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Abstract

Fora component mdustry to be successful, we must move be-
yond the c‘u}rvcnt techniques of black box reuse and genericity to a
more flexible framework supporting customization of components
as well as instantiation and composition of components Customiza-
tion of components strikes a balance | bctwecn crcatmg dozens of
variations of a base. component and requmng the overhead of unnec-
essary features of an “everything but the kitchen sink” component.
We argue that design and instantiation of reusable components have
competing criteria — design-for-reuse strives for generality, design-
with-reuse strives for specificity — and that providing mechanisms
for each can be complcmcntary rather than antagonistic. In particu-
lar, we demonstrate how program slicing techniques can be applied
to customization of reusable components.
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1 - Introduction

The impediments to a successful reuse infrastructure in the software engineering community
have typically been separated into social and technological issues [26]. Furthermore, the social is-
sues (e.g., comprehension, trust, and investiture) often are characterized as being the more critical,
as there is a perception that all of the technical issues (e.g., environments, repositories, and linguis-
tic support) have been solved [27]. We do not agree with this assessment (see [8] for our arguments
regarding repositories and environments), and furthermore believe that appropriate application of

technology can alleviate certain of the social issues just mentioned.

This paper addresses two reuse impediments — component comprehension by a reuser [14] and
the fitness of a component for a given application — and how technical support, in this case lan-
guage features and program slicing, alleviate these impediments. These two impediments drive the
consumer side of reuse repository design, for without comprehensibility users will not select arti-
facts from the repository, and withoutg@o;gqgt; Vg_gnformanoe to requirements users will not incor-
porate artifacts into systems even if they do select them. These two impediments also drive the
design process for reusable components, since components perceived as ill-suited for reusers’ ap-
plication domains (and hence not incorporated into the resulting systems) have not met the require-

ments of a design-for-reuse effort.

We begin in section 2 by characterizing the inherent conflict between the design goals for de-
sign-for-reuse and design-with-reuse. We then review mechanisms that support particular structur-
al and behavioral aspects of component design in section 3. The mechanisms described support
flexibility in the design of a component. We consider mechanisms in section 4 to constrain an im-
plementation, supporting specificity in the instantiation of a component, and show in section 5 how
to employ program slicing as one such mechanism. Section 6 demonstrates the application of our

technique to a moderate-sized example.
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2 - Design-For-Reuse versus Design-With-Reuse

Design for reuse focuses on the potential reusability of the artifacts of a design process. Design

with reuse, on the other hand, focuses on employing existing artifacts wherever possible in the de-

~ sign process. The intent of the two approaches, and hence the various criteria that each of them em-

ploy, is then quite distinct. In particular, design for reuse strives for generality, even to the point of
additional cost to the current project, and design with reuse strives to reduce cost to the current
project, even to the point of adapting non-critical project requirements to achieve conformance

with existing artifacts.

Garnett and Mariani proposed the following attributes for reusable software [10]:
+ environmental independence — no dependence on the original development environment;
* high cohesion ~ implementing a single operation or a set of related operﬁtions;
»" loose coupling — minimal links to other components; -
* adaptability — easy customization to a variety of situations;
"« understandability;
+ reliability; and
+ portability.
These attributes clearly reflect goals that should apply to all products of a design-for-reuse effort,
_and séihé of these attributes (pérticulé;dy understandability and r't:l'irability)r apply to all software de-
velopmenﬁtr cfforts Not so clea; IS whcthér tixcsc aftﬁ'butés reflect the goalsr of design-with-reuse

_efforts.

We contend that there is an inherent conflict between design-for-reuse and design-with-reuse

that centers upon adaptaibi»]'iﬁty.rDcSign-for-rcusc strives to create artifacts that are as generally ap-

plicable as possible, in the worst case creating “cvérything-but-the-kitchen-sink™ artifacts, loading
a component with features in an effort to ensure applicability in all situations. Design-with-reuse

strives to identify that artifact which most specifically matches a given requirement. Anything less

Balancing Generality and Specificity 2 4/30/92

dig qQF ay wE 4@ qaF 80«

g 4w Q0© 40 QW0

. |
: “n““ll' I b
i (I

1

iben 11



requires additional effort, both in comprehension and coding. Anything more carries with it the

penalty of excess resource consumption and increased comprehension effort.

