
N93-11949

Methodologies for Building Robust

Schedules

John H. Dean

McDonnell Douglas Space Systems Company

16055 Space Center Boulevard

Houston, TX 77062

(713) 283-4008

Abstract: COMPASS is the name of a Computer Aided

Scheduling System designed and built by McDonnell Dou-

glas Space Systems Company for NASA. COMPASS can be

used to develop schedule of activities based upon the tem-

poral relationships of the activities and their resource

requirements. COMPASS uses this information, and

guided by the user, develops precise start and stop times

for the activities. In actual practice however, it is impossi-

ble to know with complete certainty what the actual dura-

tions of the scheduled activities will really be. The best

that one can hope for is knowledge of the probability dis-

tribution for the durations. This paper investigates meth-

odologies for using a scheduling tool like COMPASS that

is based upon definite values for the resource require-

ments, while building schedules that remain valid in the

face of schedule execution perturbations. Representations

for the schedules developed by these methodologies are

presented, along with a discussion of the algorithm that

couM be used by a computer onboard a spacecraft to effi-

ciently monitor and execute these schedules.

Introduction

The dictionary definition of robust is "strong and healthy,"
A robust schedule, therefore would be one which exhibits

the characteristics we associate with strength and health.

There are two interesting characteristics of schedule

strength. The first is the ability of the schedule to accom-

plish useful work (how much is scheduled), and the sec-

ond is the ability of the schedule to resist failure due to

perturbations (the reliability of the schedule). Obviously

these two characteristics are in competition with each

other. A densely packed schedule will be more prone to

failure if activities run long when actually executed. Alter-

natively, padding the scheduled durations of the activities

with some extra "slack" time, in order to absorb any per-
turbations, reduces the number of activities that can fit into

a fixed length schedule.

In order to examine the concept of robust schedules, we

defined metrics that capture these two differing character-

istics of schedule strength. Many metrics for measuring

the amount of work that a schedule accomplish have been
proposed before. In fact, it is these kinds of metrics that

most schedule optimizers use as their objective function to

maximize (or minimize). Examples of these kind of met-

rics include total make span time, summing the values of
the activities placed on the schedule, mean or total tardi-

ness, and mean time in process. This paper defines a
schedule robustness metric that is a measure of the reli-

ability of the schedule

Metrics for describing the reliability of hardware items is

typically described as a Mean Time To Failure (M'Iq'F).

Furthermore, models exist which describe the expected

reliability of systems built of component pieces for which
the stochastic behavior is known, or can be derived. Simi-

larly, our approach develops a notion of a MTTF for a

schedule. To do this, we defined a concept of the failure of

a schedule, and developed a model that describes how to

calculate the MTIT of a schedule, given a description of

the stochastic behavior of the activities that make up the
schedule.

In order to define the concept of a schedule failure it is

necessary to describe the overall schedule development

and execution process. Schedule development begins with

a set of tasks to be performed, along with there resource

requirements. In addition, there may be some temporal

relationships between tasks. For example, one task may

require that a second task be completed before the first

189

https://ntrs.nasa.gov/search.jsp?R=19930002761 2020-03-17T09:49:25+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42810924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


task can begin. Based upon this information, along with

other information such as the task priority or value, a

schedule is created. Typically, the schedule that is created
will be feasible. In other words, the schedule will contain

no inconsistencies. All the given temporal constraints will
be satisfied, and none of the resources will be oversub-

scribed. At execution time, the schedule is used to deter-

mine what resources should be assigned to what tasks, and
when. As the schedule is executed, deviations from the a

priori schedule will occur. If these deviations become too

large, the schedule will no longer be valid, and a new

schedule of the remaining tasks must be created. When

this happens, the original schedule has suffered a failure.

Schedule development consists basically of assigning

resources and times for the performance of activities in
order to meet some deadline. It is well established that the

Resource Constrained Scheduling decision problem (RCS)

is NP-complete l, and most scheduling decisions are NP-

hard. This means that the length of time to develop a

schedule is of exponential order relative to the number of

tasks and/or resources. Since RCS is NP-complete, the

time to verify a particular encoding of a solution to a RCS

problem is of polynomial order relative to the number of

tasks and resources, however. This provides the rationale

for the definition of a schedule failure. When the perturba-

tions become large enough that a polynomial bound algo-

rithm can no longer accommodate the deviations, a

schedule failure occurs, and the NP-hard problem must be

solved again.

