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ABSTRACT

The area of collision avoidance and path planning in
robotics has received much attention in the research

community. Our study centers on a combination of an

artificial neural network paradigm with a motion planning

strategy that insures safe motion of the Articulated Two-Link

Arm with Scissor Hand System relative to an object.

Whenever an obstacle is encountered, the arm attempts to

slide along the obstacle surface, thereby avoiding collision by

means of the local tangent strategy and its artificial neural

network implementation. This combination compensates the

inverse kinematics of a robot manipulator. Simulation results

indicate that a neuro-collision avoidance strategy can be

achieved by means of a learning local tangent method,

I. INTRODUCTION

The problem of collision avoidance in
robotics[8] Bradley, Hollerbach, Johnson and Lozano
Perez can be described as follows: given a starting
and a goal configuration of some object or linked
group of objects in an environment cluttered with
obstacles, find a path of connecting line segments
from the starting to the goal configuration, such that
the object to be moved follows this path without
interfering with any obstacle of the environment.

Traditionally [1], designing a robot control
system involves two steps first a set of kinematic
equations which express the physical constraints of
the robot are derived, and second, a computer

program model is implemented generatin_ arm
configuration sequences that move the robot s end-
effector from its current position to a target position.
While simulation runs works well in a laboratory,
they often suffer from serious limitations when
applied in realistic environments. Wear and tear on
mechanical parts changes the kinematics of the robot
manipulators and sensor characteristics tend to

rwander with time. V_hen such changes occur, the
control program must be updated or the robot must
be maintained. The response time slows down when
the degree of difficulty increases by unpredictable
obstacles with different shapes or change of position
in the workspace. A high degree of autonomous
adaptive learning is the ultimate approach to
consider when solving these major impairments. This
paper focuses on solving the inverse kinematics of an
articulated two-link arm with a scissor hand system
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which can beconsidered as embody by a sensitive
skin type sensors [1]. We study the following
problem: given the position and orientation of the
manipulator, calculate all possible sets of joint angles
over time,, which could be used to attain a given

object position and orientation. The initial solution
to the problem enables the manipulator to attain its
goal without a planned strategy (no collision
avoidance). The final strategy used combines motion
planning and artificial neural networks. This
strategy is to insure a collision-free motion of the
robot manipulator. Simulation results are presented
and a possible extension to this work is discussed.
This paper is an extension to the work reported in [1,
4].

II. AN ADAPTIVE LEARNING APPROACH

The subject of neural network is hardly
new[14], but there has been much more recent[Ill
progress in developing methods for training more
complex configurations of these networks. The
simplest net is the perceptron [13, 14], whose
training procedure can be called an error-correcting
procedure. The weights are revised whenever a
mistake is made. Both the output and the correct
answers are expressed as 0 or 1 else an error occurs.
For the perceptron, once the weighted sum is
computed, the activation of the output unit is
determine by a threshold logic (0 or 1) depending
whether the threshold value was exceeded. The
thresholds activation function creates nonlinearity.
When The Classes of behavior, etc. are linearly
separable the perceptron will find a line or a plane
that yields no error. It concentrates on reducing
errors, but may perform poorly when classes of
behavior etc, are not linearly separable.

In the LMS[12] (Least Mean Square) learning
system, the correct answers are still express in terms
of 0 and 1, however they are not restricted to a
binary values but can have continuous real values.
The goal of the LMS training procedure is to
minimize the average (squared) distance from the
true answer to the output. The LMS training
procedure performs relatively well when classes are
not linearly separable, because the best line of
separation is found in terms of the minimum error
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distance.To computeerrorrates,decisioncriteria
areneededto determinetheclassthat is selected.
Fora singleoutputthisis theclassthatisclosestto
theoutput.Theerrordistancetothecorrectanswer
canbesmall,whileerroneousanswersmayhave
largerdistanceor be on the wrong sideof the
boundary.Eventually,LMStrainingshouldconverge
to theminimumdistance.Thisiterativetechniqueof
minimizationisalsocalled gradient descent[12]. The
weights are constantly adjusted in the direction of
the greatest reduction of error, example we expect

