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Abstract

We show that by a suitable change of variables, the derivatives of molecular

integrals over Gaussian-type functions required for analytic energy derivatives can

be evaluated with significantly less computational effort than current formulations.

The reduction in effort increases with the order of differentiation.

I. Introduction

Analytic energy derivative methods have revolutionized the application of com-

putational quantum chemistry to problems of chemical interest [1]. The location

and characterization of stationary points on polyatomic molecular potential energy

surfaces can be accomplished so much more efficiently using analytic derivatives

than with techniques based on computing energies alone that the development and

extension of analytic derivative methods has been one of the most active fields of

methodological research in quantum chemistry in recent years. Given the gradi-

ent and Hessian of the energy with respect to the nuclear coordinates, a variety of

strategies have been developed that are guaranteed to converge to minima on po-

tential surfaces and that can efficiently locate other stationary points, particularly
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transition states. Thesestrategiescan alsobe used to "walk" on surfacesfrom one

minimum to another, thereby defining a reaction coordinate, and amongthe most

elegant and conceptually illuminating studies of this sort are the investigations

of Ruedenbergand co-workerson rearrangement reactions of small hydrocarbon

species(seeRefs. 2-5 and referencestherein). It is thus a great pleasureto dedicate
this contribution to ProfessorRuedenbergon the occasionof his 70th birthday.

Of course, in order to perform such walks and optimizations it is imperative
to evaluate the energy derivatives efficiently at the computational level of interest

(Hartree-Fock or somecorrelated treatment). As noted above,muchwork hasbeen

performedin this area,and severalreviewsareavailable [1,6,7].Weshall concentrate
hereon atopic that ultimately affectsthe computational effort necessaryto evaluate

energy derivatives for any ab initio method that relies on a basis set expansion of

Gaussian one-electron functions.

Wave functions for polyatomic molecules are invariably expanded in a basis set

that is centred on the various nuclei, and so in a calculation of the energy derivative

of nth order with respect to the nuclear coordinates, up to nth-order derivatives of

the one- and two-electron integrals are required. These derivative integrals can in-

volve differentiation of the operators as well as differentiation of the basis functions,

but the greatest computational problems arise from the differentiation of the basis

functions. Like the evaluation of integrals over Gaussians [8,9], the calculation of

integrals over differentiated Gaussians has been the subject of many investigations

and numerous efficient computational schemes have been devised. In this work we

show how the efficiency of detqvative integral evaluation can be improved by some

simple manipulations of variables. We shall briefly review the MeMurchie-Davidson

scheme [8] for computing Gaussian integrals and derivative integrals, and then show

how a change of differentiation variables simplifies the formulas.

n. Derivative Integral Formulas

We shall expand the Gaussian charge distributions that appear in the integrals

in Hermite functions, as described by McMurchie and Davidson [8] (see also Saun-

ders [9]). Let us represent an unnormalized Cartesian Gaussian function centred

at A by

= (1)

where :CA = x-A_, etc. We can consider one Cartesian direction, say z, represented
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as

{e_p(-_).

The overlap distribution of two such functions is expanded as

Ft_j (x, a, b, A=, B.) =

where the Hermite function At(z,p,

with

and

Gi(x,a,A.)Gj(z,b,B=)

_+j

EE_J(a,b,A.,B=)At(z,P,P=),
t=O

P=) is defined by

A,(_,p,P.) : (o/op_)' exp(-p_)

P P

p=a+b.

The expansion coefticients E_J(a,b,A=,B=) are obtained from

Z_+1,j = 2__E_£11 .. PbR'E_J + (t + 1)E__I,

where

and

(2)

(3)

(4)

(5)

(6)

(7)

R.=A=-B. (8)

ab R2
E0°° : exp(- 5- _). (9)

Henceforth we shall not always list the arguments of the expansion coefficients or

Hermite functions, but we wish to emphasize here that the expansion coefficients

depend on a, b, and R= only, while the Hermite functions are independent of R=:

{+j

_t_j(z,a,b,A.,B=) = E E_J(a'b'R_)At(z'P'P_)" (10)
t=0

In terms of the Hermite functions and expansion coefficients we can express a

two-electron integral

f f ' _ _ exp(-_d) j ' _ exp(-b_);_AYAZA mBYBZB

,I I Tbl×__-='_yo"_'zo_'exp'-_;'_'V"__oj-_ exp(-dr2D ) drl dr2 (11)
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as

where

i+j i'+j'
•" i'j'

t--O _ =0

k+l k' +I'

kl k _ l'Ea (a,b, Av,B_) E E,,, (c,d, Cv,Dv)×

u_0 ut=O

m+n m' +n'

× E Ev (a,b,A_.,Bz)E E¢ (c,d, Cz, Dz)
v=.O vt'=O

× (_1_ I_'_'_'), (12)

(,uvl%llt'_'v ')

=ff A'(z'P'P_)At'(z'q'Q_)A'_(Y'P'Pv)A_"(Y'q'Qv)

