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It is known that physical conditions in the solar atmosphere are
strongly controlled by solar magnetic fields. Therefore, the measurement

of solar magnetic fields is essential to the understanding of the physics

of the solar atmosphere. The ground-based measurements have been
obtained for some time. Making solar magnetic field measurements in
space would have better resolution. In this study we conducted an

investigation and assessment and planning to build such a facility on
board space station (or a moon-based observatory) to measure solar
magnetic fields from space. This was accomplished through participation

in scientific studies. Specifically the following were completed:

Dr. Rainer Kress, visited MSFC/Space Science Laboratory and UAH
to discuss and gave seminar on mathematical methods related to
extrapolation of solar magnetic fields March 15 - 20, 1991.

These discussions led to an article "A Camparison Between
Progressive Extension Method (PEM) and Iteractiave Method (IM) for
Magnetic Field Extrapolations in the Solar Atmoshere" by S. T.
wu, M. t. Sun and T. Sakurai, published in Mem S.A.It., 1990,
Vol. 61, No. 2, pp 477-484. (See attachment)

Dr. Petrus Martens visit UAH and MSFC/Space Science Laboratory on
November 27-30 1990 to discuss the shear motion instability
related to flare onset. These discussions lead to an article to
be published entitled "Shear-Induced Instability and Arch
Filament Eruption: A Magnetohydrodynamic (MHD) Numerical
Simulation” by S. T. Wu, M. T. Song, P. C. H. Martens, and M.
Dryer, Solar Physics, 134, 353-377, 1991. (See attachment)

Dr. J. P. Rozelot visited UAH and MSFC/Space Science Laboratory
on November 26 - 28, 1990 to discuss the reconstruction of the

solar cycle and make brief presentation on large active mirrors
in aluminum, for new generation of telescopes.

These discussions and seminars provided the advancement of key

concepts and technology in this planning for observations of solar

magnetic fields with space qualified instrumentation.
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ABSTRACT

In this paper we present a comparison between two numerical
methods for the extrapolation of nonlinear force-free magnetic
fields, viz. (i) the Iterative Method (IM) and (ii) the
Progressive Extension Method (PEM). The advantages and
disadvantages of these two methods are summarized and the
accuracy and numerical instability are discussed. On the basis
of this investigation, we claim that the two methods do resemble
each other qualitatively.

I. INTRODUCTION

It is wellknown that the magnetic fields play a dominant
role in all physical features which appear in the solar
atmosphere; for example, the observed filamentary structures in
the chromosphere seen in H, (Martin, 1980), and coronal loops
seen in UV (Cheng, et al. 1982) and X-rays (Antonucci et al. 19827
de Jager et al. 1983). All these structures in the solar
atmosphere are generally considered to be aligned along the
magnetic field (Zirin, 1971; Poletto, et al., 1975).
Physically, these structures can be interpreted as plasma
confined by the magnetic field. Hence, a detailed and
quantitative analysis of these structures require a
quantitative knowledge of the magnetic field in the solar
atmosphere. Presently, measurements of magnetic fields are
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confined to the phc _ospheric level; therefore, _n higher levels
(i.e. chromosphere and corona) the magnetic field can only be
obtained through numerical extrapolation using the measured

photospheric magnetic field as the source surface, as
demonstrated in the early work of Schmidt (1964), Altschuler and
~— Newkirk (1969), Nakagawa and Raadu (1972). All these early

extrapolation methods are restricted to the linear
approximation, which physically represents current-free field
(potential field) or constant current-to-magnetic field ratio
(linear force free field). It has been shown that these
representations are far from realistic in describing the
observed features in the solar atmosphere (Schmahl et al.,
1982).

In order to improve our understanding of the physical
structures of the solar atmosphere it 1is necessary to have
quantitative knowledge of the magnetic field. Therefore, a
number of extraplation methods is developed to meet the demands.
The mathematical model using a force free configuration on the
basis for the extrapolation of photospheric vector magnetograms
to obtain the coronal field has been given by Aly (1989) and Gary
(1990). In particular, Gary (1990) presented an excellent
summary and assessment on the present available extrapolaticn
methods from a theoretical point of view. In this paper, a
comparison between the progressive extension method (PEM) and
iterative method (IM) is presented. The rationale for choosing
these two extrapolation techniques for comparison is that they
are based on observed photospheric level fields and have
practical applications. A brief description of the theoretical
background of these two techniques is presented in Section 2.
Numerical results of direct comparison are included in Section
3. The discussion of advantages and disadvantages of these two
techniques and their possible physical consequences are
presented in section 4.

II. THEORY AND TECHNIQUES

On the assumption of magnetohydrostatic equilibrium in the
solar atmosphere, the mathematical model describing such an
equilibrium state may be written as

-+ -

—9gp+ T xB - pg =0, (1)

where p is the hydrostatic pressure and will be represented by
the equation of state,

p = pRT , (2)
with p and T being the mass density and temperatyre respectively.

The other symbols have their usual meanings; B is the magnetic
field and J, the current density, is related to B by
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J =7 % B . (3)

Finally, é 1s the gravitational acceleration. Physically,
there are three different orders of approximation to determine
the magnetic field configuration. The first and second order
approximations are the current free (potential) and force-free
magnetic field, respectively. Within these orders of
approximation the magnetic force vanishes, and the pressure
force is balanced by the gravitaticnal force which leads to the
hydrostatic equilibrium in the solar atmosphere. Under these
circumstances, the mathematical model for the magnetic field
configuration can be represented by

7 %X B = aB , (4)

This expression possesses three different physical meanings,
which are: (i) @« = 0, corresponds to the current free case in
which the magnetic field is potential, (ii) « = constant,
corresponds to the linear force-free magnetic field which
implies a constant current-to-magnetic field ratio in a region
and (iii) e =a{(r), corresponds to the nonlinear force-free field
which implies a non-constant current-to-magnetic field ratio in
a region.

Finally, the third order of appoximation 1is the
magnetohydrostatic equilibrium in the solar atmogphere which is
given-by Eq. (l1). If there is information on_B and p on the

source surface, it is possible to extrapolate B and p upward.
Since there only are measurements of the magnetic field on the
source surface (photosphere), it is not possible to extrapolate
magnetohydrostatic equilibrium field-configurations at the
present time.

