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SUMMARY

cigenvalues and the relationship between line pressure modes and flow rate modes is
established. A volume at the end of each branch is employed which allows any
combination of boundary conditions, from open to closed, to be used.

The Jacobi iterative method is used to compute undamped natural frequencies and
associated pressure/flow modes. Several numerical examples are presented which include
acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main
Propulsion System.

It should be noted that the method presented herein can be applied to any one-dimensional
acoustic system involving an arbitrary number of branches.

INTRODUCTION

Often in the analysis of dynamic responses of piped fluid networks, a preliminary "quick
look" at acoustic mode shapes and frequencies of the system is a useful diagnostic tool
prior to the initiation of more detailed diagnostic testing or modeling efforts. Knowledge of
the fundamental and higher order response mode frequencies of the 5;'stem based on linear
analysis allows for rapid assessment of modes which may couple dynamically with devices
such as regulators and check valves. This provides valuable diagnostic information when
troubleshooting dynamic problems with these types of devices. Knowledge of pressure
and flow mode shapes can provide guidance on positioning of high frequency pressure and

flow transducers during testing. Such information can be used to infer magnitude of

pressure and flow oscillations in regions of the fluid system where measurements cannot be
made due to various practical limitations typically encountered on operational systems.

During the course of diagnostic studies of several dynamic phenomena with regulators,
check valves, propellant feed systems and rocket engines of the Space Shuttle iter
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t over the last four years, the authors developed a systematic fluid element
h to the analysis of related piped fluid networks. These modeling procedures were
incorporated into a FORTRAN computer program called ACLMODES.

This paper presents derivations of basic building block equations used in the program,
illustrates numerical accuracy of the computer code on several problems with known

closed-form solutions and illustrates how the program was used to analyze several dynamic
phenomena associated with piped fluid netwarks of the Orbiter spacecraft.

GOVERNING EQUATIONS
The basic equations employed in this paper are the familiar pneumatic/h
transmission line equations which govern one-dimensional transient flow. These equations
for an unbranched acoustic line are first re-cast in matrix form. Then, this matrix

formulation is generalized for systems of branched acoustic lines, referred to as "fluid
networks".

Matrix Form of Equations for Unbranched Acoustic Lines

The ordinary differential equations governing one-dimensional flow of an ideal gas, in
terms of volumetric flow, are (see Figure 1 for notation)

LQ = P; - Py - RgIQIQ )
GP=Q;-Q: i=LN @
where:

inertance of the ith fluid element,

L

C; = capacitance of the ith fluid clement,

Q; = mass flow into the i+1 clement,

P; pressure at the center of the ith fluid element
Rf
N

= resistance,
total number of fluid elements used to model a line segment

For a uniform line modeled with equal-length elements, the inertance, capacitance, and
flow resistance are the same for all clements and are given by:

1=BAE 3)
AL
= — 4
—RT (4)
+L



where:

fluid element length

flow area

polytropic process exponent
temperature

gas constant

= density

f = friction factor (pipe flow)

D = line internal diameter

L, = equivalent length for minor losses

It should be noted that Eq. (1) may be casily derived by integrating once the one-
dimensional momentum equation and neglecting the convective terms. Equation (2) is the
equation of conservation of mass for isentropic flow of an ideal gas. These equations arc
derived in References [1], [2), and [3].
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Figure 1. Typical discretization of a line segment.

The sets of Egs. (1) and (2) may be written in matrix form in the special case of R; =0, that
is, for the undamped system. The matrix equations arc

AQ + BP = F, ©)
CP-BTQ=F, Q)

where the superscript denotes the transpose of the matrix, and:

- 3)
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Differential Equations for Acoustic Lines with Branches

otherwise B;; = 0)

®

(10)

(11)

(12)

Consider a branched acoustic system such as that shown in Figure 2. The end volumes
V,, V, and V, are used in the formulation for generalizing the boundary conditions. It
should be noted (see Appendix A) that V = 0 represents a closed end while V= eo is an

open end.
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Figure 2. Example of an acoustic line with a branch.

