https://ntrs.nasa.gov/search.jsp?R=19930004123 2020-03-17T10:12:04+00:00Z

7 14

Final Report

submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

April 1992

for Contract NAS8-36955

Delivery Order 106

entitled

FNAS Modify Matric and Transparent Experiments

by

Guy A. Smith Research Associate

Sue E. Kosten Research Associate

and

Gary L. Workman Ph. D. Principal Investigator

Low-g solidified MMC

One-g solidified MMC

Materials Processing Laboratory Center for Automation & Robotics University of Alabama in Huntsville Huntsville, Alabama 35899

0127392 63/24

N93-13311

EXPERIMENTS

YODIFY

Nov

ា ជ

emede

Unclas

1 · · · ·

•

•

1.4.0.1.

I. Introduction	1
II Experimental	2
A Hardware modifications	2
D Summary of flight sample processing	6
B. Summary of fight sample processing	8
C. Summary of ground sample processing	10
III. Metallurgy results.	10
A Results of Observations	10
IV. Conclusions	16
V KC-135 Video Convective Flow Analyzer activities	17
Appendix A Flight Sample RMROF3 Data File	
Appendix R. Flight Sample RMROF4 Data File	
Appendix B. Flight Sample RWRQL4 Data File	29
Appendix C. Flight Sample Kivik QF3 Data File	·····25
Appendix D. Ground Sample RMRQG8 Data File	
Appendix E. Ground Sample RMRQG9 Data File	
Appendix F. Ground Sample RMRQG10 Data File	44

.

*** TABLE OF FIGURES ***

_

د ،

Figure 1: Thermal gradient of RMRO furnace prior to modifications	4
Figure 2: Thermal gradient of RMRO furnace after modifications	5
Figure 3: Crossectional view of RMRO furnace canister	6
Figure 4: TGA plot 1 of Al+SiC sample	9
Figure 5: TGA plot 2 of Al+SiC sample	.9
Figure 6: Photograph of sample RMROF3 morphology	. 11
Figure 7: Photograph of sample RMROF4 morphology	, 11
Figure 8: Photograph of sample RMROF5 morphology	, 11
Figure 9: Photograph of sample RMROG8 morphology	. 12
Figure 10: Photograph of sample RMRQG9 morphology	. 12
Figure 11: Photograph of sample RMRQG10 morphology	. 12
Figure 12: Microphotograph of sample RMRQF3, top section, 200X	. 13
Figure 13: Microphotograph of sample RMRQF3, middle section, 200X	. 13
Figure 14: Microphotograph of sample RMRQF3, bottom section, 200X	. 13
Figure 15: Microphotograph of sample RMRQF3, top section, 400X	. 14
Figure 16: Microphotograph of sample RMRQF3, middle section, 400X	. 14
Figure 17: Microphotograph of sample RMRQF3, bottom section, 400X	. 14
Figure 18: Microphotograph of sample RMRQG10, middle section, 200X	. 15
Figure 19: Microphotograph of sample RMRQG10, middle section, 400X	. 15
Figure 20: Macrophotograph of sample RMRQG10 showing voids, 10X	. 15
Figure 21: Diagram of VCFA translation system	. 18

I. Introduction

Metal matrix composite materials have the potential to improve upon the capabilities of current engineering materials in a number of ways. In particular, new materials with improved strengths, stiffness, and high temperature performance are needed for the next generation high technology accomplishments in aerospace propulsion systems, and to start up new commercial enterprises. Although there are not many commercial products being manufactured using metal matrix composites at this time, it is anticipated many new products will be developed as this technology matures.

The metallurgical study of metal matrix composites has evolved over the last twenty years, with primary interest from the aerospace industry in search of new light-weight, high strength materials for air frame and spacecraft structures. More recently other industries have begun taking a look at metal matrix composites, including the automotive and electronic industries. The two categories currently in use are the continuous filament and the discontinuously reinforced materials using predominantly aluminum matrix alloys. Reinforcement materials include a number of matrix materials, such as aluminum, magnesium, copper, titanium, nickel, etc.

Research studies dealing with metal matrix composites have to be concerned with solidification phenomena in which the melt will generally exist in more than one phase. Whether the liquid is monotectic or simply particulates distributed in a melt, density differences will be affected by gravity. For this reason there is considerable interest in the microgravity materials processing community to study metal matrix composites.

Silicon carbide is the most widely utilized discontinuous ceramic reinforcement today. This reinforcement is available in a range of sizes and morphologies. Transmission electron microscopy studies of SiC reinforced MMC's has shown that, depending upon the preparation process, the resulting morphology of the MMC may be heavily faulted. For this purpose further research with this material is important.

For the purposes of this work, we have chosen to work with aluminum-silicon carbide as a representative system. This work was performed in conjunction with Dr. Don Morel of Applied Research Corporation.

Processing metal matrix composites in reduced gravity provides an environment in which the gravity driven processes are greatly reduced or eliminated. For instance, in the case of particulate reinforced composites, Stokes forces that dominate segregation processes for large particles in 1 g, do not influence the process. Also, reduced buoyancy driven convection in reduced gravity will enable Brownian motion to dominate the thermal flow characteristics of small particle dispersions.

For this study, monotectic alloy materials are created by rapid melt/rapid solidification processing on the NASA KC-135. Separation of the uniform liquid into two liquids may occur by either of two processes; spinodal decomposition or nucleation followed by growth. In the first case, the liquid is unstable to composition waves, which form and grow, giving liquids of two different compositions. In the latter process discrete particles of the second liquid phase form via thermal fluctuations and then grow by diffusion. The two processes are very different, with the determining process being dictated by temperature,

composition, and thermodynamic characteristics of the alloy. The first two quantities are process variables, while the third is determined by electronic interactions between the atoms in the alloy. In either case the initial alloy decomposition is followed by coarsening, resulting in growth of the particle size at nearly constant volume fraction.

In particular, reduced gravity experiments on monotectic solutions have shown a number of interesting results in the KC-135. Monotectic solutions exhibit a miscibility gap in the liquid state, and consequently, gravity driven forces can dominate the solidification parameters at 1 g. In reduced gravity however, the distribution of the phases is different, resulting in new and interesting microstructures.

The Rapid Melt/Rapid Quench Furnace allows one to melt a sample and resolidify it in one parabola of the KC-135's flight path, thus eliminating any accumulative influence of multiple parabolas to affect the microstructure of the material.

II. Experimental

The samples used for this study were prepared as a fine distribution of silicon carbide in an aluminum matrix by Dr. Don Morel at Applied Research Corporation. The preparation was performed by mechanically mixing powder starting materials until the mixture appeared to be homogeneous. The mixture was then hydraulically pressed into a rod from which the flight and ground samples were cut.

Prior to any research activities using the RMRQ furnace could begin several modifications and repairs were required to make the system operational for both ground and flight activities. Having flown once during the month of January 1990 a number of problems were determined and had to be resolved prior to another flight. The final report for the contract of that time period (NAS8-36955 D.O. 21) provides the details of those problems and therefore will not be discussed in detail here. However the single most important problem involved the temperature control system for the three heater cores within the furnace.

A. Hardware modifications

Initially the RMRQ system used the single AT grade (80286-8MHz) computer to provide all of the control and data collection activities associated with the operation of the system. Included in the software was the ability to control the three DC power supplies through three digital to analog output ports. By controlling the 0 to 5 volt DC control signal to these power supplies the DC current to the three furnace heater cores could be regulated. This method of control presented several problems. First the AT computer it self was overtaxed with the responsibility of controlling the entire RMRQ system and as result could provide only limited house keeping for the temperature control algorithm. This resulted in too few a number of loops to determined what the temperature was of the three heater cores, average out the noise levels and then provide a process control signal to the DC power supplies. Since this furnace system uses type B thermocouples (Pt-30%Rh vs. Pt-6%Rh) the problem with the signal to noise ratio is important. Type B thermocouples have one of the lowest millivolt output signals of all the thermocouples (only 11.257 mv at 1600°C) and therefore EMI and RFI noise superimposing upon the thermocouple signal becomes a major impact on the system accuracy. A 0.5 mv RMS ripple

on the signal will induce approximately a $\pm 45^{\circ}$ error. In addition to the software the control algorithm did not incorporate a PID (proportional-integral-derivative) function which is required for good temperature control. The outcome was a furnace temperature which was subject to drifts of 30° centigrade and inaccuracies of 30 to 40 degrees.

To correct this problem the relatively simple addition of off-the-shelf temperature controllers was implemented. Three Eurotherm model 818S digital temperature controllers along with three 461 SCR power controllers were installed. The power controllers were set to provide phase angle firing control of the current supplied to the heater cores. While this provides one of the most accurate methods for controlling temperature its main disadvantage is the increase in EMI noise generated by the quick voltage spikes during firing. This does not present a problem to the temperature controllers themselves since they are specifically designed to manage such problems. However the data acquisition board in the computer does not contain the components to filter out such noise and the result is a noisy signal recorded on the hard drive.

Necessary changes to the software were also performed. This involved rewriting the C code for both the control file edit and RMRQ control programs. The routines associated with temperature control actions were simply deleted. Additionally in the original design of the RMRQ the capability of a directional solidification furnace (which failed to work properly) was included. Since the mechanism for directional solidification was removed earlier the C code associated with directional solidification.

Improvements to other aspects of the system included the thermocouple signal lines. Much of the existing wiring had to be replaced with shielded cabling resulting in an improved signal to noise ratio. Several intermittent connections which had plagued the operation in the past were tracked down and repaired. The AT computer itself had an intermittent problem with its power supply. Attempts to have it repaired by an on site contractor failed. Finally several cold solder joints on the power supply board were found and repaired. In addition to repairing the power supply a high density floppy drive was added to the system. This allowed easy downloading of the experiment data for later processing.

The next problem involved the furnace heater cores. In the existing design the cores were comprised of 0.020" diameter Pt/30%Rh wire wrapped evenly over the length of the alumina core. This size of wire was too small in regard to the watt densities per surface area units needed to reached operating temperatures of 1600° C or higher. As result premature burnouts occurred. Also the wire wrap spacing around the alumina cores being evenly spaced failed to produce any isothermal zone condition within the heater cores. During the fabrication of the new heater cores wind spacing was held between 0.050" and 0.075" for a distance of 1.00" at each end of the core and is then exponentially increased to the center of the alumina tube. This produces a simulated guard coil arrangement that helps to provide a more isothermal zone through the core. In Figures 1 and 2 a comparison of thermal gradients between the old and new core designs indicates an improvement in the isothermal zone of the Rapid Melt Core. Figure 3 is a cross section of the furnace canister indicating the relative position of the heater cores.

RMRQ THERMAL PROFILE IN AN AIR ENVIRONMENT ORIGINAL HEATER CORE DESIGN

TEMPERATURE IN DEGREES C

Figure 1: Thermal profile using old heater core design. Note how there is no isothermal zone in the Rapid Melt Core. RMRQ THERMAL PROFILE IN AN AIR ENVIRONMENT **USING HEATER CORES INSTALLED OCTOBER 1991**

Note better isothermal zone within the Rapid Melt Core. Figure 2: Thermal profile of new heater core design.

TEMPERATURE IN DEGREES C

Figure 3: Cross section of the RMRQ furnace canister.

In the new design 0.032" diameter Pt/30%Rh wire was used which met the watt density requirement. Also the maximum operating temperature of the Rapid Melt Core can now be rated to 1700° C. Premature burnout is now no longer a problem especially when considering that the heat up rate is now ramped at a rate of 1 degree per 3 seconds by the Eurotherm controller. Heating rates much faster than this when starting out at ambient temperature will increase the failure rate of the cores.

Each heater core had two type B thermocouples located at the center of each core. Failures were common having been fabricated from too fine a gauge wire (0.008" diameter). Often a failure would occur simply due to the thermal shock of rapid translation during a sample processing run. The new cores were fabricated with 0.028" diameter thermocouple wire which provides the necessary strength to survive. One thermocouple signal is routed to the Eurotherm temperature and the other provides a signal to the computer for data acquisition of the core temperatures. This signal however is subject to considerable fluctuation on the computer display due to the lack of signal conditioning within the A/D board and software.