The specificity that we seck'in design-with-reuse takes two forms — the first is that of avoiding
additional functionality in a simple component; the second is that of avoiding additional function-
ality in an abstraction, implemented as a package/module. Specificity becomes increasingly critical
when considering scale. The additional storage consumed and increased comprehension effort
posed by a simple abstract data type quickly become the multi-megabyte “hello world” applica-

tions of today's user interface management systems, and threaten intractability in the domain of

megaprogramming {4, 19].

3 - Language Mechanisms Supporting Design—For-Reuse

Designing a software component for reuse involves a number of issues, including analysis of the
intended target domain [21, 22], the coverage that this component should provide for the domain
[22], and the nature and level of parametcxizatioh of the component {7, 28, 29]. A number of de-
velopments in programming language design du'ectly bear upon these issues. We focus hérc upon

those we see as most beneficial.
3.1 - Procedural and Modular Abstraction

The obvious advantages that functions and procedures provide in comprehension and reuse of
portions of a program (even if the reuse is only at a different location in the same program) are so
well recognized, that no contemporary language proposal is taken seriously without them. The
package (or module) concept, with separate specification and implementation of a collection of
data and procedural definitions, has arguably reached the same level of acceptance. Sommerville's
list of classes of reusable components (functions, procedures, declaration packages, objects, ab-
stract data types, and subsystems) [25] indicates ﬁlc dcf:th of dﬁs acccpténcc - viftually every class
listed is directly implementable using one of the two mechanisms (objects being the only non-ob-

vious fit).
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3.2 - Parameterization and Genericity

The utility of a function or procedure is severely limited without the ability to provide infor-

Wil

mation customizing the effect of a specific invocation. Parameters comprise the explicit contract
between a function and its invocations, and are generally accepted as far preferable to the implicit i
contract provided by shared global state. Genericity, or more formally, parametric polymorphism =
(6], involves the parameterization of program units (both functions/procedures and packages/mod- »
ules) with types, variables, and operations (functions, procedures, tasks, and exceptions). Parame- %
ters effectively support families of invocations. Genericity extends this support to families of -
instantiations, each with its own family of invocations, providing increased adaptability and port- g
ability [28]. =
-
3.3 - Inheritance B
Inhcritanccrihvorlvcs thc crcatidn of géﬁc;ﬁ?adén/speciaﬁmﬁon structures, a tree in the case ¢
of single inheritance, a lattice in the case of multiple inheritance. These generalizations/specializa- g
tions may be structural (in the case of subtypes [6]) or behavioral (in the case of classes [11]). .
Whatever the structuring mechanism, inheritance supports the creation of variations of a base com- :
ponent, each with its own interface [15], as well as instances of those variations. Inheritance thus =
is a very useful mechanism for the creation of certain classes of soft“;arc artifacts. Note, however, g
that using inheritance as a reus'é'-énablin'gimechanism is not without its own hazards, most notably %
scalability and the violation of information hiding [23, 24]. B
4 - Language Mechanisms Supporting Design-With-Reuse et
The previous secﬁon primarily addressed the creation of program structure. Our primary inter- -
est in this sectionrinyolf\f’c;éinvot the creation of new reusable components, but rather their natural %
~ involvement in the dévclqpmcn; process. This corresponds to the responsibilities of Basili’s project ~ _7 |
organization [3]. ” %
B w
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4.1 - Procedural and Modular Abstraction

Much of today’s reuse takes place at the level of procedures and packages, either as source or
object code. The linguistic and c'nvironmemal mechanisms for this, including source and object li-
braries and separate compilation, provide little over what a simple text editor with cut and paste
commands provides. The onus of comprehension and adaptation is placed upon the reuser, partic-
ularly if the reuser is interested in inéreasing the specificity of the component (which may even be
proscribed by the social infrastructure, i.e. management). The consequence of design-with-reuse in

this context is thus monolithic reuse, an all or nothing acceptance of an entire component.
4.2 - Genericity

Genericity readily supports the creation of specializations of the generic artifact through instan-
tiation. However, genericity as defined in languages such as Ada provides little beyond complete
instantiation of a generic component into a completely concrete instance. Further, partial instanti-
ation does little in terms of additional flexibility, as every successive partial instantiation makes
the resulting generic more concrete. Hence genericity provides the same form of monolithic reuse

as that described in the previous section, with the option of customizing the instances.
4.3 — Inheritance