For simplicity, damping is neglected in this section. Equations (6) and (7) are nﬁable in
this case, but the matrix B has a different structure from that of Eq. (10). Note Egs.
(1) and (2) with Rg; = 0 apply at all elements with some modifications at the ends (elements
1, K, and N) and element j, where the branch connects to the main line. The first-order
equations for these special clements are:

¢ i’l =Q-Q 13
CP = Q-Q-& (14)
G P, = Q. (15)
CyPn = Qu (16)
Ika = P - Pxa an

\'%
withC, = -yR_tl' The B matrix in this case (one branch) has the following structure:

= 1; i=1,N

ii+l

Note that B is an N x (N + 1) rectangular matrix.
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An example on the structure of B:

j =2
k =4
N=7
(7x8)
11000000
01100000
00110000
B=[(0-1001000
0000-1100
00000-110
(000000-1 1] 19

The extension to acoustic lines with multiple branches, or fluid networks, is straight
forward. Obviously, the structure of B depends on the numbering system used.

Linearized Form of Governing Equations
For small pressure/flow oscillations, it can be shown that
A.(i+ D&+EQq=g, (20)
C'f)+l-li)+Epp=g2 (21)

where A and C are given by Eqgs. (8) and (9) respectively. The diagonal damping matrix D
is defined by :

where B, = 2R;Q’ is the linear damping coefficient, Q being the mean (steady) flow rate.

Note that the vectors q, p, f, and f, are defined according to Eqgs. (11) and (12), with Q.
P, F, and F, replaced by g, p, f, and f, respectively. The matrices H,E_,E . g, and g,
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in Eqgs. (20) and (21) are given by

H = BTA'DBT C 22)
Eq = BC! BT (23)
Ep = BTA'B )
g, =4 -BC'I, (25)
g2=‘¢2+BTA-‘(f,+DnT"f2) 26)

ACOUSTIC MODES IN FLUID NETWORKS

The undamped natural frequencies and mode shapes for a fluid network are determined
from Egs. (20) and (21) with D = 0. Setting the right hand of these equations equal to
zero, the free, undamped flow/pressure oscillations in a fluid network are govemed by

Aq+Eqq=0 @n

Cp+Ep =0 (28)
where A, C, Eq and E;, are defined by Eqgs. (8), (9), (23) and (24) respectively.
The cigenvalue problem associated with Eq. (27) is

AX = Aq EqoX (29)

where Ag = -1—2 and X is a flow eigenvector or flow mode.

%
The cigenvalue problem associated with Eq. (28) is

CY = AEpY | (30)

where Ap = -1—2 and Y is a pressure eigenvector or pressure mode.

It can be easily shown that

g = Op 31
and

Y = C!BTX (32)
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Computer Program ACLMODES

A computer program, referred to as ACLMODES, was developed which computes the
natural frequencies and associated flow rate/pressure modes for an acoustic line network.
The program can accommodate any number of branches with any combination of boundary
conditions (ranging from closed to open at each end). The input to the program is relatively
simple due to its capability of generating acoustic elements with identical properties.

The program employs the Jacobi ltcrative Method to solve the eigenvalue lem defined
bg'oexmer Eq. (29) or Eq. (30). Line pressure modes are computed either y from Eq.
(30) or using Eq. (32).

NUMERICAL RESULTS AND DISCUSSION-

Three examples demonstrating capabilities of the ACLMODES program are shown in the
following paragraphs. The first example is a comparison of a simple system's frequencies
predicted by ACLMODES and the closed-form solution shown in Appendix A. The other
examples are actual applications of ACLMODES on Space Shuttle fluid line systems.

Numerical Test Case

Example 1 is a test case consisting of a 100 inch long pipe of 0.5 inch LD. filled with
helium and a volume on both ends. Three different combinations of end volumes, shown
in Table 1, were used. Note that all volumes are in cubic inches. Case A represents an
open-closed boundary conditions and Case B a closed-closed.

VOLUMEA | VOLUMEB |
CASEA 0.00001 10000
CASEB 0.00001 0.00001
CASEC 0.1 10

Table 1. Volume sizes for ACLMODES test case.