B. Summary of flight sample processing

After having completed the modifications and testing to the RMRQ on October 4th, 1991 the system was loaded for transport to Ellington Air Field, Texas. Arriving Monday, October 7th at Ellington the system was checked out on the ground and subsequently uploaded into the KC-135. Since this system had flown once before there was no need for a technical readiness review (TRR), however there was still an informal review by JSC Safety.

On the following day preparations were completed to the RMRQ for a flight run. Upon powering up the system it was determined that the current draw of the three heater cores was exceeding the power ratings of the aircraft's 400 Hz to 60 Hz power converter. This converter is limited to 20 amps of 120 VAC at 60 Hz. In order for the RMRQ furnace to heat up rapidly enough to be ready for flight the current draw was exceeding the 20 amp limit. As result there were no samples processed during the initial flight. Subsequent to the flight

a larger more powerful converter was uploaded onto the aircraft. This unit owned by the Life Sciences section of JSC easily provided all the necessary power to heat the furnace at the required rate.

During the course of two flights on Wednesday two aluminum alloys reinforced with SiC particulates were processed. They were approximately 2 cm in length and 0.4 cm in diameter. Their melting points were defined as somewhere between 660° and 670° C. During the morning flight the first sample (file ID: RMRQF3) was processed during the second parabola of the flight with no problems encountered during the run. Ultra high purity Helium gas was used in all three runs to purge the sample crucible at approximately 2 to 3 liters per minute while it was being heated.

There was one problem that plagued the operation during the entire week. Since the rapid melt core is located below the preheat core there is a significant heat flux from the rapid melt core. Normally this would have caused the preheat zone to exceed the temperature setpoint however by increasing the argon purge gas flow rate through the crucible the sample temperature was kept below the melting point. In all three flight runs the power to the preheat was turned off once reaching temperature.

Referring to Appendix A the sample temperature, furnace position and vertical gravity level is plotted. Data point resolution is 1 reading per second. (It should be pointed out that only the time period of the actual sample processing is provided in all of the appendixes. The warm up and soak periods and not included however are available elsewhere.) Also just prior to the start of the rapid melt phase of the run the power to the three heater cores was turned off. Two reasons for this were (1) to eliminate any magnetic field around the sample while it was being processed and (2) by powering down the Eurotherm SCR power controllers the EMI generated by the phase angle firing was eliminated. This action then provided a cleaner thermocouple signal to be recorded by the computer. This action of powering down the heaters was performed on all three runs. Only one sample per flight could be processed due to the time requirements for cooling down the furnace, reloading a new sample and then reheating the furnace back to the require temperatures.

Subsequent to landing the sample was removed from the crucible and examined. It had the appearance of never melting, therefore it was decided to change three of the experiment parameters for the next run, namely the booster and rapid melt temperatures and the dwell time in the RMZ. It was later determined in Huntsville that in fact the sample had melted. Increasing these three parameters on the next flight provided a processed sample which clearly indicated it had melted. In addition there was a heavy oxidation layer with large 1 to 2 mm pores and pits present over the entire surface of the sample. Refer to Appendix B for the plot of the data during the run. It appears that during the quench phase of the run the sample thermocouple failed, probably due to thermal shock. After reviewing the data acquisition print out of this run the failure was confirmed to have happened.

During the next day the third and final sample (RMRQF5) was processed using the same sample parameters as used in run RMRQF4. Referring to Appendix C indicates no evidence of any problems during the run however this sample shows the same level of oxidation, pores and pits as RMRQF4. Solidification of the sample is indicated just prior to exiting the low g period.

C. Summary of ground sample processing

In February of 1992 the ground based samples were finally prepared after a long delay. Samples were cut from the same stock material used in the flight samples however they were from a different hot press run. They were then machined to the same dimensions as the flight samples and subsequently cleaned in pure isopropyl alcohol. Ground based samples were processed using the same sets of experiment parameters used during the processing of the flight samples.

The results of the first ground based run RMRQG8 were unlike any previous -- either flight or ground based. Referring to Figure 9 indicates that the sample expanded or foamed approximately 3 times the original length of 2 cm. Even though this sample was processed at the lower RMZ temperature of 1400° C, sectioning revealed an extremely porous condition similar to flight samples RMRQF4 and F5 however much worse. At present there is no clear explanation as to what caused the "foaming" action. Possibilities include:

- (1) The presence of water trapped within the sample at the time of hot pressing the raw powders.
- (2) The possibility that the sample superheated and boiled.
- (3) Other impurities present with the stock materials.

(4) Due to the slow reaction time of the present data acquisition system it is possible that the sample reaches a higher temperature during the rapid melt phase than is indicated by the data -- how much higher is unknown. Appendix D provides a plot of the temperature profile of the sample during the processing run and is comparable to flight run RMRQF3.

Run RMRQG9, using the same parameters as in RMRQG8, produced the same results. In referring to the plots of the these two runs there is a predominant endotherm reaction as these two samples are being melted in the rapid melt zone. This endotherm is not evident in any of the three flight runs.

In a separate test using a Lindberg oven a small piece of the remaining stock material was heated slowly (approximately 1° C/sec) to a temperature of 820° C in an air atmosphere. After cooling the sample and polishing one side it was determined not to have any of the typical foamed morphology found in RMRQF4 and F5 and RMRQG8 and G9.

In an effort to understand what is causing the sample to foam, tests were performed using thermal gravimetric analysis (TGA). Since one possibility for the foaming includes the off gassing of either trapped water or impurities during the rapid melt phase, by the processing of a small sample in the TGA any off gassing would show up as a change in the sample's mass at a particular temperature. Identifying at what temperature the off gassing occurs will help to determine what contaminants may be present within the sample.

On March 18th, two identical TGA runs were perform on the ground sample material. The process parameters simulated to some degree the RMRQ run parameters used on RMRQG8 and G9. This included a heat up rate of 20°C/minute to 520°C where the temperature was held constant for 20 minutes. The ramp was then increased to 200° C/minute to 820°C, held for one minute then cooled to ambient. Both runs were performed in a nitrogen atmosphere and not helium as in the RMRQ runs. The results of both runs did not indicate any off gassing of the material. Instead there was a mass increase of 0.093 mg

and 0.256 mg. It is believed that this increase in mass is due to the reaction of the nitrogen gas with the silicon carbide causing the formation of silicon nitride. Referring to Figures 4 and 5, both TGA plots indicate a mass increase starting around 350° C and continuing at a

Figure 4: TGA plot run number one of Al+SiC material simulating RMRQ ground runs RMRQG8 and G9.

Figure 5: TGA plot run number two, repeat of the first run.

constant rate until reaching the rapid melt phase of 820° C where the rate greatly increases. Since these two samples were processed in nitrogen instead of argon it is difficult to determine conclusively that there was no off gassing occurring during the runs.

Subsequent to the TGA runs both samples were examined under a stereo microscope and were found to have foamed. Relatively large pores were present within each of the samples. The amount of expansion seems to be inconsistent in the three axes with preferred direction of growth in the longitudinal or long axis. This result is inconsistent with the sample that was heated in the Lindberg oven. As mentioned earlier that sample showed no signs of foaming.

In a last ditch effort to provide a valid ground based processed sample it was decided to remove the only remaining piece of unprocessed flight sample material from its mounting compound. The sample was then cleaned ultrasonically in acetone and isopropyl alcohol and then dried at 50° C overnight. In order to guarantee a good flow rate of purge gas through the crucible a 1 mm hole was diamond drilled through the crucible just above the sample location. To increase the odds of success the thermocouple and crucible were baked out at 1200° C for several hours to remove any possible contamination.

On April 3rd, 1992 the sample was processed in the RMRQ with limited success. Since it is believed that the foaming problem is due to overheating the sample the dwell time in the rapid melt phase was reduced to 9 seconds. According to the previous thermal data it was determined that this would keep the sample from exceeding 800° C. What was not thought of at the time was the fact that this sample was only one half the mass of the previous flight and ground samples and as such would heat up quicker. After reviewing the thermal data the sample reached 821° C. After sectioning and polishing it was determined to have foamed up although not as severely as the previous two ground runs. There was one small area of the sample free of voids of which photomicrographs were taken. Appendix F provides the thermal plot and data file print out of ground run RMRQG10.

III. Metallurgy Results.

To provide a record of their exterior morphology the samples were first photographed along side a scale. Figures 6, 7, and 8 are of the three flight samples and figures 9, 10, and 11 are of the ground processed samples. They were then sliced longitudinally using a 0.030" thick diamond blade. One half of the samples were sent to Dr. Morel unmounted. The other halves were mounted and polished to a 1 micron finish in preparation for photomicrography.

Figures 11 through 20 provide various views of the flight and ground sample microstructures. Two levels of magnification were used -- 200X and 400X at the photograph. This was determined by taking calibration photographs. Location of each photograph is identified by the graphic representation of the sample cross section beside each figure. All photographs were taken using polarized light to increase contrast.

Photographs of Flight Sample Exterior Morphology

Figure 6

RMRO flight sample ID RMROF3 Processed during morning flight on 10/09/91 Rapid Melt Zone Temp = 1400°C Preheat Zone Temp = 400°C Booster Zone Temp = 800°C 10 second dwell time in RMZ prior to 10 second.

Figure 7

RMRO flight sample ID RMROF4 Processed during afternoon flight on 10/09/91. Rapid Melt Zone Temp = 1500°C Preheat Zone Temp = 500°C Booster Zone Temp = 800°C 15 second dwell time in RMZ prior to 10 second quench period.

Figure 8

RMRO flight sample ID RMROF5 Processed during morning flight on 10/10/91. Rapid Melt Zone Temp = 1500°C Preheat Zone Temp = 500°C Booster Zone Temp = 800°C 15 second dwell time in RMZ prior to 10 second quench period.

Photographs of Ground Sample Exterior Morphology

RMRO ground sample ID RMROG8

Figure 9

Processed 02/26/92. Rapid Melt Zone Temp = 1400°C Preheat Zone Temp = 400°C Booster Zone Temp = 800°C 10 second dwell time in RMZ prior to 10 second quench period.

RMRO ground sample ID RMRQG9

Figure 10

Processed 03/11/92 Rapid Melt Zone Temp = 1400°C Preheat Zone Temp = 400°C Booster Zone Temp = 800°C 10 second dwell time in RMZ prior to 10 second quench.

RMRO ground sample ID RMRQG10

Figure 11

Processed 04/03/92. Rapid Melt Zone Temp = 1400°C Preheat Zone Temp = 400°C Booster Zone Temp = 800°C 9 second dwell time in RMZ prior to 10 second quench period.

Photomicrographs of Flight and Ground Samples

Figure 12

Flight Sample RMRQF3 200X magnification

Figure 13

Flight Sample RMRQF3 200X magnification

Figure 14

Flight Sample RMRQF3 200X magnification

Figure 15

Flight Sample RMRQF3 400X magnification

Figure 16

Flight Sample RMRQF3 400X magnification

 ∇

Figure 18

Ground Sample RMRQG10 200X magnification

Figure 19

Ground Sample RMRQG10 400X magnification

Figure 20

Ground Sample RMRQG10 10X overall view showing voids.

Results of Observations

In view of the lack and uncertainty of the data the following offers only generalized statements regarding the observed microstructure of flight sample RMRQF3 and ground sample RMRQG10.

1. In the flight sample there is a definite orientation of the silicon carbide particles with respect to the apparent direction of solidification. The long axis of the particles are parallel to the grain growth. The angle of the solidification front varies from 80 to 30 degrees from the longitudinal axis. While there are areas where the particle orientation is random, overall there is a preferential alignment of the particles especially when they are rectangular in shape. In the ground sample there was no evidence of any preferred orientation of the silicon carbide with respect to direction of solidification. This may have been due to the effect the voids had on solidification.

