
N93-11972

AN INTEGRATED DEXTEROUS ROBOTIC TESTBED

FOR SPACE APPLICATIONS

Larry C. Li

Hal Nguyen

NASA/Johnson Space Center
Automation and Robotics Division

Edward Sauer

Lockheed Engineering and Science Company

ABSTRACT

An integrated dexterous robotic system was

developed as a testbed to evaluate various

robotics technologies for advanced space

applications. The system configuration

consisted of a Utah/MIT Dexterous Hand, a

PUMA 562 arm, a stereo vision system, and a

multiprocessing computer control system. In

addition to these major subsystems, a proximity

sensing system was integrated with the

Utah/MIT Hand to provide capability for non-

contact sensing ofa nearby object.A high-speed

fiber-opticlink was used to transmit digitized

proximity sensor signals back to the

multiprocessing control system. The hardware

system was designed tosatisfythe requirements

for both teleoperated and autonomous

operations. The software system was designed

toexploitparallelprocessing capability,pursue

functional modularity, incorporate artificial

intelligencefor robot control,allow high-level

symbolic robot commands, maximize reusable

code, minimize compilation requirements, and

provide an interactiveapplication development

and debugging environment for the end users.

This paper presents an overview of the system

hardware and software configurations,

discusses implementation of subsystem

functions,and recaps lessons learned from our

work. Current work and future evolution ofthe

system are alsodiscussed.

INTRODUCTION

(JSC) as a testbed to evaluate various robotics

technologies for advanced space applications.

The technologies of interest include: dexterous
robotic arms and hands, machine vision, tactile

and proximity sensing, grasping and manipu-
lation algorithms, parallel computational archi-

tecture, and artificial intelligence. The configu-

ration of the testbed system consisted of a 16

degrees-of-freedom (DOF) Utah/MIT Dexterous

Hand, a 6 DOF PUMA 562 arm, a stereo vision

system, and a VMEbus-based multiprocessing

control system. In addition to the position and
force sensors already present in the Utah/MIT

Hand, an 8-element proximity sensor system
was developed and integrated with the hand to

provide near-range non-contact sensing capa-

bility. A high-speed fiber-optic link, also
developed at JSC, was used to transmit digitized

proximity sensor signals back to the multi-

processing control system. A hierarchical func-

tional architecture was implemented to provide

serial-parallel execution of limb motions. A
JSC-developed expert system tool called the C

Language Integrated Production System

(CLIPS) was used as a rule-based robot

programming environment. The system config-
uration allows autonomous operation and

teleoperation. The purpose of this paper is to

present an overview of our implementation.

First, background and other work in similar
areas are reviewed. Then the objectives for

developing this testbed system are stated. The

system overview covers subsystem implemen-
tations. Examples of robot programming are

given in the section, Robot Programming Using

CLIPS. Finally, the last section summarizes
lessons learned from our work.

An integrated dexterous robotic system was
developed by the NASA Johnson Space Center

348

https://ntrs.nasa.gov/search.jsp?R=19930002784 2020-03-17T09:49:01+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42810906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BACKGROUND

NASA has been active in robotics from the early

days of the space program. The Viking mission

to Mars is one shining example. Recent

progress in robotics technology has allowed

NASA to design robots that will help to increase

productivity in space. These space robots may

be used to perform dangerous or laborious tasks
which otherwise would have to be performed by
the astronauts. The Shuttle Remote

Manipulator System (SRMS), for example, has
demonstrated its effectiveness in on-orbit

satellite retrieval and repair. The Flight

Telerobotic Servicer (FTS), targeted for the

Space Station, will be the first advanced multi-

function robot in space. The Extravehicular

Activity (EVA) Retriever, currently under

development at JSC, is an advanced space robot

designed for short-range, contingency retrieval
and rescue missions. Other advanced robotic

systems under development by NASA, such as
the Lunar/Mars Rover and the Satellite

Servicing System, are other examples of
NASA's commitment to further enhance and

apply the robotics technology.

have successfully demonstrated haptic object

recognition using this system. They have

integrated tactile sensors with the Utah/MIT

Hand, and used a descriptive language called

DIAL for high-level control. Narasimhan, in his
master's thesis 9, described a VME multi-

processing control system for the Utah/MIT
Hand. His system contained several 68020

computer processing units (CPUs) for servo-
level and task-level controls. A real-time

operating system called Condor was integrated

with the system to provide timing, task

scheduling, and other process control functions.