Inheritance performs as readily in support of a reuser as in support of a developer of compo-
nents. The reuser can both instantiate new instances of the component and derive new component
classes from the original. This second issue is a particularly beneficial one, as it allows for the de-
velopment of unanticipated refinements to thc program model without requiring adaptation of ex-
isting code. However, inheritance exhibits the same specificity limitations as abstraction and
genericity, supporting only monolithic reuse, in the case of instantiation, or incremental monolithic

reuse, in the case of class refinement.
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5 — Program Slicing

The mechanisms discussed in sections 3 a and 4 add structure and/or complexrty toa program
Parameterization and genericity increase the mterfacc complexrty of a program | umt Packages and
inheritance increase either the number of program units or the structural complexrty of those units.
Hence, current languages do not have explicit mechanisms that address the conflicting goals of de-
sign-for-reuse and design-with-reuse. We therefore propose a new mechanism for reconciling the
two approaches (by increéskingfcomponenf structural specrﬁcrty) which works in conjunctwn with
the facilities provided in Ada - a new form ofprogram slicing. We use Ada for our examples, as it
is a language whose built-in features facilitate the types of transformations which we invoke. How-

ever, the concepts we present are not conﬁned to any parucular language

In his thesis [30], Weiser introduced the concept of program slicing. In this form of slicing,
called static slicing, a slice of a program is an executable subset of the source statements which
make up program. A slice is specrﬁed by'a'vaﬁébrc and a statement number, and consists of all
statements which contribute to the value of that vanable at the end of execution of that statement,

together with any statements needed to form a properly executing wrapper around the slice proper.

Dynamic slicing, [1, 2, 17] is a second form of slicing which is determined at runtime and is

dependent on input data. A dynamic shce is the trace of all statements executed dunng a program

run using a particular i input data set, neﬁned by specrfylng only those executed statements which
reference a specified set of variables. Dynarruc slicing was spcc1ﬁcally desrgned as an aid in de-

buggmg, and is used to help in the search for offcndmg statements in ﬁndrng a program error.

By dcﬁnition, static slicing is a pre-compilation operation, while dynamic slicing is a run-time
analysrs Our interface slicing belongs in the category of static slicing, as it is a data-independent

pre-comprlal:lon code tmnsformauon Smce our mterest here is only with static slices, henceforth

we will use slicing to mean static slicing, and we will not again discuss dynamic slicing.

Balancing Generality and Specificity 6 4/30/92
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procedure wc (theFile : in string; nl, nw, nc : out natural := 0) is
inword : boolean := FALSE;
theCharacter : character;
file : file_type;
begin .
open(file, IN_FILE, theFile);
while not end_of_file(file) loop
get(file, theCharacter):;
nc := nc + 1;
if theCharacter = LF then
nl = nl + 1;
end if;
if theCharacter = ' '/
or theCharacter = LF
or theCharacter = HT then

(e Y
N WL OOV WN -

16 inWord = FALSE;

17 else if not inWord then.
18 inWord = TRUE;

19 nw = nw + 1;

20 end if;

21 end loop;

22 close(file);

23 end wc;

Figure 1: wc, a procedure to count text
5.1 - Previous Work in Slicing

In his thesis [30] and subsequent work [31, 32, 33], Weiser used slicing to address various is-
sues primarily concerned with program semantics and parallelism. Gallagher and Lyle more re-
cently employed a variation of slicing in limiting the scope of testing required during program

maintenance [20].

Program slicing has been proposed for such uses as debugging and program comprehension
[32], parallelization [5], merging [12, 18], maintenance, and repository module generation [9].

As an example of program slicing, we present the following example, adapted from Gallagher
& Lyle [9]. The procedure wc, presented in Figure 1, computes the count of lines, words, and char-

acters in a file.” Figure 2 gives the results of slicing wc on the variable nc at the last line of the
procedure. Since the variables n1, nw, and inword do not contribute to the value of nc, they do

not appear in the slice. Also, the statements on lines 10 through 20 of the original procedure do not

* This procedure is not entirely correct, since the Ada ger procedure skips over line terminators, unlike the C
getchar function. We adapted wc in this way to clarify its actions and retain the flavor of the original function.
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procedure wc (theFile : in string; nc : out natural := 0) is
theCharacter : character;
file : file _type;
begin ) .
open(flle, IN_FILE, theFile);
while not end_of_file(file) loop
get (file, theCharacter);
nc := nc + 1;
end loop;
close{file);
end w¢;

HMOWOJR W& W

e

Figure 2: wc sliced on nc

appear in the slice. While this slice follows the spirit of a classic slice, and will serve to illustrate

classic slicing, it also differs in several important ways, as described below.