In the meantime, we shall focus our attention on the
nonlinear force-free field configuration. For the purpose of
this paper, we have selected two techniques for this
investigation. These two techniques are progressive extension
method (PEM) (Wu et al., 1985, 1990) and iterative method (IM)
(Sakurai, 1981). A brief description of these two methods is
presented below:

Progressive Extension Method (PEM)

The progressive extension method is formulated as an
initial-value problem (i.e., Cauchy problem) using a finite
difference scheme which is similar to a Taylor expansion. A
detailed description of this method is given by Wu et al. (1990).
They have demonstrated the usefulness of this method, and the
numerical algorithm has been verified by extrapolation of an
analytical solution (Low, 1982).
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Iterative Method (

A number of authors (see references in Gary, 1990) have
utilized an iterative method originated by Grad and Rubin (1958)
to extrapolate the nonlinear force-free magnetic field from
boundary data. For convenience, we simply choose the iterative
method developed by Sakurai (1981) in this study. His method is
based the integral equation representation of Egq. (1), and the
discretization is made by the technique of finite element
method. A detailed description of this technique was given by
Sakurai (1981), and we shall not repeat i1t here.

ITII. NUMERICAL RESULTS

In order to make comparison between the PEM (Progressive
Extension Method) of Wu et al. (1985, 1990) and the IM (Iterative
Method) of Sakurai (1981), we have chosen the vectoral magnetic
field observed at Okayama Astrophysical Observatory on May 26,
1985 (Sakurai and Makita, 1986) as the boundary for
extrapolation using these two methods. The observed magnetic
field vector is shown in Figure 1.

MCS526C DATE: 83/5/26 TIME (JST): 10 2 13 -11 13 5
OBSERVED FIELD VECTCR

Figure 1. Magnetic field vector observed at Okayama
Astrophysical Observatory on May 26, 1983. Solid
and dotted contours show positive and negative
longitudinal fields, respectively, with levels + 10,
20, 50, 100, 200, 500 G. Arrows indicate the
transverse vector.
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Using these obse.vational data as a source surface, we
obtained the nonlinear force-free field configuration by using
the above mentiocned two methods as shown in Figure 2, where
Figure 2a is obtained by using the IM and Figure 2b by using PEM.
In addition we have extrapolated the potential field
configuration using PEM in comparison with the potential field
given by Sakurai and Makita (1986), see Figure 3. From these
results, observe that the deduced magnetic field configurations
albeit not identical, in fact, qualitatively resemble each other
to a large extent.

(a) " (b)

Figure 2. Nonlinear force-free field lines computed by (a)
Iterative Method (IM) and (b) by Progressive
Extension Method (PEM) using the data shown in Figure

Figure 3. (a) Potential field lines computed by IM and (b)
potential field lines computed by PEM using the
observation given in Figure 1.
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IV. DISCUSSION

Before we analyze the causes of these differences seen in
the two extrapolations we review the fundamental differences
between the two methods. These differences can be summarized as
follows:

1. The Iterataive Method (IM) specifies the value of a on a
portion of the boundary plane (e.g. on a positive field
region) and cannot assign the value of a on the whole
boundary plane, since that would introduce an
inconsistency in the extrapolation process. The
values of a in the whole boundary plane are determined
by the observed data for PEM. In this fashion, there
is an electric current only along the particular field
line in the IM extrapolation, while the electric
current 1is distributed in the whole domain of
calculation for the PEM extrapolation.

2. The IM type of extraplation is convergent only for
small values of a. Physically, this implies that the
electric current in the region of interest must be
small. ©On the other hand, the PEM type of
extrapolation does not have this limitation.
However, the accuracy of the computed a-value
deteriorates at the points near the neutral line (i.e.
B, » 0). This may cause a misrepresentation of the
magnetic field configuration. The grid size of the
extrapolation is controlled by the numerical stability
criteria as given by Wu et al. (1990).

3. The fact that the value of a is assigned at one of the
two foot points of a particular field line in the IM
while the values of a are determined on the entire
boundary surface in the PEM makes it difficult to match
and compare the field lines for these two different

methods.

On the basis of these differences of extrapolation
procedures, Wwe may understand why the magnetic field
configurations obtained from the same data with these two
methods are not identical. For example, Figure 2, shows some

differences in magnetic field-line configurations, but the
lines connecting different regions of polarities are quite
similar. Note that for two regions of opposite polarities near
the right center, the PEM extrapolation doesn’t show any
connection by field lines, while the IM type extrapolation does.
However this is due simply to the fact that the field lines in
this region are very low and short, and cannot be discerned in
this drawing. Plots of the front view of Figure 2b, clearly
indicate that the regions are connected by field lines (marked by
A) as shown in Figure 4.
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Figure 4. The front view of the nonlinear force-free field
computed by PEM using the observtiongiven in Figure
1. It should be noted that the field lines near the
top are not accurate due to numerical procedure as
discussed by Wu et al. (1990).

We further notice that the configuration of the field lines
obtained by IM extrapolation is very similar to a potential field
line configuration. This is because the IM requires that the
value of a be small (i.e. slightly deviating from potential).
On the other hand, the PEM extrapolation does not have this
limitation. It is understood that the degree of deviation from
a potential field depends on the value of a, that is the strength
of the local electric current. Therefore, the configuration of
magnetic field lines is affected.

In summary, we conclude:
(1) Both methods do produce qualitatively similar results.

(ii) The accuracy of PEM has been verified by an analytical
solution (Wu et al. 1990); verification of IM is still
needed.

(1ii) There are limitations on the value of a for IM, but not
for PEM.

(iv) The accuracy for PEM deteriorates when the height of
extrapolation exceeds one third the horizontal length,
because of the propagation of the accummulated
numerical errors at each level (Wu et al. 1990).
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SHEAR-INDUCED INSTABILITY AND ARCH FILAMENT
ERUPTION: A MAGNETOHYDRODYNAMIC (MHD)
NUMERICAL SIMULATION
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Abstract. We investigate, via a two-dimensional (nonplanar) MHD simulation. a situation wherein a bipolar
magnetic field embedded in a stratified solar atmosphere (i.e., arch-filament-like structure) undergoes
symmetrical shear motion at the footpoints. It was found that the vertical plasma flow velocities grow
exponentially leading to a new type of global MHD-instability that could be characterized as a ‘Dynamic
Shearing Instability’, with a growth rate of about ., 3 V .a, where ¥ is the average Alfvén speed and a !
is the characteristic length scale. The growth rate grows almost linearly until it reaches the same order of
magnitude as the Alfvén speed. Then a nonlinear MHD instability occurs beyond this point. This simulation
indicates the following physical consequences: the central loops are pinched by opposing Lorentz forces.
and the outer closed loops stretch upward with the vertically-rising mass flow. This instability may apply
to arch filament eruptions (AFE) and coronal mass ejections (CMEs).

To illustrate the nonlinear dynamical shearing instability, a numerical exampie is given for three different
values of the plasma beta that span several orders of magnitude. The numerical resuits were analyzed using
a linearized asymptotic approach in which an analytical approximate solution for velocity growth 1is
presented. Finally, this theoretical model is applied to describe the arch filament eruption as well as CME:s.

