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specific heat at constant pressure
index of grid location in the x-direction
index of grid location in the y-direction
total number of grid points in the y-direction

pressure
radius of wall (ax/symmetric Case)

Reynolds Number (per unit length)
coefficient in front of derivatives of the advective terms in the x-direction

coefficient in front of derivatives of the advective terms in the y-direction
temperature
velocity component in direction of core flow
velocity component perpendicular to core flow
location in the direction of the core flow

location in the direction perpendicular to the core flow
total viscosity (molecular and turbulent)
density

core flow value at point with maximum Mach number, used to non-dimen-

sionalize boundary layer equations

INTRODUCTION

At times we need to analyze the thermal behavior of systems that include both
conduction and high speed flows. Unfortunately, most ldgh-speed-flow codes have
limited conduction capabilities and most conduction codes, such as SINDA, cannot

model high speed flows. It would be useful to interface a high-speed-flow solution and
SINDA. When interfacing a high-speed-flow solution to SINDA, it may be necessary to
include the viscous effects in the energy equations. Boundary layer effects of interest
include heat transfer coefficients (including convection and viscous dissipation) and
fi'iction coefficients. To meet this need, a fast, uncoupled, compressible, two-dimension-
al, boundary later algorithm was developed that can model flows with and without

separation. This algorithm was used as a subroutine with SINDA. Given the core flow
properties and the wall heat flux from SINDA, the boundary layer algorithm returns a
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wall temperature to SINDA. SINDA and the boundary layer alg'trithm are iterated until

they predict the same wall temperature.

BOUNDARY LAYER ALGORITHM

Boundary Layer Equations

The forms of the boundary layer equations used in the finite difference scheme

were the compressible, parabolized Navier-Stokes (PNS) equations by Roach, et al [1].

The equations were 2-dimensional, viscous, and were solved for the primitive variables.

The y-momentum equation simply reduced to

=o (1)
oy

The other equations were as follows:

continuity

x momentum
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Re= p_ u... (9)

For axisymmetric flows, (k = 1), P_ was defined as:

Ro =v±ycoeO (10)

where r was the radius of the wall, 0 was the angle of the wall, and the plus or minus
signs referred to external or internal flows respectively. For rectangular coordinates Ro
was ignored, (k = 0). The coordinates x and y used in the above equations were the
transformed x and y coordinates, that is, the x coordinate followed along the wall surface
and the y coordinate was perpendicular to the wall. It should be noted that Re was not
actually non-dimensional. Re had units of (length) "i. Also, x and y (and R.) remained
dimensional. So, each term in each of the above boundary layer equations had units of

(length) "!.

Solution Algorithm

The momentum, continuity and energy equations were differenced as described by
Kwon et al.[2] For any scalar quantity 4, :

&l_)_./=,4_4-4_-I: (11)x,-x,_l

02)

1 _l.f.x-4_ I 4_i4-4_-1

Re !
(13)

Due to the parabolic nature of the boundary layer equations, the governing
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equations were solved by marching from station to station in the 'direction of the core
flow. Solutions at a given station were obtained by solving the boundary layer equations
sequentially. First, the momentum equation was solved for the velocity component in
the core flow (streamwise) direction (u). Second, continuity was solved for the velocity
component in the y direction (v). Then, the energy equation was solved for the tempera-
ture (T). If the station had not converged, the momentum, continuity, and energy equa-
tions were solved again for the velocity components and temperature, using the flow

properties from the previous iteration. Convergence at a given station was obtained
when the streamwise velocity components at all grid locations at that station converged.
After the calculation at the station converged, the algorithm marched to the next stream-
wise station to solve for the boundary layer properties. This streamwise marching

continued throughout the entire domain.

Grid spacing perpendicular to the wall (y-direction) was based on an exponential
function. The grid spacing was fine near the wall to better resolve the gradients at the
wall. The grid spacing was course away from the wall where fine resolution of the

gradients normal to the core stream were not necessary.

The derivative of the velocity at the wall (used to calculate wall shear stress) was
determined using a second order approximation. Values at j = 1 (wall), j =2, and j-3
were used.