5.2 - Interface Slicing

We propose a new form of slicing, interface slicing, which is performed not on a program but
on a component. Similar to previous work in static slicing, our interface slice consists of a con:;ipil-
able subset of thc statements of thc ongmal program Thc mtcrfacc shcc is dcﬁncd such that the

bchavwr of thc statcmcnts and the va]ucs of thc vanablcs in the shcc is 1dent1cal to thcu behavxor

and valucs in thc ongmai program

However, while previous slicing efforts have attempted to isolate the behavior of a set of vari-
ables, even across procedural boundaries, our slice seeks rather to isolate portions of a component
which export the behavior we desire. In the following discussion, we assume for simplicity that a

package implements a single ADT, and we use package and ADT interchangeably.

Unhkc standard shcmg tcchmqucs wh1ch are usually apphed to an entire program mtcrface
ahcmg is done on a fragment of a program —a component — since our goal is to employ the neces-
sary and sufficient semantics of a component for use in the target system. Interface slicing is at the
level of procedures, functibns, and tasktypcs If a procedure is invoked at all, the entire procedure
must be included, as we have no way of knowing a priori what portion of the procedure will be
needed.” Howcvér, if an ADT is 1ncorporated into a system, not neccsaarily all of its operations are

 Balancing Generality and Specificity 8 4/30/92
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invoked. The interface slicing process determines which operations are to be included, and which
can be eliminated. Because interface slicing treats procedures atomically, the complex program de-
pendence graph analysis of standard slicing [13] is not necessary. A single pass of the call graph

of an ADT’s operations is sufficient to determine the slice. We use “operation” as a general term

to encompass procedures, functions, and exceptions, and include tasks with procedures in that a

task is another way of encapsulating a subprogram unit.

We will illustrate the concept of interface slicing first by examining a simple example, a toggle
ADT. First consider package togglel, in Figure 3. This package exports the public operations
on, of £, set, and reset. On and of £ are examination operations which query the state of the
toggle, while set and reset are operations which modify the state of the toggle. Now suppose
that we wish to have a toggle in a program which we are writing, but we have a need for only three
of the four operations, namely on, set, and reset. In standard Ada, we have two choices. We
can include the package as is, and have the wasted space of the off operation included in our pro-
gram. This is the kitchen sink syndrome. Alternatively, we can edit the source code manually (as-
suming we have access to it) and remove the of f operation, thereby saving space, but requiring a
large amount of code comprehension and introducing the danger of bugs due to hidden linkages
and dependencies. In both these cases, we see the generality of design-for-reuse competing with

the desired specificity of design-with-reuse.

Instead, we propose the invocation of an interface slicing tool to which we give the togglel
package together with the list of operations we wish to include in our program. The tool then au-
tomatically slices the entire package based on the call graph of its operations, generating a slice
containing only those operations (and local variables) needed for our desired operations. The slice
of togglel which contains only the three operations is shown in Figure 4.

* In other words, an interface slice is orthogonal to a standard static slice. The use of one
technique neither requires nor inhibits the use of the other. We are not discussing the tech-
nique of standard static slicing here, other than to contrast it with our interface slice, and so
we do not assume that an interprocedural slicer is operating at the same time as our interface
slicer.

Balancing Generality and Specificity 9 4/30/92



1 package togglel is
2
3 function on return boolean;
4 . I
5 function off return boolean;
6
7 procedure set;
8
9 procedure reset;
10
11 end togglel;
12
13 package body togglel is
14
15 theValue : boolean := FALSE;
16
17 function on return boolean is
18 begin
19 return theValue = TRUE;
20 end on;
21
22 function off return boolean is
23 begin .
24 return theValue = FALSE;
25 end off;
26
27 procedure set is
28 begin
29 theValue := TRUE;
30 end set;
31
32 procedure reset is
33 begin
34 theValue := FALSE;
35 end reset;
36