2. Particle distribution is not even through out the flight sample when compared to the orginal unprocessed stock material. Beginning at the top of the sample the particle density increases steadly towards the bottom. In the ground sample there are random areas were the particle density is also slightly higher. However again this may be due to the effect the void areas had on the sample during solidification.

3. Formation of the voids or pores started at the grain boundries as submicron sized bubbles and then coalesced to form up to 2 mm diameter sized pores within the sample. As to what caused the formation of the bubbles is unknown.

4. The first two ground samples (RMRQG8 and G9) foamed approximately twice as much as the flight samples.

5. There is evidence that the flight sample did not melt 100% through out the total length. The bottom edges, unlike the top, are not rounded over. If it had melted then surface tension should have pulled in sharp 90° corners.

V. Conclusions

Through the course of this project there were numerous hardware problems which had to be overcome prior to the beginning of any science research. In fact the majority of the time was spent repairing and modifying the hardware so that samples could simply be processed in the RMRQ furnace. Additionally during the course of processing samples several problems developed which ultimately resulted in little science being collected. The primary problem which led to this situation was the "foaming up" of the samples. It is believed to have been caused by simply overheating the samples during the rapid melt phase of the run. The microphotographs of flight sample RMRQF3 clearly indicated that at most of the grain boundaries micron to submicron size bubbles began to develop. Had the sample been heated for 15 seconds as were RMRQF4 and F5 it too probably would have developed the same large porous morphology.

One additional unknown which could be a factor in explaining why RMRQF3 did not foam as much as the other samples is whether or not it was actually in the rapid melt zone during the rapid melt phase of the run. In reviewing the vertical acceleration data there is a seven second period where the sample was in a slight negative g period. This could have resulted in the sample floating up and out of the rapid melt zone and back into the preheat zone, therefore the sample would never have been heated to the temperatures indicated by the sample thermocouple. While it is clear that the sample did melt and if in fact it did float up from the rapid melt zone, then there is no way to determine exactly what temperature the sample reached. Since every other sample did foam, this scenario must be considered as a possibility.

Having only 7 samples to work with for both the flight and ground sample processing left no margin for error and as such actions to investigate cause, effect and the proper corrections could not be implemented at this time.

Since every sample having been processed in the RMRQ in either the ground or flight mode foamed, very little can be said as to the effects that gravity has on the solidification of this particular alloy system. If we limit the results to only flight sample RMRQF3 and ground sample RMRQG10 then some comparisons can be presented. It does has to be assumed however that the micron size pores in the flight sample and the large pores in the ground sample did not significantly influence the results under consideration.

In reviewing the events of this project there is one change to the hardware that is simple in nature and would make the controlling of the experiments considerably easier. In the present version of software used to control the RMRQ system the dwell time of the sample within the rapid melt zone is controlled simply by a time factor of 1 to 15 seconds. There is no present way to accurately control how hot the sample actually gets. By modifying the software to control on the sample temperature and not simply on a time interval would allow future samples to be melted to a certain temperature. This would prevent over heating of the sample which could have caused the primary loss of data in this study.

IV. Video Convective Flow Analyzer Activities

A separate project from the RMRQ study involved the recently developed KC-135 Video Convective Flow Analyzer. The following documents that activities performed on this system.

In early summer of 1991 efforts began to modify the KC-135 Video Convective Flow Analyzer. This involved upgrading the VCFA experiment cell to include the capability of directional translation. This would as a result convert the stationary Bridgman furnace into an actual directional solidification furnace with the capability of video monitoring the melt interface. The primary thrust for this modification was for studying macro cellular convective flow in a thermal modeling system. Requirements were received from UAB in March detailing desired translation rates, video magnification and thermal gradients. The following is a listing of those requirements for such an experiment.

1. Stable translation of speeds down to 0.1 micron/second.

2. A maximum operating temperature of 100° C for the hot zone and -40° C in the cold zone.

3. Temperature stability of 0.1° C in both the hot and cold zone and uniform lateral temperature gradient across the sample.

r

18

- 4. High resolution video capable of resolving 1.0 micron.
- 5. Video magnification of 200 to 400x at the video monitor.
- 6. Ability to position the camera in two directions as needed for focusing.

Due to time constants with other contracts work did not actually begin on the CFA until September. At that time the three precision ball/screw drives were order from THK Co. These were stock items and as result required some modification upon arrival. Work then turned to installation of the three drives into the existing CFA experiment cell. A precision pulley and belt system was developed to provide the transfer of power from the servo motor to the ball/screw shafts. The lead on the shafts was 0.5 mm per revolution. In order to provide a smooth 0.1 micron/second translation rate a 60 to 1 gear box reducer was added into the transmission scheme. This will actually provide a bottom end translation rate of 0.08 micron/second - if ever needed. Figure 21 provides some details of the drive system.

The next major task involved the upgrading of the cold block cooling system to provide temperatures down to -40°C. Presently the system uses six Melcor thermoelectric modules each with a maximum of 35 watts pumping capability each. In the present configuration temperatures as low as -15° C could be reached. By cascading two modules it is estimated that the pumping capacity will increased to approximately 350 watts total. If this in itself fails to provide the -40°C cold block temperature then there is the possibility of flowing liquid nitrogen vapor over the heat exchanger used in the closed loop cooling system for the hot side of the thermoelectrics. This would lower the temperature of the coolant well below that of ambient and provide a sufficient temperature differential to the hot face.

In controlling both the furnace and cold block temperatures two Eurotherm model 808 temperature controllers are employed. Using RTDs to sense temperature a 0.1° C resolution and stability is possible. In addition, the large mass of the hot block and cold block provides improved thermal stability by acting as a thermal damper.

Work on this project was stopped in November of 1991 due to ending of the contract. Plans are now underway to secure additional funding to complete this task in time for the first KC-135 flight sometime during the summer of 1992. Tasks remaining to complete include final assembly of the translation system, fabrication of the hot and cold block to fit the sample configuration, installation of a position transducer system, electronics integration, and minor software modifications.

APPENDIX A

.

,

Data file of flight sample RMRQF3 processed on October 9th, 1991 on board the KC-135

RAPID MELT/RAPID QUENCH FURNACE EXPERIMENT - FLIGHT BASED RUN

File Name: RMRQF3.WR1

,

Type of Sample: ARL Aluminum alloy with Silicon Carbide for Don Morel Sample was 3.88 mm in diameter and 20 mm long.

Data of Sample Processing: October 9th, 1991

Rapid Melt Zone Setpoint = 1400 C Preheat Zone Setpoint = 400 C (NOTE: PHZ power was turned off due to heat flux from RMZ)

Booster Zone Setpoint = 800 C

NOTES: First flight sample processed since new heater cores and temperature control system installed.

DIST is furnace travel, VEL is furnace velocity, STAT is experiment status, PHZ is preheat temp, RMZ is rapid melt temp. Translation distances were 15 cm for each stage with 10 second dwell time at RM phase.

Bad temperature data indicated by blank spaces in FURNACE TEMPS columns.

				FUE		EMPS	ACCEL	EROME	TERS	SAMPLE
TIME	DIST		STAT	PHZ	BMZ	BZ	Z AXIS	Y AXIS	X AXIS	TEMP
			3	526		845	0.009	0.023	0.998	536
201	Ň	õ	3	526		845	0.009	0.023	0.998	536
202	0	0	3	526		828	0.003	0.016	1.030	538
302	0	Ő	3	526	1472	847	-0.010	-0.004	1.080	526
204	0	õ	3	528	1489	840	0.013	0.007	1.092	524
205	0	Ő	3	530	1439		0.008	0.011	1.298	554
305	0	õ	3	523		837	0.008	0.028	1.450	536
300	Ň	õ	3	534		827	0.007	0.017	1.513	541
307	0	õ	3	525	1477	852	0.005	0.020	1.640	522
200	Õ	ň	3	530	1485	832	0.001	0.009	1.680	519
210	0	Ő	3	526			0.008	0.028	1.738	559
210	0	ň	3	521		858	0.009	0.019	1.732	533
010	Ň	Õ	3	539	1482	824	0.016	0.043	1.718	533
012	Õ	õ	3	532		831	0.001	0.050	1.726	525
213	ő	ň	3	520		858	0.007	0.043	1.706	530
014	0	ň	3	528			0.034	0.036	1.675	542
010	0	ň	3	528		824	0.020	0.056	1.719	540
217	. 0	0 0	3	528	1488	844	0.001	0.059	1.745	548
210	0	Ő	3	528	1479	846	0.011	0.063	1.739	510
210	Ŏ	õ	3	537	1480	822	-0.005	0.064	1.724	516
200	0	0	3	528			0.000	0.097	1.738	55 9
320	0	õ	3	520		859	0.007	0.093	1.707	537
300	Ő	õ	3	538		815	0.009	0.114	1.747	532
302	0	ň	3	530		836	0.018	0.117	1.777	522
323	Ő	ň	3	521	1487	857	0.012	0.128	1.759	524
324	ň	ő	3	524		836	-0.001	0.128	1.721	544
326	Ő	ő	3	529		825	0.020	0.109	1.612	535
320	õ	ŏ	3	537		811	0.008	0.108	1.257	544
328	Õ	Ő	3	534	1472	832	-0.007	0.041	0.474	512
320	7 408	100	4	521	1486	855	0.008	0.025	0.226	512 START
330	14 815	100	4	528		824	0.026	-0.071	0.131	551 RAPID
331	15	100	4	522		841	-0.092	0.078	0.315	543 MELT
332	15	0	4	532	1460	828	-0.004	0.000	0.062	548
333	15	Ő	4	528	1465	835	0.020	-0.001	0.035	563
334	15	õ	4	534	1461	819	0.016	0.009	0.030	581
225	15	Õ	4	534		806	0.013	0.000	0.003	599
336	15	ő	4	530		827	0.004	0.014	-0.014	616
337	15	Õ	4	539	1460	812	0.005	-0.001	-0.007	638
338	15	Õ	4	532	1461	828	0.001	0.006	-0.005	658

