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Modeling and Model Simplification

of Aeroelastic Vehicles: An Overview

Abstract

The rigid-body degrees of freedom and elastic degrees of freedom of aeroelastic vehicles are typically

treated separately in dynamic analysis. Such a decoupling, however, is not always justified and modeling

assumptions that imply decoupling must be used with caution. The frequency separation between the rigid-

body and elastic degrees of freedom for advanced aircraft may no longer be sufficient to permit the typical

treatment of the vehicle dynamics. Integrated, elastic vehicle models must be developed initially and

simplified in a manner appropriate to and consistent with the intended application. This paper summarizes

key results from past research aimed at developing and implementing integrated aeroelastic vehicle models

for flight controls analysis and design. Three major areas will be addressed; 1) the accurate representation

of the dynamics of aeroelastic vehicles, 2) properties of several model simplification methods and 3) the

importance of understanding the physics of the system being modeled and of having a model which exposes

the underlying physical causes for critical dynamic characteristics.

Introduction

The means of obtaining the simplest valid mathematical model of an aeroelastic vehicle for dynamic

analysis and control system design is a major issue in flight vehicle dynamics. The need to account for

aeroelastic effects will make model formulation very important for flight vehicles of the future. Reduced

structural weight, potential for static instability, and application of high-authority feedback control systems

will result in reduced frequency separation between the "rigid-body" modes and "elastic" modes. In

addition, the potential for using control systems to influence the vehicle configuration, the so-called control

configured vehicle concept [Schwanz (1977)], will require accurate aeroelastic models to be available very

early in the design cycle.

Of particular importance is the potential for dynamic aeroelastic effects to influence "rigid-body" vehicle

responses. Schmidt (1985), and Swaim and Poopaka (1982) have addressed the effects of aeroelastic/rigid-

body modal coupling on flying qualities. A simulation study using the elastic vehicle model from Waszak

and Schmidt (1988) and performed in the Visual and Motion Simulator (VMS) facility at NASA Langley

Research Center addressed these effects [Waszak, Davidson, and Schmidt (1987)]. This study showed that

increasing structural flexibility, even to moderate levels, can have a negative impact on vehicle handling

qualities.

The view of the authors is that an integrated elastic vehicle model should be developed initially and

simplified in a manner consistent with the intended application. This must be done in such a manner that the

salient dynamic effects are retained in the model. This view must also be tempered with the need to have the

simplest model possible to facilitate effective dynamic analysis and control synthesis, and to ease

computational burden.
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In this paper, several key aspects of formulating aeroelastic models for flight dynamics applications will

be addressed. The development of the equations of motion for any aeroelastic vehicle is presented in which

the structure is in many ways very similar to the equations of motion for a rigid vehicle. The similarities and

differences of the aeroelastic equations of motion and traditional rigid-body equations of motion will be

discussed and the important features of the aeroelastic model structure will be addressed.

The methods used for model simplification depend to a large degree on the ultimate use for the reduced-

order model. However, one must never lose sight of the objective: obtain the simplest vehicle model that

possesses the requisite accuracy. Techniques capable of delivering valid reduced-order models for control

system design will be discussed.

Another key issue associated with the inherent complexity of aeroelastic vehicles is interpreting vehicle

behavior. Understanding the sources of undesirable (or desirable) dynamic behavior is often required to

design control systems or to design the airframe itself. The structure of the equations of motion and

properties of the model simplification methods can aid the analyst/designer in developing this

understanding. This is an area which is often overlooked in the development of modeling and model

simplification methods and will be specifically addressed herein.

Equations of Motion

The development of the equations of motion of an elastic aircraft has been addressed many times in the

literature [Milne (1962), Roger (1977), Schwanz (1977), Cerra and Noll (1986)]. This subject has recently

been revisited by the authors with emphasis on the need to develop accurate aeroelastic vehicle models and

to clarify the assumptions associated with their development and assess their validity. The development of

the equations of motion discussed here are intended for application to flight dynamics, simulation and

control system design for elastic aircraft. This application places special requirements on the form and

properties of the resulting equations. They must be able to describe large amplitude maneuvers in a body

reference coordinate system while simultaneously describing the small amplitude structural deflections.

This requires that the model be nonlinear in variables which describe body orientation, but allows the

structural dynamics to be linear. The equations must also account for inertial and aerodynamic coupling

which are normally neglected. An additional goal is to have the form of the equations be applicable over the

entire design cycle, from the conceptual through detailed design phases.

Two recent unrelated studies, one by Waszak and Schmidt (1988) and another by Buttrill, Zeiler, and

Arbuckle (1987), have sought to develop the equations of motion for elastic aircraft to meet these goals.

