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SUMMARY

The Integrated Spacecraft Environments Model (ISEM) was used to model the LDEF
induced neutral molecular environment at several different times and altitudes during the mission.
The purpose of this effort was to provide the community with an estimate of the neutral molecular _
environment to assist in phenomenology studies. )

INTRODUCTION

The objectives of this modeling effort were twofold. First, to model the overall vehicle
induced neutral environment and to determine the flux of various molecular species on different
surface locations. Secondly, to use the overall modeling results as input for the modeling of the
molecular flux through a small aperture (vacant screw hole) into the vehicle interior. This second
modeling effort was of interest because of very noticeable brown deposition patterns on interior

surfaces in close proximity to the aperture. It was believed that understanding the molecular
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environment in the vicinity of the aperture would help in determining the mechanism which

produced the deposition pattern.

INTEGRATED SPACECRAFT ENVIRONMENTS MODEL (ISEM)

ISEM is a collisional molecular transport code which computes the molecular density and
flux in a three dimensional modeling volume for any number of user defined molecular species.

MODELING PARAMETERS

Three different periods in the LDEF mlsswn were modeled to obtain representative results
over the mission lifetime. These periods were representative of the beginning, middle and end of
the mission timeline and corresponded to orbital altitudes of 463 km, 417 km, and 333 km
respectively. Table 1 shows the ambient values for the six different ambient molecular species
modeled at the three periods. The values were obtained using the atmosphere-predicting model
MSIS86 and represent annual and orbital position averaged values for the periods modeled.

~ Table 2 shows the outgassing and erosion rates used for the modeling. External surfaces

were modeled as having an average uniform outgassing rate which decreased with time. The initial

outgassing rates were based on test data and the percentages of various materials present.
Outgassing from internal surfaces was allowed to escape to the external environment via the
numerous holes around the experiment trays. The external outgassing rate was assumed to
decrease with an e folding time of 6000 hours. The internal outgassing rate was assumed to
decrease w1th ane foldmg t1me of 7000 hours Thee foldmg times were based on Skylab
programs. The average erosion rate was assumed to be 15% of Kapton for all the surfaces. The
erosion rate glven in Table 2 is for a surface normal to ram; a cosine dependence (relative to the

vclocnty vector) was assumed for non- normal surfaces.
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GEOMETRY MODEL

LDEF was modeled as the geometric structure shown in Figure 1. Based on data at the
time of the modeling, the geometric structure was rotated 10 degrees relative to ram as shown in

Figure 2.

GENERAL MODELING RESULTS

Density

ISEM was used to compute the density of every tracked species throughout the three
dimensional modeling volume for the mission beginning, middle, and end cases described
previously. Figures 3, 4 and 5 show the total iso-density contours for a plane of values from the
three dimensional modeling volume. The total density value is the sum of ambient species, surface
reemitted ambient species, internal and external outgassed species, and the scatter portions of all
species. The contour values have been nommalized to the total undisturbed ambient density at the
respective altitude. Figure 3 shows the total iso-density contours for the early mission case at an
altitude of 463 km. A slight ram buildup can be seen in front of the vehicle (velocity vector from
left to right), but the density around the vehicle is dominated by the outgassing. Figure 4 shows
the total iso-density contours for the middle mission case at an altitude of 417 km. In this figure
one can see a significant ram buildup and a distinct wake region. The density in the wake region is
dominated by the outgassing. Figure 5 shows the total iso-density contours for the late mission
case at an altitude of 333 km. There is a strong density buildup in front of the vehicle due to
ambient and erosion products. The wake is very well defined and although the densities are much
less than on the ram side the density in the wake region is still dominated by the outgassed species.
Figure 6 is an iso-density ‘contour plot of only the erosion products. The plot shows a strong ram
angle dependence.
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Flux

From the standpoint of surface materials interaction with the molecular environment,
molecular flux of the different species is much more important than density. Flux of each tracked
species was computed to each of the LDEF facets. Figures 7 through 10 show the surface incident
flux at the three modeled altitudes for O, Oy, N, and N respectively. In the figures the surface
incident flux is plotted as a function of incidence angle as measured from the ram direction. The
term "direct” on the plots refers to flux of molecules which have : not h had a collision; they still retain
the kinetic energy of the orbital velocrty (m the spacecraft reference frame) Flgure 11 shows the
flux of outgassed and erosion products at the three modeled altitudes. Note that there is no direct
flux in these plots because only transport via scattering can produce the return flux of these species
to the external surfaces (this is not necessarily true on the scale of individual trays).

SMALL SCALE MODELING RESULTS

The second portion of the modeling effort was to model the molecular flux through a small
aperture and the resultin g incident flux on an mtemal surface (the side of an experiment tray).
Flgure 12 shows the geometrlcal relanonshlp of the aperture and the internal surface. Figure 13
shows the energy dxstrrbutmn in the spacecraft reference frame of atomic oxygen and nitrogen in

terms of electron volts Flgure '14 shows the angular distribution i in the spacecraft reference frame

of atormc oxygen due to the ambrent thermal velocrty dlstnbuuon Frgure 15 shows the incident
flux dlstnbutlon of atormc oxygen on the internal surface due to ﬂow through the small aperture.

The flux dlstnbutlon on the surface is due pnmanly to the thermal dlstnbunon of atomic oxygen.

The dotted lines indicate the approx1mate cone angle of the observed deposmon pattern.

CONCLUSIONS

We believe that the internal deposition modeled was due to atomic oxygen fixing of

1ntema11y outgassed contaminants present on internal surfaces The pattern observed is consistent

with the thermally distributed flux of ambient atomic oxygen in the spacecraft reference frame.
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The atomic oxygen erosion rates at the end of the mission were comparable to initial
outgassing rates of LDEF surfaces. Return flux of erosion species near the end of the mission

were an order of magnitude greater than the return flux of outgassed products early in the mission.
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Table 1. Average Ambient Atmosphere Density Values
(MSIS 86)
Species Date
#/cm3 4/84 4/87 1/90
o) 2.59x107 3.48x107 9.03x108
02 7.52x103 1.43x104 6.06x106
N 6.65x105 7.44x105 3.28x107
N2 4.23x105 7.26x105 2.03x108
He 3.47x108 3.85x106 5.07x10¢€
H 1.63x105 2.30x105 2.66x104
Total Density 3.06x107 4.04x107 1.15x10°
Temperature (K) 920 829 1303
O Flux/cm?2 2.0x1013 2.x1013 7.0x1014
Table 2. Outgassing and Erosion
Rate 463 km 417 km 333 km
g/cm2/sec 4/84 4/87 1/90
External 2.0 x 10-° 26 x 10-11 1.4 x 10-12
Internal 2.0 x 10-10 56 x 10-12 48 x 10-13
Erosion 6.3 x 10-11 8.5 x 10-11 2.2 x10-9
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Figure 2. LDEF facet identification (from Earth end).
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Figure 3. Total density at 463 km.
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Figure 5. Total density at 333 km.
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Figure 6. Density of erosion products at 333 km.
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Figure 7. Atomic oxygen flux on LDEF surfaces.
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Figure 8. Oxygen flux on LDEF surfaces.
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Figure 9. Atomic nitrogen flux on LDEF surfaces.
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Figure 10. Nitrogen flux on LDEF surfaces.
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OUTGAS AND EROSION PRODUCT FLUX ON LDEF SURFACES RS A FUNCTION OF ANGLE
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Figure 11. Outgassed and erosion products flux on LDEF surfaces.
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) Figure 12. Internal surface deposition model geometry.
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Figure 13. Energy distribution of atomic oxygen and nitrogen.
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