Salisbury, Brock, and O'Donnellll built their

dexterous hand system around the

Stanford/JPL tIand. They introduced the usage

of a LISP machine as the high-level controller

providing rule-based programming capability.

Stansfieldl2,13 developed a dexterous arm/hand

system with knowledge-based visually-guided

grasping. Our implementation incorporated
and enhanced some of the features and concepts

found in these research efforts.

OBJECTIVES

The Automation and Robotics Division at JSC Our overall objective was to develop, evaluate,

has developed a dexterous robotic testbed to demonstrate, and enhance dexterous robotics

develop and evaluate various enabling robotics technologies for space applications. Although

technologies for space applications. Different our overall objective was somewhat general, it
from other NASA-developed robotic systems, can be broken down into three specific goals: (a)

this testbed emphasizes the development, develop and demonstrate capabilities of

integration, and applicationofdexterous robotic dexterous robotic systems for space applica-

hands and arms. Outside NASA, there are tions; (b) investigate, implement, and evaluate

many other research efforts with similar

emphasis and interests. Clark and Demmel, et.

al,3 has developed a dexterous robotic system

consisting of a Utah]MIT Hand, a PUMA 560

arm, a Polhemus 3D Tracker, and a VPL Data
Glove. Their implementation was optimized for

teleoperation with the VPL Data Glove and the

Polhemus 3D Tracker providing position control

of hand and arm, respectively. Allen,

Michelman, and Roberts I described an integra-

ted system for dexterous manipulation. Their

implementation also included a Utah/MIT Hand
and a PUMA 562 arm. Although similar to the

implementation described in reference 3, Allen,
Michelman, and Roberts developed their system

for autonomous operations. Allen and Roberts 2

latest advanced robotics technologies; and (c)

develop an integrated testbed to support and

demonstrate autonomous operation and tele-

operation of dexterous robotic systems.
Rationales behind these three objectives are

explained next.

a. Develop and demonstrate capabilities of

dexterous robotic systems for space

applications

Future space robots are required to be highly

versatile and productive. In order to achieve the

required versatility and productivity, these
robots should be equipped with intelligent
dexterous arms and hands to handle a

349

multitude of tasks. Because most dexterous

robotic hands are modeled after the human

hand, their anthropomorphic designs allow the
robots to share a common set of tools and

handholds with the astronauts, thus

minimizing any redesign of existing flight
hardware. Other dexterous robotic components

such as robotic arms with redundant DOF are

also important in providing robots with

multiple trajectory options for collision
avoidance and path planning.

b. Investigate, implement, and evaluate latest

advanced robotics technologies

Besides dexterous robotic hands and arms, other

advanced robotics technologies such as parallel

computers, machine vision, tactile and

proximity sensing, expert systems, and neural
networks are also important in the development

of an intelligent space robot. Since there is

usually an appreciable time gap between

emergence of a new technology and the actual

implementation of this technology on a flight
system, it is important for NASA to keep up

with the latest advanced robotics technologies

so that the space robots will not be

technologically outdated.

C. Develop an integrated testbed to support

both autonomous operations and

teleoperations

In order to evaluate and demonstrate

technologies mentioned above, a testbed system

must be developed. It is important for this
testbed to be fully integrated so that different

technologies can work together to achieve the

high-level functions required in an intelligent

space robot. An integrated testbed system will
also allow us to verify planned operations and

identify any unanticipated problems. The
testbed system should support both autonomous

operations and teleoperations, since both modes

of operation are likely to find applications in

future space activities.

SYSTEM OVERVIEW

Based on the objectives discussed in the pre-
vious section, a testbed system was established.

Figures la and lb show the current Smart Hand
testbed system configuration. This section

provides an overview of the system, which
includes descriptions of hardware system

architecture, software system architecture,

BLACK
CURTAIN

PUMA 562 ARM

PROXIMITY l

SENSORAMPS
& FIBEROPTIC
LINK ELECTR.

8 PROXIMITY
SENSORSIN
UTAH HAND

\

TOAIR SOURCE

STEREO
CAMERAS

I I

Figure la. Current Smart ttand testbed system configuration.