The emphasis of the first study, which will be referred to as the Waszak Study, was the assembly of a

mathematical model which integrated "rigid-body" and "elastic" degrees of freedom with particular

emphasis on the assumptions made at the various stages in the development and on obtaining a set of

equations that constitute an analytical (or literal) model. The second study, which will be referred to as the

Buttrill Study, focused on including effects of nonlinear inertial coupling between rigid-body angular rates

and structural deformations and rates which are usually ignored in conventional aircraft modeling.
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Both studies utilized Lagrange's method of deriving the equations of motion relative to a "mean axis"

body reference coordinate system. The use of mean axes minimizes the degree of inertial coupling between

the rigid-body and the elastic degrees of freedom. As a result of using mean reference axes and some key

simplifying assumptions, the equations of motion from the Waszak Study have a structure similar to

conventional rigid aircraft (with additional degrees of freedom associated with the elastic modes). These

equations have the added feature that they exhibit no inertial coupling between the elastic and the rigid

degrees of freedom (all coupling occurs through the aerodynamic forces). The Buttrill Study sacrificed

some of the similarity to rigid aircraft demonstrated in the Waszak Study in the interest of more accurately

modeling the inertial coupling effects. This results in the body axis rotational equations having additional

coupling terms.

Both studies also made use of the same basic assumptions in the derivation of the equations of motion;

a) the structure is treated as a collection of lumped masses with constant mass density,

b) the structural deformations are small (i.e. linear stress-strain and linear stain-displacement relations

are valid),

c) the structure exhibits synchronous elastic motion described by a complete set of normal modes, and

d) a local Earth-fixed inertial reference frame with constant uniform gravitational field was utilized.

The two studies differ slightly in that the Waszak Study used the additional assumptions that;

e) each mass element is a point mass with no rotational inertia, and

f) elastic deformation and rate are sufficiently small or colinear so that their cross product is negligible

and the inertia tensor is constant.

The equations of motion from the Buttrill study can be simplified to a form identical to those in the

Waszak study by adding these assumptions, therefore the two derivations are completely consistent.

Mean Axes

A short discussion of mean axes is warranted before addressing the specific issues associated with the

two studies. As previously stated, the form of the equations of motion is facilitated by the use of a mean

axes reference frame. The mean axis reference frame is not fixed to a material point in the body but floats

so that its origin is always at the instantaneous center of mass of the body. Furthermore, the mean axis

frame is oriented in such a way that the reference frame motions are inertially decoupled from the structural

deflections. An excellent survey of five types of floating reference frames is given in Canavin and Likins

(1977). The practical mean axis conditions of Waszak and Schmidt (1988) are equivalent to the Buckins or

linearized Tisserand frame of Canavin and Likins (1977).

Elastic modes of free vibration calculated from a structural model unconstrained in translation and

rotation should satisfy the practical mean axis conditions [Canavin and Likins (1977)]. If the structural

model has been restrained to create a nonsingular stiffness matrix, the resulting modes are inertially coupled

with motion of the body frame and the equations of motion become more complex.

3
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In the remainder of this section the important results from each of the two studies will be reviewed.

Note that the equations of motion discussed herein are in a form which is applicable to a wide class of

problems. Any airplane which has significant elastic dynamics and needs to be described dynamically in a

body reference frame can be represented using these equations.

The Waszak Study

Tables 1 and 2 summarize the form of the equations of motion of an arbitrary elastic aircraft derived in

Waszak and Schmidt (1988). Table 1 contains three translational equations and three rotational equations

that describe the motion of the body reference coordinate system and a set of equations which describe the

structural deformations relative to body axes.

Notice that the translational and rotational equations are identical in form to conventional rigid-body

equations of motion. The differences lie in the representations of the aerodynamic forcing functions. These

forces completely describe the coupling which exists between the rigid-body and elastic degrees of freedom.

Also note that the moments of inertia, I(.), correspond to the deformed structure and change as the vehicle

deforms. It is assumed, however, that the variations in the moments of inertia due to elastic deformation are

small and are hence neglected. The moments of inertia actually used in the equations of motion correspond

to the undeformed vehicle.

In addition to the body axis translational and rotational equations there are a set of equations that

describe the elastic deformations of the body. The elastic mode equations are typical of a second-order

oscillator with equivalent modal damping proportional to modal velocity. The only coupling with the rigid-

body degrees of freedom is through the generalized aerodynamic forces, QJn (see Tables 1 and 2).

Table 2 summarizes expressions for the aerodynamic forces for an elastic aircraft. These expressions are

presented in a stability derivative form. The difference between these expressions and those used for rigid

aircraft is in the addition of elastic stability derivatives. These terms are similar to their rigid aircraft

counterparts and serve to couple the elastic degrees of freedom with the rigid-body degrees of freedom. The

relationships between the structural parameters (i.e. mode shapes) and the elastic stability derivatives are

developed in Waszak and Schmidt (1988) by using strip theory aerodynamics. The validity of this