× a_,(z,p,P,)Av,(z,q,Q,)_.I5_dT_d_._. (13)

and q and Q are defined analogously to p and fi but for the second charge dis-

tribution. Thus in practice we evaluate integrals over the Hermite function basis

and combine those with the expansion coefficients to give integrals over primitive

Gaussians. Some modifications to the form (12) are desirable from the point of

view of efficiency, as discussed by Saunders [9], but for schematic purposes we can

use (12). The first step, evaluation of the Hermite function integrals, is fast. The

second step, which we can regard as a transformation from the Hermite function

basis to the Cartesian Gaussian basis, is relatively time-consuming and is certainly

more expensive than calculating the ttermite function integrals. Finally, if required,

we combine these integrals with basis set contraction coefficients to give the final

integrals. In fact, some of the expansion steps can be taken outside the contraction

step, with a consequent improvement in efficiency.

In a derivative integral we are interested in derivatives of _ij: O_ij/OA= and

Oflij/OBz for first derivatives, for example. Conventionally, we would differentiate

the orbitals (2) first and then expand the overlap distributions of the differentiated

orbitals analogously to f_ij above.

to A. we obtain

Oflij i+j+_- E
t=O

For example, for the derivative with respect

(14)



Note that the sumhereis overmoreterms than appearin the undifferentiated charge

distribution (3) -- higher orders of differentiation would increasethis summation
range further. The new coefficientsF_ _ are defined in terms of the coefficients E_ _

above by

F,"= - (15)

Analogous coefficients can be defined for higher orders of differentiation or for dif-

ferentiation with respect to B,. In this approach, then, we compute derivative inte-

grals using the same general scheme (12) as for undifferentiated integrals. Since the

expansion of the differentiated charge distributions in Hermite functions is longer

than for the undifferentiated distributions, the work required to transform from the

Hermite function basis to the Cartesian Gaussian basis is greater. Further, as the

order of differentiation increases this extra work becomes larger and larger. Hence

this approach is not well-suited to higher derivatives.

Let us instead consider differentiation with respect to the variables P: and R:,

for which
0 a 0 0

- + (16)
OA_ p cgP_ cgR_

and
0 b O 0

- (17)
OB, p OP: OR:

We recall that the Hermite functions are independent of R_, while the expansion

coefficients are independent of P,. Hence we can expect the expressions for the

differentiated charge distributions to be simpler in terms of these variables, although

we must eventually transform the derivatives back to the A:, B_ representation. We

obtain for the derivatives

and

Denoting OE_ y/OR: by E_ j;'

OflijOR,- Ei+J OE_JoR:A_. (19)
t=O

, we obtain the expansion relation

E_ +1'j;1 - 1EiJ;1 - _(R,E_ j;1 + E_ j) + (t + 1)E_11- 2p t-1
(20)



by differentiating the relation (7) above.

We can make several important observations about these derivative formulas.

First, the combination of expansion coefficients and Hermite functions in (18) above

is over exactly the same range as the summation to give undifferentiated integrals:

the only difference is that the degree of the Hermite function has increased by

one. Hence the code required to evaluate this term is the same as required in the

undifferentiated case, and the number of operations is also the same. (It is easy

to see that this holds true in any order of differentiation for this term.) As we

saw above, this is not the case if we differentiate with respect to the variables A=

and B,, because then a linear combination of different degree Hermite functions

and expansion coefficients appears.

Second, calculation of the differentiated expansion coefficients E_ z;1 requires

essentially the same code again as for the undifferentiated case, with the obvious

addition of an extra term in the expansion relation, and a starting value

Eoo;a 2ab i_ p ooo - , (21)
P

obtained by differentiating (9). As we noted, the index range of the coefficients that

are required is the same as that for the undifferentiated case, so the actual work

required to combine Hermite function integrals and expansion coefficients does not

increase. (The precomputation of the expansion coefficients themselves is of course

a very rapid step.)

Third, in the usual scheme the index range of the program loops over the

variables t, u, v depends on the direction of differentiation (i.e., differentiation with

respect to A=, Av, etc). Thus these loops must be executed with different ranges

for each of the three directions for first derivative integrals, for example. With

our transformation of variables, the loop index ranges become independent of the

direction of differentiation, so the program logic is simplified and the overheads

are reduced. We may also note here that this approach in no way diminishes the

possibilities for vectorizing the calculation of the integral derivatives. Indeed, the

simplifications to the program loop structure are likely to enhance these possibilities.

Fourth, we can obtain an additional simplification as follows. Adding (16)

and (17) we obtain
0 0 0

- (22)
OB= OP= OA= "



Now, (in addition to saving one multiplication) this form of the expression for

the derivative with respect to B_ does not depend on the orbital exponents at

all. Hence we can delay the transformation to the B_ derivative until later in the

calculation, for example, until after the contraction step, so that the time required

for this variable transformation becomes negligible. This is most important for first

derivatives, as in any order of differentiation only one term can be treated this way.

