
• I/_ // // /

/ / •

NASA Contractor Report 189716

ICASE Report No. 92-51

• r"

7)
/ /

ICASE
STATIC ASSIGNMENT OF COMPLEX STOCHASTIC

TASKS USING STOCHASTIC MAJORIZATION

David Nicol

Rahul Simha

Don Towsley

(qA_A-CR-I'JqTI6) STATIC _ S _ Ig_'_h_T

J_ Cd'_PLL_ 3rF'CHASTIC T_SKS USING

- _r IC _A 3__T_J_ti_,ST JdalZATI Final

G3/61 0129303

Contract Nos. NAS1-18605 and NAS1-19480

October 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

N/W,A
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19930003215 2020-03-17T10:25:55+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42810809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STATIC ASSIGNMENT OF COMPLEX STOCHASTIC TASKS

USING STOCHASTIC MAJORIZATION

David Nicol I and Rahul S'imha 2

Department of (_omputer Science

College of William and Mary

Williamsburg, VA 23185

Don Towslcy

Department of Computer and Information Science

University of Massachusetts

Amherst, Mass. 01003

ABSTRACT

We consider the problem of statically assigning many tasks to a (smaller) system of homogeneous

processors, where a task's structure is modeled as a branching process, and all tasks are assumed

to have identical behavior. We show how the theory of majorization can be used to obtain a partial

order among possible task assignments. Our results show that if the vector of nulnhers of tasks

assigned to each processor under one mapping is majorizcd by that of another mapping, then the

former mapping is better than the latter with respect to a large number of objective functions. In

particular, we show how measurements of finishing time, resource utilization, and reliability are all

captured by the theory. We also show how the theory may be applied to the problem of partitioning

a pool of processors for distribution among parallelizahle tasks.

IThis research wa._supported by the National Aeronautics and Space Administration under NASA (?ontract Nos.
NAS1-18605 and NAS1-19480 while the first author was in residence at the Institute for Computer Applications
in Science and Engineering ([(_ASF), NASA Langley Research (',enter, Hampton, VA 23681-0001. Research also
supported in part by NSF ASC 8819393.

2Research SUl)ported by NSF NCR-8907909.

1 Introduction

t'ara, lhq processing has emerged as an important means of achieving high computational perfor-

mance. As a consequence, much research interest has been sparked in the area of efficient use of

parall_,l c*)ml)uters. Tlw lmdfiem of assigning tasks among processors to minimize processing time

has a.lready received considerable attention in tile literature, e.g., [3, 4, 8, 9, 12, 18]. We consider

the pr(,bh'nl of statically assigning tasks to processors when tile tasks have unknown random pro-

cessing times and a certain type of stochastic structure. The structure we examine embodies tile

m)t.i(m (d" ,)he task ,_l)awning a sol. ()f others; we examine static assignments, under tile assumption

that all ,)ffsl)riug ,_t'a task are executed on the same l)rocessor as the task. Static assignment is

likely t(_ I)e used when a task's state is large, thereby making dynamic a.ssignment very costly in

tel'IllS of C()llllllllnic_lli()ll.

This paper examines theoretical issues associated with COlnparing different static mappings of

a set of complex stochastic tasks. In particular, we show how the theory of majorization can be

used to derive strong results concerning the comparison of different mappings. The strength of

our contributiml lies in our providing a formal underpinning to tile analysis of mapping complex

stochastic tasks and to the optimization of a rich ('lass of objective flulctions.

l'revious work _m l_)ad balancing or task assignment [3, 4, 7, 8, 9, 12, 18] in parallel systems

may be h,osely divided int,) three cat.eg_Jries. Tile first category, with deterministic structure,

inw_lves task structures and execution tinles which are known prior to assignment. In this case

[14] includes a study of probhm_ complexity under various constraints and heuristic algorithms for

task scheduling. A sin',rod class of load balancing formulations, in which task execution times are

random, is characterized by queueing-theoretic considerations [4, 16, 18]. Much of this work pertains

to steady-state expectations of task delays with state-dependent [4, 18] and state-independent [16]

assignment 1)_)licies. Our work is closest t.o the third category [7, ,_, 9, 13] which also takes task

execution times t(_ be ran(hml but foCUSeS on minimizing expected processing times for a fixed set

of tasks. As discussed in [!)], the assumption of random execution times and a given set of tasks is

justitied ia applications such as M(,nte-('.arlo simulations.

Our approach to the problem differs from previous work [7, 8, 9, 13] in several ways. In

this paper, we (1o not ('(intern ourselves with the explicit ot)timization of task assignment, I)ut

rather, with the coral)arisen between ditferent assignments over a wide range of possible objective

functi(ms, l'ast al)proachos typically address tile question: given K processors and m tasks with

random execution re(lnirements , find the assignment of tasks to processors that minimizes tile

expected maximum workload (or mak(span). Ill this l)aper, we address a related question: given

two assignments, when can we say that one is "better" than the other, and for what class of

objective functi,)ns can we make this assertion? Our results [lave a simple general form. We call

(lescribe a tnal)l)ing (,1' t)r,)l)abilistically hom(_gene,)us tasks to l)rocessors 1)y a vector m, whose

ith component is the number of tasks assigned to the ith processor. Let rn and m r describe two

different mal)l)ings. Then if rn can be bounded by m' using the notion of majorization [10] (written

rn _ m'), then for all objective ['unctions f in a class C we may say that tile assignment described

by rn is better than the assignment (lescrib_'d by m'. Tile class C is often quite general, and

includes many coznmonly used objective functions, e.g., the expected maximum workload. We note

that an inter_,st in inequaliti_'s or stochastic ordt:riTtt,ls can be nlore usefltl than merely searching for

ptimal assignments, b,caus_' such orderings may be derived in a variety of cases where it is too

expensiw, to search [iJr an optilnal assignment. Inequalities are also useful when constraints on the

assigtiment (e.g. heterogeneous memory capacity among processors) prohibit one from adopting

an otherwise obvious _q)timal policy. We note that stochastic orderings are of independent interest

[15] and also, in some <_fthe cases we consider the optimal strategy is apparent from the derived

ord_,ring.

O_r" int,,rest in obtainil(g stochastic orderings also stems from the observation that they are often

the only r_,sults available' f,,r small **limbers of random variables and a wide variety of distributions.

(1_Jnsid¢,r the fact that in [N, 9] the results ar'_, asymptotic in at least one variable 7,.or I(. In fact,

in [9], th¢_ rosults arC, _nly asymptotically correct in both the number of tasks u and the number

f pro<:,ss_rs I(. These al_l>roa<'h_'s are hased on the use of the central limit theorem [S] and large

deviation theory [9], which are among the few limit results available that hold for a variety of

distributions. In contr_tst, our approach is concerne<l with finite (and possibly small) 7z and K and

we make us_ of ttm theory of stochasti<' m<Cjorizatio_ [10]. Thus, while some of our results are not

as strong (in terms of,_l>timality) as those obtained fl'om flmdamental liinit theorems, the accuracy

_I"mH" r(,sults (l_os not d_,l)end on the numller of tasks or processors.