The remaining question is the representation of the sched-
ule which can be verified in polynomial time. This paper

will describe two'schedule rel_resentafions Called the time

constrained schedule representation and the order con-

strained schedule representation. These two representa-

tions can be merged into a single approach to allow the
schedulers to use their choice of method.

Time Constrained Schedule Representation

The standard definition of a RCS problem is a follows:

Given a set T of tasks t i, for 1 < i < n, with durations

defined by a function I: T ---) Z ÷ , resource requirements

Ri: T --) R_, and resource bounds B, for 1 <_i <_k, and an

overall deadline D _ Z*' find (does there exist) a sched-

ule or: T ---->Z_ such that

or(t) +l(t) <D for all t_ T (1)

Z R(t) <_B i forall O<i<_n

{_eTra(O<-j<-o(t)+t(O} and O<-j<D (2)

where Z + is the set of positive integers and R_ is the set of

reals >_ 0.

Under this notation, the set T defines the tasks that need to

be scheduled. The tasks can be scheduled to start at any

integral value of time between zero and the overall sched-

ule deadline D. The resource requirements are defined by

the functions Ri, which associate a real value with each

task for each resource i. The resource bounds B i defines

the capacity of each resource. The function a defines a

schedule by assigning to each task an integral start time.

Equations 1 and 2 guarantee that this schedule satisfies the

overall deadline and the resource capacity bounds, respec-

tively. However, this representation does not provide any

mechanism for handling perturbations in the task dura-

tions, since only a single integer length is defined for each

task by the function L

The time constrained schedule representation extends this

notation to the probabilistic case by assuming that the task

length function returns an assumed duration of the activity.

In general, one can define a family of mappings from the
probability distribution for the task durations to an

assumed duration for scheduling by

lp(t) = min {z_ Z IPr(X,<z) >_p} for 0<p_<l (3)

where Xt is a random variable equal to the duration of task

t. This formula defines the assumed duration of a task t,

with respect to a probability p, to be the minimum duration

for which the probability of completing the task is at least

p. P is called the probability threshold.

This approach accommodates random variation in the task

duration by defining awindow in which the task can exe-
cute. The size of this window is controlled by the parame-

terp. When p = 1_0, the window is set to the worst case -

execution-time for each task. A value of p = 0.5 would
set the window for each task to the median value of the

duration probability distribution. When this scheduie rep-

resentation is used by an onboard executive, a task would

never begin before its assigned start time, as defined the

190



function _. If the actual duration of any task exceeded the

window defined for that task, we can no longer guarantee
that the resource and deadline constraints are satisfied

without resolving a NP-hard problem. Therefore, at this

time a schedule failure has occurred. Since the boundary

conditions by which a schedule failure is determined by

the fixed time windows, this approach to accommodating

variable duration tasks is called the time constrained repre-
sentation.

The time constrained approach provides a simple mecha-
nism for a real time schedule executive to be able to deter-

mine when to initiate tasks, while determining if the

schedule remains valid in light of the actual durations seen

so far. However, the time constrained representation is

fairly fragile in terms of its resistance to failure. It is easy

to see that the probability of a task successfully complet-

ing within its window is just p. If we assume that the dura-

tions for the tasks are stochastically independent, the

probability that all n tasks will complete within their win-

dows is pn. As n ----)oo, p" _ 0.

the DAG to accurately depict all the predecessor/succes-

sor relationships. These are usually drawn as dashed

edges. The earliest possible start of a task is maximum

length of all the paths that lead up to the start node for

the task, where the length of an edge in the path is just

the corresponding task duration. As the schedule execu-
tive executes the schedule, the actual durations can be

substituted for the assumed durations for each task. This

has the effect that a task can start only when all of its

predecessors are finished.

With this idea as the basis for the order constrained

approach, two questions need to be answered. How is

the original resource constrained scheduling solution
converted into a DAG, and how does the executive

determine if the schedule is still valid based upon the
DAG and the actual durations so far?