Table I - Elastic aircraft equations of motion

M [ 13 - rV + qW + g sin0 ] = Qx

M [ _/- pW + rU - g sin_ cos0 ] = Q¥

M [ "_V- qU + pV - g cost_ cos0 ] = Qz

Ixxt_ - (IxyCt + Ixzr ) + (Izz - Iyy )qr + (Ixyr - Ixzq )p + (r 2 2-q )Iyz = Q_

Iyy_t -(Ixyl_ + Iyzr ) + (Ixx - Izz )pr + (Iyzp - Ixyr )q + (p2 _ r2)ixz = Qo

Ixxr- (Ix_ + Iyzq ) + (Iyy- Ixx )pq + (Ixzq - Iyzp )r + (q2 _ p2)ixy = QV

Mj[ 'iij + 2;jt.oj(I + _jzrlj ] = Qq ; j=1,2,3 ....
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Table 2 - Elastic aircraft generalized forces

Qx-

oo oo

pVdS -_--( Cx_l_ + Cxqq + Z CxilTli2 (Cxo+Cxtt_+Cxa_+ ZCxrlTlii ) +P Sc i. )+Tx
i=l i=l

pVgS oo 9VoS b oo
QY - 2 (Cy0+CYI3[_+CYa_+Z i )+--Z i"Cyrllli 4 CyilTli + Ty

i=l i=l

Qz-

PV02S oo
2 ( Cz0 + CZ_,cx + Cza _5+ _

i=l

oo

Cz_,qi) + (%1_ + Czpp + Czqq + Z i. ) +Tz
i=l

PVo2Sb
Q00 - 2 ( CLo

Qo -

Q_-

oo PVoSb 2 oo
i )+ (%P+ +Z i+ CLt_[$+ CLa_+ _ Cunrli 4 Cuqq Cu; ) + br

i=l i=1

PV02S_ oo PVoS_2 oo
2 ( CM0 + CM_ 0_+ CMa8 + _ CMllrlii ) + 4 ( CMdc_ + CMq q + _ CM_"ill ) + MT

i=l i=l

PVoSb 2 ,,o
Pv0Zsb i ) +-- ( CNpP + CNrr + Z CN_lqii" ) + NT2 ( CN0 + CNI_ + CNa_+ Z CNrlTli 4

i=l i=l

0vgse2 c5, E cJ n )+
i=l

oo

pV°Sc2 CJpp + CJqq + C_r + Z .i.4 ( Cj_ + " cl_ffli )
i=l

approximation will not be discussed further other than to say that it is a reasonable approach for high aspect

ratio configurations if numerical values are sought. However, the real importance is that the expressions for

the elastic stability derivatives obtained using strip theory provide physical insight through a conceptual link

between physical parameters and their effect on the equations of motion independent of their numerical

values.

The use of stability derivatives has the added advantage that the same form of the equations of motion

can be used throughout the design cycle. Early on, before detailed analyses have been performed, strip

theory or other first-order methods can be used to obtain a preliminary elastic vehicle model. Later, when

more detailed analyses have been performed (e.g. computational fluids dynamics analyses, wind tunnel tests,

finite element analyses), the data can be converted to a stability derivative form and substituted directly into

the equations of motion.

The equations of motion summarized in Tables 1 and 2 also constitute a "literal" model for an elastic

airplane. The literal model can be used to develop insight into the effects of various physical parameters on

the dynamic characteristics of the vehicle. Such insight is difficult to obtain from purely numerical models.

It is important to note that even if a "numerical" model is available, it can be put in a form consistent with

the "literal" model which allows the analyst to exploit his insight.

An example of the importance of modeling aeroelastic dynamics was demonstrated in Waszak and

Schmidt (1988). The equations of motion discussed above were applied to a high speed transport aircraft

with a moderate level of structural flexibility. The results of the study showed that neglecting aeroelastic

5
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dynamics during model development resulted in a model which incorrectly indicated the vehicle to have a

stable phugoid mode and which had errors in short period frequency and damping of approximately 55%

and 14%, respectively, compared to the complete aeroelastic vehicle model.

The Buttrill Study

The equations of motion developed during the Buttrill Study [Buttfill, Zeiler, and Arbuckle (1987)] were

refined by Zeiler and Buttrill (1988) and are summarized in Table 3. Zeiler and Buttrill (1988) utilized

nonlinear strain-displacement relations to improve the calculation of [A2j]jk , which appears as a stiffness

term when nonzero rotational rates, co, are present. These three sets of equations are presented in vector

form and correspond to the scalar equations presented in Table 1 except for the addition of terms

representing nonlinear inertial coupling. In Table 3, an open dot over a quantity indicates the time rate of

change of that quantity expressed in body frame components.

The translational equation is completely analogous to the previous study. The use of mean axes has

eliminated any inertial coupling between the rigid-body degrees of freedom and the elastic degrees of

freedom. The rotational equation, on the other hand, has additional terms not included in the Waszak Study.

These additional terms account for variations in the inertia terms with structural deformation (deflection

induced changes in mass distribution) and second-order coupling associated with the fact that

the cross product between structural displacement and rate are nonzero (since all modes do not act in the

same plane). When these terms are neglected the rotational equations are completely analogous to those in

the Waszak Study.