1. Introduction

More than a quarter century ago, Gold and Hoyle (1960) suggested that horizontal
photospheric motion can move the footpoints of magnetic field lines and twist the flux
tubes because of the highly electric conducting plasma at the photospheric levels. A
number of investigators (Tanaka and Nakagawa. 1973; Low and Nakagawa. 1975:
Low. 1977: Klimchuk. Sturrock. and Yang, 1988: Klimchuk and Sturrock. 1989)
studied the evolution of force-free fields and its role in energy storage (build-up) for solar
flares.

* Permanent address: Purple Mountain Observatory, Nanjing, China.

Solar Physics 134: 353-377. 1991.
© 1991 Kluwer Academic Publishers. Printed in Belgium.
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All of these studies were limited to the case of magnetostatics: self-consistent dvnami-
cal effects were ignored. Recently. Wu. Hu. and Nakagawa (1983), Wu. Hu. and Krall
(1984). and Wu er al. (1986) presented a self-consistent MHD model for the purpose
of examining flare energy build-up and wave-mass interactions due to shear and
converging-diverging motions at the photospheric level. More recently. Mikic. Barnes.
and Schnack (1988) and Biskamp and Welter (1989) have presented numerical resuits
on the dvnamical evolution of a magnetic arcade tvpe due to shear motion. However.
their models are restricted to svmmetric boundary conditions. while in this study
self-consistent boundary conditions were used (see. for example. Wu and Wang, 1987
Nakagawa. Hu. and Wu. 1987).

In this paper. we use the time-dependent MHD simulation model devised by Wu. Hu.
and Nakagawa (1983) to reveal a nonlinear solution for the evolution of the magnetic
field configuration driven by shear motion. In this solution. we find that the plasma
velocity in the vertical plane perpendicular to the shear. grows exponenually in a process
which can be analvtically described by a linear MHD instability. This upward velocity
steadily increases until it reaches the average Alfvén speed. At later times. a nonlinear
instabilitv sets in. A field line pinch occurs in the lower shear region in the numerical
results. At the same time. mass and ficld line expulsion appears in higher parts of the
region and the closed field tends to open locally. We suggest that these new etfects (1.c..
mushroom cloud-like flow, pinch. and expulsion) can explain the formation of current
sheets. the opening of a closed bipolar ficld. and the ability of particle streams to escape
from the solar surface. Specifically, we suggest that this model applies to the eruption
of arch filament systems (AFEs) and their relation to non-flare-associated coronal mass
ejections (CMEs). The mathematical description of the model and numerical results arc
given in Section 2. A general physical interpretation of these results is presented in
Section 3. An application of this model to specific coronal phenomena is given in
Section 4. and the concluding remarks are presented in Section 3.

2. Numerical Simulation

In order to illustate how shear-induced non-equilibrium occurs. we use a theoretical
model in which a two-dimensional bipolar field undergoes a steady shear velocity at the
footpoints of its magnetic loops. The shearing motion is sketched in Figure 1(a), and
the inital bipolar field is shown explicitly in Figure 1(b).

First. we perform a simulation of the dynamic response of the bipolar field to the
shear. Then we use an analvtical method to interpret the simulation results. The
simulation model is based on a two-dimensional, time-dependent, MHD model (Wu.
Hu. and Nakagawa. 1983: Hu and Wu, 1984) with an improved FICE (Full-Implicit-
Continuous-Eulerian) numerical scheme (Wu and Wang, 1987). Symmetrical side
boundary conditions have been replaced with non-reflecting boundary conditions.
This implies that the physical phenomena are determined by the solution at a specific
time and are not determined by the specified boundary conditions as in the case
studied by Mikic. Barnes. and Schnack (1988). The physical conditions on these

ORIGINAL PAGE iS5
OF POOR QUALITY
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Fig. i. (a) Sketch of a two-dimensional bipolar magnetic field that is subjected to a footpoint shearing

motion as indicated by the arrows. (b) Explicit bipolar magnetic topology prior to the shearing mouon {see

Equation (1)). The photospheric boundary extends to 1xi = 8.4 x 10? km in both directions trom the origin.

The vertical extent into the corona is to v = 8 x 10° km. The positions ¥ = v, y5,.... }yo indicate the

vertical levels at which horizontal surveys will be shown of various physical quantities during the shearing
motion at the footpoints.

two side boundaries are determined mathematically through compatibility relations
that are given in detail by Wu and Wang (1987). Thus, the computation domain
(i.e., 1x1 <84 x 10°km, 0 <y <8 x 10°km) consists of three free non-reflecting
boundaries (i.e., top and sides), while the bottom boundary (y = 0) is treated with the
method of projected characteristics (Nakagawa, Hu, and Wu, 1987; Hu and Wu, 1984).
The basic equations for this model are the time-dependent MHD equations with infinite
conductivity, no viscosity and symmetry in one direction (Wu, Hu, and Nakagawa.
1983). Solar gravity, plasma pressure gradients, and compressibility are explicitly con-
sidered. None of these characteristics were considered in the work of Mikic, Barnes.
and Schnack (1988), and Biskamp and Welter (1989) have only considered compressi-
bility in a special way.
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The niual conditions are (see Figure 1(b)):

.
D =p(,exp(— — ) Iy=T., v.v,r.=0.
’ RT.. ’ '

By =8By[costux)le . B.,= -B,[sintax)]e . B, =0, (1)
a=mlx,, v,=84x100km., ¢g=271x10*cms °.

The plasma parameters are takentobe p, = 1.67 x 10~ '2gcm ~*and 7. = 10° K. The
scaleheight (6~ ' = RT./jg ~ 6.1 x 10°km)anda~"' ~ 6.3 X 103 km are the same order
of magnitude. These parameters are representative for solar conditions at the higher
chromosphere and lower corona. The computation grid points are:

-84 x 103 +(-DdAx. i=1,2.....22.

A

w=(i-Ddav. j=12... .11,
Ax = Ay =8 x 102 km ~ 1 arc sec .

The non-reflecting boundary conditions. as noted above. are used for the top (1 = 1, ,).
left-hand side (x = x,), and right-hand side (x = x,,). The conditions at the bottom
boundary (1 = v,) are taken as follows:

pev T=T., B =B,, r,=0. but . . #0.

X

p

w, sin(ax) if [xi <5.2x 103km.

(6.8 x 10 = x1) .

w_ (sgnx)sin(5.2 x 103qa)
v, = 1.6 x 103 & (
if 3.2 x 10° < x <6.8 x 10°km.

(8]
~—

0 if 6.8 x 10° < x;, <8 x 103km ..

The other physical quantities (p. T. v,. B,, B.) are computed by means of the
compatibility equations for the non-reflecting boundary condition which assures the
consistency of the numerical computation.

In order to understand the general physical behaviour of the nonlinear solution from
the mathematical model, we have performed three numerical experiments. These three
cases use combinations of magnetic field intensity and magnitudes of the shear velocity.
The results for these three cases are described as follows.

