structure program system written by J. Almlöf, C. W. Bauschlicher, M. R. A. Blomberg, D. P. Chong, A. Heiberg, S. R. Langhoff, P.-Å. Malmqvist, A. P. Rendell, B. O. Roos, P. E. M. Siegbahn, and P. R. Taylor.
- 29. J. Donohue, The Structure of the Elements (Interscience, New York, 1974).
- 30. K. G. Dyall, A. D. McLean, private communication.

Total energies (E_h) , bond lengths (a_0) , rotational constants (MHz) and binding energies (kcal/mol) for Ca₃ and Ca₄.

	Basis	E^a	r _e	A	В	De	D_0	
CCSD	[6s 5p 2d 1f]	0.370728	8.097	1378	689	6.4	6.1	
CCSD(T)	[6s 5p 2d 1f]	0.378316	7.884^{b}	1453	726	11.2	10.8	
MRCI	[6s 5p 2d 1f]	0.379234	7.874	1457	728	12.1	11.7	
CCSD	$[5s \ 4p \ 1d]$	0.168123	7.935	717		14.3	13.6	
CCSD(T)	$[5s \ 4p \ 1d]$	0.180604	7.806	741		22.2	21.4	
MRCI	$[5s \ 4p \ 1d]$	0.179059	7.824	738		22.4	21.7	
CCSD	$[6s \; 5p \; 2d \; 1f]$	0.180579	7.694	763		20.9	20.1	
CCSD(T)	$[6s \ 5p \ 2d \ 1f]$	0.197496	7.591°	784		31.5	30.6	
	CCSD CCSD(T) MRCI CCSD CCSD(T) MRCI CCSD CCSD(T)	BasisCCSD $[6s \ 5p \ 2d \ 1f]$ CCSD(T) $[6s \ 5p \ 2d \ 1f]$ MRCI $[6s \ 5p \ 2d \ 1f]$ CCSD $[5s \ 4p \ 1d]$ CCSD(T) $[5s \ 4p \ 1d]$ MRCI $[5s \ 4p \ 1d]$ MRCI $[5s \ 4p \ 1d]$ CCSD $[6s \ 5p \ 2d \ 1f]$ CCSD $[6s \ 5p \ 2d \ 1f]$ CCSD $[6s \ 5p \ 2d \ 1f]$	Basis E^a CCSD $[6s \ 5p \ 2d \ 1f]$ 0.370728 CCSD(T) $[6s \ 5p \ 2d \ 1f]$ 0.378316 MRCI $[6s \ 5p \ 2d \ 1f]$ 0.379234 CCSD $[5s \ 4p \ 1d]$ 0.168123 CCSD(T) $[5s \ 4p \ 1d]$ 0.180604 MRCI $[5s \ 4p \ 1d]$ 0.179059 CCSD $[6s \ 5p \ 2d \ 1f]$ 0.180579 CCSD(T) $[6s \ 5p \ 2d \ 1f]$ 0.197496	Basis E^a r_e CCSD $[6s 5p 2d 1f]$ 0.370728 8.097 CCSD(T) $[6s 5p 2d 1f]$ 0.378316 7.884^b MRCI $[6s 5p 2d 1f]$ 0.379234 7.874 CCSD $[5s 4p 1d]$ 0.168123 7.935 CCSD(T) $[5s 4p 1d]$ 0.180604 7.806 MRCI $[5s 4p 1d]$ 0.179059 7.824 CCSD $[6s 5p 2d 1f]$ 0.180579 7.694 CCSD(T) $[6s 5p 2d 1f]$ 0.197496 7.591^c	Basis E^a r_e A CCSD $[6s 5p 2d 1f]$ 0.370728 8.097 1378 CCSD(T) $[6s 5p 2d 1f]$ 0.378316 7.884^b 1453 MRCI $[6s 5p 2d 1f]$ 0.379234 7.874 1457 CCSD $[5s 4p 1d]$ 0.168123 7.935 717 CCSD(T) $[5s 4p 1d]$ 0.180604 7.806 741 MRCI $[5s 4p 1d]$ 0.179059 7.824 738 CCSD $[6s 5p 2d 1f]$ 0.180579 7.694 763 CCSD(T) $[6s 5p 2d 1f]$ 0.197496 7.591^c 784	Basis E^a r_e ABCCSD $[6s 5p 2d 1f]$ 0.370728 8.097 1378 689 CCSD(T) $[6s 5p 2d 1f]$ 0.378316 7.884^b 1453 726 MRCI $[6s 5p 2d 1f]$ 0.379234 7.874 1457 728 CCSD $[5s 4p 1d]$ 0.168123 7.935 717 CCSD(T) $[5s 4p 1d]$ 0.180604 7.806 741 MRCI $[5s 4p 1d]$ 0.179059 7.824 738 CCSD $[6s 5p 2d 1f]$ 0.180579 7.694 763 CCSD(T) $[6s 5p 2d 1f]$ 0.197496 7.591^c 784	Basis E^a r_e A B D_e CCSD $[6s 5p 2d 1f]$ 0.370728 8.097 1378 689 6.4 CCSD(T) $[6s 5p 2d 1f]$ 0.378316 7.884^b 1453 726 11.2 MRCI $[6s 5p 2d 1f]$ 0.379234 7.874 1457 728 12.1 CCSD $[5s 4p 1d]$ 0.168123 7.935 717 14.3 CCSD(T) $[5s 4p 1d]$ 0.168064 7.806 741 22.2 MRCI $[5s 4p 1d]$ 0.179059 7.824 738 22.4 CCSD $[6s 5p 2d 1f]$ 0.180579 7.694 763 20.9 CCSD(T) $[6s 5p 2d 1f]$ 0.197496 7.591^c 784 31.5	Basis E^a r_e AB D_e D_0 CCSD $[6s 5p 2d 1f]$ 0.370728 8.097 1378 689 6.4 6.1 CCSD(T) $[6s 5p 2d 1f]$ 0.378316 7.884^b 1453 726 11.2 10.8 MRCI $[6s 5p 2d 1f]$ 0.379234 7.874 1457 728 12.1 11.7 CCSD $[5s 4p 1d]$ 0.168123 7.935 717 14.3 13.6 CCSD(T) $[5s 4p 1d]$ 0.180604 7.806 741 22.2 21.4 MRCI $[5s 4p 1d]$ 0.179059 7.824 738 22.4 21.7 CCSD $[6s 5p 2d 1f]$ 0.180579 7.694 763 20.9 20.1 CCSD(T) $[6s 5p 2d 1f]$ 0.197496 7.591^c 784 31.5 30.6