We now discuss _thor specitic ditforences between our work and past efforts. Our structural

model _["a singlt, task is that of a bra_chi_a:l p_'occss: a completing process spawns a random number

of SUbl)roct'ssos. This tyl)t, of b_,havior appears in diverse applications such as Branch-and-Bound

searching algorithms [2] where the, branching structure is obvious, and dynamic regridding algo-

rithms in numerical computations [1] where sections of-coarse grid serve as "processes" which give

rise t_) "subpr_)cesses" a.ss_)ciated with finer grids. Furthermore, our results permit the analysis of

much more complt, x objective functions than have typically been studied for stochastic task models.

Our mod_q differs signiticantly from those in [S, 9, 12]. The tasks in [9] were taken to be individ-

ual indel)ondent and identically distributed (i.i.d.) samples drawn froln a common distribution,

and synchr_nization I)<,havior is that of periodic global synchronization. In [8] a complex task is

comprised _f a [ixed number of tasks with random i.i.d, execution times. However, the analyses

in I>oth [9] and [S] are concerned with overheads (e.g. synchronization and communication costs)

that our model does n_t include. In seine ways tile present work resembles earlier results obtained

under the a ssutnption that the workload assigned to a processor causes the processor to behave

_ts a Markov chain [1:t]. Like this earlier" work, our new results show how the quality of a static

assigt_me_t l)Orsists across m_merous stochastic transformations of the workload. The model we

study in lh<' I:,r,_('ik_ i)al),:,r]:-. ;-_distinct iml)r(r,.q;m(mt (,vet that in [13], as tile .,-;tochastic be]iavi(.:,r

,d", l>r(.'<,ss()r is ll()w (,Xl>licilly d,,l,,ndolll (,l_ the wdumo of workh,ad it, contains.

()lhor t'ola, tod ros,,al'ch has Im(m diroct(,d at computing the oxpocted oomph, titre t, imo for a

._i_gl, t'OmlH<,x la,sk with a, possil)ly random acyclic structure [6, 17]. Another related publication

[11] s(udi(,s tt,, l)rt)l)h,m ()f s<lwduling ._ub-/,.,&s of a singlo task, where tho sub-tasks form a tree.

Lastly, an analytic study of h),,l-1)alancing statistically homogeneous workload on a]kyt)ort:ul)e is

l)r('s<'I1t('d i)l [7], wh(,)'(' tho moan and variant(, of the difference between the load on a processor

and lh(, art,rag(, h)ad art, doriv(,d. Whih, l)ast r<,search has boon concerned exclusively with a single

(ask ())' ,, giw,n s(,l ()f tasks, w(, als() c()))sid(,r lit(' joint assi_nm(,nt of multiple clas,_(,_ of tasks, wh(,r(,

tasks i, diff('r('nt (l;_ss(,s hdv(, difl'<'r('I1t pr()l)al)ilisti(" l)ohaviors.

()ur work is l)as(,d ¢),i r(,sulls fr()Jn t,h(, study ofst(.)chastic majorization. The fundam('ntal th('ory

of maj()rizat, ion ()rigi),at(,s in tho (,c()nomic study ()f in('(mw distribution a sort of "load" balancing.

Wo l)(,li(wo maj()rizati()n fin(Is a natural application in the ar(,a of mapping l)aral](,l workload, and

that ()l,, ()f ()u)" c()ntril)uti()ns is (() domonstrat(, usrs of this l)Ow(,rful theory in parallel l)roc('ssing.

In this r(,sp(,(:t our w()rk is ,_imilar (() that in [3, 19J. In [3] tile focus is on a now stochastic or(loving

l)as(,(l (mth(, ('lass ()f syn)m(,Iri(', ('()nv(,x _tlt(l]_-sl)l)a(l(litivo functions with al)l)lications to routing

a,)M (l(,sig[,in_ l))()('(,s,_(,r ,_l)(,(,(Is. Th(, h)ad balancing (,mphasis in [3] is on scheduling structurally

sin)l)h, l,)sks f)'()l)l a qu('u('. M_j,))iza(it))) in st('ady-stato (lueuo lengths ()f ()l)(,n (lUouoing no1'.v()rks is

stu(li('d ill [19], i, which (,rd(,rizJgs at'o pa)'atl,'t(,rizod l)y quoue ut, ilizati<)ns. In contrast, wo usr tho

rstal)li,_h(,(l ())d(,rin_s i)l [10J (,, ()l)(ai)l ino(lualitios among all g(,norations ()f ('omp]ex tasks under

dill'(,r(,]ll static mal)t)illgs ()f tho initial tasks.

Tho rost ()f this l)al)('r is ()rgailiz(,d as follows. In the next s(,ction, we d(-fino basic notation

and I)r<'s('nt (mr w()rkh)ad model; als(), w(, discuss tlm di/ferent stochastic or(lerings to 11o us('d

through()ut tlw l)almr. S('(qi()n _;l c()n(,aills the fundamental or(h, rings for workloads. Soction §4

dis('uss(,s vari(Jus ol)j(,('tiv(, funcli()ns ()f i)_tm'ost in parallol systolns arid Section §5 applies the thoory

t() th(' l)V()l)l('lu ()f l)arli(i,)t)ing a I)()()I ()f l)ro(('ss()rs am()ng a sot ()f paralMizab]o tasks. Section §6

SllllIIll_IFiZOb ()lit' Vv'()Fk,

2 Preliminaries

Wo now introduce ()lit" IIIO(](q of COml)utation, important (]efinitions and known rosult, s, and a

rational(, f,)r using ma.i())'izati()n It) study (he assignnl(,)it l)roblom.

2.1 Workload and Systeln Model

Wo m_.h,l tt., w<.kh)ad pr()duc(,d }>y a sin_h, task as a branching process [15, pp. 116-117], as

follows. Tho task I)ogins with a singlo w_,'k u)dt (WI;)of computation. The _V(J is executed; upon

its completiona randomnumberof other WUs arecreated,and placedin tile task's work list.
The initial WU can thus1)ethoughtof as containing tile "seeds" for a nmnl)er of additional WUs,

possibly zero, each of which similarly contain the seeds for additional WUs, and so on. One of

tile first generati_m WIJs may then [)e executed, and its children (which are 2 '_d generation WUs)

spawned and placed in the task's work list,. The number of children a WU spawns is aSSUlned to be

randotn, chosen from a probability distribution known as the bramqging distribution. Ttle process

is repeated until tile task's work list is empty. The task workload is comprised of all computation

related to all WUs ultimately descended from the initial task WU.