2.1. LARGE PLASMA BETA (f, ~ 154)

[n this numerical experiment, we choose the initial plasma beta (f,) to be 154 where
B is defined as f, = p,/(B3/8n) with p, and B, being the plasma pressure and magnetic
field strength at the lower boundary (i.e., y = y,). This is not a physically realistic
case for a solar active region: but it does provide a basis for comparison with the other
cases. This case corresponds to a local. exceedingly low, magnetic field strength of
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2.12G at the origin. x = v = 0. as shown in Figure 1(b). The shear velocity. w . was
taken to be Skms "' Figure 2 shows the evolution of the magnetic field lines due
to the shear motion at 200 s < < 3200s. It is useful to examine the evolutionaryv
behaviour at various Alfvén times (defined as 7, = [dy (or 4x)] Vi >=1700s where

200s 2000s

1 1 i i 1

(a)

D SR s S

IAN

600s 2400s

. / N\
(b) N \
A el

1000s 2800s

(C)m (9)/ﬁ\
%/\ F{::}DM
1600s 3200s

B.~ 154, 14~ 1700s

Fig. 2. Magnetic field line evolution as a function of time during induced footpoint shearing motion for
case (i): B, = 154 and the Alfvén time, t, = 1700s. The horizontal axis represents the distance from
X, ... Xa~ as shown in Figure I(b).
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Vi = Boiy 47py = 4.6 km's ~ ). During the early stages of evolution (that is. within the
first Alfvén time). the magnetic field lines rise together in an orderlv fashion in response
to the shearing motion. This behaviour is also presented in the analytical solution of Low
(1981) and the force-free numerical solutions of Klimchuk and Sturrock (1989) although
they do not consider dynamics and gravitational effects. After the first Alfven time
period. the evolutionary behaviour of the field lines becomes more complicated.
Nonlinear interactions take place between the shear-induced mass motion. magnetic
field and gravity with the result that in some regions the field lines are bunched together
to form a current sheet (see Figures 2(g) and 2(h)). Further understanding of these
phenomena is provided by the representation of the shear induced mass motion as
shown by the vectorial velocity field in Figure 3. Notice that the inclusion of magnetohy-
drodynamic effects. in contrast to the kinematic study of Low (1981). causes upward
mass motion in addition to the up-lifting of the magnetic field lines because the plasma
has to move with the field lines under the conditions of infinite conductivity as
manifested by the upward component of Lorentz force. Note. however. that some of
the uplifted plasma (in the region displaced from the origin) slows down under the action
of gravity. reverses direction. and falls back to the surface. Most of the motion. however.
is upward. These upward mass motions are also found by Mikic. Barnes. and Schnack
(1988) und Biskamp and Welter (1989). However. these workers did not include
compressibility, pressure gradient, and gravitation as noted above. The present study.
which does so explicitly, demonstrates a different evolution in the later stages.

This induced upward motion can be explained via our governing equations. When
we introduce the shear motion (¢v.), an axial field component. B_, will be induced through
the induction equation. The additional magnetic field will cause an additional magnetic
pressure gradient in the momentum equation. This additional pressure gradient induces
both the horizontal (r,) and upward (r,) motions as shown in Figure 3. Subsequently.
the mass motion interacts with both the magnetic field and gravity. Closer to the surface.
the combined effect is dominated by gravity, and the result is the cluster of magnetic
field lines in which a current sheet is formed as shown in Figures 2(g) and 2(h) at nearly
twice the Alfvén time.

Figure 4 shows the plasma properties (i.e., density temperature. and pressure en-
hancement in terms of percentage change from the initial values at each level) at the end
of this simulation (¢ = 3600 s; more than 21, ). These properties are shown at various
heights (v, ¥2, ¥4, ¥, and y,q, as shown in Figure 1(b)) as a function of horizontal
distance. These results also help to explain the magnetic field line distribution. That is.
the high density magnetic field region shown in Figures 2(g) and 2(h) within the
mid-horizontal range (at the altitudes: y,, y,) corresponds to the increase of plasma
density by 20°; (i.e., 4p/p ~ 0.2), temperature decrease of 20°; (i.e..4T/T ~ - 0.2), and
magnetic field strength (4B/B,) increase by a factor of 3. These properties are similar
to those for a current sheet. With these properties in mind. let us now turn our attention
to the plasma flow patterns as shown in Figure 3. The plasma flow rises initially above
the zone of maximum shear velocity. At later times (say, from 1000 to 2000 s), the
plasma flow moves toward the central region in a pattern reminiscent of a mushroom
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Fig. 3. Vectorial velocity field as a function of time during induced footpoint shearing motion for case (i):
Bo = 154; 1, = 1700 s.

cloud. In the later stages as shown in Figures 3(g) and 3(h), the significant plasma
motion is again concentrated in the neighbourhood of the sheared region. This is also
the region where the magnetic field lines have been clustered as seen in Figures 2(g)

and 2(h).
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and pressure (4p = p - p,(»)) normalized by a proper value as shown at the end of the simulation tcase (i}:

B, = 154). ¢ = 3600 s which is more than two Alfvén time periods. The distributions are plotted along the

entire horizontal scale of the domain and at various levels: Yio ¥ae ¥4, Voo and vy, as shown in Figure 1(b).
All the values are normalized by a reference quantity as indicated.

2.2. INTERMEDIATE PLASMA BETA (i.e.. §, = 1.54)

In this case. our simulation is performed with an initiallv modest magnetic field strength
(Bo = 21.3 G) and with a shear velocity (w.) of 1Skm's ="' and ¥, ~ 46.5kms ~'. The
qualitative behaviour of the evolution of the vectorial fields (i.e.. magnetic and velocity
fields) and plasma parameters (i.e., density, temperature. and pressure) are similar to
case (i). Therefore. we shall not repeat a full presentation. Nevertheless. there are some
interesting features that appear in the evolutionary results of the magnetic and velocity
fields as shown in Figure 3.

The most pronounced result is the induced velocity distribution shown on the right
side panels of Figure 5. The high velocity of the ascending movement in the central
region is especially notable. As a result. the closed bipolar field tends to be opened up.
We attribute this to the force created by the ascending movement of mass motion
initiated by the shear prescribed at the lower boundary. The highest velocity attained
by the mushroom cloud-like ascending mass motion is about 25km s~ ' at r = 700 s
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Fig. 5. Evolution of magnetic field lines and vectorial velocity fields at various times for case (i1): §, = 1.34.
The characteristic Alfvén time for this case is 7, = 174s.