that we are moving "down bill" in tile direction of
the minimum. The main problems for gradient
descent methods is oscillation and not converging or
poor convergence rate. The rate of convergence
highly depends on the learning rate[11, 12]. The
LMS learning system is completely linear. The
weighted sum is directly used to activate the output
unit; no additional mapping by tile activation
function is made. A linear function would not be
useful, because the overall system would still be
linear and would not effectively use the hidden units.
While the thrcshold logic of the activation function
perceptron is nonlinear, from tbe mathematical view
point, the LMS needs a continuously differentiable
function. This is not the case for threshold logic.
Thus an alternative is activation function which is
differentiable is used known as a logistic or sigmoidal
function. For any real valued numbers, the
activation function is a continuous value, this is a
valid range in probability, these functions have been
widely used in statistics.

Both the perceptron and the LMS learning
System attempt to derive a linear separator from
labeled data. Perceptron and LMS can be described
as single layer neural networks, where a layer
represents a set of output devices. The weights are
termed feed forward, because they flow in the
forward direction. Starting with the inputs node and
weights, no weight cycles back to an input node or
output node of previous layers.

Very few real-world applications are truly
linearly separable this basic discussion is beyond the
scope this paper. The multilayer neural network can
be trained as by a generalized version of the LMS
training procedure for a nonlinear logistic outputs
known as Backpropagation [11]. We consMer this
paradigm to be the most suited for our needs. It is
flexible and can be easily implemented. It is one
the most popular and widely used neural networks
today. Backpropagation has the ability to learn
mappings by example, by a process of learning [1, 3,
5, 9, 10]. It uses a learning procedure that aims to
minimize the mean squared error between the actual
outputs of the network and some desired outputs.
Because of convergence problems that found in the
LMS and the learning rate constraints as previously
mentioned we opted for modular[i] approach. It is
much faster to train several smaller networks than
one large one. We kept the number of neuron as
small as possible, since removal of redundant neurons
can make noticeable difference in the training time.
The learning strategy that permits to solve the
inverse kinematics problem [5, 7] and avoid obstacles

is based upon a simple theoretical robot
klnematics[1, 3] as presented in (fig. 1) and the value
of the local tangent as presented in[2].

III. LOCAL TANGENT

The robot arm attempts to slide along the
obstacle surface as reported in [2] (Fig. 2), whenever
an obstacle is encountered. This sliding is
accomplished by a coordinated move between joints
J1 and J2, based on the value of the local tangent
Fig. 4). The local tangent is obtained from the
ollowing formulas depending on were the obstacle

occurs in the work space. There are three categories
(Fig. 3). Note: a complete derivation of the following
equation can be found in [2]

Type I are those obstacles that obstruct link
1. Since link 2 is irrelevant in this case, then d01=0
and d02 # 0. The local tangent for

Type I is vertical [2].

Type II consists of the obstacles that obstruct
link 2. Assume that link 2 is obstructed at point C
by a type II obstacle, at the distance L,_ from the
joint J2 (Fig. 4). Then, the estimates [2]_of d01,and
d02 at C can be found as follows:

cx=L 1COS(0)+LdCOS(01 +02)

x coordinate of C (1)

cy=LiSIN(01)+LdSlN(01+02)

y coordinateofC
The expressionfor the localtangent of type II at
point C is given by the estimate [2]:

= os0_+l (2)

Type III are obstacles that obstruct the
wrist. Sliding of the wrist P along the obstacle
corresponds to its moving along the llne segment LM

(Fig. 4). fl 1 is the angle between the line
perpendicular to link 2 and the line from P to the
obstacle and flo is the angle between the line LM and
the positive x $xis. Then
32 = 01+ 82+ fll-X. The expression for the local
tangent estimate [2] of type III. appears as:

L
dO /_+COS82+SIN02 tan(02+fll)\

2 2

IV. LEARNING STRATEGY

The Neural Network is trained to map the
Cartesian coordinate to the joint angle coordinate
transformation for the three degree of freedom robot
arm. The net learns the topology and unknown
transformation from presentation of examples such
that a solution to the inverse kinematics is found
and an obstacle can be avoided. First, the network
is presented with a set of examples for training, then
tested to generate an output within an acceptable
tolerance. Our study centers on the following
mapping: given the Cartesian position (x, y),
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generate the accurate joint angles. Secondly, the
net is trained and tested to recognize the obstacle

types, (I, II, III). This permits the usage of the
local tangent and the generation of a collision
avoidance motion, in other words, the arm learns to

slide along the obstacle surface with no contact at
the tangential point. A combination of the modules

described above can be an important tool that can
carry out the extensive computation and planning

needed to achieve an intelligent move, therefore

avoiding an obstacle.

A possible real-time architecture [2]
implementation of this study is presented in Fig. 10.
Sensitive Skin sensor information and arm position

are passed to the neural planner/ controller that
generates a safe motion of the arm.

V. SIMULATION RESULTS

As already stated, we opted for a modular

approach, since it is much faster to train several
smaller networks than one large net. Fig. 5 shows

the general network configuration followed by
subnets configurations. The subnets configurations
are three layer networks ranging from two to five

nodes at the input layer and six to twelve nodes for
the middle layer and raging from one to three nodes

for the output layer. We have trained and tested the

nets for a complete mapping of the kinematic
transformation of the experimental arm/hand system

3 degree of freedom (dof). In our experiments [1] we
focused on training the net by mapping the joint

angles (shoulder, elbow and wrist) and their joint
position. Our experiment has indicated an ease in
training the wrist, the elbow and shoulder, because of
the modularity and proper data normalization. Our
first experiment focused on the kinematics
transformation when there is no obstacle. Maximum

and RMS (Root Mean Square) error values for a case
study of 2 dof (fig. 6a, 6b) illustrate a downward

trend, indicating the smoothness of the learning

curves. Fig. 7a shows the expected joint position
results graph from the examples presented to the
network by training. Fig, 7b shows a graph

. depicting the network output when tested. As one

results of the neuro-collision avoidance Strategy have
been obtained. Our experiments have indicated that

a modular approach is the most appropriate. The
network was able to learn and mimic a decision

making strategy by means of the learning tangent
approach, thereby allowing the manipulator to
achieve a collision free motion. Real-time

implementation of this experiment will require a

parallel architecture that can be of great benefit to
the enhancement of the overall system performance.

Because of the sensor data complexity, in future
work the Learning Tangent method could be

compensated by a fuzzy logic system [15] that bases

its decisions on inputs in the form of linguistic
variables, for example smooth, slippery and rough.

In our case it will be the obstacle types (I, II, III).

Our ultimate goal is to enhance the capabilities of
the experimental arm/hand system by means of

applicable findings leading to its real-time
implementation. Current applications could include
the NASA EVA Retriever and related space

operation. In manufacturing, the learning tangent
can play an important (safety) role in discerning the

sudden presence of an operator in the working space

resulting from careless behavior.

[2]
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KINEMATICS E_UATIONS

Forward transformation :

X= LIC{}SOI+L2COS(OI+ 02) and

Y= LISINoI+L2SIN(oI+o2)

Inverse transformation :

COS02=(X2+y2-L21-L22!/2L1L 2

Ol=arctan (X/Y)arctan[ L2SIN02/(LI+L2COS02) ]

L1 : length of first link

L2 : length of second link

O1 : joint of first link

02 : joint of second link

Fig. 1
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2 / __ i Y

O, x

Pig. 2 Fig. 3

I

X J,

Fig. 4
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