We assume that tile order of WU execution in no way affects the spawning of children: a WU in

the work list is destined to spawn some j children, regardless of the length of time it spends in the

list. This is easily understood if one views the WU generation as reflecting some intrinsic structural

property of tile l)rol)lom, e.g., the branching of a search tree. Becanse of this independence, every

WU behmgs to some "generation" which is independent of execution order. The initial WU is in

generation 0; all cbil(lr_l_ spawned by a generation 1 WU are in generation 2, and so on.

We assume that a given WU may be executed with the same constant cost on atly one of K

homogeneous processors, and that every WU is executed on the same processor as is its parent.

Therefore, we nlap all computation associated with a task when we map the task's initial WU.

(:cmsider the evolutiol_ of an initial task WU. Let Nq denote the number of WUs in its q-th

generation. Tim size of the q-th generation is given as

Ne/_ 1

3=1

(1)

where No = 1 an(I where Z.i,, _ is tile number of WUs generated by the j-th WU in the (q - 1)-th

generation. We assume that {Z.ia, 1 <_ q <_ I':'}_=1 is.a sequence of independent and identically

distributed (i.i.d.) random varial)les (r.v.'s). The following notation will be employed:

• It" tile nnmber of processors.

• _ tile numl)er of initial task WUs.

* m an integer assigt me! t vector whose i th component mi gives the number of WUs assigned

to the 'i_/_ processor.

* N, t tile size of genera ti<)n q, <lescen<le<l from a single initial WU (when the branching

distribution is un<lerstoo<l). For any subset A C_ PC', ,5'A is the sum of all sizes of generations

i E A:

'½"A = Z Ni.
iEA

• f(.i) the j_/_ conv(,lution of a probability mass fm,ction f. If X is a random variable, we will

also use X (J) to denote a sum of j independent instances of X.

• W_t(m) the random vector of generation q WUs resulting from assignment vector rn:

W_(m) = (_("_) N(m_)).
_- q _' . .,.,q

We denote the i tj_ component of W,l(m) by (Wq(m)) i. The notation is extended to arbitrary

sul)sets A C_ /¥ by

wA(m) --

The theory we develop l)ernfits us to compare different mappings under a variety of objective

functions _p : //l K -_ //l. Our results focus on comparing values of E [O(Wq(m))] by deriving

conditions for inequalities involving initial task assignments m. Most of these are of the following

form: given two assignments m and m' where rn -< m _ (see Definition 2.1), then E [4_(WA(m))] <_

E [4)(WA(m'))] for all suhsets A C_ _V, when the expectations exist.

Apl)licat)le functions 0 include any symmetric convex fllnction; the maximum operator, all

l)owers of the maxiinum, the sum operator, and the product operator are of particular interest.

Thus a single coral)arisen 1)etween the assignlnent vectors m and m _ vectors can yield a wealth of

information about the c(:)ml)arative behaviors of complex stochastic tasks under the two nlat)pings.

Our results are applicable to two different types of processor synchronization. We study gen-

erational synchronization ((;S) where 1)rocessors engage in a barrier synchronization 1)etween each

WU generation. A processor executes all WUs of a given generation, say q, then synchronizes at

the barrier. It is not released until all processors have executed all their generation q WUs and

reached the 1)artier. The t)rocess repeats for subsequent generations. This type of synchronization

is appropriate when the computation for a generation q in one task may del)end on results comi)uted

by a generation q - 1 WU in another task. We also study termination .wnch_vnization (TS), where

a l)rocessor engages in a barrier synchronization only after the work lists of all its initial tasks are

eml)ty. This is apl)ropriate when the tasks are indel)endent of each other, and the synchronization

serves only to aggregate the tinal resu]ts of their respective computations.

Not surprisingly, the optimal way of assigning n tasks to K processors is usually to assign n/P

to each. In the face of the obvious one may well ask why we study partial orderings. Primarily, the

theory i)roves the optimality with respect to a large number of objective functions, thereby lending

theoretical supl)ort to intuition. Secondly, the theory works even in the presence of constraints

that disallow the uniform assignment, and complicate one's intuition concerning optimality. For

example, memory constraints may exist that forl)id one or more processors froin being assigned more

than n/[' tasks. The theory identifies the ol)timal assignlnent under heterogeneous constraints.

We will also apl)ly these concel)ts to the issue of partitioning a pool of processors among a

set of COml)lex 1)arallelizable tasks. Here we'll take K to the be number of parallelizable tasks,

and use rn to describe the number of processors assigned to each. Constraints on feasible m

are easily envisaged, as the assignment may need to consider "natural" partition sizes that arise

from conununication topology, el" system usage at the time of the assignment. So again, while the

ol)timal solution to the constraint-free version of the l)robleni lnay 1)e apparent, the theory provides

a nieans of ('oniparing t'_,asil)lo solutions.

2.2 Stochastic Ordering and Majorization

We now introduce the majorization partial or(lering -< using notation largely taken from [10].

Definition 2.1 (majorization) A vector x is majorizcd by vector y, written as x -< y, iff

whcrc the notation x[i] is takcn to bc tit(: i-th largest clcmcnt of x.

Definition 2.2 (Schur-convex function) A function ¢ : IR '_ --+ _. is said to be. Schur-convcx if

x -< y in _" implies (D(x) <_ 4)(y) in IR..

Examples of Schur-(`onvex functions tn(`lude ,/,(m) = max x, and VS(m)= E g(x,), V convex g: _ ---+

Let C0 be the ('lass of increasing fitnctions fl'oln _'_ onto/R. The well-known stochastic ordering

between random variables [15] is define(1 as follows. For.random vectors X and Y with distribution

fiinctions P and (; respectively,

f f

J/?/, - aM

such that the integrals are well defined. Majorization over deterministic quantities is extended to

random variables in like manner by using an at)l)rot)riate class of functions:

tT, = {.sex} = {f: _'_ ---+ _, I f Schur-convex },

t?.2 = {ca_} = {f:/g," --+ /g, I f convex and synunetric }.

These define respectively the 5'chur-convcx partial ordering, denoted hy -4,_ and the convex sym-

metric partial or(lering, denoted by -<e<_s (the notation "<E_ and _E2 is used in [10]). Thus,

X -%<._. Y ill"

IL,,I ([)(x)dF(ag) __ i-.n +(al_)d(;(x,) V_ _ C 1

.sill

andX -<_-.s Y ifl"

Note that f:2 C C1 and thus, -<sc_: is a stronger ordering than -<c_s.

Stochastic orderings based oil likelihood ratio play an especially important role in this paper.

(',onsider non-negative integer valued r.v.'s X and Y with probability mass fllnctions f anti g-

Definition 2.3 (likelihood ratio) X i,_ &fined to bc smaller than Y in likelihood ratio, written

a._ X _z,. }", q.'[

f(m.____)< f(n) O< n <_ m, n, m G IV.
- .q(,,.). -

Another important property fore l)robability distribution is known as im_reasing likelihood ratio.