(i.e.. ~4 Alfvén times) after introduction of the shear motion. The corresponding
plasma parameters can be summarized as follows: the density decreases by about 30°,
at the legs of the intermediate loops marked by the footpoints x,, x5, and x, as labeled
in Figure 1(b). Again. the pinch effects discussed for case (i) occur and a current sheet
is formed where the density increases by 25°; ; the temperature decreases by 30°%; ; and
the field strength increases by a factor of 2.
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2.3, Low PLASMA BETA (1e.. 3, = 0.06)

In this case the iniual magnetic field strength is increased to a more realistic value of
1063Gw, =15kms~' and ¥, = 232km s~ ' without changing the other plasma
parameters. The inial plasma beta is equal to 0.06 which is 250 times smaller than
case (i) and 2300 times smaller than case (1). Again. the evolution of the magnetic field
and velocity field exhibits patterns similar to those of cases (i) and (ii). Figure 6 shows
the evolution of the magnetic field and the velocity vector field for this case. The
maximum upward velocity is a factor of 4 higher than for case (ii) and a factor of 40
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Fig. 6. Evolution of magnetic field lines and vectorial velocity fields at various times for case (1it): §, = 0.06.
The characteristic Alfvén time for this case is 7, = 35s.
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higher than for case (i). We note that the time required to reach the maximum velocity
is much shorter than in the other two cases.

In order to examine this phenomenon further. we plotted in Figure 7 the planar
maximum absolute velocity (i.e.. (v2 + ¢7)%2,) in the neighbourhood of the apex of the
arcade as a function of time for the three different cases. We choose to plot this
parameter instead of the upward velocity. r,, because the representative parameter
[v? + ¢7]"? is related to our analytical analysis that is discussed later (and i the
Appendix). Actually, the numerical resuits show that the horizontal velocity. ¢, is only
259, of the vertical velocity, t,.. First, we point out the change of scales that was required
for the three cases (i), (i), and (iii). Second. we direct attention to the common features:
an approximately linear initial phase followed by a smooth transition to an explosive
upward mass motion. The latter phenomenon is representative of the upward regions
as discussed earlier.

(@) Bo~ 154
10}
8
6 b
4 -
- 2}
>
= wun
8 € . i i L — Il .
= £ 0 1000 2000 3000 Time (s)
>
° =
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Q.
> (b) Bo~1.54 () Bo~0.06
3z
= 40 80
30+ 60 I
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i 1 1 i i 1
0 200 400 600 Time (s) 56 100 150 200  Time(s)

Fig. 7. Maximum vectorial velocity that is representative of the upward vertical mass motion for cases (1),
(ii), and (iii). Note the change of scales. The representative Alfvén times for the three cases (5, = 134. 1.5,
and 0.06, respectively) are 7, = {700s, 174 s, and 33 s.

It is interesting to relate these results to the magnetic field evolution. For example.
we direct attention to Figures 2, 5, and 6 where. in the early stages of the evolution. the
change of field lines is regular with a slowly ascending movement. This upward motion
is also present in the force-free analyses of Low (1981) and Klimchuk and Sturrock
(1989), and the numerical incompressible simulations of Mikic, Barnes. and Schnack
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(1988). and Biskamp and Welter (1989). However. the change of field lines in the present
case becomes quite irregular 1n the later stages of the evolution. From Figures 2. 3, and
6. we notice that the lower field lines are pinched together and the upper field lines tend
to open up when the maximum planar velocity exceeds the Alfvén speed. The Alfvén
speed for these three cases is .67 kms . 46.7km s ~'. and 232 km s " '. respectively.
The maximum footpoint shear motion. ., is slow compared to the Alfvén velocity in
the latter two cases but fast compared with resistive diffusion in all three cases. Thus
a sequence of essentially quasi-static. force-free states with frozen-in magnetic fields is
found in the eariy stages, which ends when the magnitude of planar maximum velocity
exceeds the Alfvén speed. and the system becomes unstable. We claim that this is a
shear-induced instability that could not be found in the earlier numerical simulations
that omitted compressibility, pressure gradient. gravity, and the different treatment of
boundary conditions. We shall return to this point later for further discussion utilizing
analytical results.

3. Further Interpretation of the Simulation Resuits

From these simulation results. we have found that the buoyancy force leads to a
mushroom cloud-like ascending movement that pushes the closed magnetic field up-
ward. In order to understand this result further. we supplement our numerical simulation
with an approximate analytical solution:

3.1. CREATION OF MUSHROOM CLOUD-LIKE ASCENDING MOTION

From the numerical simulation of all three cases. we observe that the shear-induced
mushroom cloud-like ascending movement can be ascribed to the out-of-plane com-
ponent of the magnetic field. B_. This component gives an upward magnetic pressure
gradient (i.e.. V(B%/8x)) which causes the ascending movement of magnetic field and
corresponding plasma tlows. On the other hand. we notice that no B. component is
generated near the origin (x = 0. v = 0) due to shear. This leads to a downward force.
such that we observe the field lines being squeezed together to form a current sheet as
shown in Figures 2. 5. and 6. This point can be illustrated further by using a linear
approximation. The justification for the use of linear theory is seen from the numerical
results that show that the initial stage of the shear-induced motion behaves regularly as
shown 1n Figures 2, 3, 5, and 6.

A closed form linearized solution for the induced field component B_ is the following

(for the derivation. see the Appendix):
B. :
——=—= =, e~ *cos(ax) cos[Lax (e "¢ cos(ax)) '] sin[(r + t5)Lw,] . (3)

v 41,

This result expresses that the induced magnetic field B. rises from the lower boundary
(i.e., y = 0) and spreads upward with a characteristic time scale Lw,, where L is defined
by Equation (A.8). It could be noticed from Equation (3) that B. decreases exponentially
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with respect to the increase of v (height). because the term. cos{Lax e "~ costax)) ']
in the central region. varies slowly with height.

Finally. the coefficient ¢, corresponds to the shear velocity (i ). The part of the total
upward Lorentz force (-J B. = - &/ér(B2/2)), that causes upward acceleration is
independent of the sign of the coefficient ¢, (or w_).

3.2. SHEAR-INDUCED INSTABILITY

From the simulation results shown in Figure 7. we found earlier that instability sets in
when the absolute maximum planar velocity exceeds the Alfvén speed. In order to
substantiate this claim, we performed a linearized analysis in which an approximate
linearized solution for the planar velocities (u, v) was constructed as shown in the
Appendix (Equation (A.13)). These velocities are as follows:

u, = 0 e~ *“¥sin(2ax).

r, =9 e [l + cos2(ax)] . )
The electric current along the z-axis can be estimated. to the first order. as
‘
iz J. = i - CAB' = 16a*By e >* cosax J o' dr. (3)
¢ éx Gy n

which means that the Lorentz force ¢ = '(J.B, - J_B.) leads to ascending flow. because
it has been shown in the Appendix that ' is always positive and has an exponential
growth rate as shown in Equation (A.16). We have identified this phenomenon as the
shear-induced instability since the numerical simulation results shown in Figure 7 are
consistent with the analytical analysis. It is further noted from numerical results that
the term - ¢~ 'J_B. is always upward.