In the case of higher derivatives there is a variety of terms to be considered but

the scheme remains essentially the same. For example, the nth-order differentiated

expansion coefficients with respect to R_ are obtained from the recursion formula

=

with starting values

and the identification

-- _ 1 _ Jb-7,ij;n

P
(23)

E00;,_+l 2ab(R E00;n nE000;n-1)o =---_ • o + (24)
P

z j;o= (25)

Higher derivatives of the Hermite functions with respect to P_ (19) are trivially

obtained. We note further that if the two charge distributions that appear in an

integral are differentiated separately, the total savings is the product of the individ-

ual reductions in work, since the two differentiations are independent. For multiple

differentiation of the same charge distribution, we recall that by using our trans-

formation of differentiation variables the summation range in the Hermite function

to Cartesian Gaussian transformation is independent of the order of differentiation.

Hence the savings increase as the order of differentiation increases, since in the

conventional scheme the work required to accomplish this transformation increases

substantially with the order of differentiation. In order to obtain an estimate of

what savings are possible, we must also include an estimate of the effort required

to transform back to the Az,B_ representation. We shall now present operation

counts showing that it is always preferable to use our transformation of differenti-

ation variables.

In order to simplify the counting we consider only floating-point operations

(multiplication and addition), which are weighted equally. In addition, in our count

we have not taken advantage of the possibility of deferring transformation of some



derivatives until after contraction: in effect, we are counting operations only for

primitive Gaussiansand ignoring any additional savingsthat might accrue from

moving manipulations outside the contraction step. If anything, neglecting this

possibility favours the conventionalapproachto derivative integrals.

We have listed operation counts for differentiation of SS, PP, and DD distri-

butions in Table 1. We have not included the calculation of the Hermite function

integrals, which is fast and contributes the same work to both cases, the conventional

approach and our new scheme. Further, the transformation of the second charge

distribution in the integral has also been excluded. We see that for the SS case the

total operation count is not much affected by whether or not the transformation of

variables is performed. However, for higher angular momentum functions there is

a decided advantage to using the transformation of variables, and this advantage is

clearly growing with the order of differentiation. As a further illustration of this, we

note that for third derivatives of a PP distribution, for example, the conventional

method would require 14 448 operations, while using the transformation of variables

the work would be reduced to 8 340 operations: a savings of 42%.

Finally, some other aspects of this scheme deserve comment. We note that

c3 bc3 aO

OR_ p OA_ p OB_ (26)

0 0 ButTherefore, the operation _ is not the same as the differentiation 08Az OB_ "

if A and B coincide then the differentiation with respect to _R_ does not contribute

to the energy derivative: only the differentiation with respect to P_ contributes.

This simplification is already used in the ABACUS program [10]. We also note

that the use of translational invariance to reduce the computational labour is not

affected by our transformation of variables: for first derivatives, for example, we

h ave
dI dI

d---_ + dQ_ - O, (27)

where I represents the two-electron integral in (11), from the use of translational

invariance.

Conclusions

We have shown that by employing a transformation of differentiation variables,

the work required to evaluate derivative integrals can be substantially reduced. The
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advantages of our new approach increase both with the order of differentiation and

with the angular momentum of the Gaussian functions involved. Savings will be

obtained in the calculation of energy derivatives for any wave function that is ex-

panded in a Gaussian basis. In particular, the economies obtained by applying these

methods to the calculation of third or higher derivative integrals will be substantial.

Acknowledgements

Helpful discussions with W. Klopper are gratefully acknowledged.

supported by NASA grant NCC 2-371.

PRT was



REFERENCES

1. P. Pulay, Adv. Chem. Phys. 69,241 (1987).

2. P. Valtazanos, S. T. Elbert, S. Xantheas, and K. Ruedenberg, Theor. Claim.

Acts 78,287 (1991).

3. S. Xantheas, P. Valtazanos, and K. Ruedenberg, Theor. Chim. Acts 78,

327 (1991).

4. S. Xantheas, S. T. Elbert, and K. Ruedenberg, Theor. Chim. Acts 78,365

(1991).

5. P. Valtazanos and K. Ruedenberg, Theor. Chim. Acts 78, 397 (1991).

6. T. Helgaker and P. JOrgensen, Adv. Quantum Chem. 19, 183 (1988).

7. J.F. Gaw and N. C. Handy, Roy. Soc. Chem. Ann. Rep. C, 1984, 291.

8. L.E. McMurchie and E. R. Davidson, J. Comput. Phys. 26,218 (1978).

9. V.R. Saunders, in Methods of Computational Molecular Physics, eds.

G. H. F. Diercksen and S. Wilson (Reidel, Dordrecht, 1983).

10. T.U. I-Ielgaker, J. Alm_lSf, H. J. As. Jensen, and P. JCrgensen, J. Chem.

Phys. 84, 6266 (1986).

10



Table 1. Operation counts for differentiation.

SS PP DD

First Derivatives

Hermite/Cartesian Transformation

P_, R_ to A_, B_ Transformation

Total

Conventional

12

9

21

24

396

81

477

672

4 032

324

4 356

6 144

Second Derivatives

Herm/te/Cartesian Transformation

P,, R, to A,, B, Transformation

Total

Conventional

42

93

135

150

1 386

837

2 223

3 678

14 112

3 328

17 460

30 912
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