Definition 2.4 (ILR) Th(_ton-7t<gativc integer valued r.v. X is said to have increasing likelihood

ratio (ILR) (and it._ probability ma,_'s function f is ,_aid to be ILR) iff

c_ + X <_t,, c2 + X, wheltevc.r 0 <__cl <_ e2.

Next we define another class of l)rol)al)ility lllaSS functions, those which have increasing likelihood

ratio under convolution.

Definition 2.5 (ILRC) Let f be a probability ma,_s function defined on IV. f is said to have

increasing likelihood under convolution (ILR(.') iff f(i) <_tr f(J) whenever i < j.

ILR distributions are known to be closed under convolution, even when the nuinher of times con-

volution is applied is random (provided the distribution of this number is also ILR) [10].

Lemma 2.1 Let f b_ an ILR pTvbabilit 9 mass function. Then

• f is ILRC.

• For aT_y fixed i_ttegcr k > O, f(k.) is ILR.

• Let N b(an ILR po._itive integer-valued random variable. Then f(N) is ILR.

Using these facts it is ,_traightforward to prove the following.

Lemma 2.2 Let f b_ an ILR probability mas._ ftmetioT_. Then

• If f i,_ the branching distribution for a task, then for all generations q, Nq is ILR.

• For" any .s'ubsct A C fV, if SA = _iEA Ni has finite mean, then ,S' A is ILRC.

Proof." The proof of the first claim is a simple induction on q that uses closure of the ILR property

under random ILR lnixtures; the proof of the second rewrites S}_) as Nq + ci, where q is the least

element of A, and ci <_ cj Mmost surely whenever i < j. The result follows from Definition 2.4 and

the fact that Nq is ILR. |

As we will see, the assumption of an ILR branching distribution often yields -<_ orderings.

The ILR condition is true of the discrete Uniforln, Poisson, Ceometric and Binomial distributions,

showing that our results apply when the branching assumes some well-known distributions.

Next we show how these stochastic orderings may be used to develop stochastic majorizations

between different static mappings.

3 Branching and Stochastic Majorization

In this section we estM)lish conditions under which either <c_ or -<_ orderings can be established

between "workload" vectors under different mappings. The notion of workload will be seen to

be quite general. Throughout this section it is important to remember that the results relate to

intrinsic properties of branching behavior, and do not depend on assumptions about execution

behavior, e.g., synchronization.

Our results for the -<_x ordering is based on the following theorem which is an application of

Theorem 3.J.2 in [10]. The correspondence between our form and the originM is pointed out in the

Appendix.

Theorem 3.1 Let f be' art ILRC probability mass function, let m = (ml,..., mh') be a vector of

uonucgativc iritcgcrs, and for cach j = 1,..., K let X (''_:) be a r.v. with distribution f(mj). Suppose

this set of r.v.s is indcpc_uhnt, and Ict ¢ : _1; _ _, be a Schur-convex function. Then

= e [,(x¢"-),...,

is a Schur-convcx function of m.

Using Theorem 3.1 we obtMn our basic -<_ ordering results.

Theorem 3.2 Con._idcr a set of n tasks, with common ILR branching distribution f, and let m

and m' b(' two mapping v('ctors such that m -< m _. Then

• _n" all g(ncration._ q, Wq(rn) -<s<_, W_(rn').

• For any ._ub._(:t A C _7 ._uch that ,_'A ha._ finite mcan,

WA(m) WA(ra').

Proof. Lemma 2.2 shows that the distributions of Nq and SA are each ILR(_; the result follows

from the definitions ()f W_l(m) an(1 WA(m), and Theorem 3.1. •

()l)sorve that the statement of Theorem 3.1 applies more generally to the notion of a random

"reward" associated with each initial WU. It states that if each initial WU earns a random ILR("

reward, and if the reward to a processor is the sum of the rewards earned by its (independent)

WU's, then a stochastic majorization on the rewards follows from a deterministic majorization of

the initial WUs.

Our -<s_,_: results seem to require the ,_ssumption of ILR or ILR('_ branching distributions.

However, by coHstrainil_g our at teI_tio_ to symmetric convex functions we are able to obtain -<c_s

orderings for coml)letely geuera[branching distributions. The details, which are numerous, are

developed ill the Al)l)ell(lix. The -<¢,,_ counterpart to Theorem 3.2 is

Theorem 3.3 (.'on._idcr a set of n ta._k.% with common nonncgativc branching distribution f, and

let ra and rn j bc two mapping vectors such that m -< m _. Then

• $))r all generations q, W_(m) "<c_ Wq(m').

• For any subset ,4 C_ IV such that 5'a ha.q finite mean,

W A(m) <c(_e W A(m').

3.1 Heterogenous Constraints

The h'-vector mo_,t = (n/K, n/K,...,n/h')is majorized by any other vector whose components

are nonnegative and sum to n. Applied to the assignment problem, this shows that the obvious way

to balance workload is indeed the best, even for complex stochastic tasks. Optimality is less clear,

however, if the obvious assignment is prohibited by constraints. For each processor i let Ci be an

upper bound on the number of WUs the processor may be given. Such constraints might arise, for

instance, if the processors have different memory capacities. The obvious mapping is prohibited if

any Ci < n/K. Majorization provides a way to identify the best assignment of complex stochastic

tasks even in the face of such constrMnts.

Considerany feasiblevectory = (Yl,...,YK), Yi <_ Ci for i -= 1,..., K. Suppose there exist i

and j such that yj > Yi + 1, and yi + 1 _< Ci. ('Jonstruct a new vector x from y by transfering one

unit fl'om yj to Yl, i.e., xj = .qj - 1, :ri = Yi + 1, xk = Yk for all k # i,j. It is shown in [10] (5.[)) that

x _ y. This observation gives a rule by which we can iteratively improve a feasible solution, until

no fiu'ther improvenlent is possible. We say a vector x resulting from this processed is balanced.

Without loss of generality _ssume that ("1 _< (72 _< "'" <_ CK. It is apparent that x is bManced

if and only if whenever xj > xi + l, then xi = Ci. A characterization of bManced vectors then

is that there is some index j such that x_ = C'i for i = 1,...,j, and for all l,m > j we have

Ixt - x,,_ I _< 1. Furthermore, if x and y are both balanced, then this index j is the same for both

of them. It follows then that x < y and y -< x, which shows the essential uniqueness of balanced

vectors. Balanced vectors are thus optimal under heterogenous constraints.

A simple O(n) algorithm will construct a balanced assignment. Assume the processors are

ordered by increasing constraint value, and initially set xi = 0, i = 1,2,..., K. We loop repeatedly

over indices l to K. Each pass through the loop we increment xi once, provided xi < Ci. This

essentially assigns one unit to the i th processor. We repeat the loop until all n units are assigned.

The main results of these section show that stochastic branching preserves stochastic majoriza-

tion for additive reward systems. As we have seen, useful reward systems are derived from the

generation sizes. The section to follow illustrates how these results can be fruitfully applied to

vario,s objective functions.

4 Objective Functions

We will now establish that a nuniber of interesting objective functions are either Schur-convex or

convex synimetric fnnctions of some notion of workload. These objective functions inchlde finishing

time under different synchronization schemes, the space-time product, and overall reliability. This

diversity of application demonstrates the utility of the theory.

4.1 Finishing Time

One use (ff niajoriza, tion is to show that whenever m -< m _, the COml)utation's expected finishing

tinie under m is better than that under rrd. This can be established using different models of

execution. For example, one easily envisions a computation where the tasks must synchronize

globally after every generation, i.e., (;._' synch_vnization. This is typical of tasks associated with

numerical computations. If the WUs each have unit execution time, then maxk{(Wq(m))k} time

is required under mapping rn to execute all generation q WUs. Nq can be viewed as a random

reward associated with an initial WU, thus Theorem 3.3 tells us that Wq(m) -<_ Wq(m'). The

max operator is convex and sy,nmetric, whence E [maxk{(Wq(m))k}] < E [maxk{(Wq(m'))k}].

I0

This same result holds true if the WU execution times are random, and i.i.d. Since the time

between each synchronization is no larger under m than than under m', it follows that the overall

finishing time is no larger.

Similar results are obtained under T.%' synchronization, where processors synchronize only at

termination. The reward for an initial WU can be defined to he 5't_, the total size of the branching

tree rooted in that W[,. When the mean of the branching distribution is strictly less than one, then

E[S_.] < oc. In this case, whenever m -< m', the expected maximum processor reward under m

is no larger than under m'. Even when the branching distrihution's mean is greater than or equal

to one (but is finite) we can always assort that tile time to execute all generations up through q is

no greater under m than it is under m', by defining the reward for an initial WU to be the sum of

the sizes of generations through q. Any symmetric convex function of the processor rewards--such

as the maximum processor reward yields an _c_s ordering.

Another metric of interest is the variation in the time to synchronize. The sample variance,

defined below, is also symmetric and convex.

,S'amplcl/ar(ae) = (xi- 5:)2

= - x2
h--=l

where x = (2<//'". Thus,

V,,,'(m))

for any generation q, and

,S',, ,,,4,t, Va,'(W4(m)) -'<_._,_Sa,,_pZc Va,'(W, (m'))

for any A C_ P/ such that 5'A has finite mean. When the branching distrit)ution is ILR, a similar

result holds true for the sample standard deviation (square root of variance) of time between

synchronizations, because the standard deviation is Schur-convex ([10], pp. 71).

4.2 Functions of Queue Length

When a W U completes its execution it generates its children and places thein on the processor's work

list. Following this, another WU is selected to be executed. There is thus a storage cost associated

with executing complex tasks; more generally, we show here how stochastic majorization can be

applied to objective functions based on measuring queue lengths at every time step. A simple

example of this is the computation's total space-time product, defined as follows. Let Q(t) be the

vector enumerating tile number of WUs enqueued at each processor at time t, and let T be the

11

computation'sterminationtime. Then tile total space-timeproductis _.=1 _T=o(Q(t))k. This
ideacanbegeneralized--lets(j) quantify the cost of holding j WUs in queue for one unit of time.

Then the total st)ac'e-tim_ ,',,st with respect to s is _'--1 _T=0 s((Q(t))k)" We will show that if s

is increasing convox with s(0) = 0, and if rn -< m I, then under TS synchronization the expected

space-time cost with respect to s is no worse under m than it is under m _. This result is also

demonstrated for (IS synchronization when the branching distribution is ILR.

Under the model assumptions we have made, the probabilistic behavior of a processor's queue is

completely independent of the queueing discipline used. We will assume that the queueing discipline

is SmMlest-Generation-First (SG F): whenever a processor selects a WU for execution from its work

list, it chooses one with least generation index. For simplicity, we also assume that the execution

of a WU takes unit tilne.

The space-time function s(k) = k gives rise to the usual space-time product, but other space-

time cost functions are also intuitive. For example, one might have to store WU states on disk

whenever the queue lengtil exceeds a threshold L; furthermore, once L is exceeded the cost nfight

be SUl)erlinear, owing to fragmentation costs. A candidate cost function would be

]" 0 if k _< L
,_(k)

(L - k) lq-(if k > L

where _ >_ 0. The general assumptions that a space-time cost function be convex, increasing, and

zero for eml)ty queue lists seem to us quite natural.

Our treatment of sl)a(:e-time costs under TS synchronization hinges on the following observa-

tion: if proc[_ssor k has exactly (Wq(m))t. WU units in generation q, then under the SGF queueing

discipline at some point i_t time the pvocessov_ queue will have exactly (Wq(m)) k WU8. In partic-

ular, at the instant where the first WU of generation q is about to be executed, the queue consists

entirely of generation q WUs, and contains all of them. We will show that the contribution to the

expected space cost made by processor k while processing generation q WUs (under SGF schedul-

ing) is an increasing convex function of (Wq(m))k, and use this fact to find a majorization on the

vector of expected contril)utions made by all processors while processing generation q WUs. This,

in turn, will show that the total expected space-time cost under m is no worse than under m _,

when the expectations exist. This is a -<_,_ result, applicable for any branching distribution.

Suppose (Wq(m)) k = r. The processing of the i °_ WU in generation q (i = 1,...,r) produces

a random number Xq,i of WU units, who join the processor's queue. The queue length at the

instant the i tl' WU begins execution is r (i 1) i-1- - + _j=l Xkd, as there were r work units in queue

at the point the first generation q WU was executed, i - 1 of them have been executed, and each

one produced a randonl number of generation q + 1 WUs. Therefore, the conditional expected

12

space-time cost sufl?red during tile processing of this WU is

05(i'r)=E[s(r-(i-1)+i_Xqs)] "j=l (2)

4) is convex in r, 1)ecause for any convex 7 and random variable Z, the expectation E[7(a + Z)]

is convex in a (assuming tile expectation exists). The expected space-time cost of processing all r

nmml)ers of gener_ttion q on processor k is

('_(r) = _ ¢(i, r).
i=1

Finally, we claim that C,(r) is a convex fimction of r. To demonstrate this it suffices to show that

C',(r+2)+C_(r) >_ 2C'_(r+ 1) for all r. Since ¢ is convex in r we have ¢(j, r+2)+¢(j, r) _> 2¢(j, r+ 1)

for all j = 1,...r. This observation reduces the problem to a demonstration that

¢(r + _,,'+ 2) + ¢(r + 1,r+ 2) > 2¢(r+ 1,r+ 1).

The fact that s(r) is increasing establishes that both qS(r + 2, r + 2) and ¢(r + 1, r + 2) dominate

¢(r + 1, r + 1), thereby proving the convexity of (7_(r).

The function T,(rl,..., rlx) = _?'-1 (,',(rt_) is symmetric and convex on PC/_', because whenever

g is convex on _ then h(x) = _ g(xi) is convex on /R to. Observe that T,(Wq(m)) is the random

space-time cost with respect to s and generation q resulting from assignment vector rrt. We have

proven the following result.

Proposition 4.1 Let s bc aTz ine_vasing convex function with s(O) = 0 and suppose the space cost

of holding k WUs in one procc._.sor'._ queue for one time unit is s(k). Define

K

(w(m)) = _ c,((w_(m))k)
k=l

to measure thc space-time cost suffcrcd while executing generation q, under the assignment given

by m. Then whencvcr m -_ rn _,

• E[Ts(Wq(rn))] _< E[T_(W_(m'))] forq = O, 1,

• Tit(: expected total space-time cost using TS synchronization is no worse under m than under

TYt Q

E[_rXw_(m))] _<E[_r_(w_(m'))] whe,_e,,crthe e_pectatio,_e_ists.
q=O q=O

13

The analysisof sl)ace-tilnecostsunder GSsynchronizationrequiresmorework, and the as-
sunlt)tion of an ILR branching distribution. Suppose that (W_(m)) k = rk, for k = 1,..., K. The

st)ace-tilne cost to processor k during the interval of time when generation q WUs are executed has

two components. We have already seen the first: U(rz.) the cost accumulate(l over the period of

length r_ while generation q WI,ts are executed. The second component is the space-time cost suf-

fered waiting for the most heavily loaded processor to finish. If processor k generates x generation

q+l WUs, then the space-time cost it suffers waiting at the barrier is (maxi{ri}-rk)s(x). Recalling

the definition of 4) (equation (2)) we may write the expected total space-tilne cost of processing

generation q WUs under (;S synchronization (conditioned on (Wq(m)) k = rk., for k = 1,..., K) as

i,()){;(1'1,''',7'],') : E (/)(i, 7'h) + (IIIj%X{/'j} -- rk)(/)(T h "_ 1,7'k) ,

k=l

Ol)serve that ¢)(rk + 1, rk) is E[s(X0"k))], where X is the branching random variable . G is Schur-

convex on pCh, a fact we show using the following characterization of Schur-convex fimctions on

PC_< (3.A.2.1, in [101).

A flulction a on _lx" is Schur-convex if and only if a is symmetric and

(t(rl,t - rl,r:_,...,rK) is increasing in rl > t/2

for each fixed t, r:_..... rK.

Fix ra,..., rK, and consider 3"1 > T 2. If the difference _(rl + 1, r2 -- 1,..., rh.) - G(rl, r.2,..., rK) is

always nonnegative, then the condition above tells us that G is Schur-convex. We need to examine

two cases, maxj{ri } = rt, and the alternative. Assuming the former, straightforward algebra shows

that the difference is hounded Dora below by

r 1 r2--1

Z [¢(i,", + _)- _(i,",)1 - }2 [_'(i,"_) - ¢(i,"_ - _)1+
i=1 i=1

(4,(,, + l,,._ + l) - _(,..,_,,._))- (,._- ,'2)(4(,'._+ 1,,._) - _(,'.2,,'_- J)).

Both of the two sulnmations above are positive, because ¢(i, r) increases in r. Since 0(i, r) is convex

in r and rl > r2, it also follows that ¢(i,rl + 1) - ¢(i, rl) _> ¢(i, r2) - ¢(i,r.2 - 1) for every i. Thus

the positive summation above dominates the negative summation, and the desired inequafity will

hold if

(4,(,'_+ l,,,, + 1) - _,(,._,,._))- (,._- r2) (_(_ + 1,_2)- _(_._,r_ - 1)) > 0.

Since _b(r, r) is a convex function of r, we have

_(7"1 + 1,7'1 + 1) -- O(r2,r2)

r_ +1 -r2

(0(r2+i, r2+i)-_b(r2+i- 1,r._+i- 1))
Z_I

14

rl+l-r2

i=1

From this inequality we see that the desired bound will hold if (6(re + 1,r_ + 1) - _(r2,r2)) >_

(4_(r2 + l,r2) - c)(r2,r_ - 1)). The convexity of s implies that

¢,(r_+l,r2+ l)-o(,'2,r_) = E[s(I+X (_2))-s(l+X(r2-_))]

> E[(x(,,_) - s(X(_2 - 1))]

-- ¢(,',2+ l, ,'.2)- ¢(_2, ,'2- 1),

as needed.

The argument for the case when rl¢ maxj{rj} is ahnost exactly the same, and so is omitted.

The Schur-convexity of _; gives us a stochastic majorization for GS synchronization.

Proposition 4.2 Ltt .s bc an increasing convex function with s(O) = O, suppose the space cost

of holding k WUs in o_tt l)7oee.s.so_ s queue for one time unit is s(k), and suppose the branching

distribution is ILR. Define

)t3(rl,...,rl_) = _ ¢(i, rk) + (max{rj} - rk)4_(rk + 1,rk) ,
k=l 3

to measure thc space-time (ost with respect to s of executing some generation q under (l,5' synchro-

nization, where the each processor i has ri generation q WUs. Then G is ,qchur-convex on IV K, so

that whenever rn -_ m _

• E[G(W,,(m))] <_ E[t_;(W,_(m))] forq = 0, 1,

• The c'J:pt:ctt:d total .spat:e-time cost using (;S synchronization is no worse under m than under

mr:

CK_ OO

E[_-_ (;(W,,(m))] < E[_ O(Wq(m))] whenever the expectation exists.
q=O q=O

4.3 Reliability

Yet another application of majorization is to the question of whether the hardware will successfltlly

execute the entire computation. We suppose that the computation "fails" if any processor having

a non-empty queue fails. Observe that this definition permits the computation to successfully

complete even if a processor dies before the entire computation is finished, provided the failing

15

processoris itself alreadyfinished. Wewill showthat if the branchingdistribution is ILR a_nda
procossor'stime-to-failuredistributionhasan increasinghazardrateNnction, thetheprobabilityof
failureunderm is no greater than that under rn _, whenever" m -< m _. (',onversely, if the branching

distribution is ILR and the processor failure distribution has a decreasing hazard rate fimction, then

the reliability under m _ is better than that under m. The result is proven for TS synchronization.

Suppose that processor i's time to failure is the random variable Zi, with an monotone hazard

rate fiulction A(u). It is well known that

Pr{Z > t} = exp{- A(u) ds}.

If A(u) is nondecreasing in _t, then - f0t A(u) du is concave in t, which is to say that log Pr{Z > t}

is concave. (:onversely, if A(u)is decreasing, then log Pr{Z > t} is convex.

It follows (3.E.I in [10]) that when A(u)increases, the prodnct

K

TC(tl,..., t/_') = 1-I Pr{Zi > ti} (3)
i=1

is Schur-concave, or equivalently, that -7_(q,...,tl_) is Schur-convex. When A(u) decreases then

_(tl,..., tK) is Schur-convex.

¢(m,)If processor i is assigned mi WUs initially, it ends up processing '-'to WUs total. This is also

processor i's processing time under the assumptions of SGF schedufing, TS synchronization, and

unit execution cost per WU. (riven ,,'('_') tk for" i = 1, ., K, equation (3) gives the probabifity

that every processor executes all WUs without processor failure. The unconditional probability is

obtained by taking the expectation with respect to the joint distribution of Su(ra):

Pr{every processor executes all its WUs before failing} = E[TC(SN(m))].

Lemma 2.2 asserts that SN is ILR(; if the branching distribution is ILR. It follows from Theorem 3.1

that when A(u) is increasing, E[_(St_(m))] is a Schur-concave function of m. This proves the

following l)rOl)osition.

Proposition 4.3 Suppo.sc the hazard rate fuTu:tio_ A(u) for the time to processor failure is increas-

itul, a_zd suppose the bra,u'hiT_9 distributio,_ is ILR. Let 7(m) be thc probability that every processor

ca:courts all it,_ WU,_ without processor failure. Then under T,5' synchronization and SGF scheduling,

whc,zcvcr m -< m' wc have 7(m) _> 7(m') Thc i,_cquality is rcvc,'sed if A(u) is decreasing.

5 Assignment of Processor Pools

Our last application of stochastic majorization concerns a problem where a large number P of

processors are to be partitioned among a smaller number T of complex tasks. Parallel processing

16

canbeappliedto tile tasksto accelerateexecutiontime. Weassunmthat a task requiresthat all
of its generationi WUs to be executed before any of its generation i + 1 WUs are, but that all

generation i WUs may be processed in parallel. As before, the overall system may use either TS

or GS synchronization.

Let g(X,m) give the time required by m. processors to execute X WUs. We assume that g(X, m)

is convex in m, e.g., g(X, m) = X/m, and that g(0, m) = 0.

Suppose there are h" initial WUs. We may describe our assignment of n processors to these

WUs with vector rn, whose i tl_ component gives the number of processors assigned to the i tj_ WU.

Also let Nq, i denote the random nlunber of WUs associated with generation q of task i. Under (',S

synchronization, the time required to complete the qth generation is

"r_(_) = max{a(X_._,,,_,),9(N_,2,,,_).... ,a(X_.u, ,,_,-)}.

Under our assumptions, E[%(m)] is a symmetric convex function of m (B.4 Proposition in [10]),

showing that E[%(m)] < E[%(m')] whenever m -< m'. It follows immediately that the overall

expected finishing time under GS synchronization is no worse under rn than under rn _.

Under TS synchronization the finishing time is

O0 00

f,(_) = _nax{_ g(N,,,, ,,,_),..., _ g(X,._,-,,,,_)}.
q=0 7-=0

A sum of convex %nctions remains convex, whence E[p(m)] is symmetric and convex in m. When

m -< m' we are assured that the expected finishing time under TS synchronization is no worse

using ra than it is with m'.

6 Conclusions

This paper explores the application of majorization to the problem of assigning a large number of

stochastically complex (but probabilistically identical) tasks onto a multiprocessor. Using a model

of workload based on branching processes, the theory we develop establishes a partial ordering

among possible assignment of tasks to processors. We show that the quality of an initial assignment

persists through stochastic transformations of the workload, and that the ordering can be taken

with respect to a wide range of objective functions including those measuring finishing time, space-

usage, and reliability. We also show how the theory applies to the processor partitioning problem.

The utility of the theory lies in the generality of the objective functions that can be considered, and

in the fact that optimal solutions can be identified oven when constraints are placed on potential

assignments.

17

A Appendix

In this appendix we prove some claims made earlier in the paper.

The ILRC condition upon which our -<sc_: results depend involves the notion of totally positive

flmetions. Chapter IS of [10] is the source for the following definition.

Definition A.1 (Totally Positive Function) Let A and B be subsets of the real line. A function

(t : A × B ---*_ i,_ said to be totally positive of order k, denoted TPk, if for all m, 1 < m < k and

all xl < :r2 < ... < x,_, y_ < Y'2 < ... < Ym (xl E A,yj E B)

(let

(xt,y)

(x,,, y_)

•" a(xl, y,,_)

• .-_(_,,_, y,,_)

>0.

We will use the following result (18.A.4.a in [10]).

Lemma A.1 If K is TP,_ and L is TP_z, and rr is a or-finite measure, then the com_olution

M(:,,, y) = f K(z, z)L(z, y)d¢(z)

is T I'min{m,_Q.

The relationship between total positivity and ILRC distributions is direct. (liven any integer-

valued nonnegative probal)ility mass function f we may define the function af : PC × PC ---, [0, 1]:

c_f(i , x) = f(i)(x).

_t/ is Tf:2 iff

f(O(n)f(J)(m) >_ f(O(m)f(J)(n)

for all i < j, m < n. But this is equivalent to saying that f(i) _<t_ f(J), i.e., that f is ILRC.

The reason for our interest in ILRC distributions f is that their convolution flmctions _f satisfy

three criteria required by Theorem 3.J.2 of [10]

• _f(x,y) = 0 whenever y < 0;

• (_2"is totally positive of order 2;

• (_f(x + z, y) = fr_f(x, u)rt(z,y-u)dv(u), for some measure v on PC.

18

Ttmorem3.,1.2'sconclusionis that if m = (ml,...,mK) E p¢l_', # is counting measure, and

b: H/, --. is S(:hur-convex, then

/k'

1-I"J(",,, v;)e'(y) II _'(w) (4)7(m) = .,_,.....Y_,)i=l

is Schur-conw, x on /V/_. Theorem 3.1 is a restatement of this result, where Vu, dv(u) = 1; because

(t/(mi, Yi) is a probability, we recognize that 7((m)) expresses the expected value of _/)(y).

--<_.., Results

"We next consider the _._ts ordering. In this case, we are able to obtain the analogue of Theorem 3.2,

save that the -<_._,, result holds for Colnpletely general branching distributions. We first must

introduce a little more terminology, an(l develop an intermediate result.

A random vector X = (XI,..., X,_) is said to have cxchangcablc compo_wnts if the joint dis-

tribution of X1,..., X,_ is invariant under permutations of its components. Our basic -<c,, results

rest on the following observation.

Lemma A.2 Let X,Y bc nom, gativc random variables, and Z = (Z1,Z2) be a random vector

with nom_gativc ca:clmm.lcabh' compoT_cnts. As._umc that X, Y and Z arc independent r.v. _ and

dcfilu U = (X,Y) a_dV = (X +Y,O). Then

Z + U -<._ Z + V.

