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Abstract

For a component industry to be successful, we must move be-

yond the current techniques of black box reuse and genericity to a

more flexible framework supporting customization of components

as well as instantiation and composition of Components. Customiza-

tion of components sti'ik-es abalance between creating dozens of

variations of a basecorr_ponent and requiring the overhead of unnec-

essary features of an "everything but the kitchen sink" component.

We argue that design and instantiation of reusable components have

competing criteria - design-for-reuse strives for generality, design-

with-reuse strives for specificity - and that providing mechanisms

for each can be complementary rather than antagonistic. In particu-

lar, we demonstrate how program slicing techniques can be applied

to customization of reusable components.
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I - Introduction

The impediments to a successful reuse infrastructure in the software engineering community

have typically been separated into social and technological issues [26]. Furthermore, the social is-

sues (e.g., comprehension, trust, and investiture) often are characterized as being the more critical,

as there is a perception that all of the technical issues (e.g., environments, repositories, and linguis-

tic support) have been solved [27]. We do not agree with this assessment (see [8] for our arguments

regarding repositories and environments), and furthermore believe that appropriate application of

technology can alleviate certain of the social issues just mentioned.

This paper addresses two reuse impediments -component comprehension by a reuser [ 14] and

the fitness of a component for a given application - and how technical support, in tiffs case lan-

guage features and program slicing, alleviate these impediments. These two impediments drive the

consumer side of reuse repository design, for without comprehensibility users will not select arti-

facts from the repository, and without _lequate conformance to requirements users will not incor-

porate artifacts into systems even if they do select them. These two impediments also drive the

design process for reusable components, since components perceived as ill-suited for reusers' ap-

plication domains (and hence not incorporated into the resulting systems) have not met the require-

ments of a design-for-reuse effort.

We begin in section 2 by characterizing the inherent conflict between the design goals for de-

sign-for-reuse and design-with-reuse. We then review mechanisms that support particular structur-

al and behavioral aspects of component design in section 3. The mechanisms described support

flexibility in the design of a component. We consider mechanisms in section 4 to constrain an im-

plementation, supporting specificity in the instantiation of a component, and show in section 5 how

to employ program slicing as one such mechanism. Section 6 demonstrates the application of our

technique to a moderate-sized example.
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2- Design-For-Reuse versus Design-With-Reuse

Design for reuse focu-ses on the pofential _u_bility 0ffla_ arii-f-_ic-tsof a design process. Design

with reuse, on the other hand, focuses on employing existing artifacts wherever possible in the de-

sign process. The intent of the two approacfies, and hence the various criteria that each of them em-

ploy, is then quite distinct. In particular, design for reuse strives for generality, even to the point of

additional cost to the c_riiproject, and design with reuse sirives to reduce cost to the c_nt

project, even to the point of adapting non-critical project requirements to achieve conformance

with existing artifacts.

Garner and Mariani proposed the following attributes for reusable software [ 10]:

• environmental independence - no deperidefi_bn the original development environment;

• high cohesion - implementing a single operation or a set of related operations;

-. loose coupling- _ links to other components;

• adaptability - easy customization to a variety of situations;

• understandability;

• reIiab_ty;and: : _ :

• portability.

These attributes clearly reflect goals that should apply to all pr_ucts of a design-for-reuse effort,

and some of these attributes (p_culafly understandability and reliability) apply to all software de-

velopment efforts. Not so clear is whether these attributes reflect the goals of design-with-reuse

efforts.

We contend that there is an inherent conflict between design-for-reuse and design-with-reuse

that centers upon adaptab_ty. Design-for-reuse strives to create artifacts that are as generally ap-

plicable as poss_le;in-th-e worst case 6r_-ting':'e_,d_g-bUt:the--Idtc_c.r/_" arffacts_ io_g

a component with features in an effort to ensure applicability in all situations. Design-with-reuse

strives to identify that artifact which most specifically matches a given requirement. Anything less
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requires additional effort, both in comprehension and coding. Anything more carries with it the

penalty of excess resource consumption and increased comprehension effort.