ACLMODES was used to determine the first three natural frequencies of each of the three
cases. Each case was repeated with four different element lengths to evaluate solution
accuracy versus number of line elements employed. The closed-form solution shown in
Appendix A was then used to calculated the frequencies of the three cases. The
ACLMODES results are shown in Table 2 together with the closed-form solution.
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| NUMBEROFELEMENTS | CLOSED |
"MODE| 10 —=5— T 50 ] 100__| FORM _

05010038 | 10040 | 10040 ( 10040
CASEA 2 298.23 300.31 300.98 300.98 301.00

3 488.85 498.43 501.13 501.52 501.64

1 199.83 200.43 . 200.64 .
CASEB 2 394.73 399.66 401.04 401.24 401.30

3 579.92 596.40 601.06 601.73 601.95

1 143.02 1435.09 145.10 13511 .
CASEC 2 320.47 322.36 322.89 322.96 32298

3 502.28 511.27 513.81 514.17 514.28

Table 2. Acoustic Frequencies (Hz) of Cases A,B and C.

The percent difference between the values ACLMODES predicted and that of the closed-
form solution are shown in Table 3.

[TMODE 10 20 —30 100
1 010 | 0.02 K — 0.00
CASE A 2 0.92 0.23 0.01 0.01
3 2.55 0.64 0.10 0.02
1 0.41 0.10 0.01 00
CASEB 2 1.64 0.41 0.06 0.01
3 3.66 0.92 0.15 0.04
1 0.06 0.01 0.01 .
CASEC 2 0.78 0.19 0.03 0.01
3 2.33 0.59 0.09 0.02

Table 3. Percent Error of Cases A, BandC
Compared to Closed-Form Solution

These numerical results show excellent agreement with the closed-form solution results.
As expected, there is improvement in accuracy of the numerical solution as the number of
line elements increases. A general rule of thumb for an acceptable line element length
required to obtain accurate numerical results is @lL/c < 0.5, where @ is the estimated

circular frequency of the mode sought in rad/sec, L is the line element length (inch) and cis

the speed of sound in the fluid (inch/sec). Figure 1 shows percent er:r versus al/c for all
values in Table 3.
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Figure 1. Percent error versus wL/c

It can be seen that when the condition wL/c < 0.5 is not met the percent error is greater
than 1.

Test Stand Line Dynamics

Stability testing of the Primary Reaction Control System (PRCS) thruster at the NASA
White Sands Test Facility (WSTF) required that the test stand have similar line dynamics to
that of the Space Shuttle Orbiter. This is because the PRCS thruster is a pressure-fed
engine so the pressure recovery or waterhammer of the line governs the start-up transients.
Therefore, a simple line having similar waterhammer characteristics to that of the aft PRCS
feed system, which is a fairly complicated system with many branches and twelve primary
thrusters (see Figure 2), was desired.

Supply
Tank T

N T

Figure 2. Schematic of the Space Shuttle's PRCS aft fuel supply system.
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The original ideawastousesimila:lincdiametcrstothatofthevehicleandd\eavmgc
distance from the supply tank to the thrusters as the test stand line length. However, it was
not obvious that this would yield the same dynamics as the vehicle so a model of each
configuration was constructed.

The first mode of the proposed test stand fuel line was found using ACLMODES and is
shown in Figure 3. Asexpecteditappearstobemopen-closedmodewithaﬁeqmncyof
65 Hz. The first mode of the vehicle’s piping systcm was found to have a frequency of 40
Hz and is shown in Figure 4. The difference in frequency was not table so the test
stand line was reconfigured to have the same first natural frequency as vehicle feed
system.

Figure 3. First pressure mode of simple feed system.

|

|

Figure 4. First pressure mode of the Space Shuttle's PRCS aft fuel supply system.
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Space Shuttle Main Propulsion System Helium Supply System

The regulators in the helium supply system for Space Shuttle Main Propulsion System
(MPS) were experiencing oscillations. These oscillations were seen both on test stands as
well as on the vehicle. It was believed that the source of the oscillations was the regulators
coupling with the downstream line acoustics.

Each engine has its own helium supply system. A helium supply system consists of high
pressure supply tanks, tubing leading up to two panels in parallel, and lines from the
rejoining and continuing on to the engine. A panel consist of a regulator and relief valve as
well as several solenoids and check valves. Only the lines downstream of the regulators
were of interest, so they were all that was modeled (see Figure 5).