37 end togglel;
Figure 3: A toggle package

As another example, consider the package toggle2, which in addition to the operations of
togglel mcludes mcopemio; éwap This package 1sshown rin Flgur::éisiupposc wc msh to write
a program which needs a toggle ADT and the operations on and swap. Thc interface slicing tool
finds that the operation on has no dependencies, but the operation swap needs on, set, and re-
set, and so the dcsu'ed slice of togglci whlch is produ;aed for our p{ogrmn is contains the four
operations, on, set, reset, and sQap, and does not contain of £. This slice is shown in Figure 6.
One of the differences between interface slices and standard slices is the way that interface slic-

es are defined. While a standard slice is defined by a slicing criterion consisting of a program, a

statement and a set of variables, an interface slice is defined by a package and a set of operations

Balancing Generality and Specificity 10 4/30/92
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1 package togglel is

2

3 function on return boolean;
4

5 procedure set; '

6

7 procedure reset;

8

9 end togglel;

10

11 package body togglel is

12

13 theValue : boolean := FALSE;
14

15 function on return boolean is
16 begin

17 return thevValue = TRUE;
18 end on;

19

20 procedure set is

21 begin

22 theValue := TRUE;

23 end set;

24

25 procedure reset is

26 begin

27 thevValue := FALSE;

28 end reset;

29

30 end togglel;

Figure 4: The toggle package sliced by on, set and reset

in its interface. The package is an example of design-for-reuse and implements a full ADT, com-
plete with every operation needed to legally set and query all possible states of the ADT. The in-
terface slicer is an aid to design-with-reuse and prunes the full ADT down to the minimal set of
operations necessary to the task at hand. The interface slicer does not add functionality to the ADT,
as the ADT contains full functionality to start with. Rather, the slicer climinates unneeded func-
tionality, resulting in a smaller, less complex source file for both compiler and reuser to deal with,

and smaller object files following compilation.
6 - An Extended Example

The examples above illustrate the general concept of interface slicing, but leave out some im-
portant details. To fill in some of these details, we will next examine a pair of generic packages in

the public domain. These packages were explicitly written to be used as building blocks for Ada

Balancing Generality and Specificity 11 4/30/92



package toggle2 is

1
2
3 function on return boolean; _
4 =
5 function off return boolean; -
6
7 procedure set; -—
8 =
9 procedure reset; -
10
11 procedure swap; - -
12 =
13 end toggle2; = )
14
15 package body toggle2 is
16 =
17 theValue : boolean := FALSE; I
18
19 function on return boolean is
20 begin =
21 return theValue = TRUE; u
22 end on;
23 o
24 function off return boolean is =
25 begin -
26 return theValue = FALSE;
27 end off; o
28 =
29 procedure set is )
30 begin .
31 theValue := TRUE;
32 end set; 3
33 9
34 procedure reset is -
3S begin
36 theValue := FALSE;
37 end reset;
38
39 procedure swap is
40 begin
41 if on then
42 reset;
43 else
- 4 set;
45 end if;
46 end swap;
47

48 end toggle2;

Figure 5: Version 2 of the toggle package

programs. The first is a generic package which providcs the ADT set. The packagcls instantiated

by supplymg it thh two parameters, the first being thc type: of element whxch the set is to contain,

and thc sccond a companson function to dctcrmmc thc equahty of two members of this type. The

packagc provxdes all the opemuons necessary to create mampulatc_ ‘qucry, and dcstroy sets. ‘The

full mtcrface spec1ﬁcat10n of the set is glven in Appendix A.

Balancing Generality and Specificity 12 4/30/92
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1 package toggle2 is

2

3 function on return booclean;
4

5 procedure swap;

6

7 end togglel;

8

9 package body toggle2 is

10

11 theValue : boolean := FALSE;
12

13 function on return boolean is
14 begin

15 return theValue = TRUE;
16 end on;

17

18 procedure set is

139 begin

20 theValue := TRUE;

21 end set;

22

23 procedure reset is

24 begin

25 theValue := FALSE;

26 end reset;

27

28 procedure swap is

29 begin

30 if on then

31 reset;

32 else

33 set;

34 end if;

35 end swap;

36

37 end toggle2;

Figure 6: Version 2 of toggle sliced by on and swap

This set package happens to use a list as the underlying representation upon which it builds the
set ADT, and so requires the second generic package which supplies the /ist ADT. This happens to
be a singly-linked list implementation which exports all the operations necessary to create, manip-
ulate, query, and destroy lists. This package also requires two generic parameters, the same ones

which set requires. The specification for the list package is given in Appendix B.