350

dexterous arm and hand subsystem, vision

subsystem, teleoperator interface, and the

proximity sensor subsystem.

arbitrates bus access among the SBCs. The

serial port on-board the system controller

provides the communication channel to the
Unival PUMA arm controller.

Figure lb. Arm and Hand of the testbed system.

Hardware System Architecture

Major hardware components in the system
include a Utah/MIT Hand, a PUMA 562 Arm, a

stereo vision system, an EXOS Dexterous Hand

Master, infrared proximity sensors, and a

computer control system. The computer control

system is a multiprocessing system with three

68020 single board computers (SBC) mounted
inside a 20-slot VMEbus chassis. Each SBC is

outfitted with pSOS TM - a real-time multi-
tasking operating system kernel, and pRISMTM

- a multiprocessing operating system, both of

which are products of Software Components

Group. Figure 2 shows the functional block

diagram of the current system configuration.

Each 68020 SBC is responsible for a specific

task such as arm control, hand control, and

vision control. The software running on these

SBCs are discussed in greater detail in the
Dexterous Arm and Hand Subsystems and

Teleoperator Interface sections. A multi-
function VMEbus system controller board

Two Data Translation video frame grabbers are

used to capture images from the two cameras.

The digitized images are processed by the vision
controller to produce a 3D vector pointing at the

target. This vector is sent to the robot arm and
hand controllers for reaching and grasping. The

analog-to-digital (A/D) and digital-to-analog

(D/A) converters are used to interface with both

the Utah/MIT analog controller and the EXOS

Dexterous Hand Master. A parallel digital

input/output (I/O) board connected with a high-

speed fiber-optic link gathers data from the

proximity sensor subsystem. Fiber-optic

transmission is used to avoid electromagnetic

interference (EMI) generated by the large

motors located inside the PUMA arm, and to
reduce the number of wires bundled at the arm

joints. A VMEbus-based 386SX personal

computer (PC) is embedded inside the chassis

for two purposes: (1) to provide a software
development environment for the system

programmers, and (2) to host an intelligent
rule-based system for developing applications at

the symbolic level. These two functions

correspond to two phases of operation:

development phase and operational phase.

During the development phase, the PC operates

under MS-DOS. A 68020 C cross-compiler is

used to generate executable codes from user-
written source codes. The executable codes are

then loaded, via the VMEbus backplane, into

the SBC's dual-ported memories. During this

time, the SBCs are in idle, waiting for signals to

begin execution. During the operational phase,

all subsystem software is loaded and started.

The 386SX PC begins executing an expert

system shell, the CLIPS. The CLIPS
communicates with the subsystem SBCs

through the system executive. All applications

are developed under this shell, using CLIPS and

user-defined syntax.

351

VME Bus

SYSTEM
ARM

CTRLR ÷
CTRLR

SERIAL
68020PORT

I UNI VAL

PUMA ARM

CONTROLLER

liCTRLR
68020

VMEbus

embedded

386SX PC

I

HAND I _
CTRLR
68020

_< I/q

 llP°T

i

UTAH/HIT I

.I
EXOS I

DEXTEROUSI
HAND

MASTER

Figure 2. Functional block diagram of the current system configuration.

Software System Architecture

The software system architecture is designed

based on the following objectives: (1) exploit

parallel processing capability, (2) pursue

functional modularity, (3) incorporate artificial

intelligence for robot control, (4) develop high-

level, symbolic robot commands, (5) maximize

reusable code, minimize compilation

requirement, and finally, (6) provide an

interactive application development and

debugging interface. Figure 3 illustrates the

software system architecture. Software for the

top three layers are running on the 386SX PC,

while software for each subsystem in the

subsystem layer are running on separate SBCs.

USER'S APPLICATION

RULE-BASED PRODUCTION SYSTEH

(CLIPS)

DISK FILE SYSTEH I SYSTEM EXECUTIVE

i

HAND CONTROL I ARM CONTROL [SUBSYSTEM 5UBSYSTEH

ViSiON

SUBSYST[H

Figure 3. Software system architecture.