The results for the evolution of the magnetic field configuration shown in Figures 2.
5. and 6 show clearly the two-stage evolution that we discussed earlier. The first stage
of the evolution can be described by the linearized solution given in Equation (4). The
second stage of the evolution involves the pinching together of field lines in the region
" where the shear motion was applied. If the three factors noted earlier (compressibility.
pressure gradients, and gravity) had been absent, we believe that our results would have
been similar to those of Mikic, Barnes, and Schnack (1988). Our current sheet. however.
developed horizontally, whereas their current sheet was vertical. We explain this
phenomenon by examining the distribution of upward component of the Lorentz force
(ie., ¢ " '(J.B, - J.B.)). To illustrate this viewpoint. we use the results for f, = 0.06
because this case best resembles the real physical conditions in active regions. The
results are piotted in Figure 8. The left-most panels show the horizontal distribution of
the vertical component of the Lorentz force at different heights from v, to v,, (as shown
in Figure 1(b)) at 25 s after the introduction of the shear motion at the lower boundary.
A noted earlier, the Alfvén time for this case is ~ 35 s. This result clearly indicates the
first stage of the evolution due to the introduction of shear. All the forces are in the
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Fig. 8. The total y-component of the Lorentz force per unitareaatr = 23 s, 100 s. and 213 s and at various
levels in the solar atmosphere (1 = v, y5...., etc.). The representative Alfvén time for case (iii)is 35 < ad
By =0.06. At r = [00s (about 3t,) during the nonlinear stage of evolution. the Lorentz forces at the
intermediate heights have a combination of upward and downward directions that causes magnetc ticld
line pinching tsee text). This pinch effect is more pronounced at 1 = 213 s (about ~- ) at lower altitudes. The
horizontal axis represents the distance v, ... x.. as shown in Figure itb) also shown for Figures 2-6.

upward direction which means that all field lines are lifted up in an orderly fashion. The
magnitude of these forces is of the order of 3 x 10~ % dyne cm ~-. The middle panels
show the resultant upward component of the Lorentz force at 1 = 100 s which is about
three Alfvén periods. These results are reflected in the nonlinear nature of the evolution
in which the Lorentz forces have both upward and downward direction at the inter-
mediate altitudes.

This bi-directional nature of the Lorentz forces causes the field lines to be pinched
together in the lower regions as shown. for example. in Figure 6 for f, = 0.06. This
particular feature is most pronounced in the results shown in the right-most panels
which show the vertical component of Lorentz force at 1 = 213 s: this is about seven
Alfven periods after the introduction of the shear. We note that the vertical component
of this Lorentz force decreases at high levels, but, in lower levels (i.e.. v, and v,), two
very strong oppositely-directed vertical components of Lorentz force (~3 x
10~ 7 dyne cm ~ 2) appear. The force at v, is upward and the force at v, is downward.
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These two forces cause the field lines to be pinched together as shown in Figure o(c).
Further discussion of this point will be included in the next section as part of a generai
scenario for shearing motions of magnetic arches or bipolar regions.

4. Scenario

From these simulation results. supported by the linearized analytical solution. a physical
scenario is proposed for the formation of an "Arch Filament System (AFS)" and its
eruption as part of a more general scenario for *Coronal Mass Ejections (CMEs). A
schematic representation of this scenario is presented in Figure 9. After introduction of
shear motion at a bi-polar region. all of the field lines will first be lifted up in an orderly
fashion due to the shear-induced upward Lorentz force before the absolute maximum
upward velocity reaches the local Alfvén speed: this is the linear stage of the evolution.
When this upward velocity is in the neighbourhood of the local Alfvén speed. the lower
parts of the magnetic field lines are pinched together. and an arch filament system 1s
formed. At the same time. the upper part of the magnetic field lines is pushed upward.
and a certain amount of mass is carried upward. This upward mass motion is shown
in Figure 10 in terms of contours of 4p and 4p that move upward at all but the lowest
gravitationally-bound heights.

Upv(rard
Movement

Negative Lorentz
Force

Positive
Force
Fig. 9. Scenario for the formation of an arch-filament system (AFS) and upper level movement outward
in the initial stage of a coronal mass ejection (CME) as a result of shear-induced instability.
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Finally. when this absolute upward velocity exceeds the Alfvén speed. the shear-
induced nstability sets in as shown by the numerical resuits of Figure 7 and the
analytical solution in the Appendix (Equation (A.16)). In the following we compare this
scenario with the available observations.

Arch nlament systems and coronal mass ejections have been mvestigated by many
authors (Bruzek. 1967. 1968. 1969: Bumba and Howard. 1965: Martres ez al.. 1966
Harrison. 1986). These authors have noted that arch filament systems (AFS) alwavs
connect areas of opposite polarities and cross the neutral line in the longitudinal
magnetic field. Bruzek (1969) has pointed out that the occurrence of AFS is associated
with evolution of young bipolar spot groups. As for the motion of AFS. its characteristic
feature 1s its expansion in height with an ascending velocity of 16-25km s "' with
footpoints rooted in the two opposite spot regions. This behaviour is quite similar to
the early stage of the simulated magnetic field line evolution and mass motion shown
in Figures 2. 3. 5, and 6 where the apex ot the magnetic loops 1s rising but their legs have
little lateral movement. It was further noted that the AFS has both descending and
ascending motions in loops. Bruzek (1968) attributed this phenomenon to the mauss
injection at one leg and its return to the chromosphere via another leg that has opposite
polarity. On the other hand. shearing motion. if it has a line-ot-sight component. would
always lead to a blue shift in one leg and red shift in the other. Therefore. observations
of flows in filaments arc not evidence of shearing. However. such evidence is not nceded
since the relative motion of bipolar spots is both necessary and sufficient evidence of
shearing. Nevertheless, this concept of descending and ascending motion is based on
Doppier shift measurements which can easily, at least partiallv. be recognized uas
complementary evidence of horizontal shear motion that occurs on both sides of the
neutral line. This statement considers the fact that the spot group area is often not strictly
perpendicular to the line of sight of the observer: thus the Doppler shift velocity must
have an appreciable horizontal component (Harvey and Harvey. 1976).