! . ORegulator A p
PG L2l 30" +Panel A y e .
Rl Relief ' ;
. Sensor A Valve A o :
"""" Y I K :
3 428.4" . 66.0" ‘
o \/ ; —O
e .8 .............. .0 .......... - !
; Relief Engine 1
: &} L 30° Va'“’g » Panel B
' Helief 3 X
+ Sensor B O Regulator B /-

Figure 5. MPS Engine 1 helium schematic of lines downstream of regulators.

Figure 6 throu§h 8 show the first, fourth and eighteen %Ic:sure modes predicted by
A ODES for the Engine 1 helium supply system. fourth mode is shown again in
Figure 9 as a flow mode.
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Figure 6. First pressure mode of the Engine 1 helium
lines downstream of regulators.

Figure 7. Fourth pressure mode of the Engine 1 helium
lines downstream of regulators.

Figure 8. Eighteenth pressure mode of the Engine 1 helium
lines downstream of regulators.
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Figure 9. Fourth flow mode of the Engine 1 helium
lines downstream of regulators.

Not all regulators oscillated on the vehicle and those that did, oscillated at different
frequencies depending on flow demand and number of regulators in use. One mode of
oscillation was around 115 to 120 hertz, with the regulators oscillating out of phase with
cach other. This mode was predicted by ACLMODES and can be seen in Figure 7 and

Figure 9.

The pressure mode shapes were also used to determine if the pressure oscillations being
measured by a transducer were representative of the oscillations at the regulators. This was
done by examining the modes with frequencies near the frequency of interest and
determining if the pressure amplitude at the transducer was being attenuated or amplified
compared to that of the regulator.

CONCLUSIONS

The method presented herein has proven to be a very useful and accurate tool for
determining dynamic characteristcs of complex fluid networks, such as pressure recovery
and oscillatory behavior. When implemented in a computer code and coupled with a
plotting routine, this technique can graphically show vital information about the behavior of
a fluid system impossible to obtain with hand calculations.

REFERENCES
1. Schuder, C.B. and R.C. Binder, "The Response of Pneumatic Transmission Lines to
f;es% Inputs,” Journal of Basic Engineering, Trans. ASME, pp. 578-584, December

2. Schwirian, R.E., "Multidimensional Watethammer Analysis Using a Node-Flow Link
Approach,” FED Vol. 30, pp. 69-77, 1985.

3. Schwirian, R.E,, et. al., "A Method for Predicting Pump-Induced Acoustic Pressures
in Fluid-Handling Systems," ASME PVP Vol. 63, pp. 167-184, 1982.

182



APPENDIX A
Modes of a Straight Acoustic Line with General End Conditions

The classical wave equation for a straight tube in terms of volumetric flow rate is

2?9 . %%2 A1)

ox?

The boundary conditions for the system shown below are derived from the continuity
equation and the definition of fluid capacitance.

-— L ﬁl
O= ’},:, 7= v,

1 Q(x.t) >

Figure A-1. Straight acoustic line.

The continuity equation is

dP
pc2?i =-Ag (A.2)

fluid density
acoustic velocity
volumetric flow rate
pressure

flow area

where

>vo 0o
U

But

P e E@Q-Qw (A3)

where C is the fluid capacitance which is given by

Gas: c=Y. Y. Y
¥ RT ol
o V_V
Liquid: C=3=—% (B = Bulk Modulus)
peL
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Substitution of (A.3) in (A.2) yields

pc? X = AL Q- Q)

or,

X .. 5Q-Qw (A4)
Forend 1,x =0,

Qingo’ Qout=Q|x=0

Thus,
A

Similarly, for end 2, y=L,

Q= Qo Qo =0
from which

A

i | L=y (A.6)
The general solution of Eq. (A.1) is
| Q(x.f) = T() D;sin T x + D,cos Tx) (A7)
where

T(t) = B,sinwt + B,cos ax (A.8)

Subst_imtion of conditions (A.5) and (A.6) into Eq. (A.7) leads to the following frequency
equation

a
1+ -1
@,
QuanQ="—"7_ (A.9)
a, -——%02
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] ) Vi v,
where Q = ¢ L is a nondimensional frequency, &, =77, and 0y = A7

Special Cases
1. V, = o (open end)

1
Qtan Q="
o,

2.V, 0 (closed end)

tanQ = -a, Q
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