Robot arm and hand trajectories are serial

executions of parallel motions. For example, the

action of grasping for a ball consists of the

following steps:

352

a. Locate the ball

b. Reach for the ball while opening hand

c. Close hand around the ball

d. Retract armandhand

Steps a, b, c, and d must be executed serially,

otherwise the task will not be accomplished

properly. However, within each serial step,

parallel motion takes place. Take Step (b) for

example, the hand opens while the arm reaches

for the ball. During opening of the hand, each

finger joint should move concurrently;
otherwise the motion would be awkward and

time consuming. Understanding this principle,
the software architecture was designed to

realize serial-parallel motions. The overall
architecture contains four layers: user

application, rule-based production system,

system executive, and subsystem layer. There
are three functional subsystems executing in

parallel at the subsystem layer. The hand
control subsystem performs coordinated control

of finger joints, forward and inverse kinematics,

acquisition of proximity, position and force

sensor data, and automatic calibrations. The

arm control subsystem performs predefined

motion primitives, and handles serial
communications between the Unival PUMA

arm controller and the VMEbus control system.

The vision subsystem executes a stereo vision

algorithm that constantly tracks the target

within the visual field. These three subsystem

tasks are inherently parallel. The system

executive is responsible for orchestrating

activities among the three subsystems serially

to provide fluid arm-hand motions. The system
executive contains a set of user-defined functions

that are frequently called on by CLIPS to carry

out any user-defined commands. The mecha-
nism on how these user-defined functions are

integrated under CLIPS is described briefly in

the Robot Programming in CLIPS section. For a

more comprehensive description, one should
consult the CLIPS User's Guide 4 and CLIPS

Reference ManuaUO.

Dexterous Arm and Hand Subsystems

The dexterous arm and hand subsystems are

responsible for primitive-level control of the

Utah/MIT Hand and the PUMA 560 arm. The

Utah/MIT Hand is a 16 DOF dexterous hand

with 3 fingers and a thumb in an anthropo-

morphic arrangement (see Figure 4). Embedded

within each finger joint is a Hall-Effect sensor

for position feedback. Each joint is controlled by

two antagonistic tendons. Thirty-two Hall-
Effect force sensors located in the wrist are used

to detect tendon tensions. The tendons are

actuated pneumatically by thirty-two air

cylinders. Accompanying the Utah/MIT Hand

is an analog servo controller driving the air

cylinders. Position and force command signals
are received from the D/A converters, and the

position and force sensor signals are sent to the
AiD converters. The hand controller contains

several motion and sensing primitives that may

be called upon by the system executive software

running on the 386SX. The primitives running
on the hand controller are listed in Table I. The

system executive can invoke these primitives by

passing command tokens, via the VMEbus, to

the dual-ported memories of the hand control-

lers. When a primitive is invoked, the task is

carried out by the hand controller SBC, and the

system executive is now free to do other tasks.

Once the primitive is fully accomplished, a

DONE flag is raised to signal task completion.

DONE flags are present in the hand controller,
the arm controller, and the vision controller.

They are extremely important for

synchronization of parallel movements.
Forward and inverse kinematics are both

included in the hand controller software. Primi-

tives such as TIPMOVE, TIP POSITION

move and report fingertip locations in Cartesian
coordinates. Raw A/D counts for joint and
tendon sensor readout are included to facilitate

system debugging and calibration.

The arm controller operates very similar to the
hand controller. The communication interface

between the arm controller and the system

executive is also through dual-ported memories.
The arm controller accepts only two commands:

MOVEARMTIP, and MOVEARM
JOINT. The first specifies positions in

Cartesian space; the second specifies positions

in joint space. In VAL II (a PUMA program-

ming language) terminology, they correspond to
transformed moves and precision moves.

During actual operation, arm controller accepts

353

commands from the system executive, and

formats these commands into proper VAL [I
syntax, and then sends the formatted VAL II
commands to the Unival PUMA arm controller

via a RS-232 serial line. A small auto-start

program running on Unival controller accepts
the formatted commands and moves the PUMA

arm to the proper position at specified speed.

Upon detection of an error, or a completed move,

an appropriate code is sent back to the arm

controller via serial line to signal the event.

Figure 4. The Utah/MIT Dexterous Hand.

(Reprint with permission from SARCOS)

Teleoperator Interface

Currently, the teleoperator interface consists of

only the EXOS Dexterous Hand Master. A

Polhemus 3D Tracker System, shown in Figure

5a, is being integrated with the hand master to

provide a full teleoperation of the arm and hand.