The elastic mode equations also have additional terms. These are associated with angular acceleration of

the body reference frame, Coriolis acceleration, and centrifugal loading. Neglecting these effects also

simplifies the elastic mode equations to those from the Waszak Study.

The objective of the Buttrill Study was to generate a high fidelity model of an elastic airplane with

special attention to the effects of inertial coupling. Consequently, the representation of the aerodynamic

forces was not explicitly addressed other than to discuss the numerical methods by which aerodynamic

forces were computed for an example problem. It should be noted, however, that coupling between the

rigid-body and elastic degrees of freedom also occurs through the aerodynamic forces. The terms F, L, and

Q_j are applied loads and include aerodynamic and thrust forces and moments.

Table 3 - Elastic aircraft equations of motion with inertial coupling

m_ = F-m(co x V)+mg

[J]_o+h_jklqJrl'k = L +cox [J]¢o- [_]_-hjkrlJrlk-_×hjkrlJrl k

"'k o k 20).hjkl_k 1 T [A2j]jkl] k }coMjkT ! -_.hjkT I = Qrlj-Mjjcoj2TIj+ __ +_CO {[AJ]j+

[J] = [Jo] + [ AJ ]jrl j + [ A2j ]jkrlJrl k
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In summary, it was found that in general, nonlinear inertial coupling can become a significant if at least

one of the following characteristics are reflected in the vehicle:

a) aerodynamic loads are small,

b) expected rotational rates are of the order of the elastic frequencies,

c) the model geometry is sufficiently complex that transverse deflections result in changes in mass

distribution.

Summary

Both of these studies indicate that the structure of the equations of motion of elastic aircraft are quite

complex, even when they are developed with the intent of minimizing the apparent modal coupling. Some

of the complexities associated with the dynamics of aeroelastic vehicles are listed below.

a) The models which result are of high dynamic order, two additional states for each elastic mode.

b) The relationships between the various model parameters that are fairly well understood for rigid

2 ZwMq-M_) are more difficult to identify for elastic aircraft.aircraft, (e.g. O)sp =

c) The parameters that appear in the model, such as the generalized modal stability derivatives, are less

well understood than classical parameters such as La, and accurate numerical values are more

difficult to obtain.

d) There are significant uncertainties associated with the elastic parameters.

The complexity negatively impacts many aspects of aeroelastic aircraft dynamics and control. A natural

next step is to address how the important effects of elastic dynamics can be retained in the model while at

the same time simplifying the model structure. This is discussed in the next section.

Model Simplification

The design of effective and practical control systems requires that the designer understand which aspects

of the vehicle dynamics are important, the uncertainties associated with the model, and a knowledge of the

parameters which have a significant impact on critical vehicle responses. The size and complexity of the

models which result from describing the aeroelastic interactions (via the equations of motion discussed

previously) make this an extremely difficult task. It is likely, however, that once the key interactions have

been accounted for, many fewer physical parameters need to be retained to capture the prominent aspects of

the vehicle responses. It is therefore important to be able to simplify the models but still retain enough

information to capture the salient features of the aeroelastic interactions. Note that the parameters which

turn out to be key are not usually discemable before the detailed model is obtained and requires that such a

model be obtained first followed by appropriate simplification.

Model simplification is also important for aeroelastic systems from the perspective of controller

complexity. Many control design methodologies require the system model to be linear and result in

controllers which are of dynamic order equal to or greater than the design model. The size and complexity

7
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of aeroelastic models therefore dictates large, complex controllers. A reduced-order linear model which

retains the salient aspects of the nonlinear system dynamics within a simplified form may allow effective

controllers to be designed with significantly simpler structure.

Model simplification has as its goal to obtain a model which, while simpler than the full-order model,

approximates some aspect of the true system. The first step in this process is to linearize the system

dynamics about an equilibrium condition. Reduction of the linear model is then performed and the desired

manner in which the reduced-order linear model approximates the full-order model depends to a large

degree on the intended application. For example, in control system synthesis it is important to accurately

represent the system frequency response in the frequency range where crossover of the loop transfer function

is likely to occur [McRuer, Ashkenas, and Graham (1973)]. Note that this implies that there are frequencies

both above and below the critical frequency range which may not need to be well modeled. The frequency

range of interest is very important when applying model simplification and plays a key role.

There are many methods by which linear elastic aircraft models can be simplified. A few of these will

be discussed herein and are summarized below.

1. Truncation - deletes some of the modes (modal truncation) or states (state truncation) from the full-

order model [Waszak and Schmidt (1988)].

2. Residualization - accounts only for the static effects of some modes or states whose dynamics are not

crucial [Kokotovich, O'Malley, and S annuti (1976)].

3. Balanced reduction - minimizes frequency response error in a normed sense and has certain

advantages associated with obtaining desired accuracy which will be addressed subsequently [Bacon

and Schmidt (1989)].