The specificity that we seek in design-with-reuse takes two forms - the first is that of avoiding

additional functionality in a simple component; the second is that of avoiding additional function-

ality in an abstraction, implemented as a package/module. Specificity becomes increasingly critical

when considering scale. The additional storage consumed and increased comprehension effort

posed by a simple abstract data type quickly become the multi-megabyte "hello world" applica-

tions of today's user interface management systems, and threaten intractability in the domain of

megaprogramming [4, 19].

3 - Language Mechanisms Supporting Design-For-Reuse

Designing a software component for reuse involves a number of issues, including analysis of the

intended target domain [21, 22], the coverage that this component should provide for the domain

[22], and the nature and level of paran_terization of the component [7, 28, 29]. A number of de-

veloprnents in programming language design directly bear upon these issues. We focus here upon

those we see as most beneficial.

3.1 - Procedural and Modular Abstraction

The obvious advantages that functions and procedures provide in comprehension and reuse of

portions of a program (even if the reuse is only at a different location in the same program) are so

well recognized, that no contemporary language proposal is taken seriously without them. The

package (or module) concept, with separate specification and implementation of a collection of

data and procedural definitions, has arguably reached the same level of acceptance. Sommerville's

list of classes of reusable components (functions, procedures, declaration packages, objects, ab-

stract data types, and subsystems) [25] indicates the depth of this acceptance - virtually every class

listed is directly implementable using one of the two mechanisms (objects being the only non-ob-

vious fit).

Balancing Generality and Specificity 3 4/30/92



3.2 - Parameterization and Genericity

The utility of a function or procedure is severely limited without the ability to provide infor-

mation customizing the effect of a specific invocation. Parameters comprise the explicit contract

between a function and its invocations, and axe generally accepted as far preferable to the implicit

contract provided by shared global state. Genericity, or more formally, parametric polymorphism

[6], involves the parameterization of program units (both functions/procedures and packages/mod-

ules) with types, variables, and operations (functions, procedures, tasks, and exceptions). Parame-

ters effectively support families of invocations. Genericity extends this support to families of

instantiations, each with its own family of invocations, providing increased adaptability and port-

ability [28].

3.3 - Inheritance

Inheritance involves the creation of generalization/specialization structures, a tree in the case

of single inheritance, a lattice in the case of multiple inheritance. These generalizations/specializa-

tions may be structural (in the case of subtypes [6]) or behavioral (in the case of classes [11]).

Whatever the structuring mechanism, inheritance supports the creation of variations of a base corn-

ponent, each with its own interface [15], as well as instances of those variations. Inheritance thus

is a very useful mechanism for the creation of certain classes of software artifacts. Note, however,

that using inheritance as a reuse-enabling mechanism is not without its own hazards, most notably

scalability and the violation of information hiding [23, 24].

4- Language Mechanisms Supporting Design-With-Reuse

The previous section primarily addressed the creation of program structure. Our primary inter-

est in this section involves not the creation of new reUsable components, but ra_er their natural

involvement in the development process. This corresponds to the responsibilities of Basili's project

organization [3].
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4.1 - Procedural and Modular Abstraction

Much of today's reuse takes place at the level of procedures and packages, either as source or

object code. The linguistic and environmental mechanisms for this, including source and object li-

braries and separate compilation, provide little over what a simple text editor with cut and paste

commands provides. The onus of comprehension and adaptation is placed upon the reuser, partic-

ularly if the reuser is interested in increasing the specificity of the component (which may even be

proscribed by the social infrastructure, i.e. management). The consequence of design-with-reuse in

this context is thus monolithic reuse, an all or nothing acceptance of an entire component.

4.2 - Genericity

Genericity readily supports the creation of specializations of the generic artifact through instan-

tiation. However, genericity as defined in languages such as Ada provides little beyond complete

instantiation of a generic component into a completely concrete instance. Further, partial instanti-

ation does little in terms of additional flexibility, as every successive partial instantiation makes

the resulting generic more concrete. Hence genericity provides the same form of monolithic reuse

as that described in the previous section, with the option of customizing the instances.