The EXOS Dexterous Hand Master, shown in

Figure 5b, is an exoskeletal glove controller

that can be worn by a human operator. The

glove controller is capable of detecting
movements of the first three fingers and the

thumb, with four analog Hall Effect sensors per

each finger and thumb. The sensor signals are

amplified and filtered by a custom-built circuit

board before they are passed on to the A/D

converters. During operation, the system

executive reads in the joint angles and
commands the hand controller to move the robot

hand to corresponding positions. The

teleoperator control is presently operating in

the joint space. Work is being done to include

kinematic transform to allow Cartesian space
control.

Vision Subsystem

The objective of the vision subsystem is to

provide a 3D position of a target at a high
update rate. Passive triangulation method is

applied to the left and right images of the two

video cameras to determine the target distance.

Video cameras are used because they can

capture images at a fairly high rate of 30 Hz.

An active laser scanner vision system was

considered. However, it was abandoned because

the laser scanner proved to be slower, more

costly, and less reliable. The video target

tracking algorithm running on the vision

controller is composed of the two modules:
centroid discovery module, and position
calculation module.

The centroid discovery module identifies the

target centroid, tracks it, and performs

correspondence matching between centroids

found in the left and the right cameras. In order

to increase search speed, the search algorithm

was designed to operate in two modes. The first

mode quickly searches the image by scanning

from the center outward, skipping five rows at a

time, alternating about the center. The search
looks for pixels with a value greater than the

preset threshold. Once the first of such a pixel is

found, the second search mode commences at

that row, working outward, comparing every

row. The purpose of the search is to determine

the maximum and minimum of target extent,

and then take the average of the two numbers to

determine the vertical coordinate of the target
centroid. With the vertical coordinate of the

target centroid determined, a side-to-side
scanning of that row determines the horizontal

coordinate of target centroid. The word centroid

is used loosely here to denote the center of the

projected target area. With the first centroid

identified in one image, the second centroid can

354

be quickly determined from the other image.
Since the cameras are co-planar, the second
centroid should be located at the same row in

the second image. Therefore, only a single row
needs to be searched. These two centroids are

assumed to be at the same point, and their pixel
locations are passed on to the position
calculation module.

The position calculation module simply
calculates the target position using a

triangulation method. In order to produce
accurate calculations, horizontal and vertical
fields-of-view (FOV) of the two cameras were

measured. Knowing the FOV, the relationship
between the target angle and the pixel location
can be characterized by the following equations:

H V
h-

512' v = 480

where H and V are the horizontal and vertical

FOV (in radian), respectively. The constants,
512 and 480, are the horizontal and vertical

pixel image resolution of the frame grabbers.
Parameters h and v are the multiplicative
constants that convert pixel positions to target
angles. These two equations are used in the
triangulation calculations to determine x, y, and
z values of the target location. To facilitate
triangulation, the cameras are physically

configured as illustrated in Figures 6a and 6b.
The reference frame used is a right-handed

coordinate system with the origin located
midway between the two cameras. In this
configuration, both cameras are located on the
X-Y plane. The equations that determine
distance in Z are:

dtan (n-01)tan (O2)

Z = tan(n-el)- tan(02) ;01 > n

dtan (02) tan (01)

Z = tan(01) + tan(02) 01 < n,02 -< n

dtan (n - 02) tan (01)

Z = tan(n-02)- tan(el) ;02 > n

The two angles are determined by

01 = (n-hi L)

02= hi R

TABLE I. HAND CONTROL PRIMITIVES

COMMAND TYPE

JOINTMOVE JOINT SPACE POSITION CONTROL

TIPMOVE CARTESIAN SPACE POSITION CONTROL

JOINTCOUNT JOINT SPACE POSITION FEEDBACK (RAW A/D COUNT)

JOINTANGLE JOINT SPACE POSITION FEEDBACK

TIPPOSITION CARTESIAN SPACE POSITION FEEDBACK

TENDONCOUNT TENDON SPACE FORCE FEEDBACK (RAW A/D COUNT)

TENDONTENSION TENDON SPACE FORCE FEEDBACK

JOINTTORQUE JOINT SPACE TORQUE FEEDBACK

355

SENSOR _CE2

Figure 5a. Polhemus 3D Tracker System.

(Reprint with permission from Polhemus)

Figure 5b. EXOS Dexterous Hand Master.