2

(au) _Yh3(uh2-Uhl ) - _Y_(uh3-U/,l)
(14)

The above algorithm worked well for flows with weak viscous/inviscid interaction,

since the downstream influence could be neglected. However, when the flows were

strongly interacting, such as those with strongly adverse pressure gradients or separation,
downstream conditions had to be considered. To account for downstream influences the

pressure gradient was differenced as a weighted average of forward and backward differ-
ences. This techniques was based on the method of Davis and Barnett[3].

Specifically the pressure gradient was differenced as

(15)

where e is a weighting parameter of the forward and backward differencing. This term
was required to remove the ellipticity in the PNS equations in strongly interacting flows.
The quantity e determined what fraction of the forward difference of the pressure
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gradient can be included so that the equations remain non-elliptiC. If the flow was
supersonic at a given j location, then only backward differencing was used for the pres-
sure gradient (e ffi1). If the flow was subsonic then at a given j location then the

following expression for e was used,

• = YM2 (16)

l÷(y-l)M 2

Boundary Layer Separation

Flaring of the advective term parallel to the core flow was used when the flow
was separated. This was handled by taking the absolute value of the coefficient in front
of the derivative of the advective term (RUB) and multiplying it by.1 to make it smaller.
Again this operation was only performed when the flow was separated.

Boundary Layer Turbulence Model

A modified Baldwin-Lomax model was used to account for turbulence. This

model was a zero equation, eddy viscosity model. This model was faster than other
turbulence models, such as the k-e two equation model. A modified model of Visbal and

Knight was used to handle the effects of separation. However, the model of Visbal and
Knight required further modification, the most important of which was the modification

of the Baldwin-Lomax parameter C_. C,_ needed to be a function of both core flow
Mach number and core flow pressure gradient. This modification was extremely
important in matching numerical results and experimental data. A detailed description
of the turbulence model used is given in Sakowski, et. al [4].

Boundary Layer/Core Flow Interface

The boundary layer algorithm serves as a link between the conduction program
(SINDA) and an inviscid core flow program. The interface with SINDA will be dis-
cussed in a later section. In this section we will look at the interface of the boundary

layer algorithm with a core flow program,

When the boundary layer algorithm was interfaced with a core flow algorithm, it
was necessary that the boundary layer properties smoothly approached the core flow
values. That is, when the derivatives perpendicular to the wall were zero, the core flow
values had to be a solution to the boundary layer equations. The complicated part was
matching the boundary layer and core flow, since the boundary layer and core flow algo-
rithms were probably not differenced in the same way. If the differential equations were
solved exactly there would not be problem, but they were not solved exactly. What the

core flow algorithm predicted as a solution, was not exactly what the boundary layer
algorithm predicted as a solution as the y-derivatives went to zero (far from the wall).
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The difference was usually fairly small (2% or so), but this small.difference could have a

big effect on the integral performed to calculate the displacement thickness. An
adjustment in the way the pressure gradient term was calculated in the boundary layer
algorithm forced the boundary layer properties to smoothly approach the core values.
Without this adjustment, the displacement thickness, predicted by the boundary layer
program had large errors. The adjustment of the pressure gradient was performed by
solving the finite differenced momentum equations for dP/dx when all y-derivatives were
g_ro.

-- 07)

The corrected value of the pressure derivatives was calculated with the edge
values from the core flow algorithm using the same differencing scheme used in the

boundary layer algorithm. In this way the boundary layer algorithm approached the core
flow values as the y-derivatives approached zero.

Another consideration for interfacing a core flow algorithm and the boundary
layer code was stability. At times the boundary layer algorithm has a stability problem.
This problem tended to initiate near the edge of the boundary layer. From one iteration
to the next the values near the core flow sometimes fluctuated between less than and

greater than the core flow value. Sometimes these fluctuations died out and the program
converged. However, other times the oscillations grew, causing the calculations to
diverge. To solve this problem flaring was used. RVB was part of the advective terms
in the y-direction. RVB was the coefficient in front of the au/ay term in the finite
differenced x-momentum equation, and the aT/By term in the finite differenced energy
equation. These were the advective terms in the y-direction. Without flaring RVB was
simply pv. With flaring RVB was changed as follows:

K_'s for momentum equation

if u<u, if u>u.

ay Ic' u. t u.j

oy I, u,) u,
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K{s for energyequation

/f r<_ ¢ Z_T,

+f _>0 _=__T
ay '

( )_,--l-Z _,=_S
oy _. r.