4.3 - Inheritance

Inheritance performs as readily in support of a reuser as in support of a developer of compo-

nents. The reuser can both instantiate new instances of the component and derive new component

classes from the original. This second issue is a particularly beneficial one, as it allows for the de-

velopment of unanticipated refinements to the program model without requiring adaptation of ex-

isting code. However, inheritance exhibits the same specificity limitations as abstraction and

generieity, supporting only monolithic reuse, in the case of instantiation, or incremental monolithic

reuse, in the case of class refinement.

Balancing Generality and Specificity 5 4/30/92



5- Program Slicing
M

The m_:h-_isms disc_Sed_ifi=_ections 3 and 4 add structm-e and/or complexity to a program.

Parameterization and genericity increase the interface complexity of a program unit. Packages and

inheritance increase either the number of program units or the structural complexity of those units.

Hence, current languages do not have explicit mechanisms that address the conflicting goals of de-

sign-for-reuse and design-with-reuse. We therefore propose a new mechanism for reconciling the

two approaches (by increasingc0mponent Struc_al specificity) which works in conjunction with

the facilities provided in Ada - a new form of program slicing. We use Ada for our examples, as it

is a language whose built-in features facilitate the types of transformations which we invoke. How-

ever, the concepts we present are not confined to any particular language.

In his thesis [30], Weiser introduced the concept of program slicing. In this form of slicing,

called static slicing, a slice of a program is an executable subset of the source statements which

make up program. A slice is specified by a variable and a statement number, and consists of all

statements which contribute to the value of that variable at the end of execution of that statement,

together with any statements needed to form a properly executing wrapper around the slice proper.

Dynamic slicing, [1, 2, 17] is a second form of slicing which is determined at runtime and is

dependent on input data. A dynamic slice is the trace of all statements executed during a program

run using a particular input data set, refined by specifying only those executed statements which

reference a specified set of variables. Dynamic slicing was specifically designed as an aid in de-

bugging, and is used to help in the semh for offending statements in finding a program error.

By definition, static slicing is a pre-compilation operation, while dynamic slicing is a run-time

analysis. Our interface slicing belongs-_the category of static slicing, as it is a data-independent

pre-compilation code transformation. Since our interest here is only with static slices, henceforth

we will use slicing to mean static slicing, and we will not again discuss dynamic slicing.

m
'lff

til

_i

iw

I!

m

!

g

m
= i

Ilr
m

W

W

J

WIP

--- i

II

I

lff

Balancing Generality and Specificity 6 4/30/92

I _-



r ,

=

w

w

1 procedure wc (theFile : in string; nl,
2 inword : boolean := FALSE;

3 theCharacter : character;

4 file : file_type;

5 begin ""

6 open(file, IN_FILE, theFile);
7 while not end_of_file(file) loop

8 get(file, theCharacter);

9 nc := nc + I;

10 if theCharacter = LF then

ii nl = nl ÷ i;

12 end if;

13 if theCharacter = ' '

14 or theCharacter = LF

15 or theCharacter = HT then
16 inWord = FALSE;

17 else if not inWord then

18 inWord = TRUE;
19 nw = nw + I;

20 end if;

21 end loop;
22 close(file);

23 end wc;

nw, nc : out natural := 0) is

Figure h we, a procedure to count text

5.1 - Previous Work in Slicing

In his thesis [30] and subsequent work [31, 32, 33], Weiser used slicing to address various is-

sues primarily concerned with program semantics and parallelism. Gallagher and Lyle more re-

cently employed a variation of slicing in limiting the scope of testing required during program

maintenance [20].

Program slicing has been proposed for such uses as debugging and program comprehension

[32], parallelization [5], merging [12, 18], maintenance, and repository module generation [9].

As an example of program slicing, we present the following example, adapted from Gallagher

& Lyle [9]. The procedure we, presented in Figure 1, computes the count of fines, words, and char-

acters in a file.* Figure 2 gives the results of slicing wc on the variable nc at the last line of the

procedure. Since the variables nl, nw, and inword do not contribute to the value of nc, they do

not appear in the slice. Also, the statements on lines 10 through 20 of the original procedure do not

* This procedme is not entirely correct, since the Ada get pmcedme skips over line terminators, unlike the C
getchar function. We adapted wc in this way to clmify its actions and retain the flavor of the original function.