					FUR	NACE 1	EMPS	ACCEL	EROME	TERS	SAMPLE
		TRIO	VEI	STAT	PHZ	RMZ	BZ	Z AXIS	Y AXIS	X AXIS	TEMP
		15	0	4	532	1463	821	0.003	0.005	-0.018	680
	339	15	Õ	4	532			0.005	-0.001	-0.013	699
	340	15	0	4	523		840	-0.004	0.008	-0.001	720
	341	00 400	100	4	535	1471	828	-0.049	-0.011	-0.022	737 START
	342	22.400	100		525	1469	850	-0.029	0.014	-0.239	754 QUENCH
	343	29.815	100	7	523	1467	847	0.094	-0.038	-0.032	747
	344	29.996	0	7	520	1407	837	-0.002	-0.005	-0.018	688
	345	29.996	0	7	512		862	0.016	-0.003	-0.013	616
	346	29.996	0	7	513	1467	843	0.002	-0.001	0.015	562
	347	29.996	0		527	1407	838	-0.005	0.000	0.020	521
	348	29.996	0	7	529	1405	822	0.005	-0.006	-0.009	496
	349	29.996	0	7	533	1404	026	0.016	-0.013	0.027	478
	350	29.996	0	7	529	14/5	835	0.012	-0.010	0.266	457
	351	29.996	<u>U</u>	<u>'</u>	524	1401	000	0.012	-0.018	0.591	437
	352	29.996	0	/ -	500	14/4	934	0.013	-0.013	0.835	399
	353	29.996	0		530	1404	907	0.010	0.010	1 023	404
	354	29.996	0	<u>/</u>	531	1457	021	0.023	0.004	1 227	400
	355	29.996	0		520		0.00	0.011	0.020	1.306	372
	356	29.996	0		520	4 400	04/	0.013	0.015	1 302	373
	357	29.996	0	<u>/</u>	543	1400	000	0.014	0.000	1 299	371
	358	29.996	0	<u>/</u>	526	1400	040	0.017	0.002	1 368	368
	359	29.996	0	7	529	1464	842	0.015	0.002	1 380	364
	360	29.996	0	7	529		047	0.005	0.002	1 420	364
	361	29.996	0	7	521	4 4 6 4	847	0.007	0.004	1 444	362
	362	29.996	0	<u>/</u>	536	1401	832	-0.002	0.020	1 354	360
1	363	29.996	0	<u> </u>	527	1462	844	0.020	0.029	1 447	361
	364	29.996	0	7	526	1461	840	0.002	0.030	1 476	358
	365	29.996	0	7	529		821	-0.001	0.031	1.470	358
	366	29.996	0	7	521	4 4 5 0	843	0.003	0.047	1 60/	358
	367	29.996	0	7	526	1458	831	0.006	0.070	1 664	357
	368	29.996	0	7	526	1456	840	0.010	0.057	1 700	356
	369	29.996	0	7	526	145/	842	0.008	0.000	1.709	255
	370	29.996	0	7	525	1450	840	0.011	0.041	1.739	355
	371	29.996	0	7	526	1454	841	0.006	0.053	1.770	355
	372	29.996	0	7	527	1452	830	-0.001	0.000	1.770	355
	373	29.996	0	7	527	1449	841	0.002	0.040	1 790	355
	374	29.996	0	7	526	1451	839	CUU.U-	0.040	1 907	357
	375	29.996	0	7	528	1440	838	0.010	0.045	1 705	357
	376	29.996	0	7	526	1452	842	0.001	0.033	1.795	355
	377	29.996	0	7	523	1448	830		0.019	1 704	351
	378	29.996	0	7	524	1448	842		0.003	1 767	346
	379	29.996	0	7	526	1448	833	0.000	0.024	1.707	340
	380	29.996	0	7	530	143/	821	0.004	0.032	1.700	250
	381	29.996	0	7	532	1436	820	-0.008	0.031	1.700	359
	382	29.996	0	7	527	1439	823	0.009	0.044	1./00	307
	383	29.996	0	7	521	1439	842	0.003	0.034	1./41	301
	384	29.996	0	7	523	1445	846	0.006	0.036	1./49	337 355
	385	29.996	0	7	521	1442	847	0.004	0.047	1./01	300
	386	29.996	0	7	522	1451	850	0.004	0.064	1./2/	332
	387	29.996	0	7	521	1445	838	0.015	0.059	1.739	343
1	388	29.996	0	7	524	1443	842	0.000	0.057	1./14	348

.

-

					FUF	RNACE	TEMPS	ACCE	LEROME	TERS	SAMPLE
	TIME	DIST	VEL	STAT	PHZ	RMZ	BZ	Z AXIS	Y AXIS	X AXIS	TEMP
\sim	389	29,996	0	7	526	1440	835	-0.006	0.074	1.686	351
	390	29,996	Ō	7	527	1431	828	0.005	0.065	1.713	352
	391	29.996	0	7	527	1435	830	0.009	0.089	1.715	354
	392	29.996	0	7	529	1429	812	-0.004	0.083	1.694	356
	393	29.996	0	7	530	1426	816	0.013	0.089	1.646	357
	394	29.996	0	7	531	1429	815	0.005	0.104	1.706	358 AC OFF AND
	395	46.36	0	7	530	1386		0.012	-0.001	0.019	350 FURNACE
	396	46.36	Ó	7	531	1387		0.019	-0.012	-0.001	358 RAISED TO
	397	46.36	Ó	7	524	1399	796	0.013	-0.014	0.021	362 TOP.
	398	46.36	0	7	523	1396	806	0.003	-0.019	0.296	351
	399	46.36	Ō	7	523	1399	805	0.007	-0.004	0.634	351
	400	46.36	Ō	7	526	1389	804	0.007	0.004	0.803	351
	401	46.36	Ō	7	523	1391	803	0.017	0.005	0.877	351
	402	46.36	Ō	7	526	1395		0.011	0.015	0.990	351
	403	46.36	Ō	7	524	1391	800	0.011	0.002	1.089	351
	404	46.36	Ō	7	524	1395	798	0.013	0.006	1.194	350
	405	46.36	Ō	7	527	1387	798	0.018	0.009	1.288	352
	406	46.36	Ō	7	525	1386	800	0.008	0.016	1.334	350
	407	46 36	Ō	7	525	1397	789	0.016	0.005	1.382	351
	408	46.36	0	7	523	1383	797	-0.003	-0.001	1.424	351
	409	46 36	Ō	7	527	1393	797	0.000	0.003	1.423	352
	410	46.36	0	7	524	1382	795	0.025	0.022	1.409	350
	411	46.36	Ő	7	524	1379	798	0.026	0.020	1.362	350
	412	46.36	Ő	7	523	1387	784	0.030	0.023	1.331	350
s 2	413	46.36	Ő	7	523	1381	794	0.008	0.037	1.406	350
\smile	414	46.36	Ō	7	525	1376	793	0.011	0.031	1.483	351
	415	46.36	Ō	7	522	1374	791	0.003	0.048	1.586	351
	416	46.36	Ō	7	524	1381	794	0.020	0.032	1.614	350
	417	46.36	Ō	7	526	1387	782	0.014	0.043	1.699	351
	418	46.36	Ō	7	525	1374	792	-0.004	0.040	1.759	351
	419	46.36	Ō	7	526	1380	790	0.006	0.032	1.796	350
	420	46.36	Ō	7	524	1368	789	-0.001	0.043	1.802	351
	421	46.36	Õ	7	525	1371	788	0.003	0.048	1.802	351
	422	46.36	Ō	7	524	1377	779	0.009	0.034	1.826	350
	423	46.36	0	7	523	1370	784	0.010	0.055	1.817	347
	424	46.36	0	7	529	1366	775	0.007	0.053	1.834	350
	425	46.36	0	7	528	1363	777	0.006	0.039	1.843	355
	426	46.36	0	7	523	1367	789	0.014	0.040	1.819	360
	427	46.36	0	7	518	1377	792	0.011	0.038	1.834	355
	428	46.36	0	7	521	1370	797	0.002	0.054	1.799	342
	429	46.36	0	7	526	1368	779	0.009	0.047	1.796	339
	430	46.36	0	7	530	1352	762	0.008	0.041	1.794	347
	431	46.36	0	7	527	1352	764	0.007	0.052	1.791	358
	432	46.36	0	7	522	1360	772	0.005	0.043	1.777	362
	433	46.36	0	7	519	1369	795	0.008	0.062	1.799	350
	434	46.36	0	7	522	1371	793	0.003	0.043	1.778	342
	435	46.36	0	7	523	1359	773	0.007	0.053	1.771	338
	436	46.36	0	7	531	1346	758	-0.007	0.071	1.741	345
	437	46.36	0	7	527	1347	749	-0.003	0.079	1.746	353
\cup	438	46.36	0	7	527	1342	762	0.013	0.067	1.743	357

,

.

24

.

APPENDIX B

Data file of flight sample RMRQF4 processed on October 9th, 1991 on board the KC-135 Second flight of the day

Figure 5: Plot of flight sample RMRQF4 results.

RAPID MELT/RAPID QUENCH FURNACE EXPERIMENT - FLIGHT BASED RUN

File Name: RMRQF4.WR1

Data of Sample Processing: October 9th, 1991

Type of Sample: ARL Aluminum alloy with Silicon Carbide for Don Morel Sample was 3.88 mm in diameter and 20 mm long.

Rapid Melt Zone Setpoint = 1500 C Preheat Zone Setpoint = 500 C (NOTE: PHZ power was turned off due to heat flux from RMZ)

Booster Zone Setpoint = 800 C

NOTES: Second sample processed during the alternoon flight (second flight of the day).

DIST is furnace travel, VEL is furnace velocity, STAT is experiment status, PHZ is preheat temp, RMZ is rapid melt temp. Translation distances were 15 cm for each stage with 15 second dwell time at RM phase. Bad temperature data indicated by blank spaces in FURNACE TEMPS columns.

						EMPS ACCEL	FROME	TERS	SAMPLE
TIME	Пет		STAT			BZ ZAXIS	Y AXIS	XAXIS	TEMP
		<u></u>	3171	526	1534	0.020	0.033	1.478	535
259	Ő	ň	3	547	1578	0.016	0.029	1.471	471
250	. 0	ň	3	548	10.0	0.014	0.006	1.351	573
209	Ő	õ	3	544	1561	0.028	0.024	1.170	453
261	Õ	õ	3	547	1532	0.022	0.008	1.217	459
262	Ő	õ	3	549	1535	0.011	0.029	1.283	510
263	õ	õ	3	543		0.021	0.028	1.536	369
264	ŏ	ō	3	547		0.027	0.053	1.659	566
265	Ō	Ō	3	534	1588	0.021	0.022	1.743	451
266	Õ	Ō	3	545		0.017	0.027	1.744	465
267	Ō	Ó	3	548		0.006	0.046	1.734	561
268	Ō	Ó	3	510	1537	0.024	0.035	1.735	515
269	Ō	0	3	550	1569	0.015	0.045	1.752	580
270	0	0	3	542		0.032	0.052	1.760	557
271	0	0	3	546	1531	-0.001	0.053	1.778	369
272	0	0	3	559	1537	0.019	0.054	1.767	564
273	0	0	3	545		0.022	0.058	1.732	452
274	Ó	0	3	553		0.028	0.067	1.750	464
275	0	0	3	549		0.021	0.067	1.796	518
276	0	0	3	677	1569	0.012	0.078	1.773	400
277	0	0	3	543		0.004	0.083	1.715	519
278	0	0	3	549		0.011	0.086	1.728	541
279	0	0	3	521	1548	0.007	0.082	1.701	474
280	0	0	3	547	1580	0.030	0.094	1.696	559
281	0	0	3	542		0.025	0.106	1.726	539
282	0	0	3	544	1539	0.001	0.110	1.739	458
283	0	0	3	550		0.025	0.149	1.757	546
284	0	0	3	542		0.019	0.137	1.745	415
285	0	0	3	541		0.020	0.153	1.743	544
286	0	0	3	546		0.018	0.116	1.394	563
287	0	0	3	547	1572	0.006	0.039	0.647	557
288	7.53	100	4	545	1533	0.004	0.022	0.375	561 START
289	15	100	4	546	1542	-0.071	-0.064	0.182	552 RAPID
290	15	0	4	546	1531	0.046	-0.003	0.030	553 MELT
291	15	0	4	542	1542	0.006	-0.002	0.014	5/4
292	15	0	4	543	1579	0.010	-0.007	0.045	598
293	15	0	4	544	1536	0.017	0.010	0.043	615
294	15	0	4	544	1575	0.015	0.008	0.032	638
295	15	0	4	548	1524	0.014	-0.003	0.015	661