The motivation for the above flaring was to make the core flow value a numeri-

cally stable solution in the boundary layer algorithm far from the wall. This flaring was
found to be very important to help the stability of the algorithm, particularly when there
was an adverse pressure gradient, separation, bleeds, or bypasses. For more detail on
interfacing the boundary layer algorithm of Roach, et al. with a core flow, refer to

Darling, et al. [5].

CORE FLOW INPUT TO BOUNDARY LAYER ALGORITHM

It was mentioned previously that the boundary layer algorithm required as an
input, a core flow. The inviscid core flow variables needed by the boundary layer
algorithm were the Mach number, temperature, and pressure. For flows where the

interaction between the core flow and boundary layer were negligible, the interface was
very simple and easily implemented. All that was required was an input file by the name
LBL.DAT. This file contains seven namelists described as follows:

NAMELIST/GEOM/X: Grid point locations that run parallel to the eenterline
of the wall

NAMELIST/AREAX/AREA: Surface area of the wall that corresponds to

a respective X grid point location

NAMELIST/TEMP/TI: Core flow temperature that corresponds to a

respective X grid point location

NAMELIST/PRES/PI: Core flow that corresponds to a
respective X grid point location
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NAMELIST/MACH/AM:

NAMELIST/RADIUS/RADY:

NAMELIST/BL/

J J J:

DUMX:

II:

ENGU:

AXI:

EXT:

MYES:

Core flow Mach number that corresponds to a

respective X grid point location

Radius of the wall measured from the wall centerline

and perpendicular to its respective X grid point

location

Number of grid points perpendicular to the wall

Convergence criteria on the u velocity component of

the x momentum equation

Number of grid points in the streamwise direction

Flag to signal use of the Baldwin-Lomax turbulence
model:

TURB =.TRUE.. turbulence on

TURB =.FALSE.. turbulence off

Flag to signal use of units:
ENGU T1 PI X AREA

ENG UNITS - .TRUE. "R lbf/fl _ ft f12

Sl UNITS - .FALSE. °K N/m 2 m m s

Flag to signal axisymmetric flow."

AXI =.TRUE. - axisymmetric flow
AX! =.FALSE. - 2-D flow

Flag to signal external flow:.
EXTffi.TRUE. - external flow

EXT=.FALSE. - internal flow

Flag to print to:

Mach.out: Prints non.dimensional velocity,

temperature, density, and pressure

profiles for each x grid location and for

the first 10 SINDA iterations - after 10

SINDA iterations, the profiles are

printed every 20 SINDA iterations
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Each x grid location also gives the
following parameters:
IT: number of boundary layer

iterations
M: core flow roach number
Cf: skin biction coefficient
Ybl: distance of the last y grid point

from the wall

C2.0UT: Prints the following boundary

layer parameters:
IT: number of boundary layer

Iterations
Th: momentum thickness
CT: skin friction coefficient

Disp: displacement thickness
for the first 10 SINDA iterations - after

10 SINDA iterations, the profiles are
printed every 20 SINDA Iterations

A sample LBL.dat file is provided in the APPENDIX.

For flows where there was a strong interaction between the core flow and

boundary layer, the simple input data file of constant inviscid core flow values would

change complexion. The file would become a core flow algorithm which continuously

updates the core flow variables to account for the boundary layer interaction, such as

flows with shock waves. Such algorithms are not discussed in this paper.

SINDA/BOUNDARY LAYER INTERFACE

The nodes in SINDA that represent the wall surface nodes MUST be declared as
boundary nodes. This is done to obtain heat rates on the nodes that can be sent to the
boundary layer algorithm. For a steady state solution the heat rate on the surface node
will be zero if the nodes are defined as arithmetic or diffusion nodes. This is because

SINDA effectively "sees" an insulated surface. In actuality the surface is not insulated,
because of the presence of the boundary layer flowing over it. For each SINDA
iteration, the heat rates from the SINDA nodes are passed to the boundary layer where
new wall temperatures are determined. The boundary layer algorithm will continue

iterating until it has a converged solution. After the boundary layer algorithm has
converged, the boundary layer wall temperatures become the new SINDA boundary node
temperatures. Thus the SINDA boundary node temperatures are updated every SINDA
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iteration. The program iterates between SINDA and the boundary layer algorithm until
the boundary layer wall temperatures match the SINDA boundary node temperatures.