Balancing Generality and Specificity 7 4/30/92
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i procedure wc (theFile : in string; nc

2 theCharacter : character;

3 file : file_type;
4 begin

5 open(file," IN_FILE, theFile);

6 while not end_of_file(file) loop

7 get(file, theCharacter);
8 nc := _c + i;

9 end loop;

i0 close(file);

II end wc;

: out natural := O) is

Figure 2: wc sliced on nc

appear in the slice. While this slice follows the spirit of a classic slice, and will serve to illustrate

classic slicing, it also differs in several important ways, as described below.

5.2 - Interface Slicing

We propose a new form of slicing, interface slicing, which is performed not on a program but

on a component. Similar to previous work in static slicing, our interface slice consists of a compil-

able subset of the statements of the originalpmgram. The interface slice is defined such that the

behavior of the statements and the values of the variables in the slice is identical to their behavior

and values in the original program.

However, while previous slicing efforts have attempted to isolate the behavior of a set of vail-

ables, even across procedural boundaries, our slice seeks rather to isolate portions of a component

which export the behavior we desire. In the following discussion, we assume for simplicity that a

package implements a single ADT, and we use package and ADT interchangeably.

Unlike standard slicing techniques which are usually applied to an entireprogram, interface

slicing is done on a fragment of a program - a component- since our goal is to employ the neces-

sary and sufficient semantics of a component for use in the target system. Interface slicing is at the

level of procedures, functions, and task types. If a procedure is invoked at all, the entire procedure

must be included, as we have no way of knowing a priori what portion of the procedure _ be

needed.* However, if an ADT is incorporated into a system, not necessarily all of its operations are
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invoked. The interface slicing process determines which operations are m be included, and which

can be eliminated. Because interface slicing treats procedures atomically, the complex program de-

pendence graph analysis of standard slicing [ 13] is not necessary. A single pass of the call graph

of an ADT's operations is sufficient m determine the slice. We use "operation" as a general term

to encompass procedures, functions, and exceptions, and include tasks with procedures in that a

task is another way of encapsulating a subprogram unit.

We will illustrate the concept of interface slicing first by examining a simple example, a toggle

ADT. First consider package toggle1, in Figure 3. This package exports the public operations

on, off, set, and reset. On and off arcexaminationoperationswhich query thestateof the

toggle,while set and reset arcoperationswhich modify thestateof the toggle.Now suppose

that we wish to have a toggle in a program which we are writing, but we have a need for only three

of the four operations, namely on, set, and reset. In standard Ada, we have two choices. We

can include the package as is, and have the wasted space of the off operation included in our pro-

gram. This is the kitchen sink syndrome. Alternatively, we can edit the source code manually (as-

suming we have access to it) and remove the o f _:operation, thereby saving space, but requiring a

large amount of code comprehension and introducing the danger of bugs due to hidden linkages

and dependencies. In both these cases, we see the generality of design-for-reuse competing with

the desired specificity of design-with-reuse.

L _

ImF

Instead, we propose the invocation of an interface slicing tool to which we give the togglel

package togetherwith the listof operationswe wish m includeinour progran_ The toolthen au-

tomaticallyslicestheentirepackage based on thecallgraph of itsoperations,generatinga slice

containingonly those OlW_Tations(andlocalvariables)ne_ded forour desir_loperations.The slice

of togglel which containsonlythe thre_operationsisshown in P]gu_ 4.

* In otherwords, an interfacesliceisonhogonal toa standardstaticslice.The use of one

technique neither requires nor inhibits the use of the other. We are not discussing the tech-

nique of standard static slicing here, other than to contrast it with our interface slice, and so

we do not assume that an interprocedural slicer is operating at the same time as our interface
slicer.