					FUR	NACE TE	MPS	ACCEL	EROME	TERS	SAMP	LE
	TIME	DIST	VEI	STAT	PHZ	RMZ	BZ	ZAXIS	Y AXIS	X AXIS	TEM	<u> </u>
~~~~ `	296	15	0	4	551	1589		0.009	0.002	0.015	683	
	290	15	Ő	4	545			0.005	0.005	0.019	707	
	208	15	Ō	4	545	1543		0.005	0.008	0.013	729	
	200	15	0	4	538	1555		0.021	0.008	0.003	747	
	300	15	Ō	4	544	1531		0.016	-0.002	-0.002	766	
	301	15	0	4	549	1548		0.012	0.006	0.014	790	
	302	15	0	4	553			0.014	0.001	0.011	817	
	302	15	õ	4	544	1575		0.015	0.000	0.005	843	
	304	15	ō	4	540	1534		0.012	0.000	0.001	864	
	305	22 53	100	4	543	1562		0.015	0.000	0.004	883	START
	306	30	100	4	543	1521		0.029	0.043	-0.014	904	QUENCH
	307	30	0	7	544	1545		-0.252	0.062	0.054	922	
	308	30	Õ	7	537	1509		0.002	-0.010	0.001	873	
	309	30	Ō	7	539	1531		0.003	-0.011	0.021	671	
	310	30	Ō	7	537	1548		0.015	-0.012	0.015	391	
	311	30	Ō	7	541	1523		0.009	-0.015	0.018	-267	TC FAIL
	312	30	Ō	7	542	1544		0.014	-0.007	0.105	-1094	
•	313	30	Ō	7	542			0.008	0.000	0.464	-1032	
	314	30	Ō	7	542	1555		0.006	0.020	0.898	-869	
	315	30	Ō	7	542	1526		0.021	0.040	1.181	-688	
	316	30	0	7	540	1543		0.026	0.061	1.400	-510	
	317	30	0	7	540			0.003	0.067	1.544	-83	
	318	30	0	7	541	1540		0.023	0.071	1.584	-53	
	319	30	0	7	541			0.017	0.066	1.624	-47	
	320	46.36	0	7	542	1523		0.020	0.036	1.770	-34	RAISED
	321	46.36	0	7	540	1481		0.016	0.045	1.743	-37	FURNACE
	322	46.36	0	7	542	1520		0.027	0.050	1.752	-31	то тор
	323	46.36	0	7	540	1484		0.024	0.059	1.780	-28	
	324	46.36	0	7	541	1507		0.007	0.067	1.801	-26	
	325	46.36	0	7	546	1480		0.012	0.068	1.///	-26	
	326	46.36	0	7	539	1481		0.030	0.071	1.781	-22	
	327	46.36	0	7	539	1471		0.016	0.076	1./61	-24	
	328	46.36	0	7	541	1477		0.022	0.071	1./45	-30	
	329	46.36	0	· 7	541	1495		0.020	0.087	1./44	-25	
	330	46.36	0	7	540	1475		0.020	0.103	1./58	-22	
	331	46.36	0	7	541			0.023	0.087	1./30	-30	
	332	46.36	0	7	538	1465		0.021	0.102	1.700	-23	
	333	46.36	0	7	543			0.010	0.117	1.//3	-20	
	334	46.36	0	7	538	1467		0.014	0.121	1.742	3	•
	335	46.36	0	7	545	1482		0.013	0.126	1.749	-9	
	336	46.36	0	7	548	1455		0.010	0.148	1.700	-5	
	337	46.36	0	7	542	1473		0.010	0.157	1./08	0 4 C	
	338	46.36	0	7	541	1450		0.017	0.155	1.483	-10	
	339	46.36	0	7	531	1466		0.011	0.072	0.709	19	•
	340	46.36	0	7	545	1465		0.011	0.02/	0.352	-13	1
	341	46.36	0	7	536	1465		0.009	0.014	0.315	-2	

••

. . . . . .

Ĭ,

.

2

,

## APPENDIX C

¥

.

## Data file of flight sample RMRQF5 processed on October 10th, 1991 on board the KC-135



#### 30

 $\smile$ 

# RAPID MELT/RAPID QUENCH FURNACE EXPERIMENT - FLIGHT BASED RUN

File Name: RMRQF5.WR1

,

Data of Sample Processing: October 10th, 1991

Type of Sample: ARL Aluminum alloy with Silicon Carbide for Don Morel Sample was 3.88 mm in diameter and 20 mm long.

Rapid Melt Zone Setpoint = 1500 C

Preheat Zone Setpoint = 500 C (NOTE: PHZ power was turned off due to heat flux from RMZ)

Booster Zone Setpoint = 800 C

NOTES: Third sample processed this week, last flight day.

DIST is furnace travel, VEL is furnace velocity, STAT is experiment status, PHZ is preheat temp, RMZ is rapid melt temp. Translation distances were 15 cm for each stage with 15 second dwell time at RM phase.

Bad temperature data indicated by blank spaces in FURNACE TEMPS columns.

				FUR	NACE TE	MPS	ACCELI	EROMET	ERS	SAMPLE
TIME	DIST	VEL	STAT	PHZ	RMZ	BZ	Z AXIS	Y AXIS	X AXIS	TEMP
357	0	0	3	512	1541		0.023	0.037	0.955	537
358	ŏ	0	3		1542		0.029	0.035	0.947	537
359	Ō	0	3	510	1570		0.032	0.042	0.979	539
360	Ō	Ő	3	509			0.022	0.017	0.985	534
361	Ō	0	3	506			0.020	0.029	1.018	532
362	0	0	3	505	1535		0.009	0.028	1.045	539
363	Ō	0	3		1547		0.039	0.034	1.064	540
364	Ō	Ō	3	504	1577		0.016	0.021	1.111	539
365	Ō	0	3	508			0.009	0.025	1.126	534
366	Ō	0	3	508			0.024	0.041	1.147	535
367	Õ	Ō	3	503	1538		0.028	0.021	1.184	539
368	õ	Ō	3		1542		0.038	0.025	1.275	540
369	õ	Ō	3	509	1572		0.025	0.034	1.476	538
370	Õ	Ō	3	506			0.029	0.030	1.579	533
371	Õ	Ō	3	506			0.028	0.053	1.669	538
372	Ō	Ō	3	505	1538		0.025	0.040	1.733	539
373	Ō	Ō	3		1552		0.017	0.048	1.772	539
374	Ō	Ō	3	508	1563		0.026	0.048	1.781	541
375	ŏ	Ō	3	507			0.032	0.051	1.780	536
376	0	Ō	3	505			0.032	0.065	1.785	538
377	Õ	Ō	3	510	1540		0.037	0.075	1.786	541
378	Ō	Ō	3		1545		0.027	0.070	1.766	538
379	Ő	Ō	3	507	1576		0.023	0.056	1.758	540
380	Ő	Ō	3	510			0.043	0.067	1.802	540
381	Õ	Ō	3	507			0.025	0.055	1.784	537
382	Ō	Ō	3	509	1538		0.024	0.074	1.773	541
383	Ō	Õ	3		1544		0.029	0.086	1.762	539
384	Ō	0	3	509	1574		0.015	0.086	1.754	541
385	Ō	0	3	508			-0.003	0.087	1.779	540
386	Õ	0	3	507			0.022	0.091	1.777	538
387	Ō	Ō	3	507	1537		0.015	0.103	1.723	541
388	Ō	0	3		1558		0.015	0.128	1.771	537
389	Ő	0	3	507	1581		0.011	0.112	1.722	537
390	0	Ő	3	512			0.025	0.115	1.750	540
391	Ō	Ó	3				0.019	0.153	1.756	535
392	Ō	Ó	3	505	1536		0.006	0.133	1.640	540
393	0	Ō	3		1550		0.015	0.137	1.501	539
394	Ō	Ó	3	509	1578		0.016	0.045	0.803	540
395	0	0	3	507			0.008	0.009	0.411	540

					FUR	NACE TE	MPS	ACCELE	EROMET	ERS	SAMPLE
$\sim$	TIME	DIST	VFI	STAT	PHZ	RMZ	ΒZ	Z AXIS	Y AXIS	X AXIS	TEMP
-	206	0101		3	505			0.001	-0.010	0.240	533
	390	0	õ	3	504	1536		0.008	-0.009	0.122	542
	308	ñ	õ	3		1541		0.018	-0.008	0.068	537
	300	õ	õ	3	503	1565		0.003	0.000	0.033	541
	400	õ	õ	3	504			0.013	0.000	0.013	533
	400	õ	õ	3	505			0.007	0.004	0.020	533
	401	ő	õ	3	504	1528		0.008	-0.005	0.009	540
	402	ň	õ	3		1530		0.003	-0.005	0.001	538
	403	0	õ	3	504	1575		0.007	0.004	0.001	541
	404	ň	õ	3	506			0.008	-0.002	-0.003	536
	405	0	ň	3	507			-0.001	-0.001	-0.005	533
,	400	0	ő	3	511	1540		0.002	0.002	0.008	539
	407	0	0	3	0.11	1541		0.012	-0.007	0.007	538
	400	0	0	3	512	1571		0.015	0.008	0.002	539
	409	0	0	ă	514			0.017	-0.003	-0.002	531
	410	0	ő	3	512			0.013	-0.002	-0.006	528
	411	0	0	3	507	1534		0.017	-0.010	-0.010	534
	412	0	Ő	3	001	1537		0.010	-0.007	-0.009	537
	413	0	Õ	ŝ	512	1579		0.008	-0.005	0.010	538
	414	0	0	3	509			0.012	-0.004	0.007	534
	410	õ	ň	3	507			0.014	-0.008	-0.011	530
	410	0	Ő	3	505	1537		0.013	-0.008	0.001	537
	417	0	0	3	000	1539		0.019	-0.021	0.022	534
	410	0	0	3	517	1575		0.014	-0.012	0.033	534
$\smile$	419	0	0	3	513	1010		0.019	-0.026	0.066	530
-	420	0	0	3	512			0.019	-0.028	0.414	527
	421	0	0	3	510	1535		0.023	-0.004	0.946	535
	422	0	0	3	510	1548		0.016	0.025	1.363	533
	423	0	0	2		1563		0.019	0.057	1.582	535
	424	0	0	3	507	1000		0.034	0.070	1.671	528
	425	0	0	3	510			0.035	0.056	1.738	530
	420	0	0	3	500	1538		0.028	0.060	1.805	534
	427	0	0	3	505	1542		0.030	0.057	1.833	536
	428	0	0	3		1556		0.038	0.049	1.781	538
	429	0	0	3	505	1000		0.032	0.049	1.725	533
	430	0	0	3	507			0.052	0.041	1.711	533
	431	0	0	3	510	1541		0.026	0.055	1.724	538
	432	0	0	3	010	1541		0.025	0.047	1.762	538
	433	0	0	3		1567		0.039	0.053	1.764	538
	434	0	0	3	509			0.035	0.043	1.756	534
	400	0	ň	ă	508			0.024	0.056	1.729	534
	400	Ň	ň	3	511	1566		0.022	0.048	1.640	537
	437	0	0	3	011	1536		0.029	0.034	1.542	538
	438	0	0 0	3		1571		0.016	0.039	1.438	537
	439	0	0 A	2	511			0.038	0.043	1.440	535
	440	0	0	2	507			0.029	0.040	1.498	535
	441	0	0	3	507			0.039	0.042	1.512	537
	442	U	0	ວ ຈ	203	1538		0.041	0.035	1.571	537
	443	Ŭ	U	3	514	1500		0.026	0.058	1.673	539
<u>```</u>	444	U	0	О	514 E40	1501		0.025	0.051	1.716	536
	445	U	U	3	512	1321		0.020	0.001		

•

.

,

.

•

					FUR	NACE TEN	<b>I</b> PS	ACCELE	ROMETI	ERS	SAMPLI	E
		DIOT		STAT	PH7	BMZ	ΒZ	Z AXIS	Y AXIS	X AXIS	TEMP	
· - /				3 3	506			0.030	0.050	1.735	536	
	446	0	0	3	509			0.033	0.049	1.756	538	
	447	0	0	3	000	1533		0.023	0.047	1.749	537	
	448	0	0	3	518			0.024	0.054	1.767	538	
	449	0	õ	3	509	1526		0.032	0.057	1.760	536	
	450	0	Õ	3	509			0.032	0.049	1.756	536	
	451	0	ň	3	510			0.017	0.059	1.767	539	
	452	0	ň	3	507	1534		0.019	0.066	1.757	538	