On the basis of our numerical simulations. the analvtial solution and observed
characteristics. a physical model for the formation of AFS and subsequent CME can
be constructed as follows. First. a voung bipolar sunspot group emerges from the
sub-photosphere. As it rises. its area increases and the neutral line dividing the opposite
polarities gets longer and longer. Then a portion of the field can be reasonably regarded
as a two-dimensional bipolar field (as is used in our mathematical model). In the
meantime. the opposite polarity areas rotate with respect to each other. Associated with
this rotation are horizontal shear motions that appear on both sides of the neutral line
(thereby justifving our construction of the shearing velocity used herein). The Lorentz
force generated by this process (see. for example. Figure 8) pushes the magnetic loops
upward during an initial stage. At the later times. the magnetic field becomes distorted.
nonlinear MHD effects force field lines to pile-up and. then. the pinch phenomenon
ensues. Such pinched magnetic flux tubes could be identified as arch filaments which
are visible as a set of dark loops. The simulation has shown that in this region the
plasma has high density and low temperature. From the analytical solution, we notice
that the growth time (¥ a) ~ ' of the shearing instability is about 30 min which is a typical
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Fig. 11. Behaviour of 5 and 75,. See Appendix (Equation (A.12)).

average life time of AFS. Thus. this simulation model may be appropriate to describe
the formation of AFS and the eruption which leads to some CMEs.

3. Concluding Remarks

We have used a time-dependent. nonplanar MHD model for a bipolar magnetic region
that was subjected to shearing motion at its foot points. The characteristic plasma beta
was varied over a wide range - from 154 to a more realistic value of 0.06. Common
features were identified for all cases with the differences primarily occurring in the timing
of the events vis-a-vis the characteristic Alfvén times. An essentially linear. early phase
of upward mass motion was followed until the Alfvén speed was reached. and a
shear-induced instability is initiated. This nonlinear instability may be the basic
mechanism for arch filament formation and subsequent coronal mass ejections.

In our opinion. the early evolution in our simulation is in accord with quasi-static
evolution of magnetic arcades demonstrated by Klimchuk and Sturrock (1989). In their
work, a very low beta plasma was assumed. and therefore the magnetic field is unaffected
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by pressure and gravitational torces. Our simulations are also in accord with the
dvnamic evolution of magnetic arcades demonstrated by the numerical simulations ot
Mikic. Barnes. and Schnack (1988) and Biskamp and Welter (1989) in both the eariy
and inrermediate stages of this evolution despite their neglect of compressibility. pressure
gradient. and gravity. We did not find the reconnection and formation of an ejected
plasmoid. as Mikic. Barnes. and Schnack (1988) did. since we assumed electrical
resistivity and viscosity to be zero. During the laze stages of the evolutionary develop-
ment. when the plasma velocities surpassed the Alfvén speed. our numerical simulations
demonstrate nonlinear instabilitv and catastrophic upward motion at high altitudes.

As a final remark. it can be shown that these numerical results are valid over a
wide range of parameters according to the scaling rule for dynamic similitude. For
example. the present numerical resuits. computed on the basis of T, = 10°> K and
po = 1.67 x 1072 gcm "2, can be scaled to initial conditions of T, =10°K and
p, = 1.67 x 10" gcm~* by introducing a set of scaling parameters: 1, = ( /o
L,=4ily, vy = \7 to. Ty = ATh. py = 4~ 'pys Py = Py» and B, = B, which leave the
governing equations invariant for a given plasma beta. In a recent studv of similitude
theory. Wu er al. (1988) have shown that the present resuits also apply to the physical
condition represented by these different initial conditions.

As another example of the use of dynamic similitude. we may pose the following
question: if the footpoints are moved slowly enough that the evolution 1s quasi-static.
would the magnetic field closely approximate the static equilibrium states? Although.
we suggested above (as did Mikic. Bamnes. and Schnack, 1988, and Biskamp and
Welter. 1989) that the answer is "ves'. the reader is reminded of the values of the shearing
velocity v. used in the present studies (e.g.. 15kms~ ! maximum, for §, = 0.06) and
in the above-mentioned work (30 km s ~'. assumed by Mikic. Barnes. and Schnack.
1988. for § ~ 0.03). Although these maximum footpoint shearing velocities are much less
than the Alfvén speed. they arc a factor of about 10 larger than observed photospheric
velocities.

In summary, we consider the results given here to be representative of a realistic
dvnamical evolution of the posed physical problem of sheared magnetic arches and their
evolution into arch filament eruption and coronal mass ejections.

Finally, we remark on the relevance of our results to the observations of some CMEs
as reported by Harrison (1986). The major point of his work is that a small X-ray burst
is often found at the very onset of a CME, often followed by a large X-ray flare later
on during the CME. In the present work. the formation of the current sheet coincides
with the rapid increase in the velocity of the upper portion of the field lines. One could
interpret the latter, as already discussed. as the onset of CME, while the current sheet
formation could lead to a burst of energy dissipation (not shown here) which would be
visible as a small X-ray burst. The simultaneity of these two events is consistent with
the observations of Harrison (1986). This could be another indication that these numeri-
cal results indeed represent a basic mechanism for the initiation of CMEs.
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Appendix

To obtain an asymptotic solution for the relationship between the footpoint shearing
velocity. w. and B. in the first stage (linear stage) of evolution during which . p. T.B .
B, vary slightly. we write

P=PotpPrs P=pyTp. r=T7T,+T,. B.=B,+8,.

AN

(A. 1)
B.=B,+B,. B.=B.. r.=v

{ v o liz’ = llxl . l~__ =r

B

where subscript 0 and [ indicate the zero-order and first-order quantities. And. AN

Copls Loyl € Bo/y 4mp, = Alfvén speed. B_,! < B,. Inserting (A.l) into Equations
(2.4) and (2.7) formeriy given by Wu. Hu. and Nakagawa (1983) and leaving out the
higher-order quantities, we obtain the linearized equations

C‘:L‘:l — B.rO é(B:l/IVl4npﬂ) + B\'O E(B:l/“\/ 4sz()) _ b B,r() B:l
it 4np, éx v 4mp, cy 2 JHmp,  4mp, ‘
c(B.,/ 4n B cr. B, cr.
( -l/}/ p0)= x0 .-l + v Q.| \ (A.z)
ct Vanp, cx o 4np, év

where p, = p.e "™ b =g/RT.. To solve Equation (A.2). we construct the auxiliary
equations

Cu* , E(B*/ 4 , 8(B*'_ 4np,
% = Bo(dmpy) = ' “—C( s Y m6) + B o(dmpy) =12 “0( e TP0) .
Ct cx cy
— (A.3)

C(B*//4mp,) ., CU¥ . CLX¥
S T B o(dpy) T2 Lk B ()t

ct cX cy

Substituting
B* B*

(L.* + ,____> (L_. - = )

F+ NELT - V 41p,
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Eguations (A.3) reduce to

cF* P cF~ . cF*
— = By(4mp,) " e TP (cosax — — sinax ,
’t éx cv
(A4
CF~ . e cF~ , cF~
_._=Bn(47rpc)“:e“”"’"‘(—cosax — +sinax — )
ét éx cv |

Since solving Equations (A.4) is equivalent to solving their corresponding ordmary
differential equations (Courant and Hilbert. 1962), it is easy to write down the solutions
as follows:
F* = ¢le™ " cosax. 1w, + f(ax)(e™“"cosax)™ ' P32 1), ]
{A.D)
F~ = (e " cosax. tw, — flax) (e ™" cosax)™ ' wrP2 "y,
where

wy = aBy(dmp )~ ' 7 flx) = J (cosx' )" dx’ .
0
Considering the boundary value of ¢. (the nature of shearing) and using Equation (A.3)

we can find the following solutions:

r* = c,e”“cosaxcos(L{)sin(Ln), (A.6)

Bx* > .