(Reprint with permission from EXOS)

Variable IR and IL are the horizontal pixel count

of target centroids in the right and left images,
respectively. Once the Z component is found,

values for X and Y are determined by

Y = Z tan 0 3 ; 0 3 = v JR

d

X=Ztan04- 2 ;04--hlR

The variable JR is the vertical pixel count of the

target centroid in the right image.

\
\

\
\

\
\

N
\

N
\

\
\

\
\

\

\
\

\
N

\

/
/

/
/

/

/
/

/

/
/

/
/

/
/

/

/
/

/

Figure 6a. Schematic of the stereo vision algorithm.

356

BLArK AND WHITE I_HG-FO(_RAPF _

Figure 6b. Video camera configuration.

The stereo vision tracking algorithm was

developed on a Sun 3/260 workstation using an

Oasis C compiler. The cameras are made by
Javeline, Model JE7362. The two frame

grabbers are made by Data Translation, Model
DT1451. The tracking algorithm, running on a

20 MHz 68020 SBC, was able to provide a target

position update rate of 10 frames per second.

Proximity Sensor Subsystem

Although the vision system is capable of target

tracking, it is currently not capable of dealing
with visual obscurity caused by having the arm

and the hand coming between the cameras and

the target during an act of reaching and

grasping. Without guidance from the vision

system, other means of determining when to

grasp (i.e., close hand) is necessary. Hess and
Li5,6 (U.S. Patent No. 4,980,626) described a

method of using a proximity sensor to determine

when and how to grasp a target with a

dexterous end effector. Figure 7a is a drawing

of the infrared proximity sensor which was

originally an optoelectronics part developed by

Optek, formerly a division of TRW (Part No.

OPM102T). However, this part has become

obsolete since then. There are eight sensors

embedded inside the Utah/MIT Hand, with two

in each finger, as is shown in Figure 7b. The
! sensors are reflective, with transmitter and

receiver co-located on the same substrate. Due

to its low power, the sensor does not have a very

long detection range. A special signal amplifier

was built to increase the signal power and to
filter out noises. As a result, the sensors can

now detect objects at approximately 1 to 2

inches away. The amplified signals are
digitized by an A_/D converter and transmitted,

via a high-speed serial fiber-optic link, to the

VME multiprocessing controller. No special

software communication protocol was required

because the fiber-optic link multiplexes and

transmits signals at a high frequency of 125

MHz, thus making the interface on both sides of

the link appear fu|ly parallel.

ROBOT PROGRAMMING IN CLIPS

One of the most interesting features of the

testbed system is the incorporation of an expert

system shell, CLIPS, for high-level control.

CLIPS has added many interesting and useful
features to our system:

a. Intelligent rule-basedcontrol
b. Interactive user interface

c. User-defined functions

d. Portable C source codes

e. English-like syntax
f. Command clustering

The first feature provides machine reasoning

capability for the robot. The interactive user

interface allows the robot programmers to call

on different robot primitives without having to

recompile code every time. This feature is very

important during application development and

debugging. Once the entire algorithm (i.e. set of
rules) is developed, it can be converted into

binary form for batch mode operations. As part
of the CLIPS package, a simple software

interface was provided to link into user-defined

subroutines. In our implementation, these

subroutines provide primitive robot control
functions such as MOVE-ARM or MOVE-

HAND. Once the user-defined subroutines are

linked into CLIPS, they become part of the

357

CLIPS command set. Table II lists some of the

user-defined functions added to the CLIPS

command set.

Source codes written in C are provided with the

CLIPS software package. The codes were

written in such a way that minimizes operating

system and hardware dependency. The soft-

ware has been successfully ported to PC, Sun 3

Unix workstations, VAX/VMS, Macintosh, and

other machines. Since CLIPS is a symbolic

production system with English-like syntax, it

allows the robot application developer to

program the robot in a descriptive language.
The user-defined commands listed in Table II

are some good examples. Furthermore, with

CLIPS, new robot commands with a higher level

of abstraction may be constructed from lower

level primitives. Consider the following set of
CLIPS rules:

DIMENSIONTOLERANCE±.005 (,1271
UNLESSOTHERWISENOTED

DIMENSIONSARE IN INCHES(MILLIMETERS)

i
I I {4)o--_ _ 13)

(I) CATHODE (4)_(3)-., A I_ll I
(2) ANODE I I L._---J
(3) COLLECTOR L.--- •
(4) EMITTER OPMIO2T OPMIO2D

Normalized Output Current
vs. Object Distance

: i
100 -----?_-- -- -- . -

/ i

i

E_60- .,- : \

:-. N--!..........

z20 ,-,-_--_ __ _____...._._

• :

004 0.08 0 i2 0.16

d - OBJECTDISTANCE- INCHES

Figure 7a. Infrared proximity sensors. (Reprint with permission from Optek)

Figure 7b. Utah/MIT Hand with proximity sensors.