	453	0	ň	3	514	•		0.015	0.060	1.789	538	
	404	0	0	3	511	1530		0.020	0.069	1,793	536	
	400	0	õ	3	510			0.011	0.078	1.779	533	
	400	0	0	3	509			0.037	0.059	1.763	538	
	457	0	0	3	505	1530		0.003	0.070	1.763	538	
	400	0	Ő	3	•••			0.009	0.079	1.788	538	
	409	ŏ	ñ	3	509	1532		0.031	0.085	1.750	535	
	400	õ	ň	3	511			0.034	0.093	1.756	532	
	401	0	Ő	3	511			0.011	0.100	1.716	539	
	402	Ő	õ	3	508	1535		0.013	0.091	1.719	538	
	405	ő	õ	3		1538		0.023	0.125	1.702	539	
	404	ñ	Ő	3	507	1531		0.010	0.123	1.733	538	
	405	õ	õ	3	509	1504		0.003	0.143	1.748	530	
	400	õ	Ö	3	516			0.030	0.129	1.718	537	
	407	Õ	Ö	3	509	1535		0.032	0.169	1.703	539	
	400	Ő	Ő	3	508			0.015	0.132	1.521	539	
<b>x</b> /	403	7 53	100	4	511	1544		0.001	0.029	0.800	538	START
$\smile$	470	15	100	4	505	1536		0.096	0.000	0.368	536	RAPID
	471	15	0	4	503			0.357	0.107	0.007	542	MELT
	473	15	Õ	4	503	1526		0.009	-0.009	0.084	567	
	470	15	Ō	4	500	1579		0.011	-0.005	0.056	598	
	475	15	0	4	510	1542		0.014	-0.004	0.039	020	
	476	15	0	4	507	1529		0.005	0.000	0.023	040 667	
	477	15	0	4				0.006	-0.003	0.020	606	
	478	15	0	4	509	1530		-0.004	-0.001	0.005	704	
	. 479	15	0	4	508	1579		0.002	0.012	0.003	704	
	480	15	0	4		1546		0.009	-0.001	0.010	720	
	481	15	0	4	511	1528		0.013	-0.006	0.019	763	
	482	15	0	4	507			0.014	0.001	0.021	783	
	483	15	0	4	507	1521		0.008	0.002	0.027	804	
	484	15	0	4	506	1544		0.007	0.010	0.010	824	
	485	15	0	4	508	1550		0.000	-0.002	0.022	845	1
	486	15	0	4	509	1522		0.014	-0.005	0.012	867	START
	487	22.53	100	4	509	4 5 0 0		0.000	0.000	0.012	887	QUENCH
	488	30	100	4	507	1522		0.112	-0.000	0.005	903	
	489	30	100	4	505	1518		0.020	0.020	6 0 007	887	,
	490	29.996	0	7	510	1558		0.130	-0.000	-0.010	834	ļ
	491	29.996	0	7	511	1518		0.010	-0.00C	0.016	784	Ļ
	492	29.996	0	7	511	100/		0.012	-0.01-	<u> </u>	745	5
	493	29.996	0	<u>7</u>	505	1010		0.007 0.007	-0.000	0.012	710	)
- ·	494	29.996	0	7	502	1003		_0.000	-0.010	3 0.147	661	[
$\smile$	495	29.996	0	7	501	1220		-0.001	-0.010			

,

•

						NACE TE	MPS	ACCEL	EROMET	ERS	SAMPLE	
		DIOT	VI-1	CTAT		BM7	BZ	ZAXIS	Y AXIS	X AXIS	TEMP	
$\smile$ .	TIME	DIST		<u>- 51A1</u>	<u> </u>	1512		0.005	-0.017	0.465	563	
	496	29.996	0	7	507	1556		0.024	0.007	0.882	456	
	497	29.996	0	7	507	1515		0.021	0.047	1.241	379	
	498	29.996	0	7	507	1508		0.019	0.069	1.422	332	
	499	29.996	0	7	505	1551		0.020	0.076	1.512	296	
	500	29.996	0	7	506	1509		0.032	0.088	1.580	272	
	501	29.996	0	7	505	1542		0.030	0.073	1.558	253	
	502	29.996	0	7	505	1505		0.016	0.073	1.546	235	
	503	29.996	0	7	500	1512		0.035	0.074	1.638	218	
	504	29.996	0		505	1512		0.029	0.065	1.619	199	
	505	29.996	0	/	507	1550		0.027	0.052	1.560	183	
	506	29.996	0	/	506	1500		0.019	0.042	1.514	173	
	507	29.996	0	/	505	4500		0.010	0.050	1.489	163	
	508	29.996	0	/	508	1505		0.020	0.025	1 526	150	
	509	29.996	0	<u>/</u>	502	1500		0.025	0.020	1 612	137	
	510	29.996	0	<u>/</u>	510	1548		0.000	0.044	1 625	135	
	511	29.996	0	7	507	1501		0.022	0.040	1 584	130	
	512	29.996	0	7	505	1526		0.014	0.043	1 460	122	
	513	29.996	0	7	506	1530		0.052	0.021	1.396	120	
	514	29.996	0	7	503	1496		0.018	0.010	1 326	123	
	515	29.996	0	<u>′ 7</u>	507	1546		0.023	0.021	1 761	149 R	AISED
	516	46.36	0	7	505	1489		-0.005	0.001	1 748	150 F	
	517	46.36	0	7	506	1461		0.019	0.100	1 700	151 T	
	518	46.36	0	7	501	1497		0.029	0.101	1.750	156	• • • •
	519	46.36	0	7	505	1465		0.008	0.094	1 7/0	165	
	520	46.36	0	7		1462		0.019	0.110	1.743	155	
	521	46.36	0	7	501	1491		0.025	0.140	1 726	143	
	522	46.36	0	7	505	1450		0.019	0.124	1 760	1/18	
	523	46.36	0	7	505	1499		0.014	0.155	1 720	151	
	524	46.36	0	7	509	1465		0.015	0.159	1.730	1/5	
	525	46.36	0	7	502	1455		0.011	0.095	0.500	152	
	526	46.36	0	7	509	1484		0.012	0.009	0.500	154	
	527	46.36	0	7	503	1449		0.004	-0.007	0.275	150	
	528	46.36	0	7	503	1462		0.010	-0.007	0.155	150	
	529	46.36	0	· 7	504	1488		0.015	0.002	0.009	155	
	530	46.36	0	7	504	1453		0.012	-0.001	0.048	102	
	531	46.36	0	7	507	1479		0.003	-0.004	0.030	149	
	500	46 36	0	7	505	1448		0.011	-0.007	-0.002	140	

, **,** 

. . . . . . . .

## APPENDIX D

÷

Data file of ground sample RMRQG8 processed on February 26th, 1992



## RAPID MELT/RAPID QUENCH FURNACE EXPERIMENT - GROUND BASED RUN

File Name: RMRQG8.WR1

Data of Sample Processing: February 26, 1992

Rapid Melt Zone Setpoint = 1400 C

Type of Sample: ARL Aluminum alloy with Silicon Carbide for Don Morel Sample was 4.10 mm in diameter and 20 mm long.

Preheat Zone Setpoint = 400 C (NOTE: PHZ power was turned off due to heat flux from RMZ)

Booster Zone Setpoint = 800 C

NOTES: First ground based sample processed since October 1991 KC flight.

DIST is furnace travel, VEL is furnace velocity, STAT is experiment status, PHZ is preheat temp, RMZ is rapid melt temp. Translation distances were 15 cm for each stage with 10 second dwell time at RM phase.

Bad temperature data indicated by blank spaces in FURNACE TEMPS columns.

				FURI	NACE TE	MPS	ACCE		ETERS	SAMPLE	
TIME	DIST	VEL	STAT	PHZ	RMZ	BZ	Z AXIS	Y AXIS	X AXIS	TEMP	
5170	0	0	3	514	1419		0.006	0.011	1.000	544	
5171	Ō	0	3	516	1421		0.005	0.008	0.997	551	
5172	Ó	0	3	507	1421		0.004	-0.003	1.005	541	
5173	0	0	3	514	1419		0.006	-0.003	0.999	545	
5174	0	0	3	517	1421		-0.003	-0.008	0.998	550	
5175	0	0	3	507	1422		-0.002	-0.002	1.002	543	
5176	0	0	3	516	1419		0.009	-0.004	1.003	546	
5177	0	` O	3	516	1429		0.003	0.000	1.005	551	
5178	0	Ō	3	507	1423		0.010	0.002	0.998	545	
5179	0	0	3	516	1420		0.004	0.002	1.002	553	
5180	0	0	3	516			0.007	0.008	0.994	556	
5181	0	0	3	508	1422		0.005	0.004	0.998	547	
5182	0	· 0	3	516	1421		0.009	-0.001	1.007	556	
5183	0	0	3	519	1420		0.008	0.008	0.996	546	
5184	0	0	3	516	1423		0.008	0.008	1.003	546	
5185	0	0	3	517	1421		0.008	0.000	1.000	547	
5186	0	0	3	517	1420		0.008	0.000	0.990	547	
5187	0	0	3	518	1422		-0.005	-0.002	1.000	548	
5188	0	0	3	519	1418		0.001	0.001	0.998	548	
5189	7.408	100	4	517	1418		0.007	-0.004	1.007	547 Start Ra	pid
5190	14.815	100	4	519	1423		0.068	0.012	0.987	547 Melt Pha	180
5191	15	100	4	521	1418		-0.108	0.030	1.003	553	
5192	15	0	4	517	1418		0.008	0.010	0.995	589	
5193	15	0	4	518	1420	•	0.001	-0.005	0.996	621	
5194	15	0	4	519	1419		0.005	0.000	1.002	646	
5195	15	0	4	519	1418		0.000	0.001	1.000	659	
5196	15	0	4	519	1419		0.002	0.003	1.000	656	
5197	15	0	4	520	1417		0.010	0.002	1.007	649	
5198	15	0	4	520	1417		0.003	0.000	1.000	637	
5199	15	0	4	520	1419		0.004	0.006	0.999	641	
5200	15	0	4	520	1416		0.006	0.002	0.999	673	
5201	15	0	4	520	1415		0.004	0.006	1.007	697	
5202	22.408	100	4	520	1416		-0.047	-0.016	0.956	719 Start Qu	ench
5203	29.815	100	4	522	1414		0.038	-0.002	0.991	/40 Phase	
5204	29.996	0	7	521	1412		-0.021	0.030	0.978	6/2	
5205	29.996	0	7	520	1415		-0.001	0.002	0.998	299	-
5206	29.996	0	7	520	1415		0.006	0.000	0.998	19 Thermo	couple
5207	29.996	0	7	522	1413		0.003	-0.009	1.004	-56 failed	
5208	29.996	0	7	520	1414		-0.001	-0.002	1.001	-71	
5209	29.996	0	7	522	1413		0.005	0.007	1.000	-99	

					FUR	NACE TE	EMPS	ACCE	ELEROM	ETERS	SAMPLE	Ē
	TIME	DIST	VFI	STAT	PHZ	RMZ	ΒZ	Z AXIS	Y AXIS	X AXIS	TEMF	>
$\smile$ -	5210	29,996	0	7	523	1413		0.006	0.002	1.001	-99	
	5211	29,996	Õ	7	523	1413		0.009	0.005	1.001	-101	
	5212	29,996	Ō	7	521	1411		0.003	-0.001	1.003	-90	
	5213	29,996	Ō	7	523	1410		0.002	0.011	1.003	-54	
	5214	29,996	Ō	7	522	1409		0.010	0.001	1.000	-48	
	5215	29,996	Ő	7	522	1407		-0.003	0.000	0.999	-44	
	5216	29,996	õ	7	524	1408		0.007	-0.002	0.995	-44	
	5217	29 996	Ő	7	521	1407		0.006	0.003	1.000	-42	
	5218	29 996	Ő	7	523	1405		0.005	0.000	1.002	-40	
	5219	29,996	Ő	7	525	1403		0.004	0.009	1.000	-40	
	5220	29 996	Ő	7	523	1402		0.005	0.005	1.001	-40	