SINDA INPUT TO BOUNDARY LAYER ALGORITHM

In HEADER CARRAY DATA, reserve the following variables:

1 = LBLDAT
2 ffiMACH.OUT
3 ffiC2.OUT

Also, the common SINDA/FORTRAN variable BTEST should not be used.
ER VARIABLES 1, make the call to the subroutine INTERFACE as follows:

CALL INTERFACE(A,B,C,D,E,ABSZRO,BTEST, UCA1,UCA2,UCA3)

where A =

e _

C _

D

E=

In HEAD-

Submodel name in quotes where the surface boundary nodes are located,
and no more than 8 characters long.

SINDA node number of the surface boundary node located at the last x

grid location of the boundary layer (integer).

SINDA node number of the surface boundary node located at the first x

grid location of the boundary layer (integer).

Number by which the SINDA boundary nodes are incremented (integer).

Units used by SINDA. 'ENG' for English units. 'sr for Sl units.

The remaining arguments should be left as they are. ABSZRO is the SINDA variable
for absolute temperature defined in the HEADER OPTIONS DATA BLOCK. BTEST
is a counter for the number of SINDA iterations. UCA1, UCA2, and UCA3 are the

SINDA variables for the input and output fde names defined in the HEADER CAR-
RAY DATA BLOCK.

CONCLUSIONS

A fast steady, compressible, turbulent boundary layer algorithm that can be used

to model separated flows has been written as a subroutine for SINDA. Results from the
boundary layer algorithm compared well with experimental pressure distributions when
the boundary layer was interactive with the core flow, Darling, et al. [5] and Roach, et al
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[1]. In addition, the friction coefficients and momentum thicknesses predicted by the

boundary layer code compared well with experimental data, Roach, et al. [1]. The
Baldwin-Lomax turbulence model was used following the modifications of Sakowsld, et al

[4], also matched experimental data fairly well. Currently comparisons are being made

with experimental data validate the heat transfer predictions of the boundary layer
algorithm. The boundary layer algorithm was found to converge quickly with SINDA. A
simple SINDA model with 25 x-grid locations was tested, see the APPENDIX for the

SINDA input. The model converged in 95 SINDA iterations.
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APPENDIX

&GEOH X..225528E-2,.247675E-l,.515367E-1,.778460E-1,-107633,-128037e'151619,
.174448,.203611,.228309,.231856w-235408,-238954,-242498,
.246048,.249659,
.2S352,.258018w.262899,.267638w-272238w-276733r
.281173,.285603,.290036,.2944761.298924,.303379e.307842,.312309,
.316781,.321258,.325737,-330218,
.334703,.343673e.3526441.366070 &END

AREA=1.0,1.0,1.0,1.0,1.0,1.0,1.0,l.0,1.0,1.0,1.0,1.0,1.0,1.0,1"O,l"O'
1.0,1.0,1.0,1.0,1.0,1.0,1.0sl.0,l.0, l.0,1.0el.0,l-O,1-0,l.0el"0w
1.0,1.0,1.0,1.0,1.0,1.0 &END

&TFJiP Tl.1982.9,1983.3w1983.5,1983.6,1983.Sw1983.3t1982-7,1981-9,1980-3,
1975.5,1973.5,1970.811966.w1960.4e1945.2,1917.8,1857.Sw1776.7,
1707.9,1605.ge1526.4,1468-8w1385-8e
1325.1,1283.,1253.3,1228.5,1207-9,
1188.9,1171.wl155.3,1142-7,1131-3,l122-4e
1116.5,1106.3,1101.8,1098.6 &END

&PRES pI=.172115E7,.172253E7,.17236ET,.172399ET,.172346ET,-172235ET,
.17199ET,.171615E7,.170832ET,.168388ET,.167384ET,.165993ET,.163667ET,
.160348ET,.153294E7,.141769ET,.122549E7,
.IOI028ET,.810816E6,.613865E6,.492139E6,.407487E6,
.315702E6,.257376E6,.222281E6,.20018E6,.183118E6,.169834E6,
.158537E6,.148288E6,.139641E6,.133107E6,.127322E6,-122975E6,
.120144E6,.l15385E6,
.113278E6,.Il1714E6 &END