In the particular list and set packages we used for our example, there were no private opera-
tions. Private operations are not available to be used in an interface slicing criterion; only the ex-
ported operations in the interface can be in the slicing criterion. In general, however, private

operations are treated identically to exported ones during the slicing process. The slicer, being a

Balancing Generality and Specificity 13 4/30/92



Figure 7: The call graph for set

G 3 B I I O e )
Figure 8: The sliced set

privileged pre-compilation code transformer, does not respect privacy.

6.1 - A Single Level of Slicing

Now suppose we wish to use the set package in a program we are writing, but we have a need
for only a few of the set operations, specifically, in this example, create, insert, and equal. We

would like to include all the code necessary to accomplish these operations, but would like to have

only the necessary code, and no more.

In order to shce t.hc set package, we must examine the call graph of operanons in the set pack-
age for the transitive closure of the three desired operations. Frgurc 7 shows the complete call graph

of the set packagc, and ﬁgure 8 shows the transmvc closure of create, msert and equal (nodes s2,

s4 and s8 rcspcctwcly) Frgurc 8 shows thc shce con'espondmg to thesc three opcranons Out of
thc total of 14 opcrauons cxportod by the ongmal packagc the slice bascd on create, insert, and
equal contains only 8 operations, ‘with a considerable reduction in total size of code, although the

complexity of the call graph remains the same.

NOthC that in thJs cxamplc, thc shced set packagc needs thc same number and type of generic

parameters as did thc original package. Thxs will not always be thc case, however. In Figure 1, the

* The call graph node Iabels cormspond to the comments assocratod with cach operanon for
thc packagc spoc1ﬁcauons appca.nng in the appendices.- -

Balancing Generality and Specificity 14 4/30/92
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Figure 9: The combined set and list call graph

original wc procedure needed 4 parameters, but the slice based on nc shown in Figure 2 needed
only 2 parameters. In general, out of all the local variables in a component, including both variables
bound to parameters and those declared within the component’s scope, a slice will include a subset

of these local variables.
6.2 - A Second Level of Slicing

While the 8 operations represent an improvement over the original 14, we can go further, and
examine not only the set package, but also the list package as well. If we examine the transitive
closure of the three desired operations in the call graph of all the operations of both the set and list
packages, we can accomplish a much more dramatic improvement in the size and complexity of
the resulting slice. Figure 9 shows the full call graph of the set and list packages. In standard Ada
usage, all of this would be included in a program were the generic set and list packages instantiated
in a program. Figure 10 shows the call graph which is exactly the transitive closure of the set op-
erations create, insert, and equal, as would be produced by interface slicing. The size and complex-
ity of this call graph are obviously much less than that of the full graph. Table 1 gives some

statistics on the relative sizes of the packages and their call graphs.

None of the examples above involved overloaded names. Interface slicing in the presence of

overloading is somewhat more complicated. Assuming that the resolution can be accomplished

Balancing Generality and Specificity 15 4/30/92



Figure 10: The sliced set and list

Table 1: Package Statistics

# of nodes # of edges statﬁrﬁints
Full Set 14 5 95 ]
Sliced Set 8 5 57
% reduction 36 0 40
Full Set and List 37 46 345
Sliced Set and list 20 19 200
% reduction 46 59 42

completely at compile time, there are two options. The first is a simple, naive approach in which
all versions of an overloadcd operatwn are mc]uded The second is to perform the type checking
for parametcrs and return value (if any) to determine which of the overloaded versions are actually
called. For example, assume that hst s operation attach is a quadruply overloaded procedure which
can bercailed with two clcments an clcmcnt and a list, a list and an element, or two hsts Resolution
of the overloadmg rmy, ina parucular situation, allowitl’ﬁec of the four procedures to be sliced

away, resulting in improved reduction of size and complexity.