358

Rules I, 2, and 3 are considered primitives. The current focus is on perfecting the tele-

Rule 4 isa higher levelcommand that produces operator system by integrating the Polhemus

a combined effectof having Rules 1, 2, and 3 3D Tracker into the system for arm control.

firingtogether. To fireRule 4,one simply loads Furthermore, the development of a dexterous

in the set of rules listedabove and executes the robotic system with two arms and two hands is

following CLIPS command:

(assert(acquirethe target)}

This assertion will cause Rules I, 2, and 3 to

fire,thus producing a combined action of look-

ing,reaching, and grasping.

FUTURE WORK

The past efforthas resulted in the completion of

a single arm/hand system operating in both

autonomous and partiallyteleoperatedmodes.

being pursued. Computer control is currently

being developed for the Stanford]JPL Hand. We

will be mounting the Stanford/JPL Hand on a
second PUMA to form a second arm/hand

system. The PC 386SX computer will be

replaced by a Sun 3/160 workstation running
Unix BSD 4.3. The Sun 3/160 workstation will

provide a better software development
environment for the programmers due to its

window environment (Graphical User Interface

and X Window). Neural network algorithms for

learning the mapping between visual inputs

and arm/hand position commands will be

investigated in detail this year. Design and
fabrication of a VMEbus-based neural network

TABLE II.SOME EXAMPLES OF USER-DEFINED CLIPS COMMANDS

USER-DEFINED CLIPS DESCRIPTION
COMMANDS

(move-arm speed x y z rx ry rz) Move arm to the specified position
and orientation with a given speed

(move-arm-home speed) Move arm to predefined home position

(move-tips speed xO yO zO xl yl zl x3 y3 z3) Move fingertips to specified Cartesian
locations at the specified speed

(move-joints speed JO J1 J2... J15) Move finger joints to specified joint

angles at the specified speed

(get-joint-pos} Get joint/target position and assert

(get-visual-pos) the information in the fact-list

(arm-move-done} Returns DONE flag for arm/hand moves

(hand-move-done)

(read-hand-ir) Invoke real-time proximity sensor readout

for check-out and debugging purposes

(grasp-with-Jr speed it threshold}

(see-reach-grasp speed approachdistance o a t)

Grasp at specified speed if infrared (IR) sensors
total activity exceeds threshold

Move arm/hand to visually determined

target position and grasp default speed

359

; Rule 1: get target position

(defrule gettarget, positionprimitive

Told fact <- (get target position) ; fact-list trigger pattern

(retract ?old fact) ;delete old fact

(get-target-pos) ; call on user-defined subroutine to assert target position)
; information onto the fact-list

; Rule 2: arm movement primitive

(defrule armmove__primitive

?old factl <- (target position is ?x ?y ?z)) ;fact-list trigger pattern #1

?old fact2 <- (move arm to target with speed ?speed) ; fact-list trigger pattern

(retract ?old factl ?old fact2) ;delete the old facts

(move-arm ?speed ?x ?y ?z 90 -180 0) ;call user-defined arm move subroutine)

; Rule 3: hand movement primitive

(defrule handmoveprimitive

?old fact <- (grasp object with Jr) ;fact-list trigger pattern

(while (= (armmovedone) do) ; wait 'til arm move is complete
(retract Told fact) ;delete the old fact

(grasp-with-ir 1 25) ;call user-defined grasp subroutine for grasp)

;Rule 4: acquire the target -- combining Rule 1, 2, and 3.

(defrule acquire the target primitive

?old fact <- (acquire the target)

(retract ?old fact)

(assert (get target position)) ;this assertion causes Rule 1 to fire, producing

;(target position is x y z) fact

(assert (move arm to target with speed 100)) ; this assertion causes

; Rule 2 to fire, moving the arm
(assert (grasp object with it)) ;this assertion causes Rule 3 to fire, closing hand

)

board is planned for this year. New vision

hardware and software will be acquired and

developed to increase the vision system

performance. Finally, we will continue to

investigate and to develop space robotics
applications. Demonstration of candidate

space-related tasks are planned for the last

quarter of 1991.