^a The energy for Ca₃ is reported as -(E+2030) and for Ca₄ as -(E+2707).

^b Vibrationally averaged bond lengths: $r_g = 7.917 \ a_0$ and $r_\alpha = 7.915 \ a_0$.

^c Vibrationally averaged bond lengths: r_g = 7.615 a_0 and r_{α} = 7.613 a_0 .

Symmetry internal coordinate force constants $(aJ/Å^2)$ and harmonic frequencies (cm^{-1}) for Ca₃.

	F_{11}	F_{22}	$\omega_1(a_1')$	$\omega_2(e')$
CCSD	0.04415	0.08141	75	72
CCSD(T)	0.06952	0.10835	94	83
MRCI	0.07126	0.11460	95	85

Non-zero cubic $(aJ/Å^3)$ and quartic $(aJ/Å^4)$ force constants and the anharmonic constants (cm^{-1}) for Ca₃.

	-0.133
$F_{12a2a} = F_{12b2b}$	-0.152
$F_{2a2a2a} = -F_{2a2b2b}$	-0.105
F_{1111}	0.156
$F_{112a2a} = F_{112b2b}$	0.163
$F_{12a2a2a} = -F_{12a2b2b}$	0.116
$F_{2a2a2a2a} = F_{2b2b2b2b} = 3F_{2a2a2b2b}$	0.239

Anharmonic Constants

x_{11}	-0.60
x_{21}	-1.38
x_{22}	-0.41
<i>g</i> ₂₂	0.18

 Mode	ω	ν	$\omega - \nu$	Ι
a_1'	94	92	2	0
e'	83	81	2	0.4

Comparison of the CCSD(T) harmonic and fundamental frequencies of Ca_3 (cm⁻¹). Infrared intensities (km/mol) are also included.

Symmetry internal coordinate quadratic force constants $(aJ/Å^2)$ and harmonic frequencies (cm^{-1}) for Ca₄.

	Basis	F_{11}	F_{22}	F_{33}	$\omega_1(a_1)$	$\omega_2(e)$	$\omega_3(t_2)$
CCSD	$[5s \ 4p \ 1d]$	0.05350	0.12546	0.08688	95	73	86
CCSD(T)	$[5s \ 4p \ 1d]$	0.07166	0.14253	0.10439	110	78	94
MRCI	$[5s \ 4p \ 1d]$	0.06960	0.14091	0.10397	109	77	94
CCSD	$[6s \ 5p \ 2d \ 1f]$	0.07463	0.15725	0.11282	113	82	98
CCSD(T)	[6s 5p 2d 1f]	0.09446	0.17250	0.13062	127	86	105

$\begin{array}{c} \textbf{Table 6}\\ \text{Non-zero cubic (aJ/Å^3) and quartic (aJ/Å^4) force}\\ \text{ constants for Ca}_4. \end{array}$