	5221	20.000	Ő	. 7	522	1402		0.005	0.006	1.004	-41	
	5227	20.000	Ő	7	523	1403		0.002	0.007	1.001	-39	
	5222	20.000	õ	7	523	1401		0.003	0.007	0.996	-38	
	5220	20.000	ň	7	522	1404		0.007	0.001	1.003	-39	
	5224	20.000	ň	7	523	1400		-0.004	0.002	1.000	-36	
	5225	29.990	ů n	7	521	1397		0.000	-0.002	1.001	-35	
	5220	29.990	ŏ	7	523	1400		0.005	0.005	1.005	-35	
	5000	29.990	0	7	522	1300		0.003	0.000	1.005	-32	
	5220	29.990	0	7	526	1398		0.005	-0.008	1.002	-33	
	5229	29.990	0	7	524	1306		0.003	0.002	1 006	-30	
	5001	29.990	0	7	527	1305		0.000	-0.003	1 000	-32	
	5231	29.990	0	7	525	1305		0.001	0.004	1 000	-29	
	5000	29.990	Ő	7	525	1304		0.010	0.000	0.998	-27	
	5233	29.990	0	7	525	1301		0.000	0.003	1 006	-24	
$\smile$	5234	29.990	0	7	520	1201		0.000	0.010	1 002	-25	
	5235	29.990	0	7	524	1391		0.005	0.010	1 004	-23	
	5230	29.990	0	7	525	1390		0.000	0.004	1 001	-23	
	5237	29.990	0	7	525	1203		-0.007	0.004	1.001	-18	
	5238	29.990	0	7	524	1209		-0.001	-0.002	1.003	-16	
	5239	29.990	0	7	525	1000		0.003	-0.000	1 004	-18	
	5240	29.990	0	7	525	1205		0.003	0.002	0.004	-14	
	5241	29.990	0	7	524	1000		0.004	0.000	1 006	_11	
	5242	29.990	0	7	525	1202		0.000	-0.000		-10	Raisa fumaca
	5243	29.990	. 0	7	504	1004		0.007	-0.002	1 000	50 1	
	5244	40.30	0	7	524	1250		0.000	0.004	1.000	38	
	5245	40.00	0	7	523	1359		0.010	-0.002	1.002	28	
	5047	40.30	0	7	520	1250		0.003	0.000	1.002	36	
	5241	40.00	0	7	522	1355		0.000	-0.002	0.996	51	
	5040	40.30	0	7	523	1255		0.001	0.002	0.000	48	
	0249 5050	40.00	0	7	523	1355		0.003	0.007	1 001	53	
	5250	40.30	0	7	523	1254		0.005	0.000	1 002	52	
	5251	40.00	0	7	524	1252		0.000	0.002	1.002	58	
	5252	40.30	0	7	525	1000		0.010	0.000	0.005	55	
	5253	40.30	0	7	522	1000		0.000	0.000	0.333	60	
	5254	40.30	0	7	524	1350		0.007	0.011	1 002	52	
	5255	40.30	0	7	524 502	1000		0.007	0.001	002	57	
	5250	40.30	0	7	523	1330		0.000		1 000	, C RA	
	525/	40.30	0	7	523	1000		0.003	0.003	1.000	30 88	
	5258	40.30	0	7	523	1040		0.011	0.000	0.002	00 63	
κ Z	5259	40.30	U	1	524	1347		0.007	0.001	0.330	00	

÷

#### APPENDIX E

Ì

Data file of ground sample RMRQG9 processed on March 13th, 1992 Repeat run number 1 of RMRQG8



# RAPID MELT/RAPID QUENCH FURNACE EXPERIMENT - GROUND BASED RUN

File Name: RMRQG9.WR1

Data of Sample Processing: March 11, 1992

Rapid Melt Zone Setpoint = 1400 C

Type of Sample: ARL Aluminum alloy with Silicon Carbide for Don Morel of ARL. Sample was 4.10 mm in diameter and 20 mm long.

Preheat Zone Setpoint = 400 C (NOTE: PHZ power was turned off due to heat flux from RMZ)

Booster Zone Setpoint = 800 C

NOTES: Second ground based sample processed since October 1991 KC flight.

DIST is furnace travel, VEL is furnace velocity, STAT is experiment status, PHZ is preheat temp RMZ is Rapid Melt Zone temperature.

Translation distances were 15 cm for each stage with 10 second dwell time at RM phase.

Bad temperature data indicated by blank spaces in FURNACE TEMPS columns.

Repeat of RMRQG8 run. All conditions were the same except for a new tank of UPH Helium.

				FURI		EMPS	ACC	ELEROM	IETERS	SAMPLE
TIME	DIST	VFI	STAT	PHZ	RMZ	BZ	Z AXIS	Y AXIS	X AXIS	TEMP
900	0		3	491	1427		0.010	-0.003	0.996	531
900 901	õ	Ő	3	492	1424		0.001	0.008	0.996	533
002	0	õ	3	496			0.009	0.011	0.997	535
002	õ	õ	3	492	1427		-0.002	-0.002	0.999	513
<u>004</u>	õ	ŏ	3	502	1426		0.006	0.002	0.997	468
005	Ő	Ő	3	492	1427		0.003	0.007	0.997	513
906	0	õ	3	492			0.006	0.006	1.004	378
907	Ő	Ő	3		1430		0.000	-0.002	0.997	536
907	Ő	Ő	3		1427		0.003	0.004	0.993	430
000	Ő	0	3	494			0.007	0.002	0.997	505
910	Ő	õ	3	498			-0.002	0.005	0.998	512
911	ŏ	Ō	3	484	1425		-0.004	0.006	1.006	521
912	õ	ō	3	493	1414		0.007	0.008	0.998	502
913	õ	Õ	3	496	1427		0.001	0.003	0.998	540
Q14	ō	Ō	3	478	1427		0.001	-0.001	1.000	503
915	Ō	Ŏ	3	493	1425		0.013	0.007	1.002	543
916	Ő	Ō	3	495			0.012	0.008	1.000	529
917	Ō	Ō	3	488	1427		0.013	0.000	1.004	<b>496</b>
918	0	0	3	366	1426		0.006	0.005	0.999	516
919	Õ	Ō	3	494			0.005	0.004	1.002	480
920	Ō	Ō	3	492	1429		0.004	0.006	0.997	488
921	Õ	Ō	3		1427		0.008	0.009	1.003	475
922	Ō	0	3	493			0.008	0.002	1.001	488
923	Ō	0	3	494	1428		0.003	-0.002	1.004	459
924	Ō	0	3		1427		0.001	0.002	1.003	481
925	Ō	0	3	496	1428		0.007	0.002	1.002	463
926	0	0	3	493			0.003	0.000	1.004	429
927	0	0	3	501	1427		0.008	0.007	1.000	488
928	0	0	3	499	1427		0.004	0.007	0.998	475
929	0	0	3	495	1127		0.004	0.006	1.005	469
930	0	0	3	497	1427		0.002	0.005	0.998	523
931	0	0	3	473	1427		0.005	0.014	0.9 <del>9</del> 8	518
932	0	0	3	497	1417		0.007	0.007	1.009	511
933	0	0	3	496	1427		0.009	0.008	0.999	540
934	0	0	3	477	1429		0.010	0.006	0.998	506
935	0	0	3	495	1425		0.000	0.004	1.001	547
936	0	0	3	495	1426		0.001	-0.008	1.002	509
937	0	0	3	497	1428		0.007	0.005	1.001	528
938	Ó	0	3	495	1425		0.006	0.005	1.000	528

					FURI	NACE TI	EMPS	ACC	ELERON	IETERS	SAMPL	E
X J	TIME	DIST	VEL	STAT	PHZ	RMZ	ΒZ	Z AXIS	Y AXIS	X AXIS	TEMP	
$\smile$ .	939	0	0	3	495	1427		0.012	0.010	1.002	528	
	940	ŏ	Ō	3	494	1427		0.005	0.003	1.006	529	
	941	0	Ō	3	495	1425		-0.005	0.009	1.006	528	
	942	0	Ó	3	495	1425		0.008	0.003	1.000	527	
	943	Ō	Ó	3	495	1425		0.007	-0.001	0.997	527	
	944	Õ	Ō	3	495	1424		0.005	-0.004	0.997	527	
	945	Ō	Ō	3	497	1426		0.001	0.006	1.002	527	
	946	Ō	Ō	3	495	1425		0.008	0.007	0.999	527	
	947	Ő	Õ	3	495	1424		0.004	0.006	1.002	527	
	048	Ő	Ō	3	496	1424		0.001	0.009	0.997	528	
	949	õ	Ŏ	3	496	1424		0.011	0.009	0.992	527	
	950	7 408	100	4	499	1423		0.002	0.005	1.003	528	Start Rapid
	951	14 815	100	4	497	1423		0.178	0.074	0.900	527	Melt phase.
	052	15	100	4	496	1422		-0.044	0.010	0.952	549	
	053	15	0	4	495	1422		0.002	0.003	0.999	598	
	950 054	15	õ	4	497	1421		0.004	-0.006	1.001	633	
	055	15	õ	4	497	1421		0.003	0.006	1.003	662	
	955	15	õ	4	495	1422		0.009	0.008	1.004	676	
	950 057	15	Õ	Å	497	1421		0.005	0.006	0.999	634	
	957	15	ň	4	496	1418		0.000	0.005	0.999	653	
	900	15	ň	4	496	1417		0.002	-0.003	0.996	703	
	060	15	Ő	4	495	1419		0.003	0.009	0.998	736	
,	900	15	ő	4	496	1416		0.001	0.001	1.000	765	
	901	15	õ	4	496	1415		0.005	0.001	0.999	794	
t	902	22 408	100	4	497	1414		-0.133	-0.134	1.087	823	Start Rapid
$\bigcirc$	905	20.006	0	7	496	1414		0.087	0.064	1.031	840	Quench phase.
	065	29.990	õ	7	404	1412		-0.004	-0.003	0.992	769	
	905	29.990	Ő	7	495	1411		0.003	0.005	0.999	638	
	900	29.990	Ő	7	496	1408		-0.003	0.009	1.001	471	
	069	29.990	ň	7	495	1408		0.003	-0.007	1.002	420	
	006	29.990	Ň	7	405	1407		0.008	0.006	1.006	421	
	909	29.990	ň	7	495	1407		0.009	0.002	1.000	452	
	970	29.990	Ő	7	405	1405		-0.003	0.004	0.992	420	
	072	29.990	Ő	7	496	1404		0.006	0.005	0.998	321	
	072	29.990	Ő	7	494	1402		0.000	0.006	0.993	206	
	973	29.990	ő	7	495	1401		0.004	0.006	1.001	117	
	075	20.006	ň	7	493	1399		0.003	-0.001	1.000	25	
	975	29.990	ň	7	494	1398		0.004	0.006	0.998	-15	
	970	29.990	ň	, 7	495	1399		0.001	-0.004	1.005	-17	
	079	29.990	0	7	494	1396		-0.007	-0.002	1.003	-12	
	070	29.990	ň	7	493	1396		0.003	0.006	0.993	-6	
	373	29.990	ů N	7	494	1394		0.005	0.002	0.999	5	
	001	29.990	ň	7	493	1392		0.011	0.000	0.994	26	
	301	29.990	ů N	7	400	1392		0.010	0.008	0.995	59	
	302	29.990	0	7	402	1390		0.011	0.005	1.004	75	
	205 202	29.990	۰ ۵	7	402	1388		0.012	0.014	0.994	92	
	304 025	29.330	0 0	7	492	1387		0.007	0.003	0.998	103	
	900	29.990	0 0	, 7	101	1386		0.000	0.010	0.998	113	
	300 007	29.990	0 0	7	494	1383		0.006	0.007	0.996	116	
<b>x</b> 2	20/ 20/	23.330	0	, 7	407	1382		0.007	0.000	0.999	122	
$\smile$	300	23.330	0	'		1002		0.007				

					FUR	NACE TI	EMPS	ACC	ELERON	IETERS	SAMPL	E
τź	TIME	DIST	VEL	STAT	PHZ	RMZ	ΒZ	Z AXIS	Y AXIS	X AXIS	TEMP	
$\smile$	989	29.996	0	7	492	1383		0.003	0.000	0.999	125	