4. Literal (or symbolic) simplification - addresses the impact of various physical parameters on the

system responses and ignores those which have little impact [Schmidt and Newman (1988)].

Each of these methods have advantages and disadvantages as they apply to simplification of elastic

aircraft models. In this section the four simplification methods will be discussed in these terms.

Truncation

Truncation is a common form of model reduction. In fact, it is the most common form of reduction since

every finite dimensional linear model is a truncated model in the sense that there is always some aspect of

the physical system that is neglected in the modeling process. While truncation is a well established model

simplification technique, a slightly different view based on Cramer's Rule is presented here with some

interesting implications [Schmidt and Newman (1988)].

The degree to which truncation can be utilized depends on the degree to which the truncated degrees of

freedom directly influence the vehicle response and the degree to which they couple with the retained

degrees of freedom. Consider a frequency domain representation of a linear system as shown below.
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l[z s 1r(s) m(s) Zr(S) = br(S) U(s)

Y(s) = M(s) Z(s) + mr(S) Zr(S)

(la)

(lb)

Y(s) is the vector of responses, U(s) is the vector of commands, and [ZT(s), Zr(S)] T is the vector of states or

system degrees of freedom. Assume for simplicity of discussion that Zr(S) is a scalar. In this case m(s) is a

scalar, r(s) and br(S ) are row vectors, and c(s) and mr(S ) are column vectors. By applying Cramer's Rule for

the determinant of a matrix [Strang (1980)], and an identity for the determinant of a partitioned matrix

[Brogan (1974)] the transfer functions for the ith output due to the jth input of the system can be written -

Zi(s ) det{ (Ai(s)]Bi(s))-c(s)m-l(s)(ri(s)[bri(S))}

Uj(s) - det{ A(s)- c(s)m-l(s)r(s) }
(2a)

Zr(S) brj(S) det{ A(s)-Bi(S)bri-l(s)r(s) }

Uj(s) - m(s) det{ A(s)-c(s)m-l(s)r(s) }
(2b)

where the notation A i IBj represents the operation of replacing the ith column of A with the jth column of B.

These forms of the system transfer functions are very useful in identifying some important aspects of

applying model reduction via truncation.

From inspection of the transfer function expressions above one can see that if Ck(S)rl(S ) << m(s) and

ck(s)(r i Ibrj)/(s) << m(s) ; k,l = 1,2 ..... n where n is the number of states, then

Zi(s) Zi.(s) det{ Ai(s)I Bi(s)}
Uj(s) - Uj(s) - det{ A(s) }

(3)

Also, if in addition Bjk(S ) r/(s) << brj(S) ; k,l = 1,2 ..... n then

Zr(S) br'(_s)

Uj(s)- m(s)
(4)

Equation (3) is exactly what results if the degree of freedom zr is truncated from the model (or not included

in the model from the outset).

Examining the transfer function zr(s----_)from the context of physical systems one finds that the polynomial
Uj(s)

m(s) is usually of higher order than brj(S). Therefore, for frequencies above some value determined by m(s)

and brj(S ) (as s---_) the effect of zr on the output Y(s) is negligible which can be approximated by

9
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A

Y(s) = M(s) Z(s) (5)

where the elements of Z(s) are described by

A

^ X ujZi(s ) = (s) (6/
j J

The implication is that truncation should be used to simplify a model in which the degree of freedom to be

removed is much slower than the dynamics of interest.

The conditions that must be satisfied to apply truncation to slow dynamics have some important

implications. The condition that Ck(S)r/(s ) << m(s) implies that the degree of coupling between the deleted

of freedom and the retained degrees of freedom is small. Similarly, ck(s)(r i [brj)/(s)
I

degree << m(s) implies

that the coupling effect between the deleted degree of freedom and the retained degrees of freedom (via c(s))

combined with the ability of the jth control input to excite the deleted degree of freedom is small. Finally,

Bjk(S ) r/(s) << brj(S ) implies that the combination of the coupling effect between the retained degrees of

freedom and the deleted degree of freedom (via r(s)) and the ability of the jth control input to excite the

retained degrees of freedom is small. These conditions will be referred to as the "decoupling conditions"

and can generally serve as a test to determine if a particular degree of freedom can be legitimately truncated.

Note that these conditions are identically satisfied if the system is in modal form since the off-diagonal

partitions, c(s) and r(s), are identically zero in this case. Therefore, modal truncation can be effectively

applied whenever there is sufficient frequency separation between the deleted mode and the dynamics of

interest, so that in the frequency range of interest mr(S)Zr(S) can be neglected from the output equation, Eqn.

(lb).