CONCLUSIONS

This paper has described the implementation of

a dexterous robotic testbed system developed at

the NASA Johnson Space Center. The system
included several desirable features found in

other systems. The system is unique in the fact

that all these desirable features are integrated

into one system, thus making the system
capable and flexible. These features include

dexterous hand and arm, stereo vision,

multiprocessing, rule-based programming, local

hand control using proximity sensor feedback,

and autonomous and teleoperator capabilities in
co-existence for shared and traded controls.
Some of these features were enhanced to

increase system flexibility and capability.
Subsystem implementations were described in

detail; and examples of rule-based robot

360

programming in CLIPS were also given. Our 5
experience in the past year has revealed the

need for additional development in the

following areas: target tracking, image

understanding, dexterous manipulation, force- 6
reflective dexterous hand/arm masters, and

tactile sensing. Although more vigorous tests
still need to be conducted, the initial evaluation

of the system has demonstrated that dexterous

robots provide more capability and flexibility
than conventional robots, and therefore, have 7

an important role in future space applications.

ACKNOWLEDGEMENT

Special thanks to Reginald Dawson and

Dagoberto Rodriguez for developing the fiber-

optic electronics used in our system. The 9

assistance provided by Robert Davis, Issa Zaid,

and Frank Moore is greatly appreciated. We
also would like to thank Dr. Jon Erickson and

Cliff Hess for reviewing the paper, and

providing valuable comments and criticisms. 10

REFERENCES

2

3

4

Allen, P., Michelman, P., Roberts, K., "An

Integrated System for Dexterous

Manipulation," Department of Computer
Science, Columbia University, New York,

NY, 1989.

Allen, P., Roberts, K., "Haptic Object

Recognition Using a Multi-Fingered

Dexterous Hand," Department of Computer

Science, Columbia University, New York,

NY, 1989.

Clark, D., Demmel, J., Hong, J., Laferriere,

G., Salkind, L., Tan, X., "Teleoperation

Experiments with a Utah/MIT Hand and a
VPL Data Glove," Proceedings: NASA/JPL

Space Telerobotics Conference, Pasadena,
CA, January 1989.

Giarratano, J., CLIPS User's Guide, Version

4.3, NASA/Johnson Space Center, June
1989.

Hess, C., Li, L., "Proximity Sensors Make

Robot Dexterous," NASA Tech Briefs,

October 1990, pp 50.

Hess, C., Li, L., "Smart Hands for the EVA

Retriever." Proceedings: The Third Annual

Workshop on Space Operations Automation

and Robotics, 1989, NASA Reference

Publication 3059, pp 441-446.

Jacobsen, S., C., Wood, J., E., Knutti, D., F.,

Biggers, K., B., "The Utah/MIT Dexterous

Hand: Work in Progress," The International

Journal of Robotics Research, Vol. 3, No. 4,

Winter 1984, pp 21-50.

8 Marr, D., Vision, Freeman and Company,

New York, NY, 1982.

Narasimhan, S., "Dexterous Robotic Hands:
Kinematics and Control." Master Thesis,

Department of Electrical Engineering and

Computer Science, MIT, January 1988.

NASA/Johnson Space Center, CLIPS

Reference Manual, Version 4.3, JSC-22948,

May 1989.

11 Salisbury, K., Brock, D., O'Donnell, P.,

"Using an Articulated Hand to Manipulate
Objects," Proceedings of the 1987 SDF

Benchmark Symposium on Robotics

Research, Santa Cruz, CA, August 1987.

12 Stansfield, S. A., "Knowledge-Based Robotic

Grasping," Proceedings: IEEE Conference

on Automation and Robotics, May 1990.

13 Stansfield, S. A., "Reasoning About

Grasping," Proceedings: 7th AAAI

Conference, St. Paul, MINN. August 1988.

14 Venkataraman, S. T., Iberall, T., (Eds),

Dexterous Robotic Hands, Spring-Verlag,

New York, NY, 1990.

15 Wolovich, W., Robotics: Basic Analysis and

Design, HRW, New York, NY 1987.

361