Balancing Generality and Specificity 9 4_0D2
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package togglel is

function

function

on return boolean;

off return boolean;

procedure set;

procedure reset;

ii end togglel;
12

13 package body togglel is
14

15 theValue : boolean t= FALSE;
16

17 function on return boolean is

18 begin - --

19 return theValue = TRUE;
20 end on;
21

22 function off return boolean is

23 begin

24 return theValue = FALSE;
25 end off;
26

27 procedure set is

28 begin

29 theValue := TRUE;
30 end set;
31

32 procedure reset is
33 begin

34 theValue := FALSE;

35 end reset;
36

37 end togglel;

Figure 3: A toggle package

As another example, consider the package toggle2, which in addition to the operations of

togglel includes the operation swap. This package is shown in Figure 5. Suppose we wish to write

a program which needs a toggle ADT and the operations on and swap. The interface slicing tool

finds that the operation on has no dependencies, but the operation swap needs on, set, and re-

set, and so the desired slice of toggle2 which is produced for our program is contains the four

operations, on, set, reset, and swap, and does not contain o f f. This slice is shown in Figure 6.

One of the differences _tween interface slices and standard slices is the way that interface slic-

es are defined. While a standard slice is defined by a slicing criterion consisting of a pro_, a

statement an4 a set of variables, an interface slice is defined by a package and a set of operations
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package togglel is

function on return boolean;

procedure set; "

procedure reset;

end togglel;

package body togglel is

theValue : boolean := FALSE;

function on return boolean is

begin
return theValue = TRUE;

end on;

procedure set is

begin
theValue := TRUE;

end set;

procedure reset is

begin
theValue := FALSE;

end reset;

end togglel;

Figure 4: The toggle package sliced by on, set and reset

in its interface. The package is an example of design-for-reuse and implements a full ADT, com-

plete with every operation needed to legally set and query all possible states of the ADT. The in-

terrace slicer is an aid to design-with-reuse and prunes the full ADT down to the minimal set of

operations necessary to the task at hand. The interface slicer does not add functionality to the ADT,

as the ADT contains full functionality to start with. Rather, the slicer eliminates unneeded func-

tionality, resulting in a smallex, less complex source file for both compiler and reuser to deal with,

and smaller object files following compilation.

6 - An Extended Example

The examples above illustrate the general concept of interface slicing, but leave out some im-

portant details. To fill in some of these details, we will next examine a pair of generic packages in

the public domain. These packages were explicitly written to be used as building blocks for Ada

Balancing Generality and Specificity 11 4/'3o/92
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12

13 end toggle2;
14

15 package body toggle2 is
16

17

18

19

2O
21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

package toggle2 is

function on return boolean;

function off return boolean;

procedure set;

procedure reset;

procedure swap;

theValue : boolean := FALSE; _

function on return boolean is

begin

return theValue = TRUE;
end on;

function off return boolean is

begin

return theValue = FALSE;
end off;

procedure set is
begin

theValue := TRUE;

end set; .... _

procedure reset is

begin

theValue := FALSE;
end reset;

39 procedure swap is
40 begin
41 if on then

42 reset;

_ ,!3 ..... else

44 set;
45 end if;

46 end swap;
47

48 end toggle2;

Figure 5: Version 2 of the toggle package

programs. The first is a generic package which provides the ADT set. The package is instandated

by supplying it with two pamn_ters, the first being the type of clement which the set is to contain,

and the second a comparison function to determine the equality of two members of this type. The

packageprovidesan theoperationsnecess_ to create._pulate, query,anddestroysets.The

full interface s_ificati0n of:the set is given in Appendix A. :
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31

32

33

34

35

36

37

package toggle2 is

function on return boolean;

procedure swaps,

end toggle2;

package body toggle2 is

theValue : boolean := FALSE;

end

function on return boolean is

begin
return theValue = TRUE;

end on;

procedure set is

begin
theValue := TRUE;

end set;

procedure reset is

begin
theValue := FALSE;

end reset;

procedure swap is

begin
if on then

reset;
else

set;

end if;

end swap;

toggle2;

Figure 6: Version 2 of toggle sliced by on and swap

This set package happens to use a list as the underlying representation upon which it builds the

set ADT, and so requires the second generic package which supplies the list ADT. This happens to

be a singly-linked list implementation which exports all the operations necessary to create, manip-

ulate, query, and destroy lists. This package also requires two generic parameters, the same ones

which set requires. The specification for the list package is given in Appendix B.