The truncation of slow modes is contrary to the typical use of truncation which is to remove higher order

dynamics. The reason that truncation works for some higher order dynamics can be seen by addressing the

problem by using a partial fraction expansion of a transfer function,

Y(s) R 1 R 2 R n
-- +-- +... + _ (7)

U(s) - S+_l s+_2 S+_n

where R i are the residues and _'i are the eigenvalues of the system [D'Azzo and Hoopis (1975)]. If the

desired frequency range of accuracy of the simplified model is well below _n' then the last term in the

R n

expansion can be approximated by_--__. Since this term is associated with a high frequency mode, the value
11

of Ln is most likely much greater than unity. In addition, high frequency modes are frequently difficult to

excite which results in small residues. Clearly, if R n << Xn then the last term in the partial fraction

expansion can be neglected without much impact on the frequency response in the frequency range of

interest. Thus, truncation can be used to remove both low and high frequency dynamics when the

appropriate conditions are satisfied.

10
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Residualization

Residualization is another common method of model simplification. Many times a system may have

some dynamics that are fast compared to the dynamics of interest [Kokotovic, et al (1976)]. However, the

fast dynamics can interact with the slower dynamics so that truncation of the fast dynamics may not be valid.

Residualization allows one to take into account the interaction without including the dynamic effects of the

fast dynamics.

The same model structure used previously in the discussion of truncation will be used again here.

Consider the frequency domain representation of a linear system presented in Eqns. (1). The system transfer

functions can again be approximated by the expressions in Eqns. (3) and (4) when the decoupling conditions

are satisfied (i.e. Ck(S)r/(s ) << m(s), Ck(S)(ri Ibrj)/(s) << m(s), and Bjk(S ) r/(s) << brj(S)).

Residualization is typically accomplished by letting the degrees of freedom to be removed from the

model reach their steady state values instantaneously by setting their derivatives zero. An analogous

_ Zr(S)
interpretation is to let s-->0 in the transfer tunction _ (as opposed to letting s--->oo for truncation).

The simplified model using residualization takes on the following form.

Y(s) = M(s)Z(s) + mr(S) bri(0)U(S)m(0) (8)

The implication here is that residualization can be legitimately applied to degrees of freedom which are

much _faster than the retained modes. Therefore, only degrees of freedom whose frequencies are well above

the expected crossover frequency range should be considered for residualization.

Notice again that the decoupling conditions are automatically satisfied when the system is in modal

form. When the frequency range of interest is well below _'n, the simplified model produced by modal

residualization (Eqn. (8)) is identical to the partial fraction expansion of the transfer function (Eqn. (7)) with
r}

the last term approximated by _n.
11

While the validity of performing model simplification via truncation or residualization can be evaluated

by the degree to which the decoupling conditions are satisfied and the degree of frequency separation

between the deleted dynamics and the desired dynamics, there is no guarantee on the accuracy of the

resulting simplified model. The current approach is a cut and try (i.e. iterative), graphical procedure. A plot

of the candidate frequency response is compared to that of the full-order system and a decision is made as to

its acceptability. This is a basic limitation of these approaches.

An advantage of these approaches, however, is that the form of the model which results after

simplification is the same as the corresponding portion of the original. Therefore, if the model had a special

structure before simplification then that structure is retained in the simplified form. This can be important in

allowing the analyst to use his knowledge of the physics to interpret the accuracy of the resulting simplified

model as well as the effect of various physical parameters on the system response.
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A comparison of truncation and residualization applied to a high speed transport aircraft is presented in

Waszak and Schmidt (1988). The results indicate the these methods are often quite acceptable. However, as

structural flexibility increases these methods may not provide the required accuracy for the desired model

order.

Balanced Reduction

Internally balanced reduction and frequency weighted internally balanced reduction are two more model

simplification methods that have received considerable attention recently. A considerable body of literature

has addressed the concept of balanced reduction and its variants [Enns (1984), Bacon and Schmidt (1989),

Glover (1984)]. We will simply address some of the issues that should be kept in mind when considering

this model simplification approach.

Briefly stated, the balanced realization approach to model reduction chooses an ordered combination of

state directions which dominate the input/output behavior of the system in decreasing order. An advantage

of this approach is that the accuracy of the reduced-order model can be measured in a normed sense. The

frequency response error between the full-order system and the simplified system is bounded by twice the

sum of the Hankel singular values of the deleted degrees of freedom [Bacon and Schmidt (1989)]. In

addition, the measure of accuracy is a direct by-product of the reduction process.

Unfortunately, the balanced reduction method results in a simplified model which matches the frequency

response of the full-order model in regions where the magnitude is greatest. This may not be the region of

crossover. As a result the model may not be acceptable for application to control design regardless of the

"accuracy." An example of this limitation is presented in Schmidt and Newman (1989). The weakness of

the method can be resolved by applying weighting functions to the basic approach to emphasize a desired

frequency range (e.g. the crossover region) [Enns (1984), Bacon and Schmidt (1989)]. However, when this

is done the measure of the accuracy of the simplified model is no longer valid. Research into resolving this

issue is currently underway.

Yet another limitation of the balanced reduction methods is associated with the fact that the state space

form of the simplified model which results is only related to the original model through their frequency

responses. The states of the simplified model are entirely different from those of the full- order model. In

fact, the simplified state space model looses all structure that appeared in the full-order model. The

implication is that any insight that the analyst has concerning the physical nature of the system cannot be

readily utilized in subsequent analyses using the simplified model.