To illustrate the problems associated with creating a

DAG from the resource constrained scheduling prob-

lem, consider the allocation of resource i as shown in

FIGURE 1. In this figure, the horizontal axis represents

Order Constrained Schedules

The fragility of the time constrained approach is due to the

fact that the schedule is successful if and only if all the

windows completely surround the actual duration of their

tasks. There is no capability in this approach for the ran-

dom variations to "average out." Even if all but one task
use less than their allotted time, but the one task exceeds

its window, a schedule failure will occur. In trying to

develop an alternative representation which allows for

increased flexibility by allowing the random variations to

accumulate and average out, the technique of pert charting

naturally comes to mind.

In a pert chart, the schedule is represented as a directed

acyclic graph (DAG). The DAG is a graphical representa-

tion of the predecessor - successor partial ordering. There

are two commonly used representation of the DAG, called

"activity on node" and "activity on edge." This paper will

use the "activity on edge" representation. In the "activity

on edge" representation of a pert chart, the nodes or verti-

ces of this graph are called events, and the edges are the

tasks or activities. If the edges el and e2 are part of a

directed path through the DAG, in that order, then the task

associated with el is a predecessor of the task associated

with e2. Occasionally dummy tasks need to be added to

ei

tl

ta

G

t4

t5

t6

tz

te

Zl Z2 Z3

FIGURE 1 Resource timeline

time, and the vertical axis represents the allocation of

resource i to the various tasks. In this example, tl, t2, t3,

t6, tT, and t8 each have a resource requirement of 0.33 B i.

Tasks t4and t5 each have a resource requirement of 0.5

B i. The time constrained approach guarantees that the

sum of the resource requirements of all simultaneously

executing tasks does not exceed the resource bound. For

example, the executive would never allow tasks 1, 2 and

5 to execute simultaneously by ensuring that the win-
dows for tasks 1 and 2 end before the window for task 5

begins. The problem for the order constrained approach

is to define a partial ordering, implemented as a DAG,

which accomplishes the same goal.

191



One straightforward way of accomplishing this goal is to

define the partial order relation <o by

ti<.tj iff o(ti) +l(t i) <_(_(tj).

In other words, this means that task t 1 precedes task t 2 if,

and only if, t I is scheduled to finish at or before the sched-

uled start of task t2. This in general will create more pre-

decessor / successor relationships than are necessary, but it

is a simple matter to go through and remove the redundant

relations. FIGURE 2 shows the pert chart DAG which

results from applying this procedure to the schedule in
FIGURE I.

tl t_r t_

FIGURE 2 Pert DAG induced by resource constraints

While it can rcadily be seen that this partial ordering of the

tasks will ensure that the resource: capacity constraints are

not exceeded, it can also be seen that it is overly constrain-
ing. For example, once tasks i and 2 complete, task 4 Can

be safely initiated since the resources required by tasks 1

and 2 are more than enough to satisfy task 4's requirement.

Repeated application of this logic will eventually reduce

the pert graph in FIGURE 2 to the graph shown in FIG-
URE 3.

tl _ t6

\ t, t, /

FIGURE 3 Reduced Pert DAG

Formally, then an order constrained schedule as a solution

to an RCS problem is defined to be a partial ordering <o of
the tasks in T such that:

length (_) < D for all paths _. in <o

E R i (t) < Bi.
"ES

for all i, and for all S _ T such that .

t 1, t; E S_ (t_, t2) e_ <. and (tz, tl) _ <°

(4)

(5)

Equation 4 is the revised constraint that guarantees that the

partial ordering satisfies the overall deadline requirement.
Equation 5 ensures that any set of tasks that might execute

at the same time does not exceed the capacity of any
resource.

One final question that needs to be addressed is how to

calculate the length of a path through the pert network.