In the particular list and set packages we used for our example, there were no private opera-

tions. Private operations are not available to be used inan interface slicing criterion; only the ex-

ported operations in the interface can be in the slicing criterion. In general, however, private

operations are treated identically to exported ones during the slicing process. The slicer, being a

Balancing Generality and Specificity 13 4/30/92
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Figure 7: The call graph for set

Figure 8: The sliced set

privileged pro-compilation code transformer, does not respect privacy.

6.1 - A Single Level of Slicing

Now suppose we wish to use the set package in a program we are writing, but we have a need

for only a few of the set operations, specifically, in this example, create, insert, and equal. We

would liketoincludeallthecode necessarytoaccomplish theseoperations,but would liketohave

only the ncccssarycode, and no more.

In order to slice the set package, we must examine the call graph of operations in the set pack-

age for the transitive closure of the three desired operations. Figure 7 shows the complete call graph

of the set package, and figure 8, shows the transitive closure of create, insert, and equal (nodes s2,

s4 and s8, respectively).* Fi_ S-sh0ws_the slice c0rre_n_g to these three operations. Out of

the total of 14 operations exported by the original package, the slice based on create, insert, and

equal contains only 8 operations, with a considerable reduction in total size of code, although the

complexity of the call graph remains the same.

Notice that in this example, the sliced set package needs the same number and type of generic

p_ters as did the original package. This will not always be the case, however. In Figure 1, the

: : _-_,_ ........................ _ _ / _--'_'_

* Tlae°eal| graph_nixte labels correspond to the comments associated with each operation for
the package specifications appearing in the appendices: = .....
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Figure 9: The combined set and listcallgraph

originalwc procedure needed 4 parameters,butthe slicebased on nc shown inFigure 2 needed

= =

only2 parameters.Ingeneral,outofallthelocalvariablesinacomponent, includingbothvariables

bound toparameters and thosedeclaredwithinthecomponent's scope,a slicewillincludea subset

of theselocalvariables.

6.2 - A Second Level of Slicing

r--

T

While the 8 operations represent an improvement over the original 14, we can go further, and

examine not only the set package, but also the list package as well. If we examine the transitive

closure of the three desired operations in the call graph of all the operations of both the set and list

packages, we can accomplish a much more dramatic improvement in the size and complexity of

the resulting slice. Figure 9 shows the full call graph of the set and list packages. In standard Ada

usage, all of this would be included in a program were the generic set and list packages instantiated

in a program. Figure 10 shows the call graph which is exactly the transitive closure of the set op-

erations create, insert, and equal, as would be produced by interface slicing. The size and complex-

ity of this call graph are obviously much less than that of the full graph. Table 1 gives some

statistics on the relative sizes of the packages and their call graphs.

None of the examples above involved overloaded names. Interface slicing in the presence of

overloading is somewhat more complicated. Assuming that the resolution can be accomplished
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Figure 10: The sliced set and list

Table 1: Package Statistics

# of
# of nodes # of edges statements

FullSet 14 5 95

Sliced Set 8 5 57

% reduction 36 0 40

Full Set and List 37 46 345

Sliced Set and list 20 19 200

% reduction 46 59 42

completely at compile time, there are two options. The first is a simple, naive approach in which

all versions of an overloaded operation are included. The second is to perform the type checking

for parameters and remm value (if any) to determine which of the overloaded versions are actually

called.For example, assume thatlist'soperationattachisa quadruplyoverloaded proced_ which

can be calledwithtwo elements,anelement and alist,alistand an element,or two lists.Resolution

of theoverloadingmay, ina p_cular situation,allow threeof thefourprocedures to be sliced

away, resultinginimproved reductionofsizeand complexity.

If the overloading cannot be resolved at compile time, but must wait until runtime, we have no

option but to include _ecode for all possible operations which may be called. A static slice can

only blindly assume worst-case in the presence of run-time binding of overloaded procedure
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names. Although our example extends to only two levels, the slicing can extend to as many levels

as exist in the compilation dependency graph of the packages included in the program.