&MACH AM..389E-1,.393E-1,.411E-I,.442E-1,.492E-1,.541E-1,.619E-1,.73E-1,
.105,.192,.217,.25,.29,.354,.442,.561,.725,.919,1.13,1.3,1.48,1.6,
1.77,1.89,1.98,2.01,2.1,2.14,2.19,2.22,2.25,2.29,2.31,2-32,2.34,
2.36,2.37,2.374 &END

&RADIUSY RADY=l.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1-0,1.0,1.0,1-0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1-0,1.0,1-0,

1.0,1.0,1.0,1.0,1.0,1.0 &END
&BL JJJ=lO0,DUMXl=.O01,II=25,TURB=.TRUE.,

ENGU-.FALSE.,AXI-.TRUE.,EXT=.TRUE.,MYES=.TRUE. &END
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HEADER OPTIONS DATA
TITLE BOUNDARY LAYER CODE INTERFACE WITH SINDA

MODEL - BLI
OUTPUT - BL2.0UT
USERI - BLI.USR
USER2 - BL2.USR

HEADER CONTROL DATA, GLOBAL
NLOOPS= 4000
ABSZRO- -460.0
UID - ENG
ARLXCA - .01 $DEFAULT VALUE
DRLXCA - .0] $DEFAULT VALUE
EBALSA - .01 SDEFAULT VALUE

HEADER USER DATA, GLOBAL
C

HEADER CARRAY DATA, BL
I-NASA$PFSD:[AMBER.SINDA]LBL.DAT

2-TDISK$DIR:[AMBER]MACH.OUT
3=TDISKSDIR:[AMBER]C2.0UT

HEADER USER DATA, BL
C

C>>>>>)RESERVE BTEST FOR USE IN BOUNDARY LAYER
HEADER ARRAY DATA, BL
C

I- BI.,0.1139 $ SPECIFIC HEAT VS. TEMPERATURE
261.,0.1230 $ UNITS: BTU/LBM/DEG. F
621.,0.1330 $ AISI 304 S.S.
g81.,0.1390
134].,0.1459

2= 81., 8.6]
261., g.sg
621.,11.44
g8I.,13.06

1341.,14.68

$ THERMAL CONDUCTIVITY VS. TEMPERATURE
S UNITS: BTU/HR/FT/DEG. F
$ AISI 304 S.S.

C
HEADER NODE DATA, BL

C******AISI 304 S.S./DENSITY-493 LBM/FT**3
C******GENERATE 25 DIFFUSION NODES TO REPRESENT THE WALLII

SIM 8801,ZS,1,70.,A1,5.

C******GENERATE SURFACENODES!!!!!!!I)>XONNECT TO THE BOUNDARYLAYER CODE
\.

GEN -1,25,1,3000.,O.O

C******GENERATE OTHER BOUNDARY NODES TO SIMULATE THE EFFECT OF A SIMPLE
C******ACTIVE COOLING SYSTEM WHOSE EFFECTIVE TEMPERATURE IS 100 DEG FJJl

GEN -1101,25,1,100.0,0.0

HEADER CONDUCTOR DATA, BL

C********CREATE CONDUCTORS IN THE WALL ALONG THE "X AXIS"
C********FOR THIS CASE THE "X AXIS" FOLLOWS THE DIRECTION OF THE CORE FLOW

SIM BOI,24,1,BSOI,I,BBO2,I,A2,6.
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C****,***CREATE CONDUCTORS THAT CONNECT THE WALL DIFFUSION NODES
C***,'***TO THE BOUNDARY NODES WHICH INTERFACE WITH THE BOUNDARY LAYER

SIM BBOI,25,I,BBOI,I,I,I,A2,.!

C********CREATE CONDUCTORS THAT CONNECT THE WALL DIFFUSION NODES
C********TO THE BOUNDARY NODES THAT SIMULATE ACTIVE COOLING

SIM BBBOI,25,I,BBOI,I,IIOI,I,A2,.I

HEADER VARIABLES I, BL

C*****THIS IS THE SUBROUTINE THE DOES IT ALL!IIIIII
CALL INTERFACE('BL ',25,1,1,'ENG',ABSZRO,

& BTEST,UCAI,UCA2,UCA3,)

HEADER OPERATIONS DATA
C

BUILD BLI,BL
C

CALL STDSTL
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