Obviously, the length of the path should be the sum of the
Iengths of die individual tasks, but what value do we use

for the length of the tasks, since we are assuming that

these values vary? The a priori assumption, at schedule

build time, is a task length based upon a probability
threshold p, just as in the time constrained case. After the

completion of the schedule, the a posteriori value of the

task lengths is just the observed actuals. But what about

during the execution of the schedule, when there are some

actuals, and some unknowns? One could just use the a pri-

ori assumed lengths for the unknown durations. However

a more general approach is t0define a second probability

threshold q, with 0 < q _<p. This defines a new length

function lq. The parameter q controls the amount of pessi-

mism about the ability t0rec0ver when the actual execu-

tion is behind the a priori schedule. When q = 0, the

executive will not declare a failure as long as there is some

possibility of completing the schedule within its overall

deadline by assuming that all remaining tasks will com-
plete in their best case, or minimum durations. When

q = p, the assumption is that the remaining tasks will

complete in no less time than the a priori assumed dura-
tions. In either case, when the decision is made that the

tasks will no longer complete by the overall deadline

according to the current schedule, a failure is declared.

For a given partial order over the tasks of T, it is possible
to calculate the length of the longest path, based upon the

lq length, and starting at the end node of each task t. If the

actual end t_me of task t is later than D - max (lq (_.)) ,

where _.q_ any path starting at t, then at least one path

through task t will have a path length greater than D.

192

i



Therefore it is possible to precompute a deadline for each

task by which time it must the task must complete in order

for the schedule to meet the overall deadline in light of the
actuals so far.

This suggests that it is possible to combine the two sched-

ule representations into one. The combined representation

consists of a partial ordering of the tasks of T, the window

start times defined by the function ot (t), and the window

end time defined by _ (t). For a time constrained

approach, the partial order is empty, and the window start

and end functions are defined by:

cc (t) = _ (t) (6)

f2(t) = o(t) +l(t) (7)

For an order constrained approach, the partial is deter-
mined as described above, and the window start and end

times are defined by:

f2 (t)

_(t) = 0 (8)

= D - max (lq (_,))
_. _ e (9)

where P is the set of all paths starting at the end node of t.

The job of the onboard schedule executive is to find all

tasks that have no unfinished predecessors. Once the start

window has been reached for these tasks, they are initi-

ated. If any currently executing task fails to finish by its
window end time, the schedule has failed and must be

repaired by reinvoking the scheduler. It is fairly easy to see

that the job of this onboard executive is tractable in the

sense that it can be completed in a polynomial order of the
number of tasks.

Development of Robust Schedules

Armed with this model of a flexible schedule representa-

tion than can accommodate some measure of perturbations

during its execution, it is possible to define a method for

using a deterministic scheduling system like COMPASS to

build and manage robust schedules.

Since resource constrained scheduling is a NP-hard prob-

lem, COMPASS uses a mixed initiative dialog to generate

feasible schedules that satisfy the user defined require-

ments. 2'3 Extending COMPASS to handle uncertain

requirements, in particular probabilistic task duration,

should therefore consist of adding commands to allow the

user to interactively control the risk and uncertainty inher-

ent in a particular schedule. Specifically, the user must be

able to view, analyze and modify the risk and uncertainty

inherent in a particular schedule. Analysis of a given

schedule can be performed by performing Monte Carlo

simulation of a large number of possible schedule execu-
tions to determine the MTTF of the schedule. If either the

M'ITF or the number of tasks the fit in the schedule is

unacceptable, the user can adjust the a priori duration

probability threshold and reschedule the tasks.

Conclusions

By combining fixed time windows with a pert style prece-

dence graph, it is possible to build a schedule representa-

tion that can be executed and monitored by an automatic

schedule executive in tractable way. Given that the dura-

tions of the scheduled tasks are not deterministic, but

instead are represented by probability distributions, it is

possible to identify probability threshold to control the a

priori durations to use for scheduling and a posteriori lim-

its to be monitored against. Given the probability distribu-

tions of the task durations, it is possible to perform a

Monte Carlo analysis to determine the MTTF of a given
schedule.

Acknowledgments

This research was supported in part by NASA under
NAS9-17885.

References

1. Garey, M. R. and Johnson, D. S., Computers and

Intractability, W. H. Freeman & Co., San Francisco, 1979.

2. Fox, B. R., Mixed Initiative Scheduling, AAAI -

Spring Symposium on AI in Scheduling, Stanford, CA,
1989.

3. Fox, B. R., Non-Chronological Scheduling, AAAI -

Spring Symposium on AI in Scheduling, Stanford, CA,
1989.

193