7 - Conclusion: Balancing Genericity and Specificity

We have discussed two main reuse-oriented paradigms in software engineering, namely de-

sign-for-reuse and design-with-reuse, and how the goals of these two paradigms have in the past

been viewed as being antagonistic, with the former striving for generality and the latter striving for

specificity. We have shown that with the proper language mechanisms and development tech-

niques, the goals are in fact complementary. The specific mechanism we use by way of example is

a new form of static program slicing which we call interface slicing. Using interface slicing, a com-

plete and generic component can be adapted to the specific needs of the program at hand, increas-

ing comprehension and reducing complexity, without sacrificing the generality of the base

component. Thus a developer designing a component for reuse can be completely unfettered of all

size conswaints and strive for total generality, knowing that a reuser of the components can effort-

lessly have all unneeded functionality sliced away in a pre-compilation step.

The artifacts produced by an interface slicer should not be considered as new components, any

more than instantiations of a generic are viewed as new components. Rather, we want to emphasize

the retention of the derivation specification, avoiding additional maintenance problems though the

life-cycle of what would then be custom components. We should keep the desired interface speci-

fication, and alter that when we need to change the way in which we bind through the interface to

the base component. Just as we don't associate any cost per se with the instantiation of a generic,

we should not associate a cost with specialization through interface slicing, since it can be com-

pletely handled by the development environment.

Our approach addresses indirectly a critical social aspect of reuse, the trust that reusers place

in the components extracted from the repository [16]. Deriving a family of interface slices from a

Balancing Generality and Specificity 17 4/30/92



base component implies that if the base component is correct (or at least certified), then all of the

slices must necessarily be correct (or at least certified) also.
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Appendix A - The Package Specification for Set

Note: the comments in.the right margin refer to the node labels in the call graphs of Figures 7,

8, 9, and 10.

1 generic

2 type elemType is private;

3 with function equal(el, e2: elemType) return boolean is "=';

4 package setPkg is
5

6 type set is private;

7 type iterator is private;
8

9 noMore: exception;
I0

Ii function create return set;
12

13 procedure delete(s: in out set; e: in elemType);
14

15 procedure insert(s: in out set; e: in elemType);
16

17 function intersection(sl, s2: set) return set;
18

19 function union(sl, s2: set) return set;
20

21 function copy(s: set) return set;
22

23 function equal(sl, s2: set) return boolean;
24

25 function isEmpty(s: set) return boolean;
26

27 function isMember(s: set; e: elemType) return boolean;
28

29 function size(s: set) return natural;
30

31 function makeIterator(s: set) return iterator;
32

33 procedure next(iter: in out iterator; e: out elemType);
34

35 function more(iter: iterator) return boolean;
36

37 end setPkg;

-- sl

-- s2

-- s3

-- s4

-- s5

-- s6

-- s7

-- s8

-- s9

-- sl0

-- sll

-- s12

-- s13

-- s14
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Appendix B - The Package Specification for List

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 9

and 10.

1 generic

2 type elemType is private;
3 with function equal(el, e2: elemType) return boolean is "=";

4 package listPkg is
5

6 type list is private;

7 type iterator is private;
8

9 circularList: exception; -- ii

10 emptyList: exception; -- 12

ii itemNotPresent: exception; -- 13

12 noMore: exception; -- 14

13

14 procedure attach(ll: in out list; 12 in list); -- 15
15

16 function copy(l: list) return list; -- 16
17

18 function create return list; -- 17

19

20 procedure deleteHead(l: in out list); -- 18
21

22 procedure deleteItem(l: in out list; e: in itemType); -- 19

23

24 procedure deleteItems(l: in out list; e: in itemType); -- ii0
25

26 function equal(ll, 12: list) return boolean; -- iii
27

28 function firstValue(l: list) return itemType; -- 112

29

30 function isInList(l: list; e: itemType) return boolean; -- 113
31

32 function isEmpty(l: list) return boolean; -- 114
33

34 function lastValue(l: list) return itemType; -- 115

35

36 function length(l: list) return integer; -- 116

37

38 function makeIterator(l: list) return iterator; -- 117

39

40 function more(l: iterator) return boolean; -- 118

41

42 procedure next(iter: in out iterator; e: itemType); -- 119

43

44 procedure replaceHead(l: in out list; e: itemType); -- 120
45

46 procedure replaceTail(l: in out list; newTail: in list); -- 121
47

48 function tail(l: list) return list; -- 122

49

50 function last(l: list) return list; -- 123

51
52 end listPkg;
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