An application of frequency weighted internally balanced model reduction was presented in Schmidt and

Newman (1989). This study demonstrated the importance of appropriate model reduction for application in

control synthesis. If the reduced order model does not show good agreement with the full order model in the

region of crossover, even where the transfer functions have relatively small magnitude, the resulting control

law may not perform as expected when applied to the full order model (even to the point of destabilizing the

system).

12
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Literal Simplification

The last model reduction method which will be discussed here and one which is often overlooked is

literal approximation. This method is based on first-order perturbation theory and can, in principle, be

applied to high order models.

An advantage of this approach is that it allows one to identify the cause and effect relationships between

physical parameters and dynamic behavior. A disadvantage of this approach is that it is tedious to apply to

more than very simple systems. The recent advances in symbolic mathematics computer programs however

have fostered a renewed interest in this approach [Schmidt and Newman (1988)].

In an earlier section the equations of motion for an elastic aircraft were described in a literal form using

modal structural representations. This form of the equations of motion lends itself to literal (symbolic)

formulation of system transfer functions. This can be accomplished by hand or with the aid of one of the

many symbolic mathematics computer programs.

Consider literal representations of the numerator and denominator polynomials for a pitch-rate-to-

elevator transfer function of an elastic airplane in which the short period approximation has been applied

[McRuer, Ashkenas, and Graham (1973)] and with one structural mode included in the model. These

polynomials are presented in Table 4.

The parameters that appear in the polynomials represent stability and control derivatives (Z, M, and F)1,

structural parameters (co, _, and _),)2, and the flight speed V. Those terms with subscripts o_ and q are

associated with the rigid-body degrees of freedom (angle of attack and pitch rate, respectively). Those terms

with the subscript 5 e are associated with the elevator deflection. Those terms with subscripts 1"1and _1 are

associated with the modeled elastic degree of freedom and its time derivative.

Table 4 Example of literal transfer function polynomials - G_
N(s)

" - D(s)

N(s)

D(s)

Zso, r. . 2 (2_co- Ffi)s + (co2 - t_'s[M_FqS +Fa(s 2 -MqS)] }--q-/stM_ks + -F.q)) + Fcz(M/ls + Mrl)] +

Zct 2
+ (2;co- 1]l)s + (co2 - Frl))- F_('v-Zqr'__ Z--R Zcts+ V)]-_)'S[FqS(S--_-) +Fct(1 + --_)s] } +M_ {s[(s--v-)(s

Zo_ Z:. Z Zct 2
F8 {s[(s--_-)(M/ls+M.q)+Mt_(-_!s+_)]- @'s[(s--_)(s -MqS)-Mct(1 +-_-q)s] }

Z_ Z
cZ/ls + Zn)[M F s + F=(s2-MqS)] - (M/lS + M_I)[FqS(S--_) + F_(1 +-_q )s] +--k'_- V _ q

Za 2 Z
(s 2 + (2_co- Ffi)s + (co2-Fn))[(s-_)(s -MqS)-Ma( 1 +-_)s]

1 Z is the force oriented along the body axis orthogonal to the plane of the wing (and is predominantly lift), M is the pitching

moment, and F is the generalized force associated with the elastic degree of freedom.

2 to and _ are the invacuo frequency and damping of the elastic mode, and _' is the mode slope at the point where pitch rate is

measured.
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The numerical form of the transfer function structure represented by the polynomials in Table 4 is

presented in Eqn. (9) for a high speed transport aircraft example from Waszak and Schmidt (1988). The

numerical form of the transfer function was obtained by truncating the forward velocity perturbation degree

of freedom and residualizing the second, third and fourth structural modes from the elastic equations of

motion of the aircraft. Note that the numerator has three real roots and one root at the origin and the

denominator has two pairs of complex conjugate roots and one root at the origin.

G_qe= s(-_+ _ _s_s+---_5.51)13"06s(s+ 0.231)(s- 3.362)(s + 3.959)
(9)

Once the numerator and denominator polynomials of the desired transfer function are obtained, the

approximate terms are chosen so that the following two criteria are satisfied.

a) The literal expressions must factor into the same form as the original polynomials (e.g. order of

polynomial, number of real and complex roots), and

b) numerical values based on the simplified terms should accurately approximate the values based on

the original polynomials.

The underlined terms of the numerator and denominator polynomials in Table 4 involve the key model

parameters (stability derivatives and structural parameters), which factor into the appropriate form, and

result in approximate polynomials with the desired properties described above. These terms are used to

obtain the approximate literal model presented in Table 5. The corresponding numerical values for this

approximate model are also presented in Eqn. (10).