If the overloading cannot be resolved at compile time, but must wait until runtime, we have no
option but to include the code for all possible operations which may be called. A static slice can

only blindly assume worst-case in the presence of run-time binding of overloaded procedure
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names. Although our example extends to only two levels, the slicing can extend to as many levels

as exist in the compilation dependency graph of the packages included in the program.
7 - Conclusion: Balancing Genericity and Specificity

We have discussed two main reuse-oriented paradigms in software engineering, namely de-
sign-for-reuse and design-with-reuse, and how the goals of these two paradigms have in the past
been viewed as being antagonistic, with the former striving for generality and the latter striving for
specificity. We have shown that with the proper language mechanisms and development tech-
niques, the goals are in fact complementary. The specific mechanism we use by way of example is
a new form of static program slicing which we call interface slicing. Using interface slicing, a com-
plete and generic component can be adapted to the specific needs of the program at hand, increas-
ing comprehension and reducing complexity, without sacrificing the generality of the base
component. Thus a developer designing a component for reuse can be completely unfettered of all
size constraints and strive for total generality, knowing that a reuser of the components can effort-

lessly have all unneeded functionality sliced away in a pre-compilation step.

The artifacts produced by an interface slicer should not be considered as new components, any
more than instantiations of a generic are viewed as new components. Rather, we want to emphasize
the retention of the derivation specification, avoiding additional maintenance problems though the
life-cycle of what would then be custom components. We should keep the desired interface speci-
fication, and alter that when we need to change the way in which we bind through the interface to
the base component. Just as we don’t associate any cost per s¢ with the instantiation of a generic,
we should not associate a cost with specialization through interface slicing, since it can be com-

pletely handled by the development environment.

Our approach addresses indirectly a critical social aspect of reuse, the trust that reusers place
in the components extracted from the repository [16). Deriving a family of interface slices froma
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base component implies that if the base component is correct (or at least certified), then all of the

slices must necessarily be correct (or at least certified) also.
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Appendix A - The Package Specification for Set

-
Note: the comments in the right margin refer to the node labels in the call graphs of Figures 7, =
- Coo ool - - .- %
8,9, and 10.
1 generic =
2 type elemType is private; = g o -
3 with function equal(el, e2: elemType) return boolean is *=";
4 package setPkg is
5
6 type set is private;
7 type iterator is private;
8
S noMore: exception; -- sl =
10 -
11 function create return set; -~ 82
12 L
13 procedure delete(s: in out set; e: in elemType); -~ 83 —
14 -
15 procedure insert({s: in out set; e: in elemType); -- s4
16
17 function intersection(sl, s2: set) return set; -- s5 %;
18 =}
19 function union(sl, s2: set) return set; ) -- s6
20
21 function copy({s: set) return set; ) -- 57

i

23 function equal(sl, s2: set) return boolean; -- s8
gg function isEmpty(s: set) return boolean; -- s9 =
gg function isMember(s: set; e: elem’I‘yprer) return boolean; -- s10 =
gg function size(s: set) return natural; -- sl1 = é
gg function makeIterator(s: set) return iterator; -- 812 .
gg procedure next{iter: in out iterator; e: out elemType); -- sl13 =
gg function more(iter: iterator) return boolean; -- s14 -
gg end setPkg; =
Q
-

I

. i

il

.

fing
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Appendix B — The Package Specification for List

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 9

and 10.

1 generic

2 type elemType is private;

3 with function equal(el, e2: elemType) return boolean is *=";

4 package listPkg is

2 type list is private;

7 type iterator is private;

g circularlist: exception; -- 11

10 emptyList: exception; -- 12

11 itemNotPresent: exception; -- 13

12 noMore: exception; -- 14

ii procedure attach(ll: in out list; 12 in list); ‘ -- 15

12 function copy(l: list) return list; -- 16

ig function create return list; -- 17

ég procedure deleteHead(l: in out list); -- 18

3% procedure deleteltem(l: in out list; e: in itemType); -- 19

%3 procedure deleteltems(l: in out list; e: in itemType); -- 110
gz function equal(ll, 12: list) return boolean; -- 111
gg function firstValue(l: list) return itemType; -- 112
gg function isInList(l: list; e: itemType) return boolean; -- 113
3% function isEmpty(l: list) return boolean; -- 114
32 function lastValue(l: list) return itemType; -- 115
;2 function length(l: list) return integer; -- 116
gg function makelterator(l: list) return iterator; -- 117
ig function more(l: iterator) return boolean; -- 118
2% procedure next(iter: in out iterator; e: itemType); ~-- 119
22 procedure replaceHead(l: in ocut list; e: itemType); -- 120
zg procedure replaceTail(l: in out list; newTail: in list); -- 121
23 function tail(l: list) return list; -- 122
§§ function last(l: list) return list; -- 123

52 end listPkg;
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