	990	29.996	0	7	492	1381		0.002	0.002	0.999	130	
	991	29,996	0	7	492	1379		0.004	0.001	1.002	132	
	992	29,996	0	7	493	1378		0.002	-0.001	0.999	134	
	993	29.996	0	7	491	1377		0.002	0.005	1.002	140	
	994	29.996	0	7	492	1375		0.005	0.000	1.003	140	
	995	29.996	Ō	7	492	1375		0.002	0.003	1.001	143	
	996	46.36	Ö	7	492	1343		0.012	-0.004	1.005	183	Raise furnace
	997	46.36	Ō	7	489	1343		0.011	0.000	1.006	182	to top.
	998	46.36	Ō	7	490	1340		0.005	-0.001	1.003	182	
	999	46 36	Ő	7	488	1339	-	0.006	0.012	1.002	184	
	1000	46.36	Ō	7	490	1338		0.003	-0.007	1.005	182	
	1001	46.36	Ō	7	491	1336		0.010	0.012	1.001	185	
	1002	46.36	Ő	7	490	1336		0.007	0.006	1.002	184	
	1003	46.36	0	7	489	1333		0.007	-0.001	1.001	182	
	1004	46.36	Ő	7	490	1331		0.001	0.003	0.997	182	
	1005	46.36	õ	. 7	490	1328		0.005	-0.001	1.002	183	
	1005	46.36	õ	7	490	1331		0.007	0.004	0.999	183	
	1007	46.36	ň	7	491	1329		0.006	0.008	1.003	184	
	1007	46.36	ň	7	490	1327		0.006	-0.008	1.001	183	
	1000	40.00	0	7	480	1325		0.007	0.012	0.997	184	
	1009	40.30	0	7	400	1326		0.003	0.002	0.996	182	
	1010	40.00	ň	7	489	1323		0.009	0.011	1.002	183	
	1011	40.00	ň	7	484	1323		0.003	0.003	0.998	183	
<b>E</b> 3	1012	40.00	0	7	489	1321		-0.001	-0.001	0.996	182	
$\smile$	1013	40.00	0	7	488	1320		0.004	-0.003	0.994	182	
	1014	40.00	0	7	488	1319		0.003	0.002	1.000	183	
	1015	40.00	0	7	499	1310		0.009	0.002	0.998	181	
	1010	40.30	0	7	486	1316		0.005	0.001	1.005	180	
	1017	40.00	Ő	7	499	1316		0.005	0.002	1.001	182	
	1010	40.30	0	7	497	1315		0.003	0.002	1.001	180	
	1019	40.00	Ő	7	400	1214		0.003	0.005	0.999	181	
	1020	40.00	0	7	490	1311		0.003	0.005	0.997	180	
	1021	40.30	0	7	407	1211		0.000	-0.001	1.005	181	
	1022	40.30	0	7	486	1311		0.003	0.002	1.000	178	
	1023	40.30	0	7	400	1309		0.007	0.008	1.003	182	
	1024	40.00	0	7	488	1307		0.007	0.011	0.992	179	
	1025	40.30	0	7	400	1307		0.002	-0.004	0.998	180	
	1020	40.00	0	7	486	1305		0.002	0.004	1.002	179	
	1027	40.00	0	7	400	1305		0.005	0.002	1 004	179	
	1020	40.30	0	7	400	1302		0.000	0.002	1 001	178	
	1029	40.00	0	7	405	1201		0.004	0.003	1 004	177	
	1030	40.30	0	7	400	1200		0.004	0.000	0 004	178	
	1031	40.30	0	ז ד	40/ AGE	1000		0.002	0.002	1 007	176	
	1032	40.36	U A	7	400	1299		0.004	0.002	0 002	177	
	1033	46.36	U A	/	400	1290		0.007	0,001	1 001	176	
	1034	46.36	U	/	484	129/		0.004	0.010	1 001	175	
	1035	46.36	U	/	400	129/		0.001	0.007	0.003	176	
	1036	46.36	U	/	400	1290		0.001	0.002	1 000	177	
	1037	46.36	0	/	465	1294		0.010	0.004	1.000	175	
$\smile$	1038	46.36	0	(	485	1293		0.008	0.003	1.003	175	

` ;

.

#### APPENDIX F

Data file of ground sample RMRQG10 processed on April 3rd, 1992 Repeat run number 2 of RMRQG8



# RAPID MELT/RAPID QUENCH FURNACE EXPERIMENT - GROUND BASED RUN

File Name: RMRQG10.WR1

Data of Sample Processing: April 3, 1992

Type of Sample: ARL Aluminum alloy with Silicon Carbide for Don Morel of ARL.

Sample was 1/2 of the only remaining orginal flight material left.

Rapid Melt Zone Setpoint = 1400 C Preheat Zone Setpoint = 400 C (NOTE: PHZ power was turned off due to heat flux from RMZ)

Booster Zone Setpoint = 800 C

NOTES: Third ground based sample processed since October 1991 KC flight.

DIST is turnace travel, VEL is turnace velocity, STAT is experiment status, PHZ is preheat temp RMZ is Rapid Melt Zone temperature.

Translation distances were 15 cm for each stage with 9 second dwell time at RM phase.

Bad temperature data indicated by blank spaces in FURNACE TEMPS columns.

Repeat run number 2 of RMRQG8 run.

				FURNACE TEMP		ACCE	ELEROM	SAMPLE		
TIME	DIST	VFI	STAT	PHZ	RMZ	ΒZ	Z AXIS	Y AXIS	X AXIS	TEMP
6	0	0	3	513			0.003	0.000	1.000	510
7	õ	Õ	3	505	1429		0.006	0.002	1.005	487
, 8	Õ	Ō	3	510	1428		0.013	0.011	1.000	507
ğ	õ	Ō	3	509			-0.003	-0.003	0.994	512
10	Ő	Ō	3	504	1429		0.010	0.007	0.994	501
11	ŏ	Ō	3		1425		0.001	0.007	0.998	507
12	ō	Ō	3	510			0.002	0.001	1.001	500
13	Ő	Ō	3	506	1429		-0.004	0.001	1.000	482
14	ŏ	Ō	3	491	1428		0.006	0.001	1.000	508
15	Ō	Ō	3	511			0.007	0.007	1.005	503
16	0	Ō	3	508	1428		0.005	0.002	0.999	492
17	Õ	Ō	3	524	1428		0.010	-0.006	1.004	498
18	Ō	Ō	3	512			-0.001	0.001	1.000	486
19	Ō	Ó	3	509	1429		-0.005	0.009	1.003	497
20	Ō	Ō	3	515	1427		0.003	0.001	1.002	501
21	Ō	0	3	509	1372		-0.003	-0.002	1.005	493
22	Ō	0	3	511	1428		0.008	0.005	1.004	490
23	Ō	0	3	515	1427		-0.001	0.008	1.000	493
24	Ō	0	3	510	1428		0.004	-0.003	1.006	499
25	Ō	0	3	511			0.011	0.009	0.997	
26	0	0	3	518	1431		0.013	0.016	0.994	505
27	0	0	3	511	1430		-0.001	-0.001	0.998	499
28	0	0	3	512			-0.004	-0.002	1.002	482
29	0	0	3	514	1427		-0.006	-0.001	1.004	500
30	0	0	3		1427		0.007	0.003	1.000	491
31	0	0	3	512	1375		0.008	0.011	0.998	497
32	0	0	3	513	1428		0.008	0.004	1.001	505
33	0	0	3	504	1429		0.003	0.005	0.999	500
34	0	0	3	510	1419		0.002	0.000	1.000	497
35	0	0	3	512	1426		0.005	0.006	1.001	509
36	0	0	3	515	1428		0.008	0.007	1.002	499
37	0	0	3	511	1426		0.003	0.006	0.996	509
38	0	0	3	510	1428		0.007	0.002	0.996	512
39	0	0	3	512	1428		0.003	0.003	1.004	512
40	0	0	3	511	1425		-0.001	-0.002	1.001	512
41	0	0	3	511			0.005	0.003	1.006	513
42	0	0	3	496	1430		0.000	0.012	0.997	509
43	0	0	3	513	1425		0.007	0.001	1.004	505
44	0	0	3	511			0.005	0.001	1.001	511

					FURN	IACE TE	MP: ACC	ELEROM	ETERS	SAMPLE	
1	TIME	DIST	VEL	STAT	PHZ	RMZ	BZ ZAXIS	Y AXIS	X AXIS	TEMP	
$\smile$	45		0	3	508	1429	0.005	0.006	0.996	500	
	46	õ	Õ	3	513	1425	0.002	0.003	1.000	510	
	40	õ	Õ	3	512		0.006	0.011	0.993	513	
	48	Ő	0	3	508	1428	0.008	0.006	0.996	495	
	40	Ő	0	3		1426	0.002	0.006	1.001	508	
	50	õ	Ő	3	511		0.005	0.006	1.000	497	
	51	Ő	Ő	3	509	1430	0.004	0.003	1.001	494	
	52	Õ	0	3	512	1428	0.002	0.007	0.996	510	
	53	Ő	Õ	3	513		0.012	0.005	1.001	503	
	54	ŏ	Ō	3	511	1428	0.007	0.005	1.007	495	
	55	õ	Ō	3	523	1429	0.003	0.006	0.997	496	
	56	Ő	Ő	3	513		0.005	0.005	0.996	487	
	57	Ő	ŏ	3	511	1428	0.009	0.005	1.004	499	
	58	õ	õ	3	538	1427	-0.004	0.002	0.996	503	
	50	Ő	õ	3	510		0.009	0.007	0.997	497	
	60	õ	õ	3	511	1427	0.001	0.000	1.002	502	
	61	õ	õ	3	517	1426	0.003	0.001	0.997	496	
	62	õ	õ	3	512	1335	0.005	0.000	1.003	495	
	63	ň	õ	3	512	1428	0.005	0.002	0.999	493	
	64	Ő	õ	3	510	1428	0.005	0.009	1.000	488	
	65	0 0	õ	3	512	1426	0.002	-0.001	1.005	512	
	60 66	õ	õ	3	513	1425	0.009	0.006	0.998	512	
	67	7408	100	4	511	1426	-0.011	0.008	1.014	512 s	tart Rapid
	69	14 815	100	4	512	1425	-0,098	-0.028	0.967	512 N	leit phase.
<b>١</b>	60	14.015	100	4	512	1428	-0.121	0.003	1.049	520	
$\smile$	70	15	100	4	511	1425	0.004	0.000	1.005	541	
	70	15	ň	4	511	1425	0.004	-0.001	1.004	567	
	70	15	Ő	4	510	1425	0.006	0.002	1.003	594	
	72	15	ő	4	511	1424	0.005	-0.008	1.004	621	
	73	15	0 0	4	513	1424	0.004	0.006	0.997	650	
	75	15	Ő	4	510	1423	0.001	0.004	0.997	680	
	76	15	Ő	4	512	1420	-0.005	0.000	0.999	712	
	70	15	õ	4	511	1422	0.005	-0.002	1.001	742	
	78	15	õ	4	514	1422	0.002	0.007	0.994	772	
	70	22 408	100	4	512	1421	-0.074	-0.092	0.988	801	
	80	29 996	0	7	512	1420	0.251	0.082	1.058	821 s	Start Quench
	81	29 996	ŏ	7	511	1418	0.007	-0.001	1.003	819	
	82	20.000	Ő	7	511	1417	0.006	0.001	1.001	790	
	83	29,996	Ŏ	7	511	1417	0.003	-0.001	1.001	720	
	84	29,996	Ō	7	511	1416	0.000	0.001	0.998	596	
	85	29,996	0	7	510	1414	-0.004	0.001	1.004	440	
	88	29 996	õ	7	511	1413	0.011	0.002	0.999	309	
	87	29 996	Ő	7	510	1412	-0.003	0.004	0.997	192	
	29 29	29 996	õ	7	510	1411	0.008	0.006	1.008	75	
	20	29.996	Ő	7	510	1410	0.000	0.011	1.003	-31	
	۵0 ۵۵	29 996	õ	7	509	1409	-0.007	0.003	0.999	-51	
	Q1	29 996	0	7	510	1407	0.002	0.001	0.993	-58	
	02	29.996	ů N	7	510	1407	0.004	-0.002	1.001	-63	
	03	29 996	õ	7	511	1405	0.001	-0.001	1.003	-64 1	Furnace raised
$\smile$	94	46.36	õ	7	509	1375	0.013	0.003	1.004	-54 1	to top.

. . . . . . .

r ·

----