_qe = 13.06s(s + 0.416)(s- 3.265)(s + 4.177)
s(s2+ 1.246s + 3.758)(s2+ 0.62 ls + 34.83)

(10)

Table 5 Approximate literal transfer function polynomials _q_e /q(s)

6(s)

Zet - (b22_--4c) 1/2 + (b2.2-- 4c) 1/2(Mao-CFao)s[s+(-ff)][s +(b ._ .)][s+(b .)]

Za Z
s[s 2 + (___E__ Mq)S + (_-- Mq- (1 +_q)Ma)] (s 2 + (2-_0- F./1)s+ (032-Frl))

b = [Ms (2_¢-o-Frl) + _'F_iM q ] / (M_ - q_'F_i ) c = M_io(m2 -Frl ) / (M_- qb'Fa )
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Note that the numerical values from the approximate model agree to varying degree with the "truth" model

in Eqn. (9). Those terms which are deemed to be of insufficient accuracy can be modified by computing

correction terms.

Corrections to the approximate factors can be obtained in literal form by applying perturbation theory.

Expanding the true polynomial coefficient, Pi, in a Taylor series about the approximate value, l_i, allows one

to compute literal corrections. This requires that the Taylor series be truncated after the first-order term,

Pi --" Pi + _ AZ
Z

(11)

Here % is the vector of model parameters that contribute to the value of the polynomial coefficient Pi" The

correction A_ clearly requires literal expressions for Pi - Pi and _Pi-- tO be available. The difference

expression, Pi - Pi, is simply what remains after the approximate factor is extracted from the literal

expression for Pi and corresponds to the non-underlined terms in Table 4. The partial derivative term can be

obtained by direct symbolic differentiation with respect to the model parameters, _.

The correction factors can be used either to enhance the accuracy of the approximate model or to identify

the sensitivity of the simplified model to variations in various physical parameters.

A numerical form of the literally simplified model can be obtained by substituting the values of the

various parameters directly into the literal expressions. The literally simplified model, unlike strictly

numerical models, can be used to assess the reason behind mismatches with the original model. If an error

occurs at a particular frequency, the model parameters which are dominant at that frequency and contribute

significantly to the error can be directly identified. In addition, the impact of potential variations or

uncertainties in a particular model parameter can be quantified in terms of its effect on the vehicle response.

An example of literal model simplification is presented in Schmidt and Newman (1988). This approach

was shown to yield excellent results when applied to a high speed transport aircraft. Furthermore, the

closed-form analytical expressions for the key dynamic characteristics that result allow one to identify

critical parameters affecting the vehicle dynamics.

Summary

Each of the model reduction methods described here have clear advantages and disadvantages. As such,

it is unlikely that any one method will be able to satisfy all model simplification needs. In fact, the analyst

should make efforts to recognize the strengths and weaknesses of each method and use one which best suits

the particular needs.

These methods are not necessarily mutually exclusive either. One method can be used to compliment

another and enhance ones understanding of the vehicle's dynamic behavior. For example, truncation and

residualization may be used initially to reduce the model to a tractable form. Then literal methods may be

used to identify the sensitivity of the model to parameter variations and uncertainties. Finally, internally
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balanced reduction might be used to obtain a numerical form of the model or further simplify a numerical

version of the literal model.

The most important recommendation, however, is to use caution whenever applying model

simplification to aeroelastic systems. Blindly applying any simplification method will lead to a simpler

model, but one which may not accurately convey the important dynamic characteristics which influence the

vehicle behavior.

Concluding Remarks

The objective of this paper was to emphasize some of the key issues associated with modeling elastic

aircraft for dynamic analysis and control law synthesis. Emphasis has been placed on the importance of

initially developing high fidelity models which are subsequently simplified for particular applications. This

approach assures that the salient features of the vehicle dynamics will be represented in the design model. In

addition, this approach results in a model structure which is consistent and applicable over the entire

development cycle, including preliminary design: This is especially important in allowing control

technologies to play a role in shaping the vehicle configuration.

The development of two modeling approaches were specifically addressed with particular attention paid

to the underlying assumptions. The first approach results in a model structure with which literal models can

be developed. The second modeling approach addressed the issues associated with including additional

inertial coupling terms in the model and provided guidelines for when inertial coupling should be included.

The importance of model simplification was also addressed by considering the advantages and

disadvantages of four model simplification methods. The first two simplification methods, truncation and

residualization, represent traditional approaches. These were viewed in a way which resulted in some

guidelines for when they can be legitimately applied. The third method, internally balanced reduction,

represents the newer model simplification approaches which provide added capabilities subject to certain

limitations which were discussed. The last method, literal simplification, summarized an approach which,

while currently often overlooked, will become more attractive as symbolic mathematics computer programs

become more capable.

The results from the studies described herein and the perceived need for accurate models of elastic

aircraft for control design applications indicate that more emphasis should be placed on the modeling

process. It is recommended that model development should involve both formulating equations of motion

and model simplification. Each phase should be treated separately but with knowledge of the other. This

approach makes more likely the possibility that the salient aspects of the system dynamics will be accurately

modeled.
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