F_{111}	-0.110
$F_{12a2a} = F_{12b2b}$	-0.140
$F_{13x3x} = F_{13y3y} = F_{13z3z}$	-0.126
$F_{2a2a2a} = -F_{2a2b2b}$	-0.074
$F_{2a3z3z} = -2F_{2a3x3x} = -2F_{2a3y3y} = \frac{2}{\sqrt{3}}F_{2b3x3x} = \frac{-2}{\sqrt{3}}F_{2b3y3y}$	-0.190
$F_{3x^3y^3z}$	-0.013
F_{1111}	0.077
$F_{112a2a} = F_{112b2b}$	0.091
$F_{113x3x} = F_{113y3y} = F_{113z3z}$	0.076
$F_{12a2a2a} = -F_{12a2b2b}$	0.058
$F_{12a3z3z} = -2F_{12a3z3z} = -2F_{12a3y3y} = \frac{2}{\sqrt{3}}F_{12b3z3z} = \frac{-2}{\sqrt{3}}F_{12b3y3y}$	0.119
$F_{13x3y3z}$	-0.001
$F_{2a2a2a2a} = F_{2b2b2b2b} = 3F_{2a2a2b2b}$	0.162
$F_{2a2a3z3z}$	0.176
$F_{2b2b3z3z}$	0.044
${}^{a}F_{2a2a3y3y} = F_{2a2a3x3x} = \frac{1}{4}(F_{2a2a3z3z} + 3F_{2b2b3z3z})$	0.077
${}^{a}F_{2b2b3y3y} = F_{2b2b3x3x} = \frac{1}{4}(3F_{2a2a3z3z} + F_{2b2b3z3z})$	0.143
${}^{a}F_{2a2b3y3y} = -F_{2a2b3x3z} = \frac{\sqrt{3}}{4}(F_{2a2a3z3z} - F_{2b2b3z3z})$	0.057
$F_{3x3x3x3x} = F_{3y3y3y3y} = F_{3z3z3z3z}$	0.262
$F_{3x3x3y3y} = F_{3x3x3z3z} = F_{3y3y3z3z}$	0.043

^a Dependent force constants related to $F_{2a2a3z3z}$ and $F_{2b2b3z3z}$.

Table 7 Anharmonic constants (cm^{-1}) for Ca₄.

=

Anhari	monic Constants
x_{11}	-0.31
x_{21}	-0.52
x_{22}	-0.13
x_{31}	-0.83
x_{32}	-0.35
x_{33}	-0.18
g_{22}	0.09
g_{33}	0.03
t_{23}	-0.05
t_{33}	-0.03

Mode	ω	ν	$\omega - \nu$	Ι
 a1	127	124	3	0
e	86	85	1	0
t_2	105	104	1	2.1

Comparison of the CCSD(T) harmonic and fundamental frequencies of Ca_4 (cm⁻¹). Infrared intensities (km/mol) are also included.

	r _e	$\omega_1(a_1')$	$\omega_2(e')$	$ u_1$	$ u_2$	De
Be ₃ Mg ₃ Ca ₃	4.200 6.373 7.874	490 110 95	$427(0.5) \\115(0.2) \\85(0.4)$	469 101 93	410 109 83	$22.5 \\ 6.3 \\ 12.1$

Table 9Summary of results for the alkaline earth trimers.^a

^a Units are a_0 for r_e , cm⁻¹ for the harmonic and fundamental frequencies, and kcal/mol for D_e . The value in parentheses is the IR intensity in km/mol. The Be₃ results are from reference 11 and the Mg₃ results are from reference 12. See text for details of correlation methods used.

Table 10 Summary of CCSD(T) results for the alkaline earth tetramers.^a

r _e	$\omega_1(a_1)$	$\omega_2(e)$	$\omega_3(t_2)$	$ u_1$	$ u_2 $	$ u_3$	De
3.921	663	469	571(29.7)	639	455	682	79.5
5.877	192	147	171(2.4)	184	143	167	23.9
7.591	127	86	105(2.1)	124	85	104	31.5
	r _e 3.921 5.877 7.591	r_e $\omega_1(a_1)$ 3.921 663 5.877 192 7.591 127	r_e $\omega_1(a_1)$ $\omega_2(e)$ 3.921 663 469 5.877 192 147 7.591 127 86	r_e $\omega_1(a_1)$ $\omega_2(e)$ $\omega_3(t_2)$ 3.921663469571(29.7)5.877192147171(2.4)7.59112786105(2.1)	r_e $\omega_1(a_1)$ $\omega_2(e)$ $\omega_3(t_2)$ ν_1 3.921663469571(29.7)6395.877192147171(2.4)1847.59112786105(2.1)124	r_e $\omega_1(a_1)$ $\omega_2(e)$ $\omega_3(t_2)$ ν_1 ν_2 3.921663469571(29.7)6394555.877192147171(2.4)1841437.59112786105(2.1)12485	r_e $\omega_1(a_1)$ $\omega_2(e)$ $\omega_3(t_2)$ ν_1 ν_2 ν_3 3.921663469571(29.7)6394556825.877192147171(2.4)1841431677.59112786105(2.1)12485104

^a Units are a_0 for r_e , cm⁻¹ for the harmonic and fundamental frequencies, and kcal/mol for D_e . The value in parentheses is the IR intensity in km/mol. The Be₄ results are from reference 11 and the Mg₄ results are from reference 12.