Proof. Let ¢ : __ -- U/ be a convex symmetric function. Define the function '_, : _. ---*

as ,t/,(a) = E[¢(Z + a)], ga e _,__. Since Z has exchangeal)le components, g, is also a convex

symmetric function.

Now U -< V a.s. from which it follows

_,(u) _<_',(v) _[_/,(u)] < E[_/,(v)],

z[,(z + u)] < E[¢,(z + v)],

Z+U--%_ Z+V.

|

The result extends easily to _rg_.

19

Lemma A.3 Let X,Y bc any nonncgativc random variables, let Z = (Z1, Z2,.-., Z,,) E 1_,'_ be a

random vector with independent components suc.h that Z1 and Z2 have the same distribution. As-

sume that X, Y, and the components of Z arc mutually independent and define U = (X, Y, 0,..., O)

and V = (X + Y, O, . . . , O). Then

Z + U -<_s Z + V.

Proofi Let ¢ : _'_ ---, _. be a symmetric convex function. Now, ¢ is symmetric and convex in the

first two arguments. Therefore, we can condition the values of Zj, 3 < j < K to be zj and apply

the previous lennn_ to obtain

Ex,v,z,,z [¢(g)lz3 : z:3,..., zK : <_Ex,v,z,,z [¢(v)lz:3 : : zu]

Removal of the conditioning on Zj, 3 < j _< K yields the desired result. •

We are now prepared to prove Theorem 3.3. Let m t be any mapping vector where there are

processors i, j such that m_ > m_. Without loss of generality we may take i = 1 and j = 2, and

let rnn 1)e the mapping vector obtained from m _ by moving one WU from processor 1 to processor

2. We will apply lelnma A.2. Interpret Z1, Z2 as m._-fold convolutions of initial WU rewards, X

as the convolution of m_ - m._ - 1 initial WU rewards, Y as a single initial WU reward, and each

Zj for j > 2 as the convolution of m} initial WU workloads. The application of leuuna A.3 yields

R(ra") -<_,,_ R(m').

The incremental movement of a task fi'om a heavily loaded processor to a more lightly loaded

processor corresponds to the more general notion of a "transfer" [10]. It is known that whenever

x -< y, then a_ can be constructed from y with a finite number of transfers, where each transformed

vector is always dominated under -< by its predecessor. Consequently if m' is a mapping vector

with m -< m', then one demonstrates that W(m) -<_ W(m') through a repeated application of

Lemma A.3 to the sequence of transfers that transmute m _ into m. This proves the result.

References

[1] M.J.Berger and .l. Oliger, "Adaptive mesh refinement for hyperbolic partial differential equa-

tions", J. Comp. Phys., 53:484-512, 1984.

[2] G.Brassard and P.Bratley, Algorithmic:Theory and Practice, Prentice-Hall,Englewood Cliffs,

N J, 1988.

[3] (',-S.C'hung, "A New Ordering for Stochastic Majorization: Theory and Applications", IBM

Report RC 16028, T.l Watson Research Center, Yorktown Heights, NY, 1990.

2O

[4] Y-(_.(+h<)w and W.tt.Kohlor, "Models for Dynamic Load Balancing in a Heterogeneous Mul-

tiple l'rocossor System", 1EEE 7}'an._actions o7_ ('omputcT"s, Vo]. (?-28, 1979, l)p. 354-361.

[5] M.(_arey and D.J()hns(m, (.'omputcrs and Intractability, Freeman and (',Oral)any, New York,

1979.

[6] E.(;ehmb(_, R.Nols(m, T.t'hillil)s and A.Tantawi, "An Approximation of the Processing Time

fl)r a Ra,(lmJ) (;ral)h M()(lol t)f]'aralh'l ('.omputation", Prec. Int. ('onf. on Parallel f'tvccssing,

19s(i, pp. 6!)1-(i!)7,

[7] .].lhmg, X/Fan and M.(?hen, "l>rom Local to (;lobal: An Analysis of Nearest Neighl)our

Balancing (m tlyl)(,|'cul)e", A(TM ,%'I(;METRIC',%', 19S9, t)t). 73-82.

IS] l_.lndurkhya, 11.S.Stono and L.Xi-(_heng, "Ol)timal Partitioning of Randomly Generated Dis-

tributo(l I'rograms', II'2EE Tr(m._m'tiou._ on 5,'oftwa_v ETz99., Vol. SE-12, No. 3, March 19_6,

p p. ,183-_195.

[9] (ki'.I(ruskal and A.Weiss, "Alh,:ating Ind_q)en(lent Sul)tasks on Parallel Processors", IEEE

7'l'a_zsru'tio_s o, ,'_'oflwcu'¢ I'5z99. , Vol. SE- 11, No. 10, Oct 19S5, pp. 1001- 1016.

[10] A.W.Marshall all(] I.Olkin, 'Inequalities: Theory of Majorization and Its At)plications', Aca-

dcmi," f'rc._s, 1!)7,().

[1 l] P.Mussi and P.Nain, "t'3wduation of Parallel Execution of Program Tree Structures", A('M

,qI(/METI_I(.%', 19s4, I)t). 78-87.

[12] D.M.Nic()I, "el)ritual t'artiti(ming of Random I'rograms Across Two t'rocessors", IEEE

7'r_ll_._actiou._" (,_t .%'ofl_varc E7_99., Vol. 15, No. 2, Feb 1989, I)1). 134-1,11.

[13] D.M.Nic()I and .].ll.Saltz, "I)ynamic l{emapping of Parallel (:oml)utations with Varying Re-

source I)omatl(ls", lEEk] Trau,_actio_ts ou (,'omputcr,_., Vol. 37, No. 9, Sept. 1988, pp. 1073-

10S7.

[14] (7./t.Papadimitriou and K.Steiglitz, "(_ombinatoria] Optimization: Algorithms and ('omplox-

ity", Prentice-tlall, 1982.

[15] S.Ross, 'Stochastic l'rocess', Wiley, 1983.

[16] A.Tantawi and I).T, wsloy, "Optimal Static Load Balancing in Distributed (1omputer Sys-

tems", ,I. A('M, V_)I. 32, 1.0SS, pp. 445-.i(i5.

[17] A.Thomasian and I'.F.Bay, "Analytic Queueing Network Models for Parallel Processing of

Task Systems", IEEk; Tra_sa,'tioT_.s on (.',,mputcrs, Vol. (I-35, No. 12, Dec 1986, t)I)- 1045-

1054.

21

[18] R.R.Weber, "On the Optima.l Assignment of ('.ustomers to Parallel Servers", J. Appli(d Prob-

ability, Vol. 15, 1978, pp. 406-413.

[19] D.D.Yao, "Majorization and Arrangement Orderings in Open Queuoing Networks", Annals

of OperatioTts Research, Vol. 9, 1987, pp. 531-543.

22