—— | =c, e “cosaxsin(L)cos(Ln),
(\/ 4mpo

where

=+ 1,)w,. n= flax) (e “ cosax)” '~ "
t,, L. and ¢, are integration constants. Back to solving Equations (A.2) suppose i,.

(B./y 4mp,) satisty the equalities (A.6) except that L. ¢, are now not constants but
functions of x. v. Thus

r., = ¢, (x, ») e " cos(ax) cos(L(x, y)<) sin(L(x, 1)n), (A7)

B_, o . v
—=L_} = ¢ (x, v) e~ cos(ax) sin(L(x. ¥){) cos(L(x, ).
<~ /4npo>

Inserting (A.7) into (A.2). ¢, and L can be determined uniquely by solving two ordinary
differential equations. First, L satisfies the equation

cosax Cjé - sinax 5~_L = Q(x, v, L),
cX cy
Q(x, v, L)= - (b/4) sin(ax) sin(2LY) sin(2L n) x (A.8)

x [{sin(2L7y) — nsin(2LY] Y,
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with boundary condition L . . _,, = L(x). After L has been found. (Inc,)can be obtained
in the same manner using the following equation:

c(lncy) _ sin(ax) ¢(lncy)

cx cv

costax)

= [Jtg(Ld) - netg(Ln)] Q(x. v Ly,

1AL9)

In fact. we only apply (A.7) to explain the physical nature in the lower shearing region
where p, =~ 0.8p,, therefore L and ¢, can roughly be regarded as constants.

It is difficult to find an asymptotic solution for ¢, and t,.. Let us consider case (iii)
of strong magnetic field. in which the inertial force and - Vp and pg can safely be
ignored. Inserting (A.1) into (2.2) and (2.3) of Wu. Hu. and Nakagawa (1983). the
linearized equations are given as follows:

cu, 1 o °B, l CB.
7o I;\I _ L B,yo(c,'\l _ C‘_\l) - B, C~_1 .
ct 4r oy Ox dr cx
(A 10)
cr,. l B, ‘B 1 o
pf) +l=——B\'f)(C.‘\l—(‘,‘l)—_B:l C.~l‘
ct 4n cv cx in cv
where the terms
l 0B. 1 CB.
“‘B-l"‘-l~ ——B:lb'
47 Ox 4n oy

which are second-order quantities, must be kept in view of actual mathematical manipu-
lation. From (A.7) the partial Lorentz force can be written as

“B- h) 3 . o v
-(4np,) " 'B_, Ca" =(c;ar2)(n’ + n)e ~sin(2ax)sin~(LJ).
o (A1)
CB. . A
- (4np,) " 'B. a1 (ctaj2)n’ e *[1 + cos(2ax)] sin“(LJ),
sl av

where 1" and #, are slow-varying functions of x. 1. The representations for n'. 5, arc
very complicated in the case with gravity, but we only deal with the lower central part
of the domain where p ~ const. Thus, the gravitational effects could be ignored in
Equation (A.2), then leading to the solution. # ~ ax e“" (cosax) ™!, B_, >~ B*. There-
fore. " and #, asymptotically approach the case with no gravity. In such case #° and
n, take simple forms as

n = (cosI)? + McosTsinll,
m =L e®cosIIsinll (sinax)~ !, (A.12)

IT=Le*ax(cosax)™'.
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Figure 11 shows the behaviour of n’ and n,. Note that if L e“¥ is less than 0.5. then
0 <n < n =1 Therefore we will pav no attention to the difference between n and
n' + n within the range ax: < 7/4. (A.11) reminds us of analogy between shearing
velocity and force. so we suppose velocity having a mushroom-like form as

ty =3 e ™ sinax. Ly o= 0 e 1 + cos(2ux)]. (A 123)

where 0" is a function of 1. x. v (but weakly depends on x. 1) being determined later.
[nserting (A.13) into the linearized equations of (2.5) and (2.6). of Wu er a/. (1983) the
time variation of current /_, ‘¢ can be found as

¢ (53‘., ¢B.,

- > = 16a=B,d e~ cos(ax) . (A1)
¢t

Cx cv
In deriving Equation (A.14) the weak dependence of &' on x. v has been used. Differen-
tiating (A.10) with respect to r and inserting (A.14) and (A.11) into it and then letting
it go to limitation when 1 goes to zero. we obtain one equation

(]

S

0" _,=8t3a” " _,+(ctai)y  _,Luw, sin[2L wy(r+1,)] (A 13)

to

{

2}

to determine 9" uniquely (here 3 = B3/4np,). Noticing ¢'. #" only weakly depend on
x, ¥, Equation (A.15)can be regarded as an ordinary differential equation and. therefore.
can be easily integrated with respect to . Giving the initial condition: &' Lemo = 0.
do’/del, _, = 0 when ¢ = 0, we obtain an asymptotic solution as

o'l Lo =[x+ B)2] exp(V/g vaat) + [(x = B)/2] exp( - 8 vyat) -

sin[2L w,(t + 1,)]

_— ‘ . (A.16)
sin{2L wyt, ]
with
L 2 " o - ' a2

4 = wnafxﬂ ‘_|1_1: Sln(sz0[0)~ Ln Cir/la >0

8(L%wi + 2c2a”) 8./2(L* + 2)

L2w3c? & e 2y

B: ch" ’7_,"" ) - COS(szOIO)"ﬂ% 0.

82u (L?wi + 2v2a?) 16(L> + 2)

Generally, we can find an approximate solution for the average 0'. the representation
of which is the same as (A.16) except for the substitutions &' | vmor M im0 UABY LT,
vz, where

2 ] R

¥ = j ¥ dviv,. = f N dviv,, 72 = Vif em " dyly, .

0 0 0
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From (A.16)it can be seen that § wiil grow exponentially. and that the shearing veiocity
¢y acts like a “seed”. If there is no “seed’. the mushroom flow velocities (v . v, ) will never
arise. The growth rate is independent of ¢, but depends on the Alfvén speed
ty = B, +np,. Theretore. shear motion can induce linear MHD-instability. However.
this instability soon attains saturation. and the flow becomes quasi-steady and increases
gradually unul the velocities (¢, ¢